// Copyright 2009 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "bootstrapper.h" #include "codegen-inl.h" #include "assembler-x64.h" #include "macro-assembler-x64.h" #include "debug.h" namespace v8 { namespace internal { MacroAssembler::MacroAssembler(void* buffer, int size) : Assembler(buffer, size), unresolved_(0), generating_stub_(false), allow_stub_calls_(true), code_object_(Heap::undefined_value()) { } void MacroAssembler::Assert(Condition cc, const char* msg) { if (FLAG_debug_code) Check(cc, msg); } void MacroAssembler::Check(Condition cc, const char* msg) { Label L; j(cc, &L); Abort(msg); // will not return here bind(&L); } void MacroAssembler::NegativeZeroTest(Register result, Register op, Label* then_label) { Label ok; testq(result, result); j(not_zero, &ok); testq(op, op); j(sign, then_label); bind(&ok); } void MacroAssembler::ConstructAndTestJSFunction() { const int initial_buffer_size = 4 * KB; char* buffer = new char[initial_buffer_size]; MacroAssembler masm(buffer, initial_buffer_size); const uint64_t secret = V8_INT64_C(0xdeadbeefcafebabe); Handle constant = Factory::NewStringFromAscii(Vector("451", 3), TENURED); #define __ ACCESS_MASM((&masm)) // Construct a simple JSfunction here, using Assembler and MacroAssembler // commands. __ movq(rax, constant, RelocInfo::EMBEDDED_OBJECT); __ push(rax); __ CallRuntime(Runtime::kStringParseFloat, 1); __ movq(kScratchRegister, secret, RelocInfo::NONE); __ addq(rax, kScratchRegister); __ ret(0); #undef __ CodeDesc desc; masm.GetCode(&desc); Code::Flags flags = Code::ComputeFlags(Code::FUNCTION); Object* code = Heap::CreateCode(desc, NULL, flags, Handle::null()); if (!code->IsFailure()) { Handle code_handle(Code::cast(code)); Handle name = Factory::NewStringFromAscii(Vector("foo", 3), NOT_TENURED); Handle function = Factory::NewFunction(name, JS_FUNCTION_TYPE, JSObject::kHeaderSize, code_handle, true); bool pending_exceptions; Handle result = Execution::Call(function, Handle::cast(function), 0, NULL, &pending_exceptions); CHECK(result->IsSmi()); CHECK(secret + (451 << kSmiTagSize) == reinterpret_cast(*result)); } } void MacroAssembler::Abort(const char* msg) { // We want to pass the msg string like a smi to avoid GC // problems, however msg is not guaranteed to be aligned // properly. Instead, we pass an aligned pointer that is // a proper v8 smi, but also pass the alignment difference // from the real pointer as a smi. intptr_t p1 = reinterpret_cast(msg); intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag; // Note: p0 might not be a valid Smi *value*, but it has a valid Smi tag. ASSERT(reinterpret_cast(p0)->IsSmi()); #ifdef DEBUG if (msg != NULL) { RecordComment("Abort message: "); RecordComment(msg); } #endif push(rax); movq(kScratchRegister, p0, RelocInfo::NONE); push(kScratchRegister); movq(kScratchRegister, reinterpret_cast(Smi::FromInt(p1 - p0)), RelocInfo::NONE); push(kScratchRegister); CallRuntime(Runtime::kAbort, 2); // will not return here } void MacroAssembler::CallStub(CodeStub* stub) { ASSERT(allow_stub_calls()); // calls are not allowed in some stubs movq(kScratchRegister, stub->GetCode(), RelocInfo::CODE_TARGET); call(kScratchRegister); } void MacroAssembler::StubReturn(int argc) { ASSERT(argc >= 1 && generating_stub()); ret((argc - 1) * kPointerSize); } void MacroAssembler::IllegalOperation(int num_arguments) { if (num_arguments > 0) { addq(rsp, Immediate(num_arguments * kPointerSize)); } movq(rax, Factory::undefined_value(), RelocInfo::EMBEDDED_OBJECT); } void MacroAssembler::CallRuntime(Runtime::FunctionId id, int num_arguments) { CallRuntime(Runtime::FunctionForId(id), num_arguments); } void MacroAssembler::CallRuntime(Runtime::Function* f, int num_arguments) { // If the expected number of arguments of the runtime function is // constant, we check that the actual number of arguments match the // expectation. if (f->nargs >= 0 && f->nargs != num_arguments) { IllegalOperation(num_arguments); return; } Runtime::FunctionId function_id = static_cast(f->stub_id); RuntimeStub stub(function_id, num_arguments); CallStub(&stub); } void MacroAssembler::TailCallRuntime(ExternalReference const& ext, int num_arguments) { // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. movq(rax, Immediate(num_arguments)); JumpToBuiltin(ext); } void MacroAssembler::JumpToBuiltin(const ExternalReference& ext) { // Set the entry point and jump to the C entry runtime stub. movq(rbx, ext); CEntryStub ces; movq(kScratchRegister, ces.GetCode(), RelocInfo::CODE_TARGET); jmp(kScratchRegister); } void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) { bool resolved; Handle code = ResolveBuiltin(id, &resolved); const char* name = Builtins::GetName(id); int argc = Builtins::GetArgumentsCount(id); movq(target, code, RelocInfo::EXTERNAL_REFERENCE); // Is external reference? if (!resolved) { uint32_t flags = Bootstrapper::FixupFlagsArgumentsCount::encode(argc) | Bootstrapper::FixupFlagsIsPCRelative::encode(false) | Bootstrapper::FixupFlagsUseCodeObject::encode(true); Unresolved entry = { pc_offset() - sizeof(intptr_t), flags, name }; unresolved_.Add(entry); } addq(target, Immediate(Code::kHeaderSize - kHeapObjectTag)); } Handle MacroAssembler::ResolveBuiltin(Builtins::JavaScript id, bool* resolved) { // Move the builtin function into the temporary function slot by // reading it from the builtins object. NOTE: We should be able to // reduce this to two instructions by putting the function table in // the global object instead of the "builtins" object and by using a // real register for the function. movq(rdx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX))); movq(rdx, FieldOperand(rdx, GlobalObject::kBuiltinsOffset)); int builtins_offset = JSBuiltinsObject::kJSBuiltinsOffset + (id * kPointerSize); movq(rdi, FieldOperand(rdx, builtins_offset)); return Builtins::GetCode(id, resolved); } void MacroAssembler::Set(Register dst, int64_t x) { if (is_int32(x)) { movq(dst, Immediate(x)); } else if (is_uint32(x)) { movl(dst, Immediate(x)); } else { movq(dst, x, RelocInfo::NONE); } } void MacroAssembler::Set(const Operand& dst, int64_t x) { if (is_int32(x)) { movq(kScratchRegister, Immediate(x)); } else if (is_uint32(x)) { movl(kScratchRegister, Immediate(x)); } else { movq(kScratchRegister, x, RelocInfo::NONE); } movq(dst, kScratchRegister); } bool MacroAssembler::IsUnsafeSmi(Smi* value) { return false; } void MacroAssembler::LoadUnsafeSmi(Register dst, Smi* source) { UNIMPLEMENTED(); } void MacroAssembler::Move(Register dst, Handle source) { if (source->IsSmi()) { if (IsUnsafeSmi(source)) { LoadUnsafeSmi(dst, source); } else { movq(dst, source, RelocInfo::NONE); } } else { movq(dst, source, RelocInfo::EMBEDDED_OBJECT); } } void MacroAssembler::Move(const Operand& dst, Handle source) { Move(kScratchRegister, source); movq(dst, kScratchRegister); } void MacroAssembler::Cmp(Register dst, Handle