// Copyright 2021 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include #include #include "src/base/utils/random-number-generator.h" #include "src/codegen/assembler-inl.h" #include "src/codegen/macro-assembler.h" #include "src/deoptimizer/deoptimizer.h" #include "src/execution/simulator.h" #include "src/init/v8.h" #include "src/objects/objects-inl.h" #include "src/utils/ostreams.h" #include "test/cctest/cctest.h" #include "test/common/assembler-tester.h" namespace v8 { namespace internal { // TODO(LOONG64): Refine these signatures per test case. using FV = void*(int64_t x, int64_t y, int p2, int p3, int p4); using F1 = void*(int x, int p1, int p2, int p3, int p4); using F2 = void*(int x, int y, int p2, int p3, int p4); using F3 = void*(void* p, int p1, int p2, int p3, int p4); using F4 = void*(void* p0, void* p1, int p2, int p3, int p4); #define __ masm-> TEST(BYTESWAP) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); struct T { uint64_t s8; uint64_t s4; uint64_t s2; uint64_t u4; uint64_t u2; }; T t; // clang-format off uint64_t test_values[] = {0x5612FFCD9D327ACC, 0x781A15C3, 0xFCDE, 0x9F, 0xC81A15C3, 0x8000000000000000, 0xFFFFFFFFFFFFFFFF, 0x0000000080000000, 0x0000000000008000}; // clang-format on MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assembler; __ Ld_d(a4, MemOperand(a0, offsetof(T, s8))); __ ByteSwapSigned(a4, a4, 8); __ St_d(a4, MemOperand(a0, offsetof(T, s8))); __ Ld_d(a4, MemOperand(a0, offsetof(T, s4))); __ ByteSwapSigned(a4, a4, 4); __ St_d(a4, MemOperand(a0, offsetof(T, s4))); __ Ld_d(a4, MemOperand(a0, offsetof(T, s2))); __ ByteSwapSigned(a4, a4, 2); __ St_d(a4, MemOperand(a0, offsetof(T, s2))); __ Ld_d(a4, MemOperand(a0, offsetof(T, u4))); __ ByteSwapSigned(a4, a4, 4); __ St_d(a4, MemOperand(a0, offsetof(T, u4))); __ Ld_d(a4, MemOperand(a0, offsetof(T, u2))); __ ByteSwapSigned(a4, a4, 2); __ St_d(a4, MemOperand(a0, offsetof(T, u2))); __ jirl(zero_reg, ra, 0); CodeDesc desc; masm->GetCode(isolate, &desc); Handle code = Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build(); auto f = GeneratedCode::FromCode(*code); for (size_t i = 0; i < arraysize(test_values); i++) { int32_t in_s4 = static_cast(test_values[i]); int16_t in_s2 = static_cast(test_values[i]); uint32_t in_u4 = static_cast(test_values[i]); uint16_t in_u2 = static_cast(test_values[i]); t.s8 = test_values[i]; t.s4 = static_cast(in_s4); t.s2 = static_cast(in_s2); t.u4 = static_cast(in_u4); t.u2 = static_cast(in_u2); f.Call(&t, 0, 0, 0, 0); CHECK_EQ(ByteReverse(test_values[i]), t.s8); CHECK_EQ(ByteReverse(in_s4), static_cast(t.s4)); CHECK_EQ(ByteReverse(in_s2), static_cast(t.s2)); CHECK_EQ(ByteReverse(in_u4), static_cast(t.u4)); CHECK_EQ(ByteReverse(in_u2), static_cast(t.u2)); } } TEST(LoadConstants) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope handles(isolate); int64_t refConstants[64]; int64_t result[64]; int64_t mask = 1; for (int i = 0; i < 64; i++) { refConstants[i] = ~(mask << i); } MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assembler; __ or_(a4, a0, zero_reg); for (int i = 0; i < 64; i++) { // Load constant. __ li(a5, Operand(refConstants[i])); __ St_d(a5, MemOperand(a4, zero_reg)); __ Add_d(a4, a4, Operand(kPointerSize)); } __ jirl(zero_reg, ra, 0); CodeDesc desc; masm->GetCode(isolate, &desc); Handle code = Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build(); auto f = GeneratedCode::FromCode(*code); (void)f.Call(reinterpret_cast(result), 0, 0, 0, 0); // Check results. for (int i = 0; i < 64; i++) { CHECK(refConstants[i] == result[i]); } } TEST(jump_tables4) { // Similar to test-assembler-loong64 jump_tables1, with extra test for branch // trampoline required before emission of the dd table (where trampolines are // blocked), and proper transition to long-branch mode. // Regression test for v8:4294. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assembler; const int kNumCases = 512; int values[kNumCases]; isolate->random_number_generator()->NextBytes(values, sizeof(values)); Label labels[kNumCases]; Label near_start, end, done; __ Push(ra); __ xor_(a2, a2, a2); __ Branch(&end); __ bind(&near_start); for (int i = 0; i < 32768 - 256; ++i) { __ Add_d(a2, a2, 1); } __ GenerateSwitchTable(a0, kNumCases, [&labels](size_t i) { return labels + i; }); for (int i = 0; i < kNumCases; ++i) { __ bind(&labels[i]); __ li(a2, values[i]); __ Branch(&done); } __ bind(&done); __ Pop(ra); __ or_(a0, a2, zero_reg); __ jirl(zero_reg, ra, 0); __ bind(&end); __ Branch(&near_start); CodeDesc desc; masm->GetCode(isolate, &desc); Handle code = Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build(); #ifdef OBJECT_PRINT code->Print(std::cout); #endif auto f = GeneratedCode::FromCode(*code); for (int i = 0; i < kNumCases; ++i) { int64_t res = reinterpret_cast(f.Call(i, 0, 0, 0, 0)); ::printf("f(%d) = %" PRId64 "\n", i, res); CHECK_EQ(values[i], res); } } TEST(jump_tables6) { // Similar to test-assembler-loong64 jump_tables1, with extra test for branch // trampoline required after emission of the dd table (where trampolines are // blocked). This test checks if number of really generated instructions is // greater than number of counted instructions from code, as we are expecting // generation of trampoline in this case CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assembler; const int kSwitchTableCases = 40; const int kMaxBranchOffset = (1 << (18 - 1)) - 1; const int kTrampolineSlotsSize = Assembler::kTrampolineSlotsSize; const int kSwitchTablePrologueSize = MacroAssembler::kSwitchTablePrologueSize; const int kMaxOffsetForTrampolineStart = kMaxBranchOffset - 16 * kTrampolineSlotsSize; const int kFillInstr = (kMaxOffsetForTrampolineStart / kInstrSize) - (kSwitchTablePrologueSize + 2 * kSwitchTableCases) - 20; int values[kSwitchTableCases]; isolate->random_number_generator()->NextBytes(values, sizeof(values)); Label labels[kSwitchTableCases]; Label near_start, end, done; __ Push(ra); __ xor_(a2, a2, a2); int offs1 = masm->pc_offset(); int gen_insn = 0; __ Branch(&end); gen_insn += 1; __ bind(&near_start); for (int i = 0; i < kFillInstr; ++i) { __ Add_d(a2, a2, 1); } gen_insn += kFillInstr; __ GenerateSwitchTable(a0, kSwitchTableCases, [&labels](size_t i) { return labels + i; }); gen_insn += (kSwitchTablePrologueSize + 2 * kSwitchTableCases); for (int i = 0; i < kSwitchTableCases; ++i) { __ bind(&labels[i]); __ li(a2, values[i]); __ Branch(&done); } gen_insn += 3 * kSwitchTableCases; // If offset from here to first branch instr is greater than max allowed // offset for trampoline ... CHECK_LT(kMaxOffsetForTrampolineStart, masm->pc_offset() - offs1); // ... number of generated instructions must be greater then "gen_insn", // as we are expecting trampoline generation CHECK_LT(gen_insn, (masm->pc_offset() - offs1) / kInstrSize); __ bind(&done); __ Pop(ra); __ or_(a0, a2, zero_reg); __ jirl(zero_reg, ra, 0); __ bind(&end); __ Branch(&near_start); CodeDesc desc; masm->GetCode(isolate, &desc); Handle code = Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build(); #ifdef OBJECT_PRINT code->Print(std::cout); #endif auto f = GeneratedCode::FromCode(*code); for (int i = 0; i < kSwitchTableCases; ++i) { int64_t res = reinterpret_cast(f.Call(i, 0, 0, 0, 0)); ::printf("f(%d) = %" PRId64 "\n", i, res); CHECK_EQ(values[i], res); } } static uint64_t run_alsl_w(uint32_t rj, uint32_t rk, int8_t sa) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assembler; __ Alsl_w(a2, a0, a1, sa); __ or_(a0, a2, zero_reg); __ jirl(zero_reg, ra, 0); CodeDesc desc; assembler.GetCode(isolate, &desc); Handle code = Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build(); auto f = GeneratedCode::FromCode(*code); uint64_t res = reinterpret_cast(f.Call(rj, rk, 0, 0, 0)); return res; } TEST(ALSL_W) { CcTest::InitializeVM(); struct TestCaseAlsl { int32_t rj; int32_t rk; uint8_t sa; uint64_t expected_res; }; // clang-format off struct TestCaseAlsl tc[] = {// rj, rk, sa, expected_res {0x1, 0x4, 1, 0x6}, {0x1, 0x4, 2, 0x8}, {0x1, 0x4, 3, 0xC}, {0x1, 0x4, 4, 0x14}, {0x1, 0x4, 5, 0x24}, {0x1, 0x0, 1, 0x2}, {0x1, 0x0, 2, 0x4}, {0x1, 0x0, 3, 0x8}, {0x1, 0x0, 4, 0x10}, {0x1, 0x0, 5, 0x20}, {0x0, 0x4, 1, 0x4}, {0x0, 0x4, 2, 0x4}, {0x0, 0x4, 3, 0x4}, {0x0, 0x4, 4, 0x4}, {0x0, 0x4, 5, 0x4}, // Shift overflow. {INT32_MAX, 0x4, 1, 0x2}, {INT32_MAX >> 1, 0x4, 2, 0x0}, {INT32_MAX >> 2, 0x4, 3, 0xFFFFFFFFFFFFFFFC}, {INT32_MAX >> 3, 0x4, 4, 0xFFFFFFFFFFFFFFF4}, {INT32_MAX >> 4, 0x4, 5, 0xFFFFFFFFFFFFFFE4}, // Signed addition overflow. {0x1, INT32_MAX - 1, 1, 0xFFFFFFFF80000000}, {0x1, INT32_MAX - 3, 2, 0xFFFFFFFF80000000}, {0x1, INT32_MAX - 7, 3, 0xFFFFFFFF80000000}, {0x1, INT32_MAX - 15, 4, 0xFFFFFFFF80000000}, {0x1, INT32_MAX - 31, 5, 0xFFFFFFFF80000000}, // Addition overflow. {0x1, -2, 1, 0x0}, {0x1, -4, 2, 0x0}, {0x1, -8, 3, 0x0}, {0x1, -16, 4, 0x0}, {0x1, -32, 5, 0x0}}; // clang-format on size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseAlsl); for (size_t i = 0; i < nr_test_cases; ++i) { uint64_t res = run_alsl_w(tc[i].rj, tc[i].rk, tc[i].sa); PrintF("0x%" PRIx64 " =? 