// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/code-stubs.h" #include "src/bailout-reason.h" #include "src/field-index.h" #include "src/hydrogen.h" #include "src/ic/ic.h" #include "src/lithium.h" namespace v8 { namespace internal { static LChunk* OptimizeGraph(HGraph* graph) { DisallowHeapAllocation no_allocation; DisallowHandleAllocation no_handles; DisallowHandleDereference no_deref; DCHECK(graph != NULL); BailoutReason bailout_reason = kNoReason; if (!graph->Optimize(&bailout_reason)) { FATAL(GetBailoutReason(bailout_reason)); } LChunk* chunk = LChunk::NewChunk(graph); if (chunk == NULL) { FATAL(GetBailoutReason(graph->info()->bailout_reason())); } return chunk; } class CodeStubGraphBuilderBase : public HGraphBuilder { public: explicit CodeStubGraphBuilderBase(CompilationInfo* info) : HGraphBuilder(info), arguments_length_(NULL), info_(info), descriptor_(info->code_stub()), context_(NULL) { int parameter_count = GetParameterCount(); parameters_.Reset(new HParameter*[parameter_count]); } virtual bool BuildGraph(); protected: virtual HValue* BuildCodeStub() = 0; int GetParameterCount() const { return descriptor_.GetParameterCount(); } int GetRegisterParameterCount() const { return descriptor_.GetRegisterParameterCount(); } HParameter* GetParameter(int parameter) { DCHECK(parameter < GetParameterCount()); return parameters_[parameter]; } Representation GetParameterRepresentation(int parameter) { return RepresentationFromType(descriptor_.GetParameterType(parameter)); } bool IsParameterCountRegister(int index) const { return descriptor_.GetRegisterParameter(index) .is(descriptor_.stack_parameter_count()); } HValue* GetArgumentsLength() { // This is initialized in BuildGraph() DCHECK(arguments_length_ != NULL); return arguments_length_; } CompilationInfo* info() { return info_; } CodeStub* stub() { return info_->code_stub(); } HContext* context() { return context_; } Isolate* isolate() { return info_->isolate(); } HLoadNamedField* BuildLoadNamedField(HValue* object, FieldIndex index); void BuildStoreNamedField(HValue* object, HValue* value, FieldIndex index, Representation representation, bool transition_to_field); enum ArgumentClass { NONE, SINGLE, MULTIPLE }; HValue* UnmappedCase(HValue* elements, HValue* key, HValue* value); HValue* EmitKeyedSloppyArguments(HValue* receiver, HValue* key, HValue* value); HValue* BuildArrayConstructor(ElementsKind kind, AllocationSiteOverrideMode override_mode, ArgumentClass argument_class); HValue* BuildInternalArrayConstructor(ElementsKind kind, ArgumentClass argument_class); // BuildCheckAndInstallOptimizedCode emits code to install the optimized // function found in the optimized code map at map_index in js_function, if // the function at map_index matches the given native_context. Builder is // left in the "Then()" state after the install. void BuildCheckAndInstallOptimizedCode(HValue* js_function, HValue* native_context, IfBuilder* builder, HValue* optimized_map, HValue* map_index); void BuildInstallOptimizedCode(HValue* js_function, HValue* native_context, HValue* code_object, HValue* literals); void BuildInstallCode(HValue* js_function, HValue* shared_info); HInstruction* LoadFromOptimizedCodeMap(HValue* optimized_map, HValue* iterator, int field_offset); void BuildInstallFromOptimizedCodeMap(HValue* js_function, HValue* shared_info, HValue* native_context); private: HValue* BuildArraySingleArgumentConstructor(JSArrayBuilder* builder); HValue* BuildArrayNArgumentsConstructor(JSArrayBuilder* builder, ElementsKind