// Copyright 2006-2009 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef V8_SERIALIZE_H_ #define V8_SERIALIZE_H_ #include "hashmap.h" namespace v8 { namespace internal { // A TypeCode is used to distinguish different kinds of external reference. // It is a single bit to make testing for types easy. enum TypeCode { UNCLASSIFIED, // One-of-a-kind references. BUILTIN, RUNTIME_FUNCTION, IC_UTILITY, DEBUG_ADDRESS, STATS_COUNTER, TOP_ADDRESS, C_BUILTIN, EXTENSION, ACCESSOR, RUNTIME_ENTRY, STUB_CACHE_TABLE }; const int kTypeCodeCount = STUB_CACHE_TABLE + 1; const int kFirstTypeCode = UNCLASSIFIED; const int kReferenceIdBits = 16; const int kReferenceIdMask = (1 << kReferenceIdBits) - 1; const int kReferenceTypeShift = kReferenceIdBits; const int kDebugRegisterBits = 4; const int kDebugIdShift = kDebugRegisterBits; class ExternalReferenceEncoder { public: ExternalReferenceEncoder(); uint32_t Encode(Address key) const; const char* NameOfAddress(Address key) const; private: HashMap encodings_; static uint32_t Hash(Address key) { return static_cast(reinterpret_cast(key) >> 2); } int IndexOf(Address key) const; static bool Match(void* key1, void* key2) { return key1 == key2; } void Put(Address key, int index); }; class ExternalReferenceDecoder { public: ExternalReferenceDecoder(); ~ExternalReferenceDecoder(); Address Decode(uint32_t key) const { if (key == 0) return NULL; return *Lookup(key); } private: Address** encodings_; Address* Lookup(uint32_t key) const { int type = key >> kReferenceTypeShift; ASSERT(kFirstTypeCode <= type && type < kTypeCodeCount); int id = key & kReferenceIdMask; return &encodings_[type][id]; } void Put(uint32_t key, Address value) { *Lookup(key) = value; } }; class SnapshotByteSource { public: SnapshotByteSource(const byte* array, int length) : data_(array), length_(length), position_(0) { } bool HasMore() { return position_ < length_; } int Get() { ASSERT(position_ < length_); return data_[position_++]; } void CopyRaw(byte* to, int number_of_bytes) { memcpy(to, data_ + position_, number_of_bytes); position_ += number_of_bytes; } int GetInt() { // A little unwind to catch the really small ints. int snapshot_byte = Get(); if ((snapshot_byte & 0x80) == 0) { return snapshot_byte; } int accumulator = (snapshot_byte & 0x7f) << 7; while (true) { snapshot_byte = Get(); if ((snapshot_byte & 0x80) == 0) { return accumulator | snapshot_byte; } accumulator = (accumulator | (snapshot_byte & 0x7f)) << 7; } UNREACHABLE(); return accumulator; } bool AtEOF() { return position_ == length_; } int position() { return position_; } private: const byte* data_; int length_; int position_; }; // It is very common to have a reference to the object at word 10 in space 2, // the object at word 5 in space 2 and the object at word 28 in space 4. This // only works for objects in the first page of a space. #define COMMON_REFERENCE_PATTERNS(f) \ f(kNumberOfSpaces, 2, 10) \ f(kNumberOfSpaces + 1, 2, 5) \ f(kNumberOfSpaces + 2, 4, 28) \ f(kNumberOfSpaces + 3, 2, 21) \ f(kNumberOfSpaces + 4, 2, 98) \ f(kNumberOfSpaces + 5, 2, 67) \ f(kNumberOfSpaces + 6, 4, 132) #define COMMON_RAW_LENGTHS(f) \ f(1, 1) \ f(2, 2) \ f(3, 3) \ f(4, 4) \ f(5, 5) \ f(6, 6) \ f(7, 7) \ f(8, 8) \ f(9, 12) \ f(10, 16) \ f(11, 20) \ f(12, 24) \ f(13, 28) \ f(14, 32) \ f(15, 36) // The Serializer/Deserializer class is a common superclass for Serializer and // Deserializer which is used to store common constants and methods used by // both. class SerializerDeserializer: public ObjectVisitor { public: static void Iterate(ObjectVisitor* visitor); static void SetSnapshotCacheSize(int size); protected: enum DataType { RAW_DATA_SERIALIZATION = 0, // And 15 common raw lengths. OBJECT_SERIALIZATION = 16, // One variant per space. CODE_OBJECT_SERIALIZATION = 25, // One per space (only code spaces in use). EXTERNAL_REFERENCE_SERIALIZATION = 34, EXTERNAL_BRANCH_TARGET_SERIALIZATION = 35, SYNCHRONIZE = 36, START_NEW_PAGE_SERIALIZATION = 37, NATIVES_STRING_RESOURCE = 38, ROOT_SERIALIZATION = 39, PARTIAL_SNAPSHOT_CACHE_ENTRY = 40, // Free: 41-47. BACKREF_SERIALIZATION = 48, // One per space, must be kSpaceMask aligned. // Free: 57-63. REFERENCE_SERIALIZATION = 64, // One per space and common references. Must be kSpaceMask aligned. CODE_BACKREF_SERIALIZATION = 80, // One per space, must be kSpaceMask aligned. // Free: 89-95. CODE_REFERENCE_SERIALIZATION = 96 // One per space, must be kSpaceMask aligned. // Free: 105-255. }; static const int kLargeData = LAST_SPACE; static const int kLargeCode = kLargeData + 1; static const int kLargeFixedArray = kLargeCode + 1; static const int kNumberOfSpaces = kLargeFixedArray + 1; // A bitmask for getting the