source) { Move(kScratchRegister, source); cmpq(dst, kScratchRegister); } void MacroAssembler::Jump(ExternalReference ext) { movq(kScratchRegister, ext); jmp(kScratchRegister); } void MacroAssembler::Jump(Address destination, RelocInfo::Mode rmode) { movq(kScratchRegister, destination, rmode); jmp(kScratchRegister); } void MacroAssembler::Jump(Handle code_object, RelocInfo::Mode rmode) { WriteRecordedPositions(); ASSERT(RelocInfo::IsCodeTarget(rmode)); movq(kScratchRegister, code_object, rmode); jmp(kScratchRegister); } void MacroAssembler::Call(ExternalReference ext) { movq(kScratchRegister, ext); call(kScratchRegister); } void MacroAssembler::Call(Address destination, RelocInfo::Mode rmode) { movq(kScratchRegister, destination, rmode); call(kScratchRegister); } void MacroAssembler::Call(Handle code_object, RelocInfo::Mode rmode) { WriteRecordedPositions(); ASSERT(RelocInfo::IsCodeTarget(rmode)); movq(kScratchRegister, code_object, rmode); #ifdef DEBUG Label target; bind(&target); #endif call(kScratchRegister); #ifdef DEBUG ASSERT_EQ(kTargetAddrToReturnAddrDist, SizeOfCodeGeneratedSince(&target) + kPointerSize); #endif } void MacroAssembler::PushTryHandler(CodeLocation try_location, HandlerType type) { // Adjust this code if not the case. ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize); // The pc (return address) is already on TOS. This code pushes state, // frame pointer and current handler. Check that they are expected // next on the stack, in that order. ASSERT_EQ(StackHandlerConstants::kStateOffset, StackHandlerConstants::kPCOffset - kPointerSize); ASSERT_EQ(StackHandlerConstants::kFPOffset, StackHandlerConstants::kStateOffset - kPointerSize); ASSERT_EQ(StackHandlerConstants::kNextOffset, StackHandlerConstants::kFPOffset - kPointerSize); if (try_location == IN_JAVASCRIPT) { if (type == TRY_CATCH_HANDLER) { push(Immediate(StackHandler::TRY_CATCH)); } else { push(Immediate(StackHandler::TRY_FINALLY)); } push(rbp); } else { ASSERT(try_location == IN_JS_ENTRY); // The frame pointer does not point to a JS frame so we save NULL // for rbp. We expect the code throwing an exception to check rbp // before dereferencing it to restore the context. push(Immediate(StackHandler::ENTRY)); push(Immediate(0)); // NULL frame pointer. } // Save the current handler. movq(kScratchRegister, ExternalReference(Top::k_handler_address)); push(Operand(kScratchRegister, 0)); // Link this handler. movq(Operand(kScratchRegister, 0), rsp); } void MacroAssembler::Ret() { ret(0); } void MacroAssembler::CmpObjectType(Register heap_object, InstanceType type, Register map) { movq(map, FieldOperand(heap_object, HeapObject::kMapOffset)); CmpInstanceType(map, type); } void MacroAssembler::CmpInstanceType(Register map, InstanceType type) { cmpb(FieldOperand(map, Map::kInstanceTypeOffset), Immediate(static_cast(type))); } void MacroAssembler::SetCounter(StatsCounter* counter, int value) { if (FLAG_native_code_counters && counter->Enabled()) { movq(kScratchRegister, ExternalReference(counter)); movl(Operand(kScratchRegister, 0), Immediate(value)); } } void MacroAssembler::IncrementCounter(StatsCounter* counter, int value) { ASSERT(value > 0); if (FLAG_native_code_counters && counter->Enabled()) { movq(kScratchRegister, ExternalReference(counter)); Operand operand(kScratchRegister, 0); if (value == 1) { incl(operand); } else { addl(operand, Immediate(value)); } } } void