// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef V8_LITHIUM_H_ #define V8_LITHIUM_H_ #include "allocation.h" #include "hydrogen.h" #include "safepoint-table.h" namespace v8 { namespace internal { #define LITHIUM_OPERAND_LIST(V) \ V(ConstantOperand, CONSTANT_OPERAND) \ V(StackSlot, STACK_SLOT) \ V(DoubleStackSlot, DOUBLE_STACK_SLOT) \ V(Register, REGISTER) \ V(DoubleRegister, DOUBLE_REGISTER) class LOperand: public ZoneObject { public: enum Kind { INVALID, UNALLOCATED, CONSTANT_OPERAND, STACK_SLOT, DOUBLE_STACK_SLOT, REGISTER, DOUBLE_REGISTER, ARGUMENT }; LOperand() : value_(KindField::encode(INVALID)) { } Kind kind() const { return KindField::decode(value_); } int index() const { return static_cast(value_) >> kKindFieldWidth; } #define LITHIUM_OPERAND_PREDICATE(name, type) \ bool Is##name() const { return kind() == type; } LITHIUM_OPERAND_LIST(LITHIUM_OPERAND_PREDICATE) LITHIUM_OPERAND_PREDICATE(Argument, ARGUMENT) LITHIUM_OPERAND_PREDICATE(Unallocated, UNALLOCATED) LITHIUM_OPERAND_PREDICATE(Ignored, INVALID) #undef LITHIUM_OPERAND_PREDICATE bool Equals(LOperand* other) const { return value_ == other->value_; } void PrintTo(StringStream* stream); void ConvertTo(Kind kind, int index) { value_ = KindField::encode(kind); value_ |= index << kKindFieldWidth; ASSERT(this->index() == index); } // Calls SetUpCache()/TearDownCache() for each subclass. static void SetUpCaches(); static void TearDownCaches(); protected: static const int kKindFieldWidth = 3; class KindField : public BitField { }; LOperand(Kind kind, int index) { ConvertTo(kind, index); } unsigned value_; }; class LUnallocated: public LOperand { public: enum BasicPolicy { FIXED_SLOT, EXTENDED_POLICY }; enum ExtendedPolicy { NONE, ANY, FIXED_REGISTER, FIXED_DOUBLE_REGISTER, MUST_HAVE_REGISTER, WRITABLE_REGISTER, SAME_AS_FIRST_INPUT }; // Lifetime of operand inside the instruction. enum Lifetime { // USED_AT_START operand is guaranteed to be live only at // instruction start. Register allocator is free to assign the same register // to some other operand used inside instruction (i.e. temporary or // output). USED_AT_START, // USED_AT_END operand is treated as live until the end of // instruction. This means that register allocator will not reuse it's // register for any other operand inside instruction. USED_AT_END }; explicit LUnallocated(ExtendedPolicy policy) : LOperand(UNALLOCATED, 0) { value_ |= BasicPolicyField::encode(EXTENDED_POLICY); value_ |= ExtendedPolicyField::encode(policy); value_ |= LifetimeField::encode(USED_AT_END); } LUnallocated(BasicPolicy policy, int index) : LOperand(UNALLOCATED, 0) { ASSERT(policy == FIXED_SLOT); value_ |= BasicPolicyField::encode(policy); value_ |= index << FixedSlotIndexField::kShift; ASSERT(this->fixed_slot_index() == index); } LUnallocated(ExtendedPolicy policy, int index) : LOperand(UNALLOCATED, 0) { ASSERT(policy == FIXED_REGISTER || policy == FIXED_DOUBLE_REGISTER); value_ |= BasicPolicyField::encode(EXTENDED_POLICY); value_ |= ExtendedPolicyField::encode(policy); value_ |= LifetimeField::encode(USED_AT_END); value_ |= FixedRegisterField::encode(index); } LUnallocated(ExtendedPolicy policy, Lifetime lifetime) : LOperand(UNALLOCATED, 0) { value_ |= BasicPolicyField::encode(EXTENDED_POLICY); value_ |= ExtendedPolicyField::encode(policy); value_ |= LifetimeField::encode(lifetime); } LUnallocated* CopyUnconstrained(Zone* zone) { LUnallocated* result = new(zone) LUnallocated(ANY); result->set_virtual_register(virtual_register()); return result; } static LUnallocated* cast(LOperand* op) { ASSERT(op->IsUnallocated()); return reinterpret_cast(op); } // The encoding used for LUnallocated operands depends on the policy that is // stored within the operand. The FIXED_SLOT policy uses a compact encoding // because it accommodates a larger pay-load. // // For FIXED_SLOT policy: // +------------------------------------------+ // | slot_index | vreg | 0 | 001 | // +------------------------------------------+ // // For all other (extended) policies: // +------------------------------------------+ // | reg_index | L | PPP | vreg | 1 | 001 | L ... Lifetime // +------------------------------------------+ P ... Policy // // The slot index is a signed value which requires us to decode it manually // instead of using the BitField utility class. // The superclass has a KindField. STATIC_ASSERT(kKindFieldWidth == 3); // BitFields for all unallocated operands. class BasicPolicyField : public BitField {}; class VirtualRegisterField : public BitField {}; // BitFields specific to BasicPolicy::FIXED_SLOT. class FixedSlotIndexField : public BitField {}; // BitFields specific to BasicPolicy::EXTENDED_POLICY. class ExtendedPolicyField : public BitField {}; class LifetimeField : public BitField {}; class FixedRegisterField : public BitField {}; static const int kMaxVirtualRegisters = VirtualRegisterField::kMax + 1; static const int kFixedSlotIndexWidth = FixedSlotIndexField::kSize; static const int kMaxFixedSlotIndex = (1 << (kFixedSlotIndexWidth - 1)) - 1; static const int kMinFixedSlotIndex = -(1 << (kFixedSlotIndexWidth - 1)); // Predicates for the operand policy. bool HasAnyPolicy() const { return basic_policy() == EXTENDED_POLICY && extended_policy() == ANY; } bool HasFixedPolicy() const { return basic_policy() == FIXED_SLOT || extended_policy() == FIXED_REGISTER || extended_policy() == FIXED_DOUBLE_REGISTER; } bool HasRegisterPolicy() const { return basic_policy() == EXTENDED_POLICY && ( extended_policy() == WRITABLE_REGISTER || extended_policy() == MUST_HAVE_REGISTER); } bool HasSameAsInputPolicy() const { return basic_policy() == EXTENDED_POLICY && extended_policy() == SAME_AS_FIRST_INPUT; } bool HasFixedSlotPolicy() const { return basic_policy() == FIXED_SLOT; } bool HasFixedRegisterPolicy() const { return basic_policy() == EXTENDED_POLICY && extended_policy() == FIXED_REGISTER; } bool HasFixedDoubleRegisterPolicy() const { return basic_policy() == EXTENDED_POLICY && extended_policy() == FIXED_DOUBLE_REGISTER; } bool HasWritableRegisterPolicy() const { return basic_policy() == EXTENDED_POLICY && extended_policy() == WRITABLE_REGISTER; } // [basic_policy]: Distinguish between FIXED_SLOT and all other policies. BasicPolicy basic_policy() const { return BasicPolicyField::decode(value_); } // [extended_policy]: Only for non-FIXED_SLOT. The finer-grained policy. ExtendedPolicy extended_policy() const { ASSERT(basic_policy() == EXTENDED_POLICY); return ExtendedPolicyField::decode(value_); } // [fixed_slot_index]: Only for FIXED_SLOT. int fixed_slot_index() const { ASSERT(HasFixedSlotPolicy()); return static_cast(value_) >> FixedSlotIndexField::kShift; } // [fixed_register_index]: Only for FIXED_REGISTER or FIXED_DOUBLE_REGISTER. int fixed_register_index() const { ASSERT(HasFixedRegisterPolicy() || HasFixedDoubleRegisterPolicy()); return FixedRegisterField::decode(value_); } // [virtual_register]: The virtual register ID for this operand. int virtual_register() const { return VirtualRegisterField::decode(value_); } void set_virtual_register(unsigned id) { value_ = VirtualRegisterField::update(value_, id); } // [lifetime]: Only for non-FIXED_SLOT. bool IsUsedAtStart() { ASSERT(basic_policy() == EXTENDED_POLICY); return LifetimeField::decode(value_) == USED_AT_START; } }; class LMoveOperands BASE_EMBEDDED { public: LMoveOperands(LOperand* source, LOperand* destination) : source_(source), destination_(destination) { } LOperand* source() const { return source_; } void set_source(LOperand* operand) { source_ = operand; } LOperand* destination() const { return destination_; } void set_destination(LOperand* operand) { destination_ = operand; } // The gap resolver marks moves as "in-progress" by clearing the // destination (but not the source). bool IsPending() const { return destination_ == NULL && source_ != NULL; } // True if this move a move into the given destination operand. bool Blocks(LOperand* operand) const { return !IsEliminated() && source()->Equals(operand); } // A move is redundant if it's been eliminated, if its source and // destination are the same, or if its destination is unneeded. bool IsRedundant() const { return IsEliminated() || source_->Equals(destination_) || IsIgnored(); } bool IsIgnored() const { return