space out of an instruction. static const int kSpaceMask = 15; static inline bool SpaceIsLarge(int space) { return space >= kLargeData; } static inline bool SpaceIsPaged(int space) { return space >= FIRST_PAGED_SPACE && space <= LAST_PAGED_SPACE; } static int partial_snapshot_cache_length_; static const int kPartialSnapshotCacheCapacity = 1024; static Object* partial_snapshot_cache_[]; }; // A Deserializer reads a snapshot and reconstructs the Object graph it defines. class Deserializer: public SerializerDeserializer { public: // Create a deserializer from a snapshot byte source. explicit Deserializer(SnapshotByteSource* source); virtual ~Deserializer(); // Deserialize the snapshot into an empty heap. void Deserialize(); // Deserialize a single object and the objects reachable from it. void DeserializePartial(Object** root); #ifdef DEBUG virtual void Synchronize(const char* tag); #endif private: virtual void VisitPointers(Object** start, Object** end); virtual void VisitExternalReferences(Address* start, Address* end) { UNREACHABLE(); } virtual void VisitRuntimeEntry(RelocInfo* rinfo) { UNREACHABLE(); } void ReadChunk(Object** start, Object** end, int space, Address address); HeapObject* GetAddressFromStart(int space); inline HeapObject* GetAddressFromEnd(int space); Address Allocate(int space_number, Space* space, int size); void ReadObject(int space_number, Space* space, Object** write_back); // Keep track of the pages in the paged spaces. // (In large object space we are keeping track of individual objects // rather than pages.) In new space we just need the address of the // first object and the others will flow from that. List
pages_[SerializerDeserializer::kNumberOfSpaces]; SnapshotByteSource* source_; static ExternalReferenceDecoder* external_reference_decoder_; // This is the address of the next object that will be allocated in each // space. It is used to calculate the addresses of back-references. Address high_water_[LAST_SPACE + 1]; // This is the address of the most recent object that was allocated. It // is used to set the location of the new page when we encounter a // START_NEW_PAGE_SERIALIZATION tag. Address last_object_address_; DISALLOW_COPY_AND_ASSIGN(Deserializer); }; class SnapshotByteSink { public: virtual ~SnapshotByteSink() { } virtual void Put(int byte, const char* description) = 0; virtual void PutSection(int byte, const char* description) { Put(byte, description); } void PutInt(uintptr_t integer, const char* description); virtual int Position() = 0; }; // Mapping objects to their location after deserialization. // This is used during building, but not at runtime by V8. class SerializationAddressMapper { public: SerializationAddressMapper() : serialization_map_(new HashMap(&SerializationMatchFun)), no_allocation_(new AssertNoAllocation()) { } ~SerializationAddressMapper() { delete serialization_map_; delete no_allocation_; } bool IsMapped(HeapObject* obj) { return serialization_map_->Lookup(Key(obj), Hash(obj), false) != NULL; } int MappedTo(HeapObject* obj) { ASSERT(IsMapped(obj)); return static_cast(reinterpret_cast( serialization_map_->Lookup(Key(obj), Hash(obj), false)->value)); } void AddMapping(HeapObject* obj, int to) { ASSERT(!IsMapped(obj)); HashMap::Entry* entry = serialization_map_->Lookup(Key(obj), Hash(obj), true); entry->value = Value(to); } private: static bool SerializationMatchFun(void* key1, void* key2) { return key1 == key2; } static uint32_t Hash(HeapObject* obj) { return static_cast(reinterpret_cast(obj->address())); } static void* Key(HeapObject* obj) { return reinterpret_cast(obj->address()); } static void* Value(int v) { return reinterpret_cast(v); } HashMap* serialization_map_; AssertNoAllocation* no_allocation_; DISALLOW_COPY_AND_ASSIGN(SerializationAddressMapper); }; class Serializer : public SerializerDeserializer { public: explicit Serializer(SnapshotByteSink* sink); void VisitPointers(Object** start, Object** end); // You can call this after serialization to find out how much space was used // in each space. int CurrentAllocationAddress(int space) { if (SpaceIsLarge(space)) return large_object_total_; return fullness_[space]; } static void Enable() { if (!serialization_enabled_) { ASSERT(!too_late_to_enable_now_); } serialization_enabled_ = true; } static void Disable() { serialization_enabled_ = false; } // Call this when you have made use of the fact that there is no serialization // going on. static void TooLateToEnableNow() { too_late_to_enable_now_ = true; } static bool enabled() { return serialization_enabled_; } SerializationAddressMapper* address_mapper() { return &address_mapper_; } #ifdef DEBUG virtual void Synchronize(const