kind); base::SmartArrayPointer parameters_; HValue* arguments_length_; CompilationInfo* info_; CodeStubDescriptor descriptor_; HContext* context_; }; bool CodeStubGraphBuilderBase::BuildGraph() { // Update the static counter each time a new code stub is generated. isolate()->counters()->code_stubs()->Increment(); if (FLAG_trace_hydrogen_stubs) { const char* name = CodeStub::MajorName(stub()->MajorKey()); PrintF("-----------------------------------------------------------\n"); PrintF("Compiling stub %s using hydrogen\n", name); isolate()->GetHTracer()->TraceCompilation(info()); } int param_count = GetParameterCount(); int register_param_count = GetRegisterParameterCount(); HEnvironment* start_environment = graph()->start_environment(); HBasicBlock* next_block = CreateBasicBlock(start_environment); Goto(next_block); next_block->SetJoinId(BailoutId::StubEntry()); set_current_block(next_block); bool runtime_stack_params = descriptor_.stack_parameter_count().is_valid(); HInstruction* stack_parameter_count = NULL; for (int i = 0; i < param_count; ++i) { Representation r = GetParameterRepresentation(i); HParameter* param; if (i >= register_param_count) { param = Add(i - register_param_count, HParameter::STACK_PARAMETER, r); } else { param = Add(i, HParameter::REGISTER_PARAMETER, r); start_environment->Bind(i, param); } parameters_[i] = param; if (i < register_param_count && IsParameterCountRegister(i)) { param->set_type(HType::Smi()); stack_parameter_count = param; arguments_length_ = stack_parameter_count; } } DCHECK(!runtime_stack_params || arguments_length_ != NULL); if (!runtime_stack_params) { stack_parameter_count = Add(param_count - register_param_count - 1); // graph()->GetConstantMinus1(); arguments_length_ = graph()->GetConstant0(); } context_ = Add(); start_environment->BindContext(context_); Add(BailoutId::StubEntry()); NoObservableSideEffectsScope no_effects(this); HValue* return_value = BuildCodeStub(); // We might have extra expressions to pop from the stack in addition to the // arguments above. HInstruction* stack_pop_count = stack_parameter_count; if (descriptor_.function_mode() == JS_FUNCTION_STUB_MODE) { if (!stack_parameter_count->IsConstant() && descriptor_.hint_stack_parameter_count() < 0) { HInstruction* constant_one = graph()->GetConstant1(); stack_pop_count = AddUncasted(stack_parameter_count, constant_one); stack_pop_count->ClearFlag(HValue::kCanOverflow); // TODO(mvstanton): verify that stack_parameter_count+1 really fits in a // smi. } else { int count = descriptor_.hint_stack_parameter_count(); stack_pop_count = Add(count); } } if (current_block() != NULL) { HReturn* hreturn_instruction = New(return_value, stack_pop_count); FinishCurrentBlock(hreturn_instruction); } return true; } template class CodeStubGraphBuilder: public CodeStubGraphBuilderBase { public: explicit CodeStubGraphBuilder(CompilationInfo* info) : CodeStubGraphBuilderBase(info) {} protected: virtual HValue* BuildCodeStub() { if (casted_stub()->IsUninitialized()) { return BuildCodeUninitializedStub(); } else { return BuildCodeInitializedStub(); } } virtual HValue* BuildCodeInitializedStub() { UNIMPLEMENTED(); return NULL; } virtual HValue* BuildCodeUninitializedStub() { // Force a deopt that falls back to the runtime. HValue* undefined = graph()->GetConstantUndefined(); IfBuilder builder(this); builder.IfNot(undefined, undefined); builder.Then(); builder.ElseDeopt(Deoptimizer::kForcedDeoptToRuntime); return undefined; } Stub* casted_stub() { return static_cast(stub()); } }; Handle