destination_ != NULL && destination_->IsIgnored(); } // We clear both operands to indicate move that's been eliminated. void Eliminate() { source_ = destination_ = NULL; } bool IsEliminated() const { ASSERT(source_ != NULL || destination_ == NULL); return source_ == NULL; } private: LOperand* source_; LOperand* destination_; }; class LConstantOperand: public LOperand { public: static LConstantOperand* Create(int index, Zone* zone) { ASSERT(index >= 0); if (index < kNumCachedOperands) return &cache[index]; return new(zone) LConstantOperand(index); } static LConstantOperand* cast(LOperand* op) { ASSERT(op->IsConstantOperand()); return reinterpret_cast(op); } static void SetUpCache(); static void TearDownCache(); private: static const int kNumCachedOperands = 128; static LConstantOperand* cache; LConstantOperand() : LOperand() { } explicit LConstantOperand(int index) : LOperand(CONSTANT_OPERAND, index) { } }; class LArgument: public LOperand { public: explicit LArgument(int index) : LOperand(ARGUMENT, index) { } static LArgument* cast(LOperand* op) { ASSERT(op->IsArgument()); return reinterpret_cast(op); } }; class LStackSlot: public LOperand { public: static LStackSlot* Create(int index, Zone* zone) { ASSERT(index >= 0); if (index < kNumCachedOperands) return &cache[index]; return new(zone) LStackSlot(index); } static LStackSlot* cast(LOperand* op) { ASSERT(op->IsStackSlot()); return reinterpret_cast(op); } static void SetUpCache(); static void TearDownCache(); private: static const int kNumCachedOperands = 128; static LStackSlot* cache; LStackSlot() : LOperand() { } explicit LStackSlot(int index) : LOperand(STACK_SLOT, index) { } }; class LDoubleStackSlot: public LOperand { public: static LDoubleStackSlot* Create(int index, Zone* zone) { ASSERT(index >= 0); if (index < kNumCachedOperands) return &cache[index]; return new(zone) LDoubleStackSlot(index); } static LDoubleStackSlot* cast(LOperand* op) { ASSERT(op->IsStackSlot()); return reinterpret_cast(op); } static void SetUpCache(); static void TearDownCache(); private: static const int kNumCachedOperands = 128; static LDoubleStackSlot* cache; LDoubleStackSlot() : LOperand() { } explicit LDoubleStackSlot(int index) : LOperand(DOUBLE_STACK_SLOT, index) { } }; class LRegister: public LOperand { public: static LRegister* Create(int index, Zone* zone) { ASSERT(index >= 0); if (index < kNumCachedOperands) return &cache[index]; return new(zone) LRegister(index); } static LRegister* cast(LOperand* op) { ASSERT(op->IsRegister()); return reinterpret_cast(op); } static void SetUpCache(); static void TearDownCache(); private: static const int kNumCachedOperands = 16; static LRegister* cache; LRegister() : LOperand() { } explicit LRegister(int index) : LOperand(REGISTER, index) { } }; class LDoubleRegister: public LOperand { public: static LDoubleRegister* Create(int index, Zone* zone) { ASSERT(index >= 0); if (index < kNumCachedOperands) return &cache[index]; return new(zone) LDoubleRegister(index); } static LDoubleRegister* cast(LOperand* op) { ASSERT(op->IsDoubleRegister()); return reinterpret_cast(op); } static void SetUpCache(); static void TearDownCache(); private: static const int kNumCachedOperands = 16; static LDoubleRegister* cache; LDoubleRegister() : LOperand() { } explicit LDoubleRegister(int index) : LOperand(DOUBLE_REGISTER, index) { } }; class LParallelMove : public ZoneObject { public: explicit LParallelMove(Zone* zone) : move_operands_(4, zone) { } void AddMove(LOperand* from, LOperand* to, Zone* zone) { move_operands_.Add(LMoveOperands(from, to), zone); } bool IsRedundant() const; const ZoneList* move_operands() const { return &move_operands_; } void PrintDataTo(StringStream* stream) const; private: ZoneList move_operands_; }; class LPointerMap: public ZoneObject { public: explicit LPointerMap(int position, Zone* zone) : pointer_operands_(8, zone), untagged_operands_(0, zone), position_(position), lithium_position_(-1) { } const ZoneList* GetNormalizedOperands() { for (int i = 0; i < untagged_operands_.length(); ++i) { RemovePointer(untagged_operands_[i]); } untagged_operands_.Clear(); return &pointer_operands_; } int position() const { return position_; } int lithium_position() const { return lithium_position_; } void set_lithium_position(int pos) { ASSERT(lithium_position_ == -1); lithium_position_ = pos; } void RecordPointer(LOperand* op, Zone* zone); void RemovePointer(LOperand* op); void RecordUntagged(LOperand* op, Zone* zone); void PrintTo(StringStream* stream); private: ZoneList pointer_operands_; ZoneList untagged_operands_; int position_; int lithium_position_; }; class LEnvironment: public ZoneObject { public: LEnvironment(Handle closure, FrameType frame_type, BailoutId ast_id, int parameter_count, int argument_count, int value_count, LEnvironment* outer, HEnterInlined* entry, Zone* zone) : closure_(closure), frame_type_(frame_type), arguments_stack_height_(argument_count), deoptimization_index_(Safepoint::kNoDeoptimizationIndex), translation_index_(-1), ast_id_(ast_id), translation_size_(value_count), parameter_count_(parameter_count), pc_offset_(-1), values_(value_count, zone), is_tagged_(value_count, zone), is_uint32_(value_count, zone), object_mapping_(0, zone), outer_(outer), entry_(entry), zone_(zone) { } Handle closure() const { return closure_; } FrameType frame_type() const { return frame_type_; } int arguments_stack_height() const { return arguments_stack_height_; } int deoptimization_index() const { return deoptimization_index_; } int translation_index() const { return translation_index_; } BailoutId ast_id() const { return ast_id_; } int translation_size() const { return translation_size_; } int parameter_count() const { return parameter_count_; } int pc_offset() const { return pc_offset_; } const ZoneList* values() const { return &values_; } LEnvironment* outer() const { return outer_; } HEnterInlined* entry() { return entry_; } Zone* zone() const { return zone_; } void AddValue(LOperand* operand, Representation representation, bool is_uint32) { values_.Add(operand, zone()); if (representation.IsSmiOrTagged()) { ASSERT(!is_uint32); is_tagged_.Add(values_.length() - 1, zone()); } if (is_uint32) { is_uint32_.Add(values_.length() - 1, zone()); } } bool HasTaggedValueAt(int index) const { return is_tagged_.Contains(index); } bool HasUint32ValueAt(int index) const { return is_uint32_.Contains(index); } void AddNewObject(int length, bool is_arguments) { uint32_t encoded = LengthOrDupeField::encode(length) | IsArgumentsField::encode(is_arguments) | IsDuplicateField::encode(false); object_mapping_.Add(encoded, zone()); } void AddDuplicateObject(int dupe_of) { uint32_t encoded = LengthOrDupeField::encode(dupe_of) | IsDuplicateField::encode(true); object_mapping_.Add(encoded, zone()); } int ObjectDuplicateOfAt(int index) { ASSERT(ObjectIsDuplicateAt(index)); return LengthOrDupeField::decode(object_mapping_[index]); } int ObjectLengthAt(int index) { ASSERT(!ObjectIsDuplicateAt(index)); return LengthOrDupeField::decode(object_mapping_[index]); } bool ObjectIsArgumentsAt(int index) { ASSERT(!ObjectIsDuplicateAt(index)); return IsArgumentsField::decode(object_mapping_[index]); } bool ObjectIsDuplicateAt(int index) { return IsDuplicateField::decode(object_mapping_[index]); } void Register(int deoptimization_index, int translation_index, int pc_offset) { ASSERT(!HasBeenRegistered()); deoptimization_index_ = deoptimization_index; translation_index_ = translation_index; pc_offset_ = pc_offset; } bool HasBeenRegistered() const { return deoptimization_index_ != Safepoint::kNoDeoptimizationIndex; } void PrintTo(StringStream* stream); // Marker value indicating a de-materialized object. static LOperand* materialization_marker() { return NULL; } // Encoding used for the object_mapping map below. class LengthOrDupeField : public BitField { }; class IsArgumentsField : public BitField { }; class IsDuplicateField : public BitField { }; private: Handle closure_; FrameType frame_type_; int arguments_stack_height_; int deoptimization_index_; int translation_index_; BailoutId ast_id_; int translation_size_; int parameter_count_; int pc_offset_; // Value array: [parameters] [locals] [expression stack] [de-materialized]. // |>--------- translation_size ---------<| ZoneList