0x%" PRIx64 " == Alsl_w(a0, %x, %x, %hhu)\n", tc[i].expected_res, res, tc[i].rj, tc[i].rk, tc[i].sa); CHECK_EQ(tc[i].expected_res, res); } } static uint64_t run_alsl_d(uint64_t rj, uint64_t rk, int8_t sa) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assembler; __ Alsl_d(a2, a0, a1, sa); __ or_(a0, a2, zero_reg); __ jirl(zero_reg, ra, 0); CodeDesc desc; assembler.GetCode(isolate, &desc); Handle code = Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build(); auto f = GeneratedCode::FromCode(*code); uint64_t res = reinterpret_cast(f.Call(rj, rk, 0, 0, 0)); return res; } TEST(ALSL_D) { CcTest::InitializeVM(); struct TestCaseAlsl { int64_t rj; int64_t rk; uint8_t sa; uint64_t expected_res; }; // clang-format off struct TestCaseAlsl tc[] = {// rj, rk, sa, expected_res {0x1, 0x4, 1, 0x6}, {0x1, 0x4, 2, 0x8}, {0x1, 0x4, 3, 0xC}, {0x1, 0x4, 4, 0x14}, {0x1, 0x4, 5, 0x24}, {0x1, 0x0, 1, 0x2}, {0x1, 0x0, 2, 0x4}, {0x1, 0x0, 3, 0x8}, {0x1, 0x0, 4, 0x10}, {0x1, 0x0, 5, 0x20}, {0x0, 0x4, 1, 0x4}, {0x0, 0x4, 2, 0x4}, {0x0, 0x4, 3, 0x4}, {0x0, 0x4, 4, 0x4}, {0x0, 0x4, 5, 0x4}, // Shift overflow. {INT64_MAX, 0x4, 1, 0x2}, {INT64_MAX >> 1, 0x4, 2, 0x0}, {INT64_MAX >> 2, 0x4, 3, 0xFFFFFFFFFFFFFFFC}, {INT64_MAX >> 3, 0x4, 4, 0xFFFFFFFFFFFFFFF4}, {INT64_MAX >> 4, 0x4, 5, 0xFFFFFFFFFFFFFFE4}, // Signed addition overflow. {0x1, INT64_MAX - 1, 1, 0x8000000000000000}, {0x1, INT64_MAX - 3, 2, 0x8000000000000000}, {0x1, INT64_MAX - 7, 3, 0x8000000000000000}, {0x1, INT64_MAX - 15, 4, 0x8000000000000000}, {0x1, INT64_MAX - 31, 5, 0x8000000000000000}, // Addition overflow. {0x1, -2, 1, 0x0}, {0x1, -4, 2, 0x0}, {0x1, -8, 3, 0x0}, {0x1, -16, 4, 0x0}, {0x1, -32, 5, 0x0}}; // clang-format on size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseAlsl); for (size_t i = 0; i < nr_test_cases; ++i) { uint64_t res = run_alsl_d(tc[i].rj, tc[i].rk, tc[i].sa); PrintF("0x%" PRIx64 " =? 0x%" PRIx64 " == Dlsa(v0, %" PRIx64 ", %" PRIx64 ", %hhu)\n", tc[i].expected_res, res, tc[i].rj, tc[i].rk, tc[i].sa); CHECK_EQ(tc[i].expected_res, res); } } // clang-format off static const std::vector ffint_ftintrz_uint32_test_values() { static const uint32_t kValues[] = {0x00000000, 0x00000001, 0x00FFFF00, 0x7FFFFFFF, 0x80000000, 0x80000001, 0x80FFFF00, 0x8FFFFFFF, 0xFFFFFFFF}; return std::vector(&kValues[0], &kValues[arraysize(kValues)]); } static const std::vector ffint_ftintrz_int32_test_values() { static const int32_t kValues[] = { static_cast(0x00000000), static_cast(0x00000001), static_cast(0x00FFFF00), static_cast(0x7FFFFFFF), static_cast(0x80000000), static_cast(0x80000001), static_cast(0x80FFFF00), static_cast(0x8FFFFFFF), static_cast(0xFFFFFFFF)}; return std::vector(&kValues[0], &kValues[arraysize(kValues)]); } static const std::vector ffint_ftintrz_uint64_test_values() { static const uint64_t kValues[] = { 0x0000000000000000, 0x0000000000000001, 0x0000FFFFFFFF0000, 0x7FFFFFFFFFFFFFFF, 0x8000000000000000, 0x8000000000000001, 0x8000FFFFFFFF0000, 0x8FFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF}; return std::vector(&kValues[0], &kValues[arraysize(kValues)]); } static const std::vector ffint_ftintrz_int64_test_values() { static const int64_t kValues[] = {static_cast(0x0000000000000000), static_cast(0x0000000000000001), static_cast(0x0000FFFFFFFF0000), static_cast(0x7FFFFFFFFFFFFFFF), static_cast(0x8000000000000000), static_cast(0x8000000000000001), static_cast(0x8000FFFFFFFF0000), static_cast(0x8FFFFFFFFFFFFFFF), static_cast(0xFFFFFFFFFFFFFFFF)}; return std::vector(&kValues[0], &kValues[arraysize(kValues)]); } // clang-off on // Helper macros that can be used in FOR_INT32_INPUTS(i) { ... *i ... } #define FOR_INPUTS(ctype, itype, var, test_vector) \ std::vector var##_vec = test_vector(); \ for (std::vector::iterator var = var##_vec.begin(); \ var != var##_vec.end(); ++var) #define FOR_INPUTS2(ctype, itype, var, var2, test_vector) \ std::vector var##_vec = test_vector(); \ std::vector::iterator var; \ std::vector::reverse_iterator var2; \ for (var = var##_vec.begin(), var2 = var##_vec.rbegin(); \ var != var##_vec.end(); ++var, ++var2) #define FOR_ENUM_INPUTS(var, type, test_vector) \ FOR_INPUTS(enum type, type, var, test_vector) #define FOR_STRUCT_INPUTS(var, type, test_vector) \ FOR_INPUTS(struct type, type, var, test_vector) #define FOR_INT32_INPUTS(var, test_vector) \ FOR_INPUTS(int32_t, int32, var, test_vector) #define FOR_INT32_INPUTS2(var, var2, test_vector) \ FOR_INPUTS2(int32_t, int32, var, var2, test_vector) #define FOR_INT64_INPUTS(var, test_vector) \ FOR_INPUTS(int64_t, int64, var, test_vector) #define FOR_UINT32_INPUTS(var, test_vector) \ FOR_INPUTS(uint32_t, uint32, var, test_vector) #define FOR_UINT64_INPUTS(var, test_vector) \ FOR_INPUTS(uint64_t, uint64, var, test_vector) template RET_TYPE run_CVT(IN_TYPE x, Func GenerateConvertInstructionFunc) { using F_CVT = RET_TYPE(IN_TYPE x0, int x1, int x2, int x3, int x4); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assm; GenerateConvertInstructionFunc(masm); __ movfr2gr_d(a2, f9); __ or_(a0, a2, zero_reg); __ jirl(zero_reg, ra, 0); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build(); auto f = GeneratedCode::FromCode(*code); return reinterpret_cast(f.Call(x, 0, 0, 0, 0)); } TEST(Ffint_s_uw_Ftintrz_uw_s) { CcTest::InitializeVM(); FOR_UINT32_INPUTS(i, ffint_ftintrz_uint32_test_values) { uint32_t input = *i; auto fn = [](MacroAssembler* masm) { __ Ffint_s_uw(f8, a0); __ movgr2frh_w(f9, zero_reg); __ Ftintrz_uw_s(f9, f8, f10); }; CHECK_EQ(static_cast(input), run_CVT(input, fn)); } } TEST(Ffint_s_ul_Ftintrz_ul_s) { CcTest::InitializeVM(); FOR_UINT64_INPUTS(i, ffint_ftintrz_uint64_test_values) { uint64_t input = *i; auto fn = [](MacroAssembler* masm) { __ Ffint_s_ul(f8, a0); __ Ftintrz_ul_s(f9, f8, f10, a2); }; CHECK_EQ(static_cast(input), run_CVT(input, fn)); } } TEST(Ffint_d_uw_Ftintrz_uw_d) { CcTest::InitializeVM(); FOR_UINT64_INPUTS(i, ffint_ftintrz_uint64_test_values) { uint32_t input = *i; auto fn = [](MacroAssembler* masm) { __ Ffint_d_uw(f8, a0); __ movgr2frh_w(f9, zero_reg); __ Ftintrz_uw_d(f9, f8, f10); }; CHECK_EQ(static_cast(input), run_CVT(input, fn)); } } TEST(Ffint_d_ul_Ftintrz_ul_d) { CcTest::InitializeVM(); FOR_UINT64_INPUTS(i, ffint_ftintrz_uint64_test_values) { uint64_t input = *i; auto fn = [](MacroAssembler* masm) { __ Ffint_d_ul(f8, a0); __ Ftintrz_ul_d(f9, f8, f10, a2); }; CHECK_EQ(static_cast(input), run_CVT(input, fn)); } } TEST(Ffint_d_l_Ftintrz_l_ud) { CcTest::InitializeVM(); FOR_INT64_INPUTS(i, ffint_ftintrz_int64_test_values) { int64_t input = *i; uint64_t abs_input = (input < 0) ? -input : input; auto fn = [](MacroAssembler* masm) { __ movgr2fr_d(f8, a0); __ ffint_d_l(f10, f8); __ Ftintrz_l_ud(f9, f10, f11); }; CHECK_EQ(static_cast(abs_input), run_CVT(input, fn)); } } TEST(ffint_d_l_Ftint_l_d) { CcTest::InitializeVM(); FOR_INT64_INPUTS(i, ffint_ftintrz_int64_test_values) { int64_t input = *i; auto fn = [](MacroAssembler* masm) { __ movgr2fr_d(f8, a0); __ ffint_d_l(f10, f8); __ Ftintrz_l_d(f9, f10); }; CHECK_EQ(static_cast(input), run_CVT(input, fn)); } } TEST(ffint_d_w_Ftint_w_d) { CcTest::InitializeVM(); FOR_INT32_INPUTS(i, ffint_ftintrz_int32_test_values) { int32_t input = *i; auto fn = [](MacroAssembler* masm) { __ movgr2fr_w(f8, a0); __ ffint_d_w(f10, f8); __ Ftintrz_w_d(f9, f10); __ movfr2gr_s(a4, f9); __ movgr2fr_d(f9, a4); }; CHECK_EQ(static_cast(input), run_CVT(input, fn)); } } static const std::vector overflow_int64_test_values() { // clang-format off static const int64_t kValues[] = {static_cast(0xF000000000000000), static_cast(0x0000000000000001), static_cast(0xFF00000000000000), static_cast(0x0000F00111111110), static_cast(0x0F00001000000000), static_cast(0x991234AB12A96731), static_cast(0xB0FFFF0F0F0F0F01), static_cast(0x00006FFFFFFFFFFF), static_cast(0xFFFFFFFFFFFFFFFF)}; // clang-format on return std::vector(&kValues[0], &kValues[arraysize(kValues)]); } TEST(OverflowInstructions) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope handles(isolate); struct T { int64_t lhs; int64_t rhs; int64_t output_add1; int64_t output_add2; int64_t output_sub1; int64_t output_sub2; int64_t output_mul1; int64_t output_mul2; int64_t overflow_add1; int64_t overflow_add2; int64_t overflow_sub1; int64_t overflow_sub2; int64_t overflow_mul1; int64_t overflow_mul2; }; T t; FOR_INT64_INPUTS(i, overflow_int64_test_values) { FOR_INT64_INPUTS(j, overflow_int64_test_values) { int64_t ii = *i; int64_t jj = *j; int64_t expected_add, expected_sub; int32_t ii32 = static_cast(ii); int32_t jj32 = static_cast(jj); int32_t expected_mul; int64_t expected_add_ovf, expected_sub_ovf, expected_mul_ovf; MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assembler; __ ld_d(t0, a0, offsetof(T, lhs)); __ ld_d(t1, a0, offsetof(T, rhs)); __ AddOverflow_d(t2, t0, Operand(t1), t3); __ st_d(t2, a0, offsetof(T, output_add1)); __ st_d(t3, a0, offsetof(T, overflow_add1)); __ or_(t3, zero_reg, zero_reg); __ AddOverflow_d(t0, t0, Operand(t1), t3); __ st_d(t0, a0, offsetof(T, output_add2)); __ st_d(t3, a0, offsetof(T, overflow_add2)); __ ld_d(t0, a0, offsetof(T, lhs)); __ ld_d(t1, a0, offsetof(T, rhs)); __ SubOverflow_d(t2, t0, Operand(t1), t3); __ st_d(t2, a0, offsetof(T, output_sub1)); __ st_d(t3, a0, offsetof(T, overflow_sub1)); __ or_(t3, zero_reg, zero_reg); __ SubOverflow_d(t0, t0, Operand(t1), t3); __ st_d(t0, a0, offsetof(T, output_sub2)); __ st_d(t3, a0, offsetof(T, overflow_sub2)); __ ld_d(t0, a0, offsetof(T, lhs)); __ ld_d(t1, a0, offsetof(T, rhs)); __ slli_w(t0, t0, 0); __ slli_w(t1, t1, 0); __ MulOverflow_w(t2, t0, Operand(t1), t3); __ st_d(t2, a0, offsetof(T, output_mul1)); __ st_d(t3, a0, offsetof(T, overflow_mul1)); __ or_(t3, zero_reg, zero_reg); __ MulOverflow_w(t0, t0, Operand(t1), t3); __ st_d(t0, a0, offsetof(T, output_mul2)); __ st_d(t3, a0, offsetof(T, overflow_mul2)); __ jirl(zero_reg, ra, 0); CodeDesc desc; masm->GetCode(isolate, &desc); Handle code = Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build(); auto f = GeneratedCode::FromCode(*code); t.lhs = ii; t.rhs = jj; f.Call(&t, 0, 0, 0, 0); expected_add_ovf = base::bits::SignedAddOverflow64(ii, jj, &expected_add); expected_sub_ovf = base::bits::SignedSubOverflow64(ii, jj, &expected_sub); expected_mul_ovf = base::bits::SignedMulOverflow32(ii32, jj32, &expected_mul); CHECK_EQ(expected_add_ovf, t.overflow_add1 < 0); CHECK_EQ(expected_sub_ovf, t.overflow_sub1 < 0); CHECK_EQ(expected_mul_ovf, t.overflow_mul1 != 0); CHECK_EQ(t.overflow_add1, t.overflow_add2); CHECK_EQ(t.overflow_sub1, t.overflow_sub2); CHECK_EQ(t.overflow_mul1, t.overflow_mul2); CHECK_EQ(expected_add, t.output_add1); CHECK_EQ(expected_add, t.output_add2); CHECK_EQ(expected_sub, t.output_sub1); CHECK_EQ(expected_sub, t.output_sub2); if (!expected_mul_ovf) { CHECK_EQ(expected_mul, t.output_mul1); CHECK_EQ(expected_mul, t.output_mul2); } } } } TEST(min_max_nan) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assembler; struct TestFloat { double a; double b; double c; double d; float e; float f; float g; float h; }; TestFloat test; const double dnan = std::numeric_limits::quiet_NaN(); const double dinf = std::numeric_limits::infinity(); const double dminf = -std::numeric_limits::infinity(); const float fnan = std::numeric_limits::quiet_NaN(); const float finf = std::numeric_limits::infinity(); const float fminf = -std::numeric_limits::infinity(); const int kTableLength = 13; // clang-format off double inputsa[kTableLength] = {dnan, 3.0, -0.0, 0.0, 42.0, dinf, dminf, dinf, dnan, 3.0, dinf, dnan, dnan}; double inputsb[kTableLength] = {dnan, 2.0, 0.0, -0.0, dinf, 42.0, dinf, dminf, 3.0, dnan, dnan, dinf, dnan}; double outputsdmin[kTableLength] = {dnan, 2.0, -0.0, -0.0, 42.0, 42.0, dminf, dminf, dnan, dnan, dnan, dnan, dnan}; double outputsdmax[kTableLength] = {dnan, 3.0, 0.0, 0.0, dinf, dinf, dinf, dinf, dnan, dnan, dnan, dnan, dnan}; float inputse[kTableLength] = {2.0, 3.0, -0.0, 0.0, 42.0, finf, fminf, finf, fnan, 3.0, finf, fnan, fnan}; float inputsf[kTableLength] = {3.0, 2.0, 0.0, -0.0, finf, 42.0, finf, fminf, 3.0, fnan, fnan, finf, fnan}; float outputsfmin[kTableLength] = {2.0, 2.0, -0.0, -0.0, 42.0, 42.0, fminf, fminf, fnan, fnan, fnan, fnan, fnan}; float outputsfmax[kTableLength] = {3.0, 3.0, 0.0, 0.0, finf, finf, finf, finf, fnan, fnan, fnan, fnan, fnan}; // clang-format on auto handle_dnan = [masm](FPURegister dst, Label* nan, Label* back) { __ bind(nan); __ LoadRoot(t8, RootIndex::kNanValue); __ Fld_d(dst, FieldMemOperand(t8, HeapNumber::kValueOffset)); __ Branch(back); }; auto handle_snan = [masm, fnan](FPURegister dst, Label* nan, Label* back) { __ bind(nan); __ Move(dst, fnan); __ Branch(back); }; Label handle_mind_nan, handle_maxd_nan, handle_mins_nan, handle_maxs_nan; Label back_mind_nan, back_maxd_nan, back_mins_nan, back_maxs_nan; __ Push(s6); __ InitializeRootRegister(); __ Fld_d(f8, MemOperand(a0, offsetof(TestFloat, a))); __ Fld_d(f9, MemOperand(a0, offsetof(TestFloat, b))); __ Fld_s(f10, MemOperand(a0, offsetof(TestFloat, e))); __ Fld_s(f11, MemOperand(a0, offsetof(TestFloat, f))); __ Float64Min(f12, f8, f9, &handle_mind_nan); __ bind(&back_mind_nan); __ Float64Max(f13, f8, f9, &handle_maxd_nan); __ bind(&back_maxd_nan); __ Float32Min(f14, f10, f11, &handle_mins_nan); __ bind(&back_mins_nan); __ Float32Max(f15, f10, f11, &handle_maxs_nan); __ bind(&back_maxs_nan); __ Fst_d(f12, MemOperand(a0, offsetof(TestFloat, c))); __ Fst_d(f13, MemOperand(a0, offsetof(TestFloat, d))); __ Fst_s(f14, MemOperand(a0, offsetof(TestFloat, g))); __ Fst_s(f15, MemOperand(a0, offsetof(TestFloat, h))); __ Pop(s6); __ jirl(zero_reg, ra, 0); handle_dnan(f12, &handle_mind_nan, &back_mind_nan); handle_dnan(f13, &handle_maxd_nan, &back_maxd_nan); handle_snan(f14, &handle_mins_nan, &back_mins_nan); handle_snan(f15, &handle_maxs_nan, &back_maxs_nan); CodeDesc desc; masm->GetCode(isolate, &desc); Handle code = Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build(); auto f = GeneratedCode::FromCode(*code); for (int i = 0; i < kTableLength; i++) { test.a = inputsa[i]; test.b = inputsb[i]; test.e = inputse[i]; test.f = inputsf[i]; f.Call(&test, 0, 0, 0, 0); CHECK_EQ(0, memcmp(&test.c, &outputsdmin[i], sizeof(test.c))); CHECK_EQ(0, memcmp(&test.d, &outputsdmax[i], sizeof(test.d))); CHECK_EQ(0, memcmp(&test.g, &outputsfmin[i], sizeof(test.g))); CHECK_EQ(0, memcmp(&test.h, &outputsfmax[i], sizeof(test.h))); } } template bool run_Unaligned(char* memory_buffer, int32_t in_offset, int32_t out_offset, IN_TYPE value, Func GenerateUnalignedInstructionFunc) { using F_CVT = int32_t(char* x0, int x1, int x2, int x3, int x4); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assm; IN_TYPE res; GenerateUnalignedInstructionFunc(masm, in_offset, out_offset); __ jirl(zero_reg, ra, 0); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build(); auto f = GeneratedCode::FromCode(*code); MemCopy(memory_buffer + in_offset, &value, sizeof(IN_TYPE)); f.Call(memory_buffer, 0, 0, 0, 0); MemCopy(&res, memory_buffer + out_offset, sizeof(IN_TYPE)); return res == value; } static const std::vector unsigned_test_values() { // clang-format off static const uint64_t kValues[] = { 0x2180F18A06384414, 0x000A714532102277, 0xBC1ACCCF180649F0, 0x8000000080008000, 0x0000000000000001, 0xFFFFFFFFFFFFFFFF, }; // clang-format on return std::vector(&kValues[0], &kValues[arraysize(kValues)]); } static const std::vector unsigned_test_offset() { static const int32_t kValues[] = {// value, offset -132 * KB, -21 * KB, 0, 19 * KB, 135 * KB}; return std::vector(&kValues[0], &kValues[arraysize(kValues)]); } static const std::vector unsigned_test_offset_increment() { static const int32_t kValues[] = {-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}; return std::vector(&kValues[0], &kValues[arraysize(kValues)]); } TEST(Ld_b) { CcTest::InitializeVM(); static const int kBufferSize = 300 * KB; char memory_buffer[kBufferSize]; char* buffer_middle = memory_buffer + (kBufferSize / 2); FOR_UINT64_INPUTS(i, unsigned_test_values) { FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) { FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) { uint16_t value = static_cast(*i & 0xFFFF); int32_t in_offset = *j1 + *k1; int32_t out_offset = *j2 + *k2; auto fn_1 = [](MacroAssembler* masm, int32_t in_offset, int32_t out_offset) { __ Ld_b(a2, MemOperand(a0, in_offset)); __ St_b(a2, MemOperand(a0, out_offset)); __ or_(a0, a2, zero_reg); }; CHECK_EQ(true, run_Unaligned(buffer_middle, in_offset, out_offset, value, fn_1)); auto fn_2 = [](MacroAssembler* masm, int32_t in_offset, int32_t out_offset) { __ mov(t0, a0); __ Ld_b(a0, MemOperand(a0, in_offset)); __ St_b(a0, MemOperand(t0, out_offset)); __ or_(a0, a2, zero_reg); }; CHECK_EQ(true, run_Unaligned(buffer_middle, in_offset, out_offset, value, fn_2)); auto fn_3 = [](MacroAssembler* masm, int32_t in_offset, int32_t out_offset) { __ mov(t0, a0); __ Ld_bu(a0, MemOperand(a0, in_offset)); __ St_b(a0, MemOperand(t0, out_offset)); __ or_(a0, a2, zero_reg); }; CHECK_EQ(true, run_Unaligned(buffer_middle, in_offset, out_offset, value, fn_3)); auto fn_4 = [](MacroAssembler* masm, int32_t in_offset, int32_t out_offset) { __ Ld_bu(a2, MemOperand(a0, in_offset)); __ St_b(a2, MemOperand(a0, out_offset)); __ or_(a0, a2, zero_reg); }; CHECK_EQ(true, run_Unaligned(buffer_middle, in_offset, out_offset, value, fn_4)); } } } } TEST(Ld_b_bitextension) { CcTest::InitializeVM(); static const int kBufferSize = 300 * KB; char memory_buffer[kBufferSize]; char* buffer_middle = memory_buffer + (kBufferSize / 2); FOR_UINT64_INPUTS(i, unsigned_test_values) { FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) { FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) { uint16_t value = static_cast(*i & 0xFFFF); int32_t in_offset = *j1 + *k1; int32_t out_offset = *j2 + *k2; auto fn = [](MacroAssembler* masm, int32_t in_offset, int32_t out_offset) { Label success, fail, end, different; __ Ld_b(t0, MemOperand(a0, in_offset)); __ Ld_bu(t1, MemOperand(a0, in_offset)); __ Branch(&different, ne, t0, Operand(t1)); // If signed and unsigned values are same, check // the upper bits to see if they are zero __ srai_w(t0, t0, 7); __ Branch(&success, eq, t0, Operand(zero_reg)); __ Branch(&fail); // If signed and unsigned values are different, // check that the upper bits are complementary __ bind(&different); __ srai_w(t1, t1, 7); __ Branch(&fail, ne, t1, Operand(1)); __ srai_w(t0, t0, 7); __ addi_d(t0, t0, 1); __ Branch(&fail, ne, t0, Operand(zero_reg)); // Fall through to success __ bind(&success); __ Ld_b(t0, MemOperand(a0, in_offset)); __ St_b(t0, MemOperand(a0, out_offset)); __ Branch(&end); __ bind(&fail); __ St_b(zero_reg, MemOperand(a0, out_offset)); __ bind(&end); __ or_(a0, a2, zero_reg); }; CHECK_EQ(true, run_Unaligned(buffer_middle, in_offset, out_offset, value, fn)); } } } } TEST(Ld_h) { CcTest::InitializeVM(); static const int kBufferSize = 300 * KB; char memory_buffer[kBufferSize]; char* buffer_middle = memory_buffer + (kBufferSize / 2); FOR_UINT64_INPUTS(i, unsigned_test_values) { FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) { FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) { uint16_t value = static_cast(*i & 0xFFFF); int32_t in_offset = *j1 + *k1; int32_t out_offset = *j2 + *k2; auto fn_1 = [](MacroAssembler* masm, int32_t in_offset, int32_t out_offset) { __ Ld_h(a2, MemOperand(a0, in_offset)); __ St_h(a2, MemOperand(a0, out_offset)); __ or_(a0, a2, zero_reg); }; CHECK_EQ(true, run_Unaligned(buffer_middle, in_offset, out_offset, value, fn_1)); auto fn_2 = [](MacroAssembler* masm, int32_t in_offset, int32_t out_offset) { __ mov(t0, a0); __ Ld_h(a0, MemOperand(a0, in_offset)); __ St_h(a0, MemOperand(t0, out_offset)); __ or_(a0, a2, zero_reg); }; CHECK_EQ(true, run_Unaligned(buffer_middle, in_offset, out_offset, value, fn_2)); auto fn_3 = [](MacroAssembler* masm, int32_t in_offset, int32_t out_offset) { __ mov(t0, a0); __ Ld_hu(a0, MemOperand(a0, in_offset)); __ St_h(a0, MemOperand(t0, out_offset)); __ or_(a0, a2, zero_reg); }; CHECK_EQ(true, run_Unaligned(buffer_middle, in_offset, out_offset, value, fn_3)); auto fn_4 = [](MacroAssembler* masm, int32_t in_offset, int32_t out_offset) { __ Ld_hu(a2, MemOperand(a0, in_offset)); __ St_h(a2, MemOperand(a0, out_offset)); __ or_(a0, a2, zero_reg); }; CHECK_EQ(true, run_Unaligned(buffer_middle, in_offset, out_offset, value, fn_4)); } } } } TEST(Ld_h_bitextension) { CcTest::InitializeVM(); static const int kBufferSize = 300 * KB; char memory_buffer[kBufferSize]; char* buffer_middle = memory_buffer + (kBufferSize / 2); FOR_UINT64_INPUTS(i, unsigned_test_values) { FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) { FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) { uint16_t value = static_cast(*i & 0xFFFF); int32_t in_offset = *j1 + *k1; int32_t out_offset = *j2 + *k2; auto fn = [](MacroAssembler* masm, int32_t in_offset, int32_t out_offset) { Label success, fail, end, different; __ Ld_h(t0, MemOperand(a0, in_offset)); __ Ld_hu(t1, MemOperand(a0, in_offset)); __ Branch(&different, ne, t0, Operand(t1)); // If signed and unsigned values are same, check // the upper bits to see if they are zero __ srai_w(t0, t0, 15); __ Branch(&success, eq, t0, Operand(zero_reg)); __ Branch(&fail); // If signed and unsigned values are different, // check that the upper bits are complementary __ bind(&different); __ srai_w(t1, t1, 15); __ Branch(&fail, ne, t1, Operand(1)); __ srai_w(t0, t0, 15); __ addi_d(t0, t0, 1); __ Branch(&fail, ne, t0, Operand(zero_reg)); // Fall through to success __ bind(&success); __ Ld_h(t0, MemOperand(a0, in_offset)); __ St_h(t0, MemOperand(a0, out_offset)); __ Branch(&end); __ bind(&fail); __ St_h(zero_reg, MemOperand(a0, out_offset)); __ bind(&end); __ or_(a0, a2, zero_reg); }; CHECK_EQ(true, run_Unaligned(buffer_middle, in_offset, out_offset, value, fn)); } } } } TEST(Ld_w) { CcTest::InitializeVM(); static const int kBufferSize = 300 * KB; char memory_buffer[kBufferSize]; char* buffer_middle = memory_buffer + (kBufferSize / 2); FOR_UINT64_INPUTS(i, unsigned_test_values) { FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) { FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) { uint32_t value = static_cast(*i & 0xFFFFFFFF); int32_t in_offset = *j1 + *k1; int32_t out_offset = *j2 + *k2; auto fn_1 = [](MacroAssembler* masm, int32_t in_offset, int32_t out_offset) { __ Ld_w(a2, MemOperand(a0, in_offset)); __ St_w(a2, MemOperand(a0, out_offset)); __ or_(a0, a2, zero_reg); }; CHECK_EQ(true, run_Unaligned(buffer_middle, in_offset, out_offset, value, fn_1)); auto fn_2 = [](MacroAssembler* masm, int32_t in_offset, int32_t out_offset) { __ mov(t0, a0); __ Ld_w(a0, MemOperand(a0, in_offset)); __ St_w(a0, MemOperand(t0, out_offset)); __ or_(a0, a2, zero_reg); }; CHECK_EQ(true, run_Unaligned(buffer_middle, in_offset, out_offset, (uint32_t)value, fn_2)); auto fn_3 = [](MacroAssembler* masm, int32_t in_offset, int32_t out_offset) { __ Ld_wu(a2, MemOperand(a0, in_offset)); __ St_w(a2, MemOperand(a0, out_offset)); __ or_(a0, a2, zero_reg); }; CHECK_EQ(true, run_Unaligned(buffer_middle, in_offset, out_offset, value, fn_3)); auto fn_4 = [](MacroAssembler* masm, int32_t in_offset, int32_t out_offset) { __ mov(t0, a0); __ Ld_wu(a0, MemOperand(a0, in_offset)); __ St_w(a0, MemOperand(t0, out_offset)); __ or_(a0, a2, zero_reg); }; CHECK_EQ(true, run_Unaligned(buffer_middle, in_offset, out_offset, (uint32_t)value, fn_4)); } } } } TEST(Ld_w_extension) { CcTest::InitializeVM(); static const int kBufferSize = 300 * KB; char memory_buffer[kBufferSize]; char* buffer_middle = memory_buffer + (kBufferSize / 2); FOR_UINT64_INPUTS(i, unsigned_test_values) { FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) { FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) { uint32_t value = static_cast(*i & 0xFFFFFFFF); int32_t in_offset = *j1 + *k1; int32_t out_offset = *j2 + *k2; auto fn = [](MacroAssembler* masm, int32_t in_offset, int32_t out_offset) { Label success, fail, end, different; __ Ld_w(t0, MemOperand(a0, in_offset)); __ Ld_wu(t1, MemOperand(a0, in_offset)); __ Branch(&different, ne, t0, Operand(t1)); // If signed and unsigned values are same, check // the upper bits to see if they are zero __ srai_d(t0, t0, 31); __ Branch(&success, eq, t0, Operand(zero_reg)); __ Branch(&fail); // If signed and unsigned values are different, // check that the upper bits are complementary __ bind(&different); __ srai_d(t1, t1, 31); __ Branch(&fail, ne, t1, Operand(1)); __ srai_d(t0, t0, 31); __ addi_d(t0, t0, 1); __ Branch(&fail, ne, t0, Operand(zero_reg)); // Fall through to success __ bind(&success); __ Ld_w(t0, MemOperand(a0, in_offset)); __ St_w(t0, MemOperand(a0, out_offset)); __ Branch(&end); __ bind(&fail); __ St_w(zero_reg, MemOperand(a0, out_offset)); __ bind(&end); __ or_(a0, a2, zero_reg); }; CHECK_EQ(true, run_Unaligned(buffer_middle, in_offset, out_offset, value, fn)); } } } } TEST(Ld_d) { CcTest::InitializeVM(); static const int kBufferSize = 300 * KB; char memory_buffer[kBufferSize]; char* buffer_middle = memory_buffer + (kBufferSize / 2); FOR_UINT64_INPUTS(i, unsigned_test_values) { FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) { FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) { uint64_t value = *i; int32_t in_offset = *j1 + *k1; int32_t out_offset = *j2 + *k2; auto fn_1 = [](MacroAssembler* masm, int32_t in_offset, int32_t out_offset) { __ Ld_d(a2, MemOperand(a0, in_offset)); __ St_d(a2, MemOperand(a0, out_offset)); __ or_(a0, a2, zero_reg); }; CHECK_EQ(true, run_Unaligned(buffer_middle, in_offset, out_offset, value, fn_1)); auto fn_2 = [](MacroAssembler* masm, int32_t in_offset, int32_t out_offset) { __ mov(t0, a0); __ Ld_d(a0, MemOperand(a0, in_offset)); __ St_d(a0, MemOperand(t0, out_offset)); __ or_(a0, a2, zero_reg); }; CHECK_EQ(true, run_Unaligned(buffer_middle, in_offset, out_offset, (uint32_t)value, fn_2)); } } } } TEST(Fld_s) { CcTest::InitializeVM(); static const int kBufferSize = 300 * KB; char memory_buffer[kBufferSize]; char* buffer_middle = memory_buffer + (kBufferSize / 2); FOR_UINT64_INPUTS(i, unsigned_test_values) { FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) { FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) { float value = static_cast(*i & 0xFFFFFFFF); int32_t in_offset = *j1 + *k1; int32_t out_offset = *j2 + *k2; auto fn = [](MacroAssembler* masm, int32_t in_offset, int32_t out_offset) { __ Fld_s(f0, MemOperand(a0, in_offset)); __ Fst_s(f0, MemOperand(a0, out_offset)); }; CHECK_EQ(true, run_Unaligned(buffer_middle, in_offset, out_offset, value, fn)); } } } } TEST(Fld_d) { CcTest::InitializeVM(); static const int kBufferSize = 300 * KB; char memory_buffer[kBufferSize]; char* buffer_middle = memory_buffer + (kBufferSize / 2); FOR_UINT64_INPUTS(i, unsigned_test_values) { FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) { FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) { double value = static_cast(*i); int32_t in_offset = *j1 + *k1; int32_t out_offset = *j2 + *k2; auto fn = [](MacroAssembler* masm, int32_t in_offset, int32_t out_offset) { __ Fld_d(f0, MemOperand(a0, in_offset)); __ Fst_d(f0, MemOperand(a0, out_offset)); }; CHECK_EQ(true, run_Unaligned(buffer_middle, in_offset, out_offset, value, fn)); } } } } static const std::vector sltu_test_values() { // clang-format off static const uint64_t kValues[] = { 0, 1, 0x7FE, 0x7FF, 0x800, 0x801, 0xFFE, 0xFFF, 0xFFFFFFFFFFFFF7FE, 0xFFFFFFFFFFFFF7FF, 0xFFFFFFFFFFFFF800, 0xFFFFFFFFFFFFF801, 0xFFFFFFFFFFFFFFFE, 0xFFFFFFFFFFFFFFFF, }; // clang-format on return std::vector(&kValues[0], &kValues[arraysize(kValues)]); } template bool run_Sltu(uint64_t rj, uint64_t rk, Func GenerateSltuInstructionFunc) { using F_CVT = int64_t(uint64_t x0, uint64_t x1, int x2, int x3, int x4); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assm; GenerateSltuInstructionFunc(masm, rk); __ or_(a0, a2, zero_reg); __ jirl(zero_reg, ra, 0); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build(); auto f = GeneratedCode::FromCode(*code); int64_t res = reinterpret_cast(f.Call(rj, rk, 0, 0, 0)); return res == 1; } TEST(Sltu) { CcTest::InitializeVM(); FOR_UINT64_INPUTS(i, sltu_test_values) { FOR_UINT64_INPUTS(j, sltu_test_values) { uint64_t rj = *i; uint64_t rk = *j; auto fn_1 = [](MacroAssembler* masm, uint64_t imm) { __ Sltu(a2, a0, Operand(imm)); }; CHECK_EQ(rj < rk, run_Sltu(rj, rk, fn_1)); auto fn_2 = [](MacroAssembler* masm, uint64_t imm) { __ Sltu(a2, a0, a1); }; CHECK_EQ(rj < rk, run_Sltu(rj, rk, fn_2)); } } } template static GeneratedCode GenerateMacroFloat32MinMax(MacroAssembler* masm) { T a = T::from_code(8); // f8 T b = T::from_code(9); // f9 T c = T::from_code(10); // f10 Label ool_min_abc, ool_min_aab, ool_min_aba; Label ool_max_abc, ool_max_aab, ool_max_aba; Label done_min_abc, done_min_aab, done_min_aba; Label done_max_abc, done_max_aab, done_max_aba; #define FLOAT_MIN_MAX(fminmax, res, x, y, done, ool, res_field) \ __ Fld_s(x, MemOperand(a0, offsetof(Inputs, src1_))); \ __ Fld_s(y, MemOperand(a0, offsetof(Inputs, src2_))); \ __ fminmax(res, x, y, &ool); \ __ bind(&done); \ __ Fst_s(a, MemOperand(a1, offsetof(Results, res_field))) // a = min(b, c); FLOAT_MIN_MAX(Float32Min, a, b, c, done_min_abc, ool_min_abc, min_abc_); // a = min(a, b); FLOAT_MIN_MAX(Float32Min, a, a, b, done_min_aab, ool_min_aab, min_aab_); // a = min(b, a); FLOAT_MIN_MAX(Float32Min, a, b, a, done_min_aba, ool_min_aba, min_aba_); // a = max(b, c); FLOAT_MIN_MAX(Float32Max, a, b, c, done_max_abc, ool_max_abc, max_abc_); // a = max(a, b); FLOAT_MIN_MAX(Float32Max, a, a, b, done_max_aab, ool_max_aab, max_aab_); // a = max(b, a); FLOAT_MIN_MAX(Float32Max, a, b, a, done_max_aba, ool_max_aba, max_aba_); #undef FLOAT_MIN_MAX __ jirl(zero_reg, ra, 0); // Generate out-of-line cases. __ bind(&ool_min_abc); __ Float32MinOutOfLine(a, b, c); __ Branch(&done_min_abc); __ bind(&ool_min_aab); __ Float32MinOutOfLine(a, a, b); __ Branch(&done_min_aab); __ bind(&ool_min_aba); __ Float32MinOutOfLine(a, b, a); __ Branch(&done_min_aba); __ bind(&ool_max_abc); __ Float32MaxOutOfLine(a, b, c); __ Branch(&done_max_abc); __ bind(&ool_max_aab); __ Float32MaxOutOfLine(a, a, b); __ Branch(&done_max_aab); __ bind(&ool_max_aba); __ Float32MaxOutOfLine(a, b, a); __ Branch(&done_max_aba); CodeDesc desc; masm->GetCode(masm->isolate(), &desc); Handle code = Factory::CodeBuilder(masm->isolate(), desc, CodeKind::FOR_TESTING) .Build(); #ifdef DEBUG StdoutStream os; code->Print(os); #endif return GeneratedCode::FromCode(*code); } TEST(macro_float_minmax_f32) { // Test the Float32Min and Float32Max macros. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assembler; struct Inputs { float src1_; float src2_; }; struct Results { // Check all register aliasing possibilities in order to exercise all // code-paths in the macro assembler. float min_abc_; float min_aab_; float min_aba_; float max_abc_; float max_aab_; float max_aba_; }; GeneratedCode f = GenerateMacroFloat32MinMax(masm); #define CHECK_MINMAX(src1, src2, min, max) \ do { \ Inputs inputs = {src1, src2}; \ Results results; \ f.Call(&inputs, &results, 0, 0, 0); \ CHECK_EQ(bit_cast(min), bit_cast(results.min_abc_)); \ CHECK_EQ(bit_cast(min), bit_cast(results.min_aab_)); \ CHECK_EQ(bit_cast(min), bit_cast(results.min_aba_)); \ CHECK_EQ(bit_cast(max), bit_cast(results.max_abc_)); \ CHECK_EQ(bit_cast(max), bit_cast(results.max_aab_)); \ CHECK_EQ(bit_cast(max), bit_cast(results.max_aba_)); \ /* Use a bit_cast to correctly identify -0.0 and NaNs. */ \ } while (0) float nan_a = std::numeric_limits::quiet_NaN(); float nan_b = std::numeric_limits::quiet_NaN(); CHECK_MINMAX(1.0f, -1.0f, -1.0f, 1.0f); CHECK_MINMAX(-1.0f, 1.0f, -1.0f, 1.0f); CHECK_MINMAX(0.0f, -1.0f, -1.0f, 0.0f); CHECK_MINMAX(-1.0f, 0.0f, -1.0f, 0.0f); CHECK_MINMAX(-0.0f, -1.0f, -1.0f, -0.0f); CHECK_MINMAX(-1.0f, -0.0f, -1.0f, -0.0f); CHECK_MINMAX(0.0f, 1.0f, 0.0f, 1.0f); CHECK_MINMAX(1.0f, 0.0f, 0.0f, 1.0f); CHECK_MINMAX(0.0f, 0.0f, 0.0f, 0.0f); CHECK_MINMAX(-0.0f, -0.0f, -0.0f, -0.0f); CHECK_MINMAX(-0.0f, 0.0f, -0.0f, 0.0f); CHECK_MINMAX(0.0f, -0.0f, -0.0f, 0.0f); CHECK_MINMAX(0.0f, nan_a, nan_a, nan_a); CHECK_MINMAX(nan_a, 0.0f, nan_a, nan_a); CHECK_MINMAX(nan_a, nan_b, nan_a, nan_a); CHECK_MINMAX(nan_b, nan_a, nan_b, nan_b); #undef CHECK_MINMAX } template static GeneratedCode GenerateMacroFloat64MinMax(MacroAssembler* masm) { T a = T::from_code(8); // f8 T b = T::from_code(9); // f9 T c = T::from_code(10); // f10 Label ool_min_abc, ool_min_aab, ool_min_aba; Label ool_max_abc, ool_max_aab, ool_max_aba; Label done_min_abc, done_min_aab, done_min_aba; Label done_max_abc, done_max_aab, done_max_aba; #define FLOAT_MIN_MAX(fminmax, res, x, y, done, ool, res_field) \ __ Fld_d(x, MemOperand(a0, offsetof(Inputs, src1_))); \ __ Fld_d(y, MemOperand(a0, offsetof(Inputs, src2_))); \ __ fminmax(res, x, y, &ool); \ __ bind(&done); \ __ Fst_d(a, MemOperand(a1, offsetof(Results, res_field))) // a = min(b, c); FLOAT_MIN_MAX(Float64Min, a, b, c, done_min_abc, ool_min_abc, min_abc_); // a = min(a, b); FLOAT_MIN_MAX(Float64Min, a, a, b, done_min_aab, ool_min_aab, min_aab_); // a = min(b, a); FLOAT_MIN_MAX(Float64Min, a, b, a, done_min_aba, ool_min_aba, min_aba_); // a = max(b, c); FLOAT_MIN_MAX(Float64Max, a, b, c, done_max_abc, ool_max_abc, max_abc_); // a = max(a, b); FLOAT_MIN_MAX(Float64Max, a, a, b, done_max_aab, ool_max_aab, max_aab_); // a = max(b, a); FLOAT_MIN_MAX(Float64Max, a, b, a, done_max_aba, ool_max_aba, max_aba_); #undef FLOAT_MIN_MAX __ jirl(zero_reg, ra, 0); // Generate out-of-line cases. __ bind(&ool_min_abc); __ Float64MinOutOfLine(a, b, c); __ Branch(&done_min_abc); __ bind(&ool_min_aab); __ Float64MinOutOfLine(a, a, b); __ Branch(&done_min_aab); __ bind(&ool_min_aba); __ Float64MinOutOfLine(a, b, a); __ Branch(&done_min_aba); __ bind(&ool_max_abc); __ Float64MaxOutOfLine(a, b, c); __ Branch(&done_max_abc); __ bind(&ool_max_aab); __ Float64MaxOutOfLine(a, a, b); __ Branch(&done_max_aab); __ bind(&ool_max_aba); __ Float64MaxOutOfLine(a, b, a); __ Branch(&done_max_aba); CodeDesc desc; masm->GetCode(masm->isolate(), &desc); Handle code = Factory::CodeBuilder(masm->isolate(), desc, CodeKind::FOR_TESTING) .Build(); #ifdef DEBUG StdoutStream os; code->Print(os); #endif return GeneratedCode::FromCode(*code); } TEST(macro_float_minmax_f64) { // Test the Float64Min and Float64Max macros. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assembler; struct Inputs { double src1_; double src2_; }; struct Results { // Check all register aliasing possibilities in order to exercise all // code-paths in the macro assembler. double min_abc_; double min_aab_; double min_aba_; double max_abc_; double max_aab_; double max_aba_; }; GeneratedCode f = GenerateMacroFloat64MinMax(masm); #define CHECK_MINMAX(src1, src2, min, max) \ do { \ Inputs inputs = {src1, src2}; \ Results results; \ f.Call(&inputs, &results, 0, 0, 0); \ CHECK_EQ(bit_cast(min), bit_cast(results.min_abc_)); \ CHECK_EQ(bit_cast(min), bit_cast(results.min_aab_)); \ CHECK_EQ(bit_cast(min), bit_cast(results.min_aba_)); \ CHECK_EQ(bit_cast(max), bit_cast(results.max_abc_)); \ CHECK_EQ(bit_cast(max), bit_cast(results.max_aab_)); \ CHECK_EQ(bit_cast(max), bit_cast(results.max_aba_)); \ /* Use a bit_cast to correctly identify -0.0 and NaNs. */ \ } while (0) double nan_a = std::numeric_limits::quiet_NaN(); double nan_b = std::numeric_limits::quiet_NaN(); CHECK_MINMAX(1.0, -1.0, -1.0, 1.0); CHECK_MINMAX(-1.0, 1.0, -1.0, 1.0); CHECK_MINMAX(0.0, -1.0, -1.0, 0.0); CHECK_MINMAX(-1.0, 0.0, -1.0, 0.0); CHECK_MINMAX(-0.0, -1.0, -1.0, -0.0); CHECK_MINMAX(-1.0, -0.0, -1.0, -0.0); CHECK_MINMAX(0.0, 1.0, 0.0, 1.0); CHECK_MINMAX(1.0, 0.0, 0.0, 1.0); CHECK_MINMAX(0.0, 0.0, 0.0, 0.0); CHECK_MINMAX(-0.0, -0.0, -0.0, -0.0); CHECK_MINMAX(-0.0, 0.0, -0.0, 0.0); CHECK_MINMAX(0.0, -0.0, -0.0, 0.0); CHECK_MINMAX(0.0, nan_a, nan_a, nan_a); CHECK_MINMAX(nan_a, 0.0, nan_a, nan_a); CHECK_MINMAX(nan_a, nan_b, nan_a, nan_a); CHECK_MINMAX(nan_b, nan_a, nan_b, nan_b); #undef CHECK_MINMAX } uint64_t run_Sub_w(uint64_t imm, int32_t num_instr) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assembler; Label code_start; __ bind(&code_start); __ Sub_w(a2, zero_reg, Operand(imm)); CHECK_EQ(masm->InstructionsGeneratedSince(&code_start), num_instr); __ or_(a0, a2, zero_reg); __ jirl(zero_reg, ra, 0); CodeDesc desc; masm->GetCode(isolate, &desc); Handle code = Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build(); #ifdef OBJECT_PRINT code->Print(std::cout); #endif auto f = GeneratedCode::FromCode(*code); uint64_t res = reinterpret_cast(f.Call(0, 0, 0, 0, 0)); return res; } TEST(SUB_W) { CcTest::InitializeVM(); // Test Subu macro-instruction for min_int12 and max_int12 border cases. // For subtracting int16 immediate values we use addiu. struct TestCaseSub { uint64_t imm; uint64_t expected_res; int32_t num_instr; }; // We call Sub_w(v0, zero_reg, imm) to test cases listed below. // 0 - imm = expected_res // clang-format off struct TestCaseSub tc[] = { // imm, expected_res, num_instr {0xFFFFFFFFFFFFF800, 0x800, 2}, // min_int12 // The test case above generates ori + add_w instruction sequence. // We can't have just addi_ because -min_int12 > max_int12 so use // register. We can load min_int12 to at register with addi_w and then // subtract at with sub_w, but now we use ori + add_w because -min_int12 // can be loaded using ori. {0x800, 0xFFFFFFFFFFFFF800, 1}, // max_int12 + 1 // Generates addi_w // max_int12 + 1 is not int12 but -(max_int12 + 1) is, just use addi_w. {0xFFFFFFFFFFFFF7FF, 0x801, 2}, // min_int12 - 1 // Generates ori + add_w // To load this value to at we need two instructions and another one to // subtract, lu12i + ori + sub_w. But we can load -value to at using just // ori and then add at register with add_w. {0x801, 0xFFFFFFFFFFFFF7FF, 2}, // max_int12 + 2 // Generates ori + sub_w // Not int12 but is uint12, load value to at with ori and subtract with // sub_w. {0x00010000, 0xFFFFFFFFFFFF0000, 2}, // Generates lu12i_w + sub_w // Load value using lui to at and subtract with subu. {0x00010001, 0xFFFFFFFFFFFEFFFF, 3}, // Generates lu12i + ori + sub_w // We have to generate three instructions in this case. {0x7FFFFFFF, 0xFFFFFFFF80000001, 3}, // max_int32 // Generates lu12i_w + ori + sub_w {0xFFFFFFFF80000000, 0xFFFFFFFF80000000, 2}, // min_int32 // The test case above generates lu12i + sub_w intruction sequence. // The result of 0 - min_int32 eqauls max_int32 + 1, which wraps around to // min_int32 again. }; // clang-format on size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseSub); for (size_t i = 0; i < nr_test_cases; ++i) { CHECK_EQ(tc[i].expected_res, run_Sub_w(tc[i].imm, tc[i].num_instr)); } } uint64_t run_Sub_d(uint64_t imm, int32_t num_instr) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assembler; Label code_start; __ bind(&code_start); __ Sub_d(a2, zero_reg, Operand(imm)); CHECK_EQ(masm->InstructionsGeneratedSince(&code_start), num_instr); __ or_(a0, a2, zero_reg); __ jirl(zero_reg, ra, 0); CodeDesc desc; masm->GetCode(isolate, &desc); Handle code = Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build(); #ifdef OBJECT_PRINT code->Print(std::cout); #endif auto f = GeneratedCode::FromCode(*code); uint64_t res = reinterpret_cast(f.Call(0, 0, 0, 0, 0)); return res; } TEST(SUB_D) { CcTest::InitializeVM(); // Test Sub_d macro-instruction for min_int12 and max_int12 border cases. // For subtracting int12 immediate values we use addi_d. struct TestCaseSub { uint64_t imm; uint64_t expected_res; int32_t num_instr; }; // We call Sub(v0, zero_reg, imm) to test cases listed below. // 0 - imm = expected_res // clang-format off struct TestCaseSub tc[] = { // imm, expected_res, num_instr {0xFFFFFFFFFFFFF800, 0x800, 2}, // min_int12 // The test case above generates addi_d instruction. // This is int12 value and we can load it using just addi_d. { 0x800, 0xFFFFFFFFFFFFF800, 1}, // max_int12 + 1 // Generates addi_d // max_int12 + 1 is not int12 but is uint12, just use ori. {0xFFFFFFFFFFFFF7FF, 0x801, 2}, // min_int12 - 1 // Generates ori + add_d { 0x801, 0xFFFFFFFFFFFFF7FF, 2}, // max_int12 + 2 // Generates ori + add_d { 0x00001000, 0xFFFFFFFFFFFFF000, 2}, // max_uint12 + 1 // Generates lu12i_w + sub_d { 0x00001001, 0xFFFFFFFFFFFFEFFF, 3}, // max_uint12 + 2 // Generates lu12i_w + ori + sub_d {0x00000000FFFFFFFF, 0xFFFFFFFF00000001, 3}, // max_uint32 // Generates addi_w + li32i_d + sub_d {0x00000000FFFFFFFE, 0xFFFFFFFF00000002, 3}, // max_uint32 - 1 // Generates addi_w + li32i_d + sub_d {0xFFFFFFFF80000000, 0x80000000, 2}, // min_int32 // Generates lu12i_w + sub_d {0x0000000080000000, 0xFFFFFFFF80000000, 