char* tag); #endif protected: enum ReferenceRepresentation { TAGGED_REPRESENTATION, // A tagged object reference. CODE_TARGET_REPRESENTATION // A reference to first instruction in target. }; static const int kInvalidRootIndex = -1; virtual int RootIndex(HeapObject* heap_object) = 0; virtual bool ShouldBeInThePartialSnapshotCache(HeapObject* o) = 0; class ObjectSerializer : public ObjectVisitor { public: ObjectSerializer(Serializer* serializer, Object* o, SnapshotByteSink* sink, ReferenceRepresentation representation) : serializer_(serializer), object_(HeapObject::cast(o)), sink_(sink), reference_representation_(representation), bytes_processed_so_far_(0) { } void Serialize(); void VisitPointers(Object** start, Object** end); void VisitExternalReferences(Address* start, Address* end); void VisitCodeTarget(RelocInfo* target); void VisitRuntimeEntry(RelocInfo* reloc); // Used for seralizing the external strings that hold the natives source. void VisitExternalAsciiString( v8::String::ExternalAsciiStringResource** resource); // We can't serialize a heap with external two byte strings. void VisitExternalTwoByteString( v8::String::ExternalStringResource** resource) { UNREACHABLE(); } private: void OutputRawData(Address up_to); Serializer* serializer_; HeapObject* object_; SnapshotByteSink* sink_; ReferenceRepresentation reference_representation_; int bytes_processed_so_far_; }; virtual void SerializeObject(Object* o, ReferenceRepresentation representation) = 0; void SerializeReferenceToPreviousObject( int space, int address, ReferenceRepresentation reference_representation); void InitializeAllocators(); // This will return the space for an object. If the object is in large // object space it may return kLargeCode or kLargeFixedArray in order // to indicate to the deserializer what kind of large object allocation // to make. static int SpaceOfObject(HeapObject* object); // This just returns the space of the object. It will return LO_SPACE // for all large objects since you can't check the type of the object // once the map has been used for the serialization address. static int SpaceOfAlreadySerializedObject(HeapObject* object); int Allocate(int space, int size, bool* new_page_started); int EncodeExternalReference(Address addr) { return external_reference_encoder_->Encode(addr); } // Keep track of the fullness of each space in order to generate // relative addresses for back references. Large objects are // just numbered sequentially since relative addresses make no // sense in large object space. int fullness_[LAST_SPACE + 1]; SnapshotByteSink* sink_; int current_root_index_; ExternalReferenceEncoder* external_reference_encoder_; static bool serialization_enabled_; // Did we already make use of the fact that serialization was not enabled? static bool too_late_to_enable_now_; int large_object_total_; SerializationAddressMapper address_mapper_; friend class ObjectSerializer; friend class Deserializer; DISALLOW_COPY_AND_ASSIGN(Serializer); }; class PartialSerializer : public Serializer { public: PartialSerializer(Serializer* startup_snapshot_serializer, SnapshotByteSink* sink) : Serializer(sink), startup_serializer_(startup_snapshot_serializer) { } // Serialize the objects reachable from a single object pointer. virtual void Serialize(Object** o); virtual void SerializeObject(Object* o, ReferenceRepresentation representation); protected: virtual int RootIndex(HeapObject* o); virtual int PartialSnapshotCacheIndex(HeapObject* o); virtual bool ShouldBeInThePartialSnapshotCache(HeapObject* o) { return o->IsString() || o->IsSharedFunctionInfo(); } private: Serializer* startup_serializer_; DISALLOW_COPY_AND_ASSIGN(PartialSerializer); }; class StartupSerializer : public Serializer { public: explicit StartupSerializer(SnapshotByteSink* sink) : Serializer(sink) { // Clear the cache of objects used by the partial snapshot. After the // strong roots have been serialized we can create a partial snapshot // which will repopulate the cache with objects neede by that partial // snapshot. partial_snapshot_cache_length_ = 0; } // Serialize the current state of the heap. The order is: // 1) Strong references. // 2) Partial snapshot cache. // 3) Weak references (eg the symbol table). virtual void SerializeStrongReferences(); virtual void SerializeObject(Object* o, ReferenceRepresentation representation); void SerializeWeakReferences(); void Serialize() { SerializeStrongReferences(); SerializeWeakReferences(); } private: virtual int RootIndex(HeapObject* o) { return kInvalidRootIndex; } virtual bool ShouldBeInThePartialSnapshotCache(HeapObject* o) { return false; } }; } } // namespace v8::internal #endif // V8_SERIALIZE_H_