values_; GrowableBitVector is_tagged_; GrowableBitVector is_uint32_; // Map with encoded information about materialization_marker operands. ZoneList object_mapping_; LEnvironment* outer_; HEnterInlined* entry_; Zone* zone_; }; // Iterates over the non-null, non-constant operands in an environment. class ShallowIterator BASE_EMBEDDED { public: explicit ShallowIterator(LEnvironment* env) : env_(env), limit_(env != NULL ? env->values()->length() : 0), current_(0) { SkipUninteresting(); } bool Done() { return current_ >= limit_; } LOperand* Current() { ASSERT(!Done()); ASSERT(env_->values()->at(current_) != NULL); return env_->values()->at(current_); } void Advance() { ASSERT(!Done()); ++current_; SkipUninteresting(); } LEnvironment* env() { return env_; } private: bool ShouldSkip(LOperand* op) { return op == NULL || op->IsConstantOperand() || op->IsArgument(); } // Skip until something interesting, beginning with and including current_. void SkipUninteresting() { while (current_ < limit_ && ShouldSkip(env_->values()->at(current_))) { ++current_; } } LEnvironment* env_; int limit_; int current_; }; // Iterator for non-null, non-constant operands incl. outer environments. class DeepIterator BASE_EMBEDDED { public: explicit DeepIterator(LEnvironment* env) : current_iterator_(env) { SkipUninteresting(); } bool Done() { return current_iterator_.Done(); } LOperand* Current() { ASSERT(!current_iterator_.Done()); ASSERT(current_iterator_.Current() != NULL); return current_iterator_.Current(); } void Advance() { current_iterator_.Advance(); SkipUninteresting(); } private: void SkipUninteresting() { while (current_iterator_.env() != NULL && current_iterator_.Done()) { current_iterator_ = ShallowIterator(current_iterator_.env()->outer()); } } ShallowIterator current_iterator_; }; class LPlatformChunk; class LGap; class LLabel; // Superclass providing data and behavior common to all the // arch-specific LPlatformChunk classes. class LChunk: public ZoneObject { public: static LChunk* NewChunk(HGraph* graph); void AddInstruction(LInstruction* instruction, HBasicBlock* block); LConstantOperand* DefineConstantOperand(HConstant* constant); HConstant* LookupConstant(LConstantOperand* operand) const; Representation LookupLiteralRepresentation(LConstantOperand* operand) const; int ParameterAt(int index); int GetParameterStackSlot(int index) const; int spill_slot_count() const { return spill_slot_count_; } CompilationInfo* info() const { return info_; } HGraph* graph() const { return graph_; } Isolate* isolate() const { return graph_->isolate(); } const ZoneList* instructions() const { return &instructions_; } void AddGapMove(int index, LOperand* from, LOperand* to); LGap* GetGapAt(int index) const; bool IsGapAt(int index) const; int NearestGapPos(int index) const; void MarkEmptyBlocks(); const ZoneList* pointer_maps() const { return &pointer_maps_; } LLabel* GetLabel(int block_id) const; int LookupDestination(int block_id) const; Label* GetAssemblyLabel(int block_id) const; const ZoneList >* inlined_closures() const { return &inlined_closures_; } void AddInlinedClosure(Handle closure) { inlined_closures_.Add(closure, zone()); } Zone* zone() const { return info_->zone(); } Handle Codegen(); void set_allocated_double_registers(BitVector* allocated_registers); BitVector* allocated_double_registers() { return allocated_double_registers_; } protected: LChunk(CompilationInfo* info, HGraph* graph); int spill_slot_count_; private: CompilationInfo* info_; HGraph* const graph_; BitVector* allocated_double_registers_; ZoneList instructions_; ZoneList pointer_maps_; ZoneList > inlined_closures_; }; int ElementsKindToShiftSize(ElementsKind elements_kind); int StackSlotOffset(int index); enum NumberUntagDMode { NUMBER_CANDIDATE_IS_SMI, NUMBER_CANDIDATE_IS_ANY_TAGGED, NUMBER_CANDIDATE_IS_ANY_TAGGED_CONVERT_HOLE }; class LPhase : public CompilationPhase { public: LPhase(const char* name, LChunk* chunk) : CompilationPhase(name, chunk->info()), chunk_(chunk) { } ~LPhase(); private: LChunk* chunk_; DISALLOW_COPY_AND_ASSIGN(LPhase); }; } } // namespace v8::internal #endif // V8_LITHIUM_H_