// Copyright 2016 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "test/cctest/heap/heap-utils.h" #include "src/base/platform/mutex.h" #include "src/common/assert-scope.h" #include "src/common/globals.h" #include "src/execution/isolate.h" #include "src/heap/factory.h" #include "src/heap/free-list.h" #include "src/heap/heap-inl.h" #include "src/heap/incremental-marking.h" #include "src/heap/mark-compact.h" #include "src/heap/marking-barrier.h" #include "src/heap/memory-chunk.h" #include "src/heap/safepoint.h" #include "src/heap/spaces.h" #include "src/objects/free-space-inl.h" #include "test/cctest/cctest.h" namespace v8 { namespace internal { namespace heap { void InvokeScavenge(Isolate* isolate) { CcTest::CollectGarbage(i::NEW_SPACE, isolate); } void InvokeMarkSweep(Isolate* isolate) { CcTest::CollectAllGarbage(isolate); } void SealCurrentObjects(Heap* heap) { // If you see this check failing, disable the flag at the start of your test: // v8_flags.stress_concurrent_allocation = false; // Background thread allocating concurrently interferes with this function. CHECK(!v8_flags.stress_concurrent_allocation); CcTest::CollectAllGarbage(); CcTest::CollectAllGarbage(); heap->mark_compact_collector()->EnsureSweepingCompleted( MarkCompactCollector::SweepingForcedFinalizationMode::kV8Only); heap->old_space()->FreeLinearAllocationArea(); for (Page* page : *heap->old_space()) { page->MarkNeverAllocateForTesting(); } } int FixedArrayLenFromSize(int size) { return std::min({(size - FixedArray::kHeaderSize) / kTaggedSize, FixedArray::kMaxRegularLength}); } std::vector> FillOldSpacePageWithFixedArrays(Heap* heap, int remainder) { PauseAllocationObserversScope pause_observers(heap); std::vector> handles; Isolate* isolate = heap->isolate(); const int kArraySize = 128; const int kArrayLen = heap::FixedArrayLenFromSize(kArraySize); Handle array; int allocated = 0; do { if (allocated + kArraySize * 2 > static_cast(MemoryChunkLayout::AllocatableMemoryInDataPage())) { int size = kArraySize * 2 - ((allocated + kArraySize * 2) - static_cast(MemoryChunkLayout::AllocatableMemoryInDataPage())) - remainder; int last_array_len = heap::FixedArrayLenFromSize(size); array = isolate->factory()->NewFixedArray(last_array_len, AllocationType::kOld); CHECK_EQ(size, array->Size()); allocated += array->Size() + remainder; } else { array = isolate->factory()->NewFixedArray(kArrayLen, AllocationType::kOld); allocated += array->Size(); CHECK_EQ(kArraySize, array->Size()); } if (handles.empty()) { // Check that allocations started on a new page. CHECK_EQ(array->address(), Page::FromHeapObject(*array)->area_start()); } handles.push_back(array); } while (allocated < static_cast(MemoryChunkLayout::AllocatableMemoryInDataPage())); return handles; } std::vector> CreatePadding(Heap* heap, int padding_size, AllocationType allocation, int object_size) { std::vector> handles; Isolate* isolate = heap->isolate(); int allocate_memory; int length; int free_memory = padding_size; if (allocation == i::AllocationType::kOld) { heap->old_space()->FreeLinearAllocationArea(); int overall_free_memory = static_cast(heap->old_space()->Available()); CHECK(padding_size <= overall_free_memory || overall_free_memory == 0); } else { int overall_free_memory = static_cast(heap->new_space()->Available()); CHECK(padding_size <= overall_free_memory || overall_free_memory == 0); } while (free_memory > 0) { if (free_memory > object_size) { allocate_memory = object_size; length = FixedArrayLenFromSize(allocate_memory); } else { allocate_memory = free_memory; length = FixedArrayLenFromSize(allocate_memory); if (length <= 0) { // Not enough room to create another FixedArray, so create a filler. if (allocation == i::AllocationType::kOld) { heap->CreateFillerObjectAt( *heap->old_space()->allocation_top_address(), free_memory); } else { heap->CreateFillerObjectAt( *heap->new_space()->allocation_top_address(), free_memory); } break; } } handles.push_back(isolate->factory()->NewFixedArray(length, allocation)); CHECK((allocation == AllocationType::kYoung && heap->new_space()->Contains(*handles.back())) || (allocation == AllocationType::kOld && heap->InOldSpace(*handles.back())) || v8_flags.single_generation); free_memory -= handles.back()->Size(); } return handles; } namespace { void FillPageInPagedSpace(Page* page, std::vector>* out_handles) { DCHECK(page->SweepingDone()); PagedSpaceBase* paged_space = static_cast(page->owner()); DCHECK_EQ(kNullAddress, paged_space->top()); DCHECK(!page->Contains(paged_space->top())); for (Page* p : *paged_space) { if (p != page) paged_space->UnlinkFreeListCategories(p); } // If min_block_size is larger than FixedArray::kHeaderSize, all blocks in the // free list can be used to allocate a fixed array. This guarantees that we // can fill the whole page. DCHECK_LT(FixedArray::kHeaderSize, paged_space->free_list()->min_block_size()); std::vector available_sizes; // Collect all free list block sizes page->ForAllFreeListCategories( [&available_sizes](FreeListCategory* category) { category->IterateNodesForTesting([&available_sizes](FreeSpace node) { int node_size = node.Size(); DCHECK_LT(0, FixedArrayLenFromSize(node_size)); available_sizes.push_back(node_size); }); }); Isolate* isolate = page->heap()->isolate(); // Allocate as many max size arrays as possible, while making sure not to // leave behind a block too small to fit a FixedArray. const int max_array_length = FixedArrayLenFromSize(kMaxRegularHeapObjectSize); for (size_t i = 0; i < available_sizes.size(); ++i) { int available_size = available_sizes[i]; while (available_size > kMaxRegularHeapObjectSize + FixedArray::kHeaderSize) { Handle fixed_array = isolate->factory()->NewFixedArray( max_array_length, AllocationType::kYoung); if (out_handles) out_handles->push_back(fixed_array); available_size -= kMaxRegularHeapObjectSize; } if (available_size > kMaxRegularHeapObjectSize) { // Allocate less than kMaxRegularHeapObjectSize to ensure remaining space // can be used to allcoate another FixedArray. int array_size = kMaxRegularHeapObjectSize - FixedArray::kHeaderSize; Handle fixed_array = isolate->factory()->NewFixedArray( FixedArrayLenFromSize(array_size), AllocationType::kYoung); if (out_handles) out_handles->push_back(fixed_array); available_size -= array_size; } DCHECK_LE(available_size, kMaxRegularHeapObjectSize); DCHECK_LT(0, FixedArrayLenFromSize(available_size)); available_sizes[i] = available_size; } // Allocate FixedArrays in remaining free list blocks, from largest to // smallest. std::sort(available_sizes.begin(), available_sizes.end(), [](size_t a, size_t b) { return a > b; }); for (size_t i = 0; i < available_sizes.size(); ++i) { int available_size = available_sizes[i]; DCHECK_LE(available_size, kMaxRegularHeapObjectSize); int array_length = FixedArrayLenFromSize(available_size); DCHECK_LT(0, array_length); Handle fixed_array = isolate->factory()->NewFixedArray(array_length, AllocationType::kYoung); if (out_handles) out_handles->push_back(fixed_array); } for (Page* p : *paged_space) { if (p != page) paged_space->RelinkFreeListCategories(p); } } } // namespace void FillCurrentPage(v8::internal::NewSpace* space, std::vector>* out_handles) { if (v8_flags.minor_mc) { PauseAllocationObserversScope pause_observers(space->heap()); if (space->top() == kNullAddress) return; Page* page = Page::FromAllocationAreaAddress(space->top()); space->FreeLinearAllocationArea(); FillPageInPagedSpace(page, out_handles); } else { FillCurrentPageButNBytes(space, 0, out_handles); } } namespace { int GetSpaceRemainingOnCurrentPage(v8::internal::NewSpace* space) { Address top = space->top(); if ((top & kPageAlignmentMask) == 0) { // `top` points to the start of a page signifies that there is not room in // the current page. return 0; } return static_cast(Page::FromAddress(space->top())->area_end() - top); } } // namespace void FillCurrentPageButNBytes(v8::internal::NewSpace* space, int extra_bytes, std::vector>* out_handles) { PauseAllocationObserversScope pause_observers(space->heap()); // We cannot rely on `space->limit()` to