HydrogenCodeStub::GenerateLightweightMissCode( ExternalReference miss) { Factory* factory = isolate()->factory(); // Generate the new code. MacroAssembler masm(isolate(), NULL, 256); { // Update the static counter each time a new code stub is generated. isolate()->counters()->code_stubs()->Increment(); // Generate the code for the stub. masm.set_generating_stub(true); // TODO(yangguo): remove this once we can serialize IC stubs. masm.enable_serializer(); NoCurrentFrameScope scope(&masm); GenerateLightweightMiss(&masm, miss); } // Create the code object. CodeDesc desc; masm.GetCode(&desc); // Copy the generated code into a heap object. Code::Flags flags = Code::ComputeFlags( GetCodeKind(), GetICState(), GetExtraICState(), GetStubType()); Handle new_object = factory->NewCode( desc, flags, masm.CodeObject(), NeedsImmovableCode()); return new_object; } template static Handle DoGenerateCode(Stub* stub) { Isolate* isolate = stub->isolate(); CodeStubDescriptor descriptor(stub); // If we are uninitialized we can use a light-weight stub to enter // the runtime that is significantly faster than using the standard // stub-failure deopt mechanism. if (stub->IsUninitialized() && descriptor.has_miss_handler()) { DCHECK(!descriptor.stack_parameter_count().is_valid()); return stub->GenerateLightweightMissCode(descriptor.miss_handler()); } base::ElapsedTimer timer; if (FLAG_profile_hydrogen_code_stub_compilation) { timer.Start(); } Zone zone; CompilationInfo info(stub, isolate, &zone); CodeStubGraphBuilder builder(&info); LChunk* chunk = OptimizeGraph(builder.CreateGraph()); Handle code = chunk->Codegen(); if (FLAG_profile_hydrogen_code_stub_compilation) { OFStream os(stdout); os << "[Lazy compilation of " << stub << " took " << timer.Elapsed().InMillisecondsF() << " ms]" << std::endl; } return code; } template <> HValue* CodeStubGraphBuilder::BuildCodeStub() { info()->MarkAsSavesCallerDoubles(); HValue* number = GetParameter(NumberToStringStub::kNumber); return BuildNumberToString(number, Type::Number(zone())); } Handle NumberToStringStub::GenerateCode() { return DoGenerateCode(this); } // Returns the type string of a value; see ECMA-262, 11.4.3 (p 47). template <> HValue* CodeStubGraphBuilder::BuildCodeStub() { Factory* factory = isolate()->factory(); HConstant* number_string = Add(factory->number_string()); HValue* object = GetParameter(TypeofStub::kObject); IfBuilder is_smi(this); HValue* smi_check = is_smi.If(object); is_smi.Then(); { Push(number_string); } is_smi.Else(); { IfBuilder is_number(this); is_number.If(object, isolate()->factory()->heap_number_map()); is_number.Then(); { Push(number_string); } is_number.Else(); { HValue* map = AddLoadMap(object, smi_check); HValue* instance_type = Add( map, nullptr, HObjectAccess::ForMapInstanceType()); IfBuilder is_string(this); is_string.If( instance_type, Add(FIRST_NONSTRING_TYPE), Token::LT); is_string.Then(); { Push(Add(factory->string_string())); } is_string.Else(); { HConstant* object_string = Add(factory->object_string()); IfBuilder is_oddball(this); is_oddball.If( instance_type, Add(ODDBALL_TYPE), Token::EQ); is_oddball.Then(); { Push(Add(object, nullptr, HObjectAccess::ForOddballTypeOf())); } is_oddball.Else(); { IfBuilder is_symbol(this); is_symbol.If( instance_type, Add(SYMBOL_TYPE), Token::EQ); is_symbol.Then(); { Push(Add(factory->symbol_string())); } is_symbol.Else(); { IfBuilder is_function(this); HConstant* js_function = Add(JS_FUNCTION_TYPE); HConstant* js_function_proxy = Add(JS_FUNCTION_PROXY_TYPE); is_function.If(instance_type, js_function, Token::EQ); is_function.OrIf( instance_type, js_function_proxy, Token::EQ); is_function.Then(); { Push(Add(factory->function_string())); } is_function.Else(); { #define SIMD128_BUILDER_OPEN(TYPE, Type, type, lane_count, lane_type) \ IfBuilder is_##type(this); \ is_##type.If( \ map, Add(factory->type##_map())); \ is_##type.Then(); \ { Push(Add(factory->type##_string())); } \ is_##type.Else(); { SIMD128_TYPES(SIMD128_BUILDER_OPEN) #undef SIMD128_BUILDER_OPEN // Is it an undetectable object? IfBuilder is_undetectable(this); is_undetectable.If(object); is_undetectable.Then(); { // typeof an undetectable object is 'undefined'. Push(Add(factory->undefined_string())); } is_undetectable.Else(); { // For any kind of object not handled above, the spec rule for // host objects gives that it is okay to return "object". Push(object_string); } #define SIMD128_BUILDER_CLOSE(TYPE, Type, type, lane_count, lane_type) } SIMD128_TYPES(SIMD128_BUILDER_CLOSE) #undef SIMD128_BUILDER_CLOSE } is_function.End(); } is_symbol.End(); } is_oddball.End(); } is_string.End(); } is_number.End(); } is_smi.End(); return environment()->Pop(); } Handle TypeofStub::GenerateCode() { return DoGenerateCode(this); } template <> HValue* CodeStubGraphBuilder::BuildCodeStub() { Factory* factory = isolate()->factory(); HValue* undefined = graph()->GetConstantUndefined(); AllocationSiteMode alloc_site_mode = casted_stub()->allocation_site_mode(); // This stub is very performance sensitive, the generated code must be tuned // so that it doesn't build and eager frame. info()->MarkMustNotHaveEagerFrame(); HInstruction* allocation_site = Add(GetParameter(0), GetParameter(1), nullptr, FAST_ELEMENTS); IfBuilder checker(this); checker.IfNot(allocation_site, undefined); checker.Then(); HObjectAccess access = HObjectAccess::ForAllocationSiteOffset( AllocationSite::kTransitionInfoOffset); HInstruction* boilerplate = Add(allocation_site, nullptr, access); HValue* elements = AddLoadElements(boilerplate); HValue* capacity = AddLoadFixedArrayLength(elements); IfBuilder zero_capacity(this); zero_capacity.If(capacity, graph()->GetConstant0(), Token::EQ); zero_capacity.Then(); Push(BuildCloneShallowArrayEmpty(boilerplate, allocation_site, alloc_site_mode)); zero_capacity.Else(); IfBuilder if_fixed_cow(this); if_fixed_cow.If(elements, factory->fixed_cow_array_map()); if_fixed_cow.Then(); Push(BuildCloneShallowArrayCow(boilerplate, allocation_site, alloc_site_mode, FAST_ELEMENTS)); if_fixed_cow.Else(); IfBuilder if_fixed(this); if_fixed.If(elements, factory->fixed_array_map()); if_fixed.Then(); Push(BuildCloneShallowArrayNonEmpty(boilerplate, allocation_site, alloc_site_mode, FAST_ELEMENTS)); if_fixed.Else(); Push(BuildCloneShallowArrayNonEmpty(boilerplate, allocation_site, alloc_site_mode, FAST_DOUBLE_ELEMENTS)); if_fixed.End(); if_fixed_cow.End(); zero_capacity.End(); checker.ElseDeopt(Deoptimizer::kUninitializedBoilerplateLiterals); checker.End(); return environment()->Pop(); } Handle FastCloneShallowArrayStub::GenerateCode() { return DoGenerateCode(this); } template <> HValue* CodeStubGraphBuilder::BuildCodeStub() { HValue* undefined = graph()->GetConstantUndefined(); HInstruction* allocation_site = Add(GetParameter(0), GetParameter(1), nullptr, FAST_ELEMENTS); IfBuilder checker(this); checker.IfNot(allocation_site, undefined); checker.And(); HObjectAccess access = HObjectAccess::ForAllocationSiteOffset( AllocationSite::kTransitionInfoOffset); HInstruction* boilerplate = Add(allocation_site, nullptr, access); int length = casted_stub()->length(); if (length == 0) { // Empty objects have some slack added to them. length = JSObject::kInitialGlobalObjectUnusedPropertiesCount; } int size = JSObject::kHeaderSize + length * kPointerSize; int object_size = size; if (FLAG_allocation_site_pretenuring) { size += AllocationMemento::kSize; } HValue* boilerplate_map = Add(boilerplate, nullptr, HObjectAccess::ForMap()); HValue* boilerplate_size = Add( boilerplate_map, nullptr, HObjectAccess::ForMapInstanceSize()); HValue* size_in_words = Add(object_size >> kPointerSizeLog2); checker.If(boilerplate_size, size_in_words, Token::EQ); checker.Then(); HValue* size_in_bytes = Add(size); HInstruction* object = Add(size_in_bytes, HType::JSObject(), NOT_TENURED, JS_OBJECT_TYPE); for (int i = 0; i < object_size; i += kPointerSize) { HObjectAccess access = HObjectAccess::ForObservableJSObjectOffset(i); Add(object, access, Add(boilerplate, nullptr, access)); } DCHECK(FLAG_allocation_site_pretenuring || (size == object_size)); if (FLAG_allocation_site_pretenuring) { BuildCreateAllocationMemento( object, Add(object_size), allocation_site); } environment()->Push(object); checker.ElseDeopt(Deoptimizer::kUninitializedBoilerplateInFastClone); checker.End(); return environment()->Pop(); } Handle FastCloneShallowObjectStub::GenerateCode() { return DoGenerateCode(this); } template <> HValue* CodeStubGraphBuilder::BuildCodeStub() { // This stub is performance sensitive, the generated code must be tuned // so that it doesn't build an eager frame. info()->MarkMustNotHaveEagerFrame(); HValue* size = Add(AllocationSite::kSize); HInstruction* object = Add(size, HType::JSObject(), TENURED, JS_OBJECT_TYPE); // Store the map Handle allocation_site_map = isolate()->factory()->allocation_site_map(); AddStoreMapConstant(object, allocation_site_map); // Store the payload (smi elements kind) HValue* initial_elements_kind = Add(GetInitialFastElementsKind()); Add(object, HObjectAccess::ForAllocationSiteOffset( AllocationSite::kTransitionInfoOffset), initial_elements_kind); // Unlike literals, constructed arrays don't have nested sites Add(object, HObjectAccess::ForAllocationSiteOffset( AllocationSite::kNestedSiteOffset), graph()->GetConstant0()); // Pretenuring calculation field. Add(object, HObjectAccess::ForAllocationSiteOffset( AllocationSite::kPretenureDataOffset), graph()->GetConstant0()); // Pretenuring memento creation count field. Add(object, HObjectAccess::ForAllocationSiteOffset( AllocationSite::kPretenureCreateCountOffset), graph()->GetConstant0()); // Store an empty fixed array for the code dependency. HConstant* empty_fixed_array = Add(isolate()->factory()->empty_fixed_array()); Add( object, HObjectAccess::ForAllocationSiteOffset( AllocationSite::kDependentCodeOffset), empty_fixed_array); // Link the object to the allocation site list HValue* site_list = Add( ExternalReference::allocation_sites_list_address(isolate())); HValue* site = Add(site_list, nullptr, HObjectAccess::ForAllocationSiteList()); // TODO(mvstanton): This is a store to a weak pointer, which we may want to // mark as such in order to skip the write barrier, once we have a unified // system for weakness. For now we decided to keep it like this because having // an initial write barrier backed store makes this pointer strong until the // next GC, and allocation sites are designed to survive several GCs anyway. Add( object, HObjectAccess::ForAllocationSiteOffset(AllocationSite::kWeakNextOffset), site); Add(site_list, HObjectAccess::ForAllocationSiteList(), object); HInstruction* feedback_vector = GetParameter(0); HInstruction* slot = GetParameter(1); Add(feedback_vector, slot, object, FAST_ELEMENTS, INITIALIZING_STORE); return feedback_vector; } Handle CreateAllocationSiteStub::GenerateCode() { return DoGenerateCode(this); } template <> HValue* CodeStubGraphBuilder::BuildCodeStub() { // This stub is performance sensitive, the generated code must be tuned // so that it doesn't build an eager frame. info()->MarkMustNotHaveEagerFrame(); HValue* size = Add(WeakCell::kSize); HInstruction* object = Add(size, HType::JSObject(), TENURED, JS_OBJECT_TYPE); Handle weak_cell_map = isolate()->factory()->weak_cell_map(); AddStoreMapConstant(object, weak_cell_map); HInstruction* value = GetParameter(CreateWeakCellDescriptor::kValueIndex); Add(object, HObjectAccess::ForWeakCellValue(), value); Add(object, HObjectAccess::ForWeakCellNext(), graph()->GetConstantHole()); HInstruction* feedback_vector = GetParameter(CreateWeakCellDescriptor::kVectorIndex); HInstruction* slot = GetParameter(CreateWeakCellDescriptor::kSlotIndex); Add(feedback_vector, slot, object, FAST_ELEMENTS, INITIALIZING_STORE); return graph()->GetConstant0(); } Handle CreateWeakCellStub::GenerateCode() { return DoGenerateCode(this); } template <> HValue* CodeStubGraphBuilder::BuildCodeStub() { int context_index = casted_stub()->context_index(); int slot_index = casted_stub()->slot_index(); HValue* script_context = BuildGetScriptContext(context_index); return Add(script_context, nullptr, HObjectAccess::ForContextSlot(slot_index)); } Handle LoadScriptContextFieldStub::GenerateCode() { return DoGenerateCode(this); } template <> HValue* CodeStubGraphBuilder::BuildCodeStub() { int context_index = casted_stub()->context_index(); int slot_index = casted_stub()->slot_index(); HValue* script_context = BuildGetScriptContext(context_index); Add(script_context, HObjectAccess::ForContextSlot(slot_index), GetParameter(2), STORE_TO_INITIALIZED_ENTRY); return GetParameter(2); } Handle StoreScriptContextFieldStub::GenerateCode() { return DoGenerateCode(this); } template <> HValue* CodeStubGraphBuilder::BuildCodeStub() { ElementsKind kind = casted_stub()->elements_kind(); if (IsFastDoubleElementsKind(kind)) { info()->MarkAsSavesCallerDoubles(); } HValue* object = GetParameter(GrowArrayElementsDescriptor::kObjectIndex); HValue* key = GetParameter(GrowArrayElementsDescriptor::kKeyIndex); HValue* elements = AddLoadElements(object); HValue* current_capacity = Add( elements, nullptr, HObjectAccess::ForFixedArrayLength()); HValue* length = casted_stub()->is_js_array() ? Add(object, static_cast(NULL), HObjectAccess::ForArrayLength(kind)) : current_capacity; return BuildCheckAndGrowElementsCapacity(object, elements, kind, length, current_capacity, key); } Handle GrowArrayElementsStub::GenerateCode() { return DoGenerateCode(this); } template <> HValue* CodeStubGraphBuilder::BuildCodeStub() { LoadKeyedHoleMode hole_mode = casted_stub()->convert_hole_to_undefined() ? CONVERT_HOLE_TO_UNDEFINED : NEVER_RETURN_HOLE; HInstruction* load = BuildUncheckedMonomorphicElementAccess( GetParameter(LoadDescriptor::kReceiverIndex), GetParameter(LoadDescriptor::kNameIndex), NULL, casted_stub()->is_js_array(), casted_stub()->elements_kind(), LOAD, hole_mode, STANDARD_STORE); return load; } Handle LoadFastElementStub::GenerateCode() { return DoGenerateCode(this); } HLoadNamedField* CodeStubGraphBuilderBase::BuildLoadNamedField( HValue* object, FieldIndex