2}, // max_int32 + 1 // Generates lu12i_w + add_d {0xFFFF0000FFFF8765, 0x0000FFFF0000789B, 4}, // Generates lu12i_w + ori + lu32i_d + sub {0x1234ABCD87654321, 0xEDCB5432789ABCDF, 5}, // Generates lu12i_w + ori + lu32i_d + lu52i_d + sub {0xFFFF789100000000, 0x876F00000000, 3}, // Generates xor + lu32i_d + sub {0xF12F789100000000, 0xED0876F00000000, 4}, // Generates xor + lu32i_d + lu52i_d + sub {0xF120000000000800, 0xEDFFFFFFFFFF800, 3}, // Generates ori + lu52i_d + sub {0xFFF0000000000000, 0x10000000000000, 2} // Generates lu52i_d + sub }; // clang-format on size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseSub); for (size_t i = 0; i < nr_test_cases; ++i) { CHECK_EQ(tc[i].expected_res, run_Sub_d(tc[i].imm, tc[i].num_instr)); } } TEST(Move) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assembler; struct T { float a; float b; float result_a; float result_b; double c; double d; double e; double result_c; double result_d; double result_e; }; T t; __ li(a4, static_cast(0x80000000)); __ St_w(a4, MemOperand(a0, offsetof(T, a))); __ li(a5, static_cast(0x12345678)); __ St_w(a5, MemOperand(a0, offsetof(T, b))); __ li(a6, static_cast(0x8877665544332211)); __ St_d(a6, MemOperand(a0, offsetof(T, c))); __ li(a7, static_cast(0x1122334455667788)); __ St_d(a7, MemOperand(a0, offsetof(T, d))); __ li(t0, static_cast(0)); __ St_d(t0, MemOperand(a0, offsetof(T, e))); __ Move(f8, static_cast(0x80000000)); __ Move(f9, static_cast(0x12345678)); __ Move(f10, static_cast(0x8877665544332211)); __ Move(f11, static_cast(0x1122334455667788)); __ Move(f12, static_cast(0)); __ Fst_s(f8, MemOperand(a0, offsetof(T, result_a))); __ Fst_s(f9, MemOperand(a0, offsetof(T, result_b))); __ Fst_d(f10, MemOperand(a0, offsetof(T, result_c))); __ Fst_d(f11, MemOperand(a0, offsetof(T, result_d))); __ Fst_d(f12, MemOperand(a0, offsetof(T, result_e))); __ jirl(zero_reg, ra, 0); CodeDesc desc; masm->GetCode(isolate, &desc); Handle code = Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build(); auto f = GeneratedCode::FromCode(*code); f.Call(&t, 0, 0, 0, 0); CHECK_EQ(t.a, t.result_a); CHECK_EQ(t.b, t.result_b); CHECK_EQ(t.c, t.result_c); CHECK_EQ(t.d, t.result_d); CHECK_EQ(t.e, t.result_e); } TEST(Movz_Movn) { const int kTableLength = 4; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assembler; struct Test { int64_t rt; int64_t a; int64_t b; int64_t bold; int64_t b1; int64_t bold1; int32_t c; int32_t d; int32_t dold; int32_t d1; int32_t dold1; }; Test test; // clang-format off int64_t inputs_D[kTableLength] = { 7, 8, -9, -10 }; int32_t inputs_W[kTableLength] = { 3, 4, -5, -6 }; int32_t outputs_W[kTableLength] = { 3, 4, -5, -6 }; int64_t outputs_D[kTableLength] = { 7, 8, -9, -10 }; // clang-format on __ Ld_d(a4, MemOperand(a0, offsetof(Test, a))); __ Ld_w(a5, MemOperand(a0, offsetof(Test, c))); __ Ld_d(a6, MemOperand(a0, offsetof(Test, rt))); __ li(t0, 1); __ li(t1, 1); __ li(t2, 1); __ li(t3, 1); __ St_d(t0, MemOperand(a0, offsetof(Test, bold))); __ St_d(t1, MemOperand(a0, offsetof(Test, bold1))); __ St_w(t2, MemOperand(a0, offsetof(Test, dold))); __ St_w(t3, MemOperand(a0, offsetof(Test, dold1))); __ Movz(t0, a4, a6); __ Movn(t1, a4, a6); __ Movz(t2, a5, a6); __ Movn(t3, a5, a6); __ St_d(t0, MemOperand(a0, offsetof(Test, b))); __ St_d(t1, MemOperand(a0, offsetof(Test, b1))); __ St_w(t2, MemOperand(a0, offsetof(Test, d))); __ St_w(t3, MemOperand(a0, offsetof(Test, d1))); __ jirl(zero_reg, ra, 0); CodeDesc desc; masm->GetCode(isolate, &desc); Handle code = Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build(); auto f = GeneratedCode::FromCode(*code); for (int i = 0; i < kTableLength; i++) { test.a = inputs_D[i]; test.c = inputs_W[i]; test.rt = 1; f.Call(&test, 0, 0, 0, 0); CHECK_EQ(test.b, test.bold); CHECK_EQ(test.d, test.dold); CHECK_EQ(test.b1, outputs_D[i]); CHECK_EQ(test.d1, outputs_W[i]); test.rt = 0; f.Call(&test, 0, 0, 0, 0); CHECK_EQ(test.b, outputs_D[i]); CHECK_EQ(test.d, outputs_W[i]); CHECK_EQ(test.b1, test.bold1); CHECK_EQ(test.d1, test.dold1); } } TEST(macro_instructions1) { // Test 32bit calculate instructions macros. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assembler; Label exit, error; __ li(a4, 0x00000004); __ li(a5, 0x00001234); __ li(a6, 0x12345678); __ li(a7, 0x7FFFFFFF); __ li(t0, static_cast(0xFFFFFFFC)); __ li(t1, static_cast(0xFFFFEDCC)); __ li(t2, static_cast(0xEDCBA988)); __ li(t3, static_cast(0x80000000)); __ or_(a2, zero_reg, zero_reg); __ or_(a3, zero_reg, zero_reg); __ add_w(a2, a7, t1); __ Add_w(a3, t1, a7); __ Branch(&error, ne, a2, Operand(a3)); __ Add_w(t4, t1, static_cast(0x7FFFFFFF)); __ Branch(&error, ne, a2, Operand(t4)); __ addi_w(a2, a6, 0x800); __ Add_w(a3, a6, 0xFFFFF800); __ Branch(&error, ne, a2, Operand(a3)); __ or_(a2, zero_reg, zero_reg); __ or_(a3, zero_reg, zero_reg); __ mul_w(a2, t1, a7); __ Mul_w(a3, t1, a7); __ Branch(&error, ne, a2, Operand(a3)); __ Mul_w(t4, t1, static_cast(0x7FFFFFFF)); __ Branch(&error, ne, a2, Operand(t4)); __ or_(a2, zero_reg, zero_reg); __ or_(a3, zero_reg, zero_reg); __ mulh_w(a2, t1, a7); __ Mulh_w(a3, t1, a7); __ Branch(&error, ne, a2, Operand(a3)); __ Mulh_w(t4, t1, static_cast(0x7FFFFFFF)); __ Branch(&error, ne, a2, Operand(t4)); __ or_(a2, zero_reg, zero_reg); __ or_(a3, zero_reg, zero_reg); __ Mulh_wu(a2, a4, static_cast(0xFFFFEDCC)); __ Branch(&error, ne, a2, Operand(0x3)); __ Mulh_wu(a3, a4, t1); __ Branch(&error, ne, a3, Operand(0x3)); __ or_(a2, zero_reg, zero_reg); __ or_(a3, zero_reg, zero_reg); __ div_w(a2, a7, t2); __ Div_w(a3, a7, t2); __ Branch(&error, ne, a2, Operand(a3)); __ Div_w(t4, a7, static_cast(0xEDCBA988)); __ Branch(&error, ne, a2, Operand(t4)); __ or_(a2, zero_reg, zero_reg); __ or_(a3, zero_reg, zero_reg); __ Div_wu(a2, a7, a5); __ Branch(&error, ne, a2, Operand(0x70821)); __ Div_wu(a3, t0, static_cast(0x00001234)); __ Branch(&error, ne, a3, Operand(0xE1042)); __ or_(a2, zero_reg, zero_reg); __ or_(a3, zero_reg, zero_reg); __ Mod_w(a2, a6, a5); __ Branch(&error, ne, a2, Operand(0xDA8)); __ Mod_w(a3, t2, static_cast(0x00001234)); __ Branch(&error, ne, a3, Operand(0xFFFFFFFFFFFFF258)); __ or_(a2, zero_reg, zero_reg); __ or_(a3, zero_reg, zero_reg); __ Mod_wu(a2, a6, a5); __ Branch(&error, ne, a2, Operand(0xDA8)); __ Mod_wu(a3, t2, static_cast(0x00001234)); __ Branch(&error, ne, a3, Operand(0xF0)); __ li(a2, 0x31415926); __ b(&exit); __ bind(&error); __ li(a2, 0x666); __ bind(&exit); __ or_(a0, a2, zero_reg); __ jirl(zero_reg, ra, 0); CodeDesc desc; masm->GetCode(isolate, &desc); Handle code = Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build(); auto f = GeneratedCode::FromCode(*code); int64_t res = reinterpret_cast(f.Call(0, 0, 0, 0, 0)); CHECK_EQ(0x31415926L, res); } TEST(macro_instructions2) { // Test 64bit calculate instructions macros. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assembler; Label exit, error; __ li(a4, 0x17312); __ li(a5, 0x1012131415161718); __ li(a6, 0x51F4B764A26E7412); __ li(a7, 0x7FFFFFFFFFFFFFFF); __ li(t0, static_cast(0xFFFFFFFFFFFFF547)); __ li(t1, static_cast(0xDF6B8F35A10E205C)); __ li(t2, static_cast(0x81F25A87C4236841)); __ li(t3, static_cast(0x8000000000000000)); __ or_(a2, zero_reg, zero_reg); __ or_(a3, zero_reg, zero_reg); __ add_d(a2, a7, t1); __ Add_d(a3, t1, a7); __ Branch(&error, ne, a2, Operand(a3)); __ Add_d(t4, t1, Operand(0x7FFFFFFFFFFFFFFF)); __ Branch(&error, ne, a2, Operand(t4)); __ addi_d(a2, a6, 0x800); __ Add_d(a3, a6, Operand(0xFFFFFFFFFFFFF800)); __ Branch(&error, ne, a2, Operand(a3)); __ or_(a2, zero_reg, zero_reg); __ or_(a3, zero_reg, zero_reg); __ Mul_d(a2, a5, a6); __ Branch(&error, ne, a2, Operand(0xdbe6a8729a547fb0)); __ Mul_d(a3, t0, Operand(0xDF6B8F35A10E205C)); __ Branch(&error, ne, a3, Operand(0x57ad69f40f870584)); __ or_(a2, zero_reg, zero_reg); __ or_(a3, zero_reg, zero_reg); __ Mulh_d(a2, a5, a6); __ Branch(&error, ne, a2, Operand(0x52514c6c6b54467)); __ Mulh_d(a3, t0, Operand(0xDF6B8F35A10E205C)); __ Branch(&error, ne, a3, Operand(0x15d)); __ or_(a2, zero_reg, zero_reg); __ or_(a3, zero_reg, zero_reg); __ Div_d(a2, t0, t1); __ Branch(&error, ne, a2, Operand(static_cast(0))); __ Div_d(a3, t1, Operand(0x17312)); __ Branch(&error, ne, a3, Operand(0xffffe985f631e6d9)); __ or_(a2, zero_reg, zero_reg); __ or_(a3, zero_reg, zero_reg); __ Div_du(a2, t0, t1); __ Branch(&error, ne, a2, Operand(0x1)); __ Div_du(a3, t1, 0x17312); __ Branch(&error, ne, a3, Operand(0x9a22ffd3973d)); __ or_(a2, zero_reg, zero_reg); __ or_(a3, zero_reg, zero_reg); __ Mod_d(a2, a6, a4); __ Branch(&error, ne, a2, Operand(0x13558)); __ Mod_d(a3, t2, Operand(0xFFFFFFFFFFFFF547)); __ Branch(&error, ne, a3, Operand(0xfffffffffffffb0a)); __ or_(a2, zero_reg, zero_reg); __ or_(a3, zero_reg, zero_reg); __ Mod_du(a2, a6, a4); __ Branch(&error, ne, a2, Operand(0x13558)); __ Mod_du(a3, t2, Operand(0xFFFFFFFFFFFFF547)); __ Branch(&error, ne, a3, Operand(0x81f25a87c4236841)); __ li(a2, 0x31415926); __ b(&exit); __ bind(&error); __ li(a2, 0x666); __ bind(&exit); __ or_(a0, a2, zero_reg); __ jirl(zero_reg, ra, 0); CodeDesc desc; masm->GetCode(isolate, &desc); Handle code = Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build(); auto f = GeneratedCode::FromCode(*code); int64_t res = reinterpret_cast(f.Call(0, 0, 0, 0, 0)); CHECK_EQ(0x31415926L, res); } TEST(macro_instructions3) { // Test 64bit calculate instructions macros. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assembler; Label exit, error; __ li(a4, 0x17312); __ li(a5, 0x1012131415161718); __ li(a6, 0x51F4B764A26E7412); __ li(a7, 0x7FFFFFFFFFFFFFFF); __ li(t0, static_cast(0xFFFFFFFFFFFFF547)); __ li(t1, static_cast(0xDF6B8F35A10E205C)); __ li(t2, static_cast(0x81F25A87C4236841)); __ li(t3, static_cast(0x8000000000000000)); __ or_(a2, zero_reg, zero_reg); __ or_(a3, zero_reg, zero_reg); __ And(a2, a4, a5); __ Branch(&error, ne, a2, Operand(0x1310)); __ And(a3, a6, Operand(0x7FFFFFFFFFFFFFFF)); __ Branch(&error, ne, a3, Operand(0x51F4B764A26E7412)); __ andi(a2, a6, 0xDCB); __ And(a3, a6, Operand(0xDCB)); __ Branch(&error, ne, a3, Operand(a2)); __ or_(a2, zero_reg, zero_reg); __ or_(a3, zero_reg, zero_reg); __ Or(a2, t0, t1); __ Branch(&error, ne, a2, Operand(0xfffffffffffff55f)); __ Or(a3, t2, Operand(0x8000000000000000)); __ Branch(&error, ne, a3, Operand(0x81f25a87c4236841)); __ ori(a2, a5, 0xDCB); __ Or(a3, a5, Operand(0xDCB)); __ Branch(&error, ne, a2, Operand(a3)); __ or_(a2, zero_reg, zero_reg); __ or_(a3, zero_reg, zero_reg); __ Orn(a2, t0, t1); __ Branch(&error, ne, a2, Operand(0xffffffffffffffe7)); __ Orn(a3, t2, Operand(0x81F25A87C4236841)); __ Branch(&error, ne, a3, Operand(0xffffffffffffffff)); __ or_(a2, zero_reg, zero_reg); __ or_(a3, zero_reg, zero_reg); __ Xor(a2, t0, t1); __ Branch(&error, ne, a2, Operand(0x209470ca5ef1d51b)); __ Xor(a3, t2, Operand(0x8000000000000000)); __ Branch(&error, ne, a3, Operand(0x1f25a87c4236841)); __ Xor(a2, t2, Operand(0xDCB)); __ Branch(&error, ne, a2, Operand(0x81f25a87c423658a)); __ or_(a2, zero_reg, zero_reg); __ or_(a3, zero_reg, zero_reg); __ Nor(a2, a4, a5); __ Branch(&error, ne, a2, Operand(0xefedecebeae888e5)); __ Nor(a3, a6, Operand(0x7FFFFFFFFFFFFFFF)); __ Branch(&error, ne, a3, Operand(0x8000000000000000)); __ or_(a2, zero_reg, zero_reg); __ or_(a3, zero_reg, zero_reg); __ Andn(a2, a4, a5); __ Branch(&error, ne, a2, Operand(0x16002)); __ Andn(a3, a6, Operand(0x7FFFFFFFFFFFFFFF)); __ Branch(&error, ne, a3, Operand(static_cast(0))); __ or_(a2, zero_reg, zero_reg); __ or_(a3, zero_reg, zero_reg); __ Orn(a2, t0, t1); __ Branch(&error, ne, a2, Operand(0xffffffffffffffe7)); __ Orn(a3, t2, Operand(0x8000000000000000)); __ Branch(&error, ne, a3, Operand(0xffffffffffffffff)); __ or_(a2, zero_reg, zero_reg); __ or_(a3, zero_reg, zero_reg); __ Neg(a2, a7); __ Branch(&error, ne, a2, Operand(0x8000000000000001)); __ Neg(a3, t0); __ Branch(&error, ne, a3, Operand(0xAB9)); __ or_(a2, zero_reg, zero_reg); __ or_(a3, zero_reg, zero_reg); __ Slt(a2, a5, a6); __ Branch(&error, ne, a2, Operand(0x1)); __ Slt(a3, a7, Operand(0xFFFFFFFFFFFFF547)); __ Branch(&error, ne, a3, Operand(static_cast(0))); __ Slt(a3, a4, 0x800); __ Branch(&error, ne, a3, Operand(static_cast(0))); __ or_(a2, zero_reg, zero_reg); __ or_(a3, zero_reg, zero_reg); __ Sle(a2, a5, a6); __ Branch(&error, ne, a2, Operand(0x1)); __ Sle(a3, t0, Operand(0xFFFFFFFFFFFFF547)); __ Branch(&error, ne, a3, Operand(static_cast(0x1))); __ Sle(a2, a7, t0); __ Branch(&error, ne, a2, Operand(static_cast(0))); __ or_(a2, zero_reg, zero_reg); __ or_(a3, zero_reg, zero_reg); __ Sleu(a2, a5, a6); __ Branch(&error, ne, a2, Operand(0x1)); __ Sleu(a3, t0, Operand(0xFFFFFFFFFFFFF547)); __ Branch(&error, ne, a3, Operand(static_cast(0x1))); __ Sleu(a2, a7, t0); __ Branch(&error, ne, a2, Operand(static_cast(0x1))); __ or_(a2, zero_reg, zero_reg); __ or_(a3, zero_reg, zero_reg); __ Sge(a2, a5, a6); __ Branch(&error, ne, a2, Operand(static_cast(0))); __ Sge(a3, t0, Operand(0xFFFFFFFFFFFFF547)); __ Branch(&error, ne, a3, Operand(static_cast(0x1))); __ Sge(a2, a7, t0); __ Branch(&error, ne, a2, Operand(static_cast(0x1))); __ or_(a2, zero_reg, zero_reg); __ or_(a3, zero_reg, zero_reg); __ Sgeu(a2, a5, a6); __ Branch(&error, ne, a2, Operand(static_cast(0))); __ Sgeu(a3, t0, Operand(0xFFFFFFFFFFFFF547)); __ Branch(&error, ne, a3, Operand(static_cast(0x1))); __ Sgeu(a2, a7, t0); __ Branch(&error, ne, a2, Operand(static_cast(0))); __ or_(a2, zero_reg, zero_reg); __ or_(a3, zero_reg, zero_reg); __ Sgt(a2, a5, a6); __ Branch(&error, ne, a2, Operand(static_cast(0))); __ Sgt(a3, t0, Operand(0xFFFFFFFFFFFFF547)); __ Branch(&error, ne, a3, Operand(static_cast(0))); __ Sgt(a2, a7, t0); __ Branch(&error, ne, a2, Operand(static_cast(0x1))); __ or_(a2, zero_reg, zero_reg); __ or_(a3, zero_reg, zero_reg); __ Sgtu(a2, a5, a6); __ Branch(&error, ne, a2, Operand(static_cast(0))); __ Sgtu(a3, t0, Operand(0xFFFFFFFFFFFFF547)); __ Branch(&error, ne, a3, Operand(static_cast(0))); __ Sgtu(a2, a7, t0); __ Branch(&error, ne, a2, Operand(static_cast(0))); __ li(a2, 0x31415926); __ b(&exit); __ bind(&error); __ li(a2, 0x666); __ bind(&exit); __ or_(a0, a2, zero_reg); __ jirl(zero_reg, ra, 0); CodeDesc desc; masm->GetCode(isolate, &desc); Handle code = Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build(); auto f = GeneratedCode::FromCode(*code); int64_t res = reinterpret_cast(f.Call(0, 0, 0, 0, 0)); CHECK_EQ(0x31415926L, res); } TEST(Rotr_w) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assembler; struct T { int32_t input; int32_t result_rotr_0; int32_t result_rotr_4; int32_t result_rotr_8; int32_t result_rotr_12; int32_t result_rotr_16; int32_t result_rotr_20; int32_t result_rotr_24; int32_t result_rotr_28; int32_t result_rotr_32; int32_t result_rotri_0; int32_t result_rotri_4; int32_t result_rotri_8; int32_t result_rotri_12; int32_t result_rotri_16; int32_t result_rotri_20; int32_t result_rotri_24; int32_t result_rotri_28; int32_t result_rotri_32; }; T t; __ Ld_w(a4, MemOperand(a0, offsetof(T, input))); __ Rotr_w(a5, a4, 0); __ Rotr_w(a6, a4, 0x04); __ Rotr_w(a7, a4, 0x08); __ Rotr_w(t0, a4, 0x0C); __ Rotr_w(t1, a4, 0x10); __ Rotr_w(t2, a4, -0x0C); __ Rotr_w(t3, a4, -0x08); __ Rotr_w(t4, a4, -0x04); __ Rotr_w(t5, a4, 0x20); __ St_w(a5, MemOperand(a0, offsetof(T, result_rotr_0))); __ St_w(a6, MemOperand(a0, offsetof(T, result_rotr_4))); __ St_w(a7, MemOperand(a0, offsetof(T, result_rotr_8))); __ St_w(t0, MemOperand(a0, offsetof(T, result_rotr_12))); __ St_w(t1, MemOperand(a0, offsetof(T, result_rotr_16))); __ St_w(t2, MemOperand(a0, offsetof(T, result_rotr_20))); __ St_w(t3, MemOperand(a0, offsetof(T, result_rotr_24))); __ St_w(t4, MemOperand(a0, offsetof(T, result_rotr_28))); __ St_w(t5, MemOperand(a0, offsetof(T, result_rotr_32))); __ li(t5, 0); __ Rotr_w(a5, a4, t5); __ li(t5, 0x04); __ Rotr_w(a6, a4, t5); __ li(t5, 0x08); __ Rotr_w(a7, a4, t5); __ li(t5, 0x0C); __ Rotr_w(t0, a4, t5); __ li(t5, 0x10); __ Rotr_w(t1, a4, t5); __ li(t5, -0x0C); __ Rotr_w(t2, a4, t5); __ li(t5, -0x08); __ Rotr_w(t3, a4, t5); __ li(t5, -0x04); __ Rotr_w(t4, a4, t5); __ li(t5, 0x20); __ Rotr_w(t5, a4, t5); __ St_w(a5, MemOperand(a0, offsetof(T, result_rotri_0))); __ St_w(a6, MemOperand(a0, offsetof(T, result_rotri_4))); __ St_w(a7, MemOperand(a0, offsetof(T, result_rotri_8))); __ St_w(t0, MemOperand(a0, offsetof(T, result_rotri_12))); __ St_w(t1, MemOperand(a0, offsetof(T, result_rotri_16))); __ St_w(t2, MemOperand(a0, offsetof(T, result_rotri_20))); __ St_w(t3, MemOperand(a0, offsetof(T, result_rotri_24))); __ St_w(t4, MemOperand(a0, offsetof(T, result_rotri_28))); __ St_w(t5, MemOperand(a0, offsetof(T, result_rotri_32))); __ jirl(zero_reg, ra, 0); CodeDesc desc; masm->GetCode(isolate, &desc); Handle code = Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build(); auto f = GeneratedCode::FromCode(*code); t.input = 0x12345678; f.Call(&t, 0, 0, 0, 0); CHECK_EQ(static_cast(0x12345678), t.result_rotr_0); CHECK_EQ(static_cast(0x81234567), t.result_rotr_4); CHECK_EQ(static_cast(0x78123456), t.result_rotr_8); CHECK_EQ(static_cast(0x67812345), t.result_rotr_12); CHECK_EQ(static_cast(0x56781234), t.result_rotr_16); CHECK_EQ(static_cast(0x45678123), t.result_rotr_20); CHECK_EQ(static_cast(0x34567812), t.result_rotr_24); CHECK_EQ(static_cast(0x23456781), t.result_rotr_28); CHECK_EQ(static_cast(0x12345678), t.result_rotr_32); CHECK_EQ(static_cast(0x12345678), t.result_rotri_0); CHECK_EQ(static_cast(0x81234567), t.result_rotri_4); CHECK_EQ(static_cast(0x78123456), t.result_rotri_8); CHECK_EQ(static_cast(0x67812345), t.result_rotri_12); CHECK_EQ(static_cast(0x56781234), t.result_rotri_16); CHECK_EQ(static_cast(0x45678123), t.result_rotri_20); CHECK_EQ(static_cast(0x34567812), t.result_rotri_24); CHECK_EQ(static_cast(0x23456781), t.result_rotri_28); CHECK_EQ(static_cast(0x12345678), t.result_rotri_32); } TEST(Rotr_d) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assembler; struct T { int64_t input; int64_t result_rotr_0; int64_t result_rotr_8; int64_t result_rotr_16; int64_t result_rotr_24; int64_t result_rotr_32; int64_t result_rotr_40; int64_t result_rotr_48; int64_t result_rotr_56; int64_t result_rotr_64; int64_t result_rotri_0; int64_t result_rotri_8; int64_t result_rotri_16; int64_t result_rotri_24; int64_t result_rotri_32; int64_t result_rotri_40; int64_t result_rotri_48; int64_t result_rotri_56; int64_t result_rotri_64; }; T t; __ Ld_d(a4, MemOperand(a0, offsetof(T, input))); __ Rotr_d(a5, a4, 0); __ Rotr_d(a6, a4, 0x08); __ Rotr_d(a7, a4, 0x10); __ Rotr_d(t0, a4, 0x18); __ Rotr_d(t1, a4, 0x20); __ Rotr_d(t2, a4, -0x18); __ Rotr_d(t3, a4, -0x10); __ Rotr_d(t4, a4, -0x08); __ Rotr_d(t5, a4, 0x40); __ St_d(a5, MemOperand(a0, offsetof(T, result_rotr_0))); __ St_d(a6, MemOperand(a0, offsetof(T, result_rotr_8))); __ St_d(a7, MemOperand(a0, offsetof(T, result_rotr_16))); __ St_d(t0, MemOperand(a0, offsetof(T, result_rotr_24))); __ St_d(t1, MemOperand(a0, offsetof(T, result_rotr_32))); __ St_d(t2, MemOperand(a0, offsetof(T, result_rotr_40))); __ St_d(t3, MemOperand(a0, offsetof(T, result_rotr_48))); __ St_d(t4, MemOperand(a0, offsetof(T, result_rotr_56))); __ St_d(t5, MemOperand(a0, offsetof(T, result_rotr_64))); __ li(t5, 0); __ Rotr_d(a5, a4, t5); __ li(t5, 0x08); __ Rotr_d(a6, a4, t5); __ li(t5, 0x10); __ Rotr_d(a7, a4, t5); __ li(t5, 0x18); __ Rotr_d(t0, a4, t5); __ li(t5, 0x20); __ Rotr_d(t1, a4, t5); __ li(t5, -0x18); __ Rotr_d(t2, a4, t5); __ li(t5, -0x10); __ Rotr_d(t3, a4, t5); __ li(t5, -0x08); __ Rotr_d(t4, a4, t5); __ li(t5, 0x40); __ Rotr_d(t5, a4, t5); __ St_d(a5, MemOperand(a0, offsetof(T, result_rotri_0))); __ St_d(a6, MemOperand(a0, offsetof(T, result_rotri_8))); __ St_d(a7, MemOperand(a0, offsetof(T, result_rotri_16))); __ St_d(t0, MemOperand(a0, offsetof(T, result_rotri_24))); __ St_d(t1, MemOperand(a0, offsetof(T, result_rotri_32))); __ St_d(t2, MemOperand(a0, offsetof(T, result_rotri_40))); __ St_d(t3, MemOperand(a0, offsetof(T, result_rotri_48))); __ St_d(t4, MemOperand(a0, offsetof(T, result_rotri_56))); __ St_d(t5, MemOperand(a0, offsetof(T, result_rotri_64))); __ jirl(zero_reg, ra, 0); CodeDesc desc; masm->GetCode(isolate, &desc); Handle code = Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build(); auto f = GeneratedCode::FromCode(*code); t.input = 0x0123456789ABCDEF; f.Call(&t, 0, 0, 0, 0); CHECK_EQ(static_cast(0x0123456789ABCDEF), t.result_rotr_0); CHECK_EQ(static_cast(0xEF0123456789ABCD), t.result_rotr_8); CHECK_EQ(static_cast(0xCDEF0123456789AB), t.result_rotr_16); CHECK_EQ(static_cast(0xABCDEF0123456789), t.result_rotr_24); CHECK_EQ(static_cast(0x89ABCDEF01234567), t.result_rotr_32); CHECK_EQ(static_cast(0x6789ABCDEF012345), t.result_rotr_40); CHECK_EQ(static_cast(0x456789ABCDEF0123), t.result_rotr_48); CHECK_EQ(static_cast(0x23456789ABCDEF01), t.result_rotr_56); CHECK_EQ(static_cast(0x0123456789ABCDEF), t.result_rotr_64); CHECK_EQ(static_cast(0x0123456789ABCDEF), t.result_rotri_0); CHECK_EQ(static_cast(0xEF0123456789ABCD), t.result_rotri_8); CHECK_EQ(static_cast(0xCDEF0123456789AB), t.result_rotri_16); CHECK_EQ(static_cast(0xABCDEF0123456789), t.result_rotri_24); CHECK_EQ(static_cast(0x89ABCDEF01234567), t.result_rotri_32); CHECK_EQ(static_cast(0x6789ABCDEF012345), t.result_rotri_40); CHECK_EQ(static_cast(0x456789ABCDEF0123), t.result_rotri_48); CHECK_EQ(static_cast(0x23456789ABCDEF01), t.result_rotri_56); CHECK_EQ(static_cast(0x0123456789ABCDEF), t.result_rotri_64); } TEST(macro_instructions4) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assembler; struct T { double a; float b; double result_floor_a; float result_floor_b; double result_ceil_a; float result_ceil_b; double result_trunc_a; float result_trunc_b; double result_round_a; float result_round_b; }; T t; const int kTableLength = 16; // clang-format off double inputs_d[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 1.7976931348623157E+308, 6.27463370218383111104242366943E-307, std::numeric_limits::max() - 0.1, std::numeric_limits::infinity() }; float inputs_s[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 1.7976931348623157E+38, 6.27463370218383111104242366943E-37, std::numeric_limits::lowest() + 0.6, std::numeric_limits::infinity() }; float outputs_round_s[kTableLength] = { 2.0, 3.0, 2.0, 3.0, 4.0, 4.0, -2.0, -3.0, -2.0, -3.0, -4.0, -4.0, 1.7976931348623157E+38, 0, std::numeric_limits::lowest() + 1, std::numeric_limits::infinity() }; double outputs_round_d[kTableLength] = { 2.0, 3.0, 2.0, 3.0, 4.0, 4.0, -2.0, -3.0, -2.0, -3.0, -4.0, -4.0, 1.7976931348623157E+308, 0, std::numeric_limits::max(), std::numeric_limits::infinity() }; float outputs_trunc_s[kTableLength] = { 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, 1.7976931348623157E+38, 0, std::numeric_limits::lowest() + 1, std::numeric_limits::infinity() }; double outputs_trunc_d[kTableLength] = { 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, 1.7976931348623157E+308, 0, std::numeric_limits::max() - 1, std::numeric_limits::infinity() }; float outputs_ceil_s[kTableLength] = { 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, 1.7976931348623157E38, 1, std::numeric_limits::lowest() + 1, std::numeric_limits::infinity() }; double outputs_ceil_d[kTableLength] = { 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, 1.7976931348623157E308, 1, std::numeric_limits::max(), std::numeric_limits::infinity() }; float outputs_floor_s[kTableLength] = { 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -3.0, -3.0, -3.0, -4.0, -4.0, -4.0, 1.7976931348623157E38, 0, std::numeric_limits::lowest() + 1, std::numeric_limits::infinity() }; double outputs_floor_d[kTableLength] = { 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -3.0, -3.0, -3.0, -4.0, -4.0, -4.0, 1.7976931348623157E308, 0, std::numeric_limits::max(), std::numeric_limits::infinity() }; // clang-format on __ Fld_d(f8, MemOperand(a0, offsetof(T, a))); __ Fld_s(f9, MemOperand(a0, offsetof(T, b))); __ Floor_d(f10, f8); __ Floor_s(f11, f9); __ Fst_d(f10, MemOperand(a0, offsetof(T, result_floor_a))); __ Fst_s(f11, MemOperand(a0, offsetof(T, result_floor_b))); __ Ceil_d(f10, f8); __ Ceil_s(f11, f9); __ Fst_d(f10, MemOperand(a0, offsetof(T, result_ceil_a))); __ Fst_s(f11, MemOperand(a0, offsetof(T, result_ceil_b))); __ Trunc_d(f10, f8); __ Trunc_s(f11, f9); __ Fst_d(f10, MemOperand(a0, offsetof(T, result_trunc_a))); __ Fst_s(f11, MemOperand(a0, offsetof(T, result_trunc_b))); __ Round_d(f10, f8); __ Round_s(f11, f9); __ Fst_d(f10, MemOperand(a0, offsetof(T, result_round_a))); __ Fst_s(f11, MemOperand(a0, offsetof(T, result_round_b))); __ jirl(zero_reg, ra, 0); CodeDesc desc; masm->GetCode(isolate, &desc); Handle code = Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build(); auto f = GeneratedCode::FromCode(*code); for (int i = 0; i < kTableLength; i++) { t.a = inputs_d[i]; t.b = inputs_s[i]; f.Call(&t, 0, 0, 0, 0); CHECK_EQ(t.result_floor_a, outputs_floor_d[i]); CHECK_EQ(t.result_floor_b, outputs_floor_s[i]); CHECK_EQ(t.result_ceil_a, outputs_ceil_d[i]); CHECK_EQ(t.result_ceil_b, outputs_ceil_s[i]); CHECK_EQ(t.result_trunc_a, outputs_trunc_d[i]); CHECK_EQ(t.result_trunc_b, outputs_trunc_s[i]); CHECK_EQ(t.result_round_a, outputs_round_d[i]); CHECK_EQ(t.result_round_b, outputs_round_s[i]); } } uint64_t run_ExtractBits(uint64_t source, int pos, int size, bool sign_extend) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assembler; if (sign_extend) { __ ExtractBits(t0, a0, a1, size, true); } else { __ ExtractBits(t0, a0, a1, size); } __ or_(a0, t0, zero_reg); __ jirl(zero_reg, ra, 0); CodeDesc desc; masm->GetCode(isolate, &desc); Handle code = Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build(); auto f = GeneratedCode::FromCode(*code); uint64_t res = reinterpret_cast(f.Call(source, pos, 0, 0, 0)); return res; } TEST(ExtractBits) { CcTest::InitializeVM(); struct TestCase { uint64_t source; int pos; int size; bool sign_extend; uint64_t res; }; // clang-format off struct TestCase tc[] = { //source, pos, size, sign_extend, res; {0x800, 4, 8, false, 0x80}, {0x800, 4, 8, true, 0xFFFFFFFFFFFFFF80}, {0x800, 5, 8, true, 0x40}, {0x40000, 3, 16, false, 0x8000}, {0x40000, 3, 16, true, 0xFFFFFFFFFFFF8000}, {0x40000, 4, 16, true, 0x4000}, {0x200000000, 2, 32, false, 0x80000000}, {0x200000000, 2, 32, true, 0xFFFFFFFF80000000}, {0x200000000, 3, 32, true, 0x40000000}, }; // clang-format on size_t nr_test_cases = sizeof(tc) / sizeof(TestCase); for (size_t i = 0; i < nr_test_cases; ++i) { uint64_t result = run_ExtractBits(tc[i].source, tc[i].pos, tc[i].size, tc[i].sign_extend); CHECK_EQ(tc[i].res, result); } } uint64_t run_InsertBits(uint64_t dest, uint64_t source, int pos, int size) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assembler; __ InsertBits(a0, a1, a2, size); __ jirl(zero_reg, ra, 0); CodeDesc desc; masm->GetCode(isolate, &desc); Handle code = Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build(); auto f = GeneratedCode::FromCode(*code); uint64_t res = reinterpret_cast(f.Call(dest, source, pos, 0, 0)); return res; } TEST(InsertBits) { CcTest::InitializeVM(); struct TestCase { uint64_t dest; uint64_t source; int pos; int size; uint64_t res; }; // clang-format off struct TestCase tc[] = { //dest source, pos, size, res; {0x11111111, 0x1234, 32, 16, 0x123411111111}, {0x111111111111, 0xFFFFF, 24, 10, 0x1113FF111111}, {0x1111111111111111, 0xFEDCBA, 16, 4, 0x11111111111A1111}, }; // clang-format on size_t nr_test_cases = sizeof(tc) / sizeof(TestCase); for (size_t i = 0; i < nr_test_cases; ++i) { uint64_t result = run_InsertBits(tc[i].dest, tc[i].source, tc[i].pos, tc[i].size); CHECK_EQ(tc[i].res, result); } } TEST(Popcnt) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assembler; struct TestCase { uint32_t a; uint64_t b; int expected_a; int expected_b; int result_a; int result_b; }; // clang-format off struct TestCase tc[] = { { 0x12345678, 0x1122334455667788, 13, 26, 0, 0}, { 0x1234, 0x123456, 5, 9, 0, 0}, { 0xFFF00000, 0xFFFF000000000000, 12, 16, 0, 0}, { 0xFF000012, 0xFFFF000000001234, 10, 21, 0, 0} }; // clang-format on __ Ld_w(t0, MemOperand(a0, offsetof(TestCase, a))); __ Ld_d(t1, MemOperand(a0, offsetof(TestCase, b))); __ Popcnt_w(t2, t0); __ Popcnt_d(t3, t1); __ St_w(t2, MemOperand(a0, offsetof(TestCase, result_a))); __ St_w(t3, MemOperand(a0, offsetof(TestCase, result_b))); __ jirl(zero_reg, ra, 0); CodeDesc desc; masm->GetCode(isolate, &desc); Handle code = Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build(); auto f = GeneratedCode::FromCode(*code); size_t nr_test_cases = sizeof(tc) / sizeof(TestCase); for (size_t i = 0; i < nr_test_cases; ++i) { f.Call(&tc[i], 0, 0, 0, 0); CHECK_EQ(tc[i].expected_a, tc[i].result_a); CHECK_EQ(tc[i].expected_b, tc[i].result_b); } } TEST(DeoptExitSizeIsFixed) { CHECK(Deoptimizer::kSupportsFixedDeoptExitSizes); Isolate* isolate = CcTest::i_isolate(); HandleScope handles(isolate); auto buffer = AllocateAssemblerBuffer(); MacroAssembler masm(isolate, v8::internal::CodeObjectRequired::kYes, buffer->CreateView()); STATIC_ASSERT(static_cast(kFirstDeoptimizeKind) == 0); for (int i = 0; i < kDeoptimizeKindCount; i++) { DeoptimizeKind kind = static_cast(i); Label before_exit; masm.bind(&before_exit); if (kind == DeoptimizeKind::kEagerWithResume) { Builtin target = Deoptimizer::GetDeoptWithResumeBuiltin( DeoptimizeReason::kDynamicCheckMaps); masm.CallForDeoptimization(target, 42, &before_exit, kind, &before_exit, nullptr); CHECK_EQ(masm.SizeOfCodeGeneratedSince(&before_exit), Deoptimizer::kEagerWithResumeBeforeArgsSize); } else { Builtin target = Deoptimizer::GetDeoptimizationEntry(kind); masm.CallForDeoptimization(target, 42, &before_exit, kind, &before_exit, nullptr); CHECK_EQ(masm.SizeOfCodeGeneratedSince(&before_exit), kind == DeoptimizeKind::kLazy ? Deoptimizer::kLazyDeoptExitSize : Deoptimizer::kNonLazyDeoptExitSize); } } } #undef __ } // namespace internal } // namespace v8