point to the end of the current page // in the case where inline allocations are disabled, it actually points to // the current allocation pointer. DCHECK_IMPLIES(!space->IsInlineAllocationEnabled(), space->limit() == space->top()); int space_remaining = GetSpaceRemainingOnCurrentPage(space); CHECK(space_remaining >= extra_bytes); int new_linear_size = space_remaining - extra_bytes; if (new_linear_size == 0) return; std::vector> handles = heap::CreatePadding( space->heap(), space_remaining, i::AllocationType::kYoung); if (out_handles != nullptr) { out_handles->insert(out_handles->end(), handles.begin(), handles.end()); } } void SimulateIncrementalMarking(i::Heap* heap, bool force_completion) { const double kStepSizeInMs = 100; CHECK(v8_flags.incremental_marking); i::IncrementalMarking* marking = heap->incremental_marking(); i::MarkCompactCollector* collector = heap->mark_compact_collector(); if (collector->sweeping_in_progress()) { SafepointScope scope(heap); collector->EnsureSweepingCompleted( MarkCompactCollector::SweepingForcedFinalizationMode::kV8Only); } if (marking->IsMinorMarking()) { // If minor incremental marking is running, we need to finalize it first // because of the AdvanceForTesting call in this function which is currently // only possible for MajorMC. heap->CollectGarbage(NEW_SPACE, GarbageCollectionReason::kFinalizeMinorMC); } if (marking->IsStopped()) { heap->StartIncrementalMarking(i::Heap::kNoGCFlags, i::GarbageCollectionReason::kTesting); } CHECK(marking->IsMarking()); if (!force_completion) return; SafepointScope scope(heap); MarkingBarrier::PublishAll(heap); marking->MarkRootsForTesting(); while (!marking->IsMajorMarkingComplete()) { marking->AdvanceForTesting(kStepSizeInMs); } } void SimulateFullSpace(v8::internal::PagedSpace* space) { // If you see this check failing, disable the flag at the start of your test: // v8_flags.stress_concurrent_allocation = false; // Background thread allocating concurrently interferes with this function. CHECK(!v8_flags.stress_concurrent_allocation); CodePageCollectionMemoryModificationScopeForTesting code_scope(space->heap()); i::MarkCompactCollector* collector = space->heap()->mark_compact_collector(); if (collector->sweeping_in_progress()) { collector->EnsureSweepingCompleted( MarkCompactCollector::SweepingForcedFinalizationMode::kV8Only); } space->FreeLinearAllocationArea(); space->ResetFreeList(); } void AbandonCurrentlyFreeMemory(PagedSpace* space) { space->FreeLinearAllocationArea(); for (Page* page : *space) { page->MarkNeverAllocateForTesting(); } } void GcAndSweep(Heap* heap, AllocationSpace space) { heap->CollectGarbage(space, GarbageCollectionReason::kTesting); if (heap->mark_compact_collector()->sweeping_in_progress()) { SafepointScope scope(heap); heap->mark_compact_collector()->EnsureSweepingCompleted( MarkCompactCollector::SweepingForcedFinalizationMode::kV8Only); } } void ForceEvacuationCandidate(Page* page) { CHECK(v8_flags.manual_evacuation_candidates_selection); page->SetFlag(MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING); PagedSpace* space = static_cast(page->owner()); DCHECK_NOT_NULL(space); Address top = space->top(); Address limit = space->limit(); if (top < limit && Page::FromAllocationAreaAddress(top) == page) { // Create filler object to keep page iterable if it was iterable. int remaining = static_cast(limit - top); space->heap()->CreateFillerObjectAt(top, remaining); base::MutexGuard guard(space->mutex()); space->FreeLinearAllocationArea(); } } bool InCorrectGeneration(HeapObject object) { return v8_flags.single_generation ? !i::Heap::InYoungGeneration(object) : i::Heap::InYoungGeneration(object); } void GrowNewSpace(Heap* heap) { SafepointScope scope(heap); if (!heap->new_space()->IsAtMaximumCapacity()) { heap->new_space()->Grow(); } } void GrowNewSpaceToMaximumCapacity(Heap* heap) { SafepointScope scope(heap); while (!heap->new_space()->IsAtMaximumCapacity()) { heap->new_space()->Grow(); } } } // namespace heap } // namespace internal } // namespace v8