index) { Representation representation = index.is_double() ? Representation::Double() : Representation::Tagged(); int offset = index.offset(); HObjectAccess access = index.is_inobject() ? HObjectAccess::ForObservableJSObjectOffset(offset, representation) : HObjectAccess::ForBackingStoreOffset(offset, representation); if (index.is_double() && (!FLAG_unbox_double_fields || !index.is_inobject())) { // Load the heap number. object = Add( object, nullptr, access.WithRepresentation(Representation::Tagged())); // Load the double value from it. access = HObjectAccess::ForHeapNumberValue(); } return Add(object, nullptr, access); } template<> HValue* CodeStubGraphBuilder::BuildCodeStub() { return BuildLoadNamedField(GetParameter(0), casted_stub()->index()); } Handle LoadFieldStub::GenerateCode() { return DoGenerateCode(this); } template <> HValue* CodeStubGraphBuilder::BuildCodeStub() { return BuildArrayBufferViewFieldAccessor(GetParameter(0), nullptr, casted_stub()->index()); } Handle ArrayBufferViewLoadFieldStub::GenerateCode() { return DoGenerateCode(this); } template <> HValue* CodeStubGraphBuilder::BuildCodeStub() { HValue* map = AddLoadMap(GetParameter(0), NULL); HObjectAccess descriptors_access = HObjectAccess::ForObservableJSObjectOffset( Map::kDescriptorsOffset, Representation::Tagged()); HValue* descriptors = Add(map, nullptr, descriptors_access); HObjectAccess value_access = HObjectAccess::ForObservableJSObjectOffset( DescriptorArray::GetValueOffset(casted_stub()->constant_index())); return Add(descriptors, nullptr, value_access); } Handle LoadConstantStub::GenerateCode() { return DoGenerateCode(this); } HValue* CodeStubGraphBuilderBase::UnmappedCase(HValue* elements, HValue* key, HValue* value) { HValue* result = NULL; HInstruction* backing_store = Add(elements, graph()->GetConstant1(), nullptr, FAST_ELEMENTS, ALLOW_RETURN_HOLE); Add(backing_store, isolate()->factory()->fixed_array_map()); HValue* backing_store_length = Add( backing_store, nullptr, HObjectAccess::ForFixedArrayLength()); IfBuilder in_unmapped_range(this); in_unmapped_range.If(key, backing_store_length, Token::LT); in_unmapped_range.Then(); { if (value == NULL) { result = Add(backing_store, key, nullptr, FAST_HOLEY_ELEMENTS, NEVER_RETURN_HOLE); } else { Add(backing_store, key, value, FAST_HOLEY_ELEMENTS); } } in_unmapped_range.ElseDeopt(Deoptimizer::kOutsideOfRange); in_unmapped_range.End(); return result; } HValue* CodeStubGraphBuilderBase::EmitKeyedSloppyArguments(HValue* receiver, HValue* key, HValue* value) { // Mapped arguments are actual arguments. Unmapped arguments are values added // to the arguments object after it was created for the call. Mapped arguments // are stored in the context at indexes given by elements[key + 2]. Unmapped // arguments are stored as regular indexed properties in the arguments array, // held at elements[1]. See NewSloppyArguments() in runtime.cc for a detailed // look at argument object construction. // // The sloppy arguments elements array has a special format: // // 0: context // 1: unmapped arguments array // 2: mapped_index0, // 3: mapped_index1, // ... // // length is 2 + min(number_of_actual_arguments, number_of_formal_arguments). // If key + 2 >= elements.length then attempt to look in the unmapped // arguments array (given by elements[1]) and return the value at key, missing // to the runtime if the unmapped arguments array is not a fixed array or if // key >= unmapped_arguments_array.length. // // Otherwise, t = elements[key + 2]. If t is the