MacroAssembler::DecrementCounter(StatsCounter* counter, int value) { ASSERT(value > 0); if (FLAG_native_code_counters && counter->Enabled()) { movq(kScratchRegister, ExternalReference(counter)); Operand operand(kScratchRegister, 0); if (value == 1) { decl(operand); } else { subl(operand, Immediate(value)); } } } #ifdef ENABLE_DEBUGGER_SUPPORT void MacroAssembler::PushRegistersFromMemory(RegList regs) { ASSERT((regs & ~kJSCallerSaved) == 0); // Push the content of the memory location to the stack. for (int i = 0; i < kNumJSCallerSaved; i++) { int r = JSCallerSavedCode(i); if ((regs & (1 << r)) != 0) { ExternalReference reg_addr = ExternalReference(Debug_Address::Register(i)); movq(kScratchRegister, reg_addr); push(Operand(kScratchRegister, 0)); } } } void MacroAssembler::SaveRegistersToMemory(RegList regs) { ASSERT((regs & ~kJSCallerSaved) == 0); // Copy the content of registers to memory location. for (int i = 0; i < kNumJSCallerSaved; i++) { int r = JSCallerSavedCode(i); if ((regs & (1 << r)) != 0) { Register reg = { r }; ExternalReference reg_addr = ExternalReference(Debug_Address::Register(i)); movq(kScratchRegister, reg_addr); movq(Operand(kScratchRegister, 0), reg); } } } void MacroAssembler::RestoreRegistersFromMemory(RegList regs) { ASSERT((regs & ~kJSCallerSaved) == 0); // Copy the content of memory location to registers. for (int i = kNumJSCallerSaved - 1; i >= 0; i--) { int r = JSCallerSavedCode(i); if ((regs & (1 << r)) != 0) { Register reg = { r }; ExternalReference reg_addr = ExternalReference(Debug_Address::Register(i)); movq(kScratchRegister, reg_addr); movq(reg, Operand(kScratchRegister, 0)); } } } void MacroAssembler::PopRegistersToMemory(RegList regs) { ASSERT((regs & ~kJSCallerSaved) == 0); // Pop the content from the stack to the memory location. for (int i = kNumJSCallerSaved - 1; i >= 0; i--) { int r = JSCallerSavedCode(i); if ((regs & (1 << r)) != 0) { ExternalReference reg_addr = ExternalReference(Debug_Address::Register(i)); movq(kScratchRegister, reg_addr); pop(Operand(kScratchRegister, 0)); } } } void MacroAssembler::CopyRegistersFromStackToMemory(Register base, Register scratch, RegList regs) { ASSERT(!scratch.is(kScratchRegister)); ASSERT(!base.is(kScratchRegister)); ASSERT(!base.is(scratch)); ASSERT((regs & ~kJSCallerSaved) == 0); // Copy the content of the stack to the memory location and adjust base. for (int i = kNumJSCallerSaved - 1; i >= 0; i--) { int r = JSCallerSavedCode(i); if ((regs & (1 << r)) != 0) { movq(scratch, Operand(base, 0)); ExternalReference reg_addr = ExternalReference(Debug_Address::Register(i)); movq(kScratchRegister, reg_addr); movq(Operand(kScratchRegister, 0), scratch); lea(base, Operand(base, kPointerSize)); } } } #endif // ENABLE_DEBUGGER_SUPPORT void MacroAssembler::InvokePrologue(const ParameterCount& expected, const ParameterCount& actual, Handle code_constant, Register code_register, Label* done, InvokeFlag flag) { bool definitely_matches = false; Label invoke; if (expected.is_immediate()) { ASSERT(actual.is_immediate()); if (expected.immediate() == actual.immediate()) { definitely_matches = true; } else { movq(rax, Immediate(actual.immediate())); if (expected.immediate() == SharedFunctionInfo::kDontAdaptArgumentsSentinel) { // Don't worry about adapting arguments for built-ins that // don't want that done. Skip adaption code by making it look // like we have a match between expected and actual number of // arguments. definitely_matches = true; } else { movq(rbx, Immediate(expected.immediate())); } } } else { if (actual.is_immediate()) { // Expected is in register, actual is immediate. This is the // case when we invoke function values without going through the // IC mechanism. cmpq(expected.reg(), Immediate(actual.immediate())); j(equal, &invoke); ASSERT(expected.reg().is(rbx)); movq(rax, Immediate(actual.immediate())); } else if (!expected.reg().is(actual.reg())) { // Both expected and actual are in (different) registers. This // is the case when we invoke functions using call and apply. cmpq(expected.reg(), actual.reg()); j(equal, &invoke); ASSERT(actual.reg().is(rax)); ASSERT(expected.reg().is(rbx)); } } if (!definitely_matches) { Handle adaptor = Handle(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline)); if (!code_constant.is_null()) { movq(rdx, code_constant, RelocInfo::EMBEDDED_OBJECT); addq(rdx, Immediate(Code::kHeaderSize - kHeapObjectTag)); } else if (!code_register.is(rdx)) { movq(rdx, code_register); } movq(kScratchRegister, adaptor, RelocInfo::CODE_TARGET); if (flag == CALL_FUNCTION) { call(kScratchRegister); jmp(done); } else { jmp(kScratchRegister); } bind(&invoke); } } void MacroAssembler::InvokeCode(Register code, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag) { Label done; InvokePrologue(expected, actual, Handle::null(), code, &done, flag); if (flag == CALL_FUNCTION) { call(code); } else { ASSERT(flag == JUMP_FUNCTION); jmp(code); } bind(&done); } void MacroAssembler::InvokeCode(Handle code, const ParameterCount& expected, const ParameterCount& actual, RelocInfo::Mode rmode, InvokeFlag flag) { Label done; Register dummy = rax; InvokePrologue(expected, actual, code, dummy, &done, flag); movq(kScratchRegister, code, rmode); if (flag == CALL_FUNCTION) { call(kScratchRegister); } else { ASSERT(flag == JUMP_FUNCTION); jmp(kScratchRegister); } bind(&done); } void MacroAssembler::InvokeFunction(Register function, const ParameterCount& actual, InvokeFlag flag) { ASSERT(function.is(rdi)); movq(rdx, FieldOperand(function, JSFunction::kSharedFunctionInfoOffset)); movq(rsi, FieldOperand(function, JSFunction::kContextOffset)); movl(rbx, FieldOperand(rdx, SharedFunctionInfo::kFormalParameterCountOffset)); movq(rdx, FieldOperand(rdx, SharedFunctionInfo::kCodeOffset)); // Advances rdx to the end of the Code object header, to the start of // the executable code. lea(rdx, FieldOperand(rdx, Code::kHeaderSize)); ParameterCount expected(rbx); InvokeCode(rdx, expected, actual, flag); } void MacroAssembler::EnterFrame(StackFrame::Type type) { push(rbp); movq(rbp, rsp); push(rsi); // Context. push(Immediate(Smi::FromInt(type))); movq(kScratchRegister, CodeObject(), RelocInfo::EMBEDDED_OBJECT); push(kScratchRegister); if (FLAG_debug_code) { movq(kScratchRegister, Factory::undefined_value(), RelocInfo::EMBEDDED_OBJECT); cmpq(Operand(rsp, 0), kScratchRegister); Check(not_equal, "code object not properly patched"); } } void MacroAssembler::LeaveFrame(StackFrame::Type type) { if (FLAG_debug_code) { movq(kScratchRegister, Immediate(Smi::FromInt(type))); cmpq(Operand(rbp, StandardFrameConstants::kMarkerOffset), kScratchRegister); Check(equal, "stack frame types must match"); } movq(rsp, rbp); pop(rbp); } void MacroAssembler::EnterExitFrame(StackFrame::Type type) { ASSERT(type == StackFrame::EXIT || type == StackFrame::EXIT_DEBUG); // Setup the frame structure on the stack. ASSERT(ExitFrameConstants::kCallerSPDisplacement == +2 * kPointerSize); ASSERT(ExitFrameConstants::kCallerPCOffset == +1 * kPointerSize); ASSERT(ExitFrameConstants::kCallerFPOffset == 0 * kPointerSize); push(rbp); movq(rbp, rsp); // Reserve room for entry stack pointer and push the debug marker. ASSERT(ExitFrameConstants::kSPOffset == -1 * kPointerSize); push(Immediate(0)); // saved entry sp, patched before call push(Immediate(type == StackFrame::EXIT_DEBUG ? 1 : 0)); // Save the frame pointer and the context in top. ExternalReference c_entry_fp_address(Top::k_c_entry_fp_address); ExternalReference context_address(Top::k_context_address); movq(rdi, rax); // Backup rax before we use it. movq(rax, rbp); store_rax(c_entry_fp_address); movq(rax, rsi); store_rax(context_address); // Setup argv in callee-saved register r15. It is reused in LeaveExitFrame, // so it must be retained across the C-call. int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize; lea(r15, Operand(rbp, rdi, kTimesPointerSize, offset)); #ifdef ENABLE_DEBUGGER_SUPPORT // Save the state of all registers to the stack from the memory // location. This is needed to allow nested break points. if (type == StackFrame::EXIT_DEBUG) { // TODO(1243899): This should be symmetric to // CopyRegistersFromStackToMemory() but it isn't! esp is assumed // correct here, but computed for the other call. Very error // prone! FIX THIS. Actually there are deeper problems with // register saving than this asymmetry (see the bug report // associated with this issue). PushRegistersFromMemory(kJSCallerSaved); } #endif // Reserve space for two arguments: argc and argv subq(rsp, Immediate(2 * kPointerSize)); // Get the required frame alignment for the OS. static const int kFrameAlignment = OS::ActivationFrameAlignment(); if (kFrameAlignment > 0) { ASSERT(IsPowerOf2(kFrameAlignment)); movq(kScratchRegister, Immediate(-kFrameAlignment)); and_(rsp, kScratchRegister); } // Patch the saved entry sp. movq(Operand(rbp, ExitFrameConstants::kSPOffset), rsp); } void MacroAssembler::LeaveExitFrame(StackFrame::Type type) { // Registers: // r15 : argv #ifdef ENABLE_DEBUGGER_SUPPORT // Restore the memory copy of the registers by digging them out from // the stack. This is needed to allow nested break points. if (type == StackFrame::EXIT_DEBUG) { // It's okay to clobber register ebx below because we don't need // the function pointer after this. const int kCallerSavedSize = kNumJSCallerSaved * kPointerSize; int kOffset = ExitFrameConstants::kDebugMarkOffset - kCallerSavedSize; lea(rbx, Operand(rbp, kOffset)); CopyRegistersFromStackToMemory(rbx, rcx, kJSCallerSaved); } #endif // Get the return address from the stack and restore the frame pointer. movq(rcx, Operand(rbp, 1 * kPointerSize)); movq(rbp, Operand(rbp, 0 * kPointerSize)); // Pop the arguments and the receiver from the caller stack. lea(rsp, Operand(r15, 1 * kPointerSize)); // Restore current context from top and clear it in debug mode. ExternalReference context_address(Top::k_context_address); movq(kScratchRegister, context_address); movq(rsi, Operand(kScratchRegister, 0)); #ifdef DEBUG movq(Operand(kScratchRegister, 0), Immediate(0)); #endif // Push the return address to get ready to return. push(rcx); // Clear the top frame. ExternalReference c_entry_fp_address(Top::k_c_entry_fp_address); movq(kScratchRegister, c_entry_fp_address); movq(Operand(kScratchRegister, 0), Immediate(0)); } } } // namespace v8::internal