hole, then look up the value // in the unmapped arguments array, as described above. Otherwise, t is a Smi // index into the context array given at elements[0]. Return the value at // context[t]. bool is_load = value == NULL; key = AddUncasted(key, Representation::Smi()); IfBuilder positive_smi(this); positive_smi.If(key, graph()->GetConstant0(), Token::LT); positive_smi.ThenDeopt(Deoptimizer::kKeyIsNegative); positive_smi.End(); HValue* constant_two = Add(2); HValue* elements = AddLoadElements(receiver, nullptr); HValue* elements_length = Add( elements, nullptr, HObjectAccess::ForFixedArrayLength()); HValue* adjusted_length = AddUncasted(elements_length, constant_two); IfBuilder in_range(this); in_range.If(key, adjusted_length, Token::LT); in_range.Then(); { HValue* index = AddUncasted(key, constant_two); HInstruction* mapped_index = Add( elements, index, nullptr, FAST_HOLEY_ELEMENTS, ALLOW_RETURN_HOLE); IfBuilder is_valid(this); is_valid.IfNot(mapped_index, graph()->GetConstantHole()); is_valid.Then(); { // TODO(mvstanton): I'd like to assert from this point, that if the // mapped_index is not the hole that it is indeed, a smi. An unnecessary // smi check is being emitted. HValue* the_context = Add(elements, graph()->GetConstant0(), nullptr, FAST_ELEMENTS); STATIC_ASSERT(Context::kHeaderSize == FixedArray::kHeaderSize); if (is_load) { HValue* result = Add(the_context, mapped_index, nullptr, FAST_ELEMENTS, ALLOW_RETURN_HOLE); environment()->Push(result); } else { DCHECK(value != NULL); Add(the_context, mapped_index, value, FAST_ELEMENTS); environment()->Push(value); } } is_valid.Else(); { HValue* result = UnmappedCase(elements, key, value); environment()->Push(is_load ? result : value); } is_valid.End(); } in_range.Else(); { HValue* result = UnmappedCase(elements, key, value); environment()->Push(is_load ? result : value); } in_range.End(); return environment()->Pop(); } template <> HValue* CodeStubGraphBuilder::BuildCodeStub() { HValue* receiver = GetParameter(LoadDescriptor::kReceiverIndex); HValue* key = GetParameter(LoadDescriptor::kNameIndex); return EmitKeyedSloppyArguments(receiver, key, NULL); } Handle KeyedLoadSloppyArgumentsStub::GenerateCode() { return DoGenerateCode(this); } template <> HValue* CodeStubGraphBuilder::BuildCodeStub() { HValue* receiver = GetParameter(StoreDescriptor::kReceiverIndex); HValue* key = GetParameter(StoreDescriptor::kNameIndex); HValue* value = GetParameter(StoreDescriptor::kValueIndex); return EmitKeyedSloppyArguments(receiver, key, value); } Handle KeyedStoreSloppyArgumentsStub::GenerateCode() { return DoGenerateCode(this); } void CodeStubGraphBuilderBase::BuildStoreNamedField( HValue* object, HValue* value, FieldIndex index, Representation representation, bool transition_to_field) { DCHECK(!index.is_double() || representation.IsDouble()); int offset = index.offset(); HObjectAccess access = index.is_inobject() ? HObjectAccess::ForObservableJSObjectOffset(offset, representation) : HObjectAccess::ForBackingStoreOffset(offset, representation); if (representation.IsDouble()) { if (!FLAG_unbox_double_fields || !index.is_inobject()) { HObjectAccess heap_number_access = access.WithRepresentation(Representation::Tagged()); if (transition_to_field) { // The store requires a mutable HeapNumber to be allocated. NoObservableSideEffectsScope no_side_effects(this); HInstruction* heap_number_size = Add(HeapNumber::kSize); // TODO(hpayer): Allocation site pretenuring support. HInstruction* heap_number = Add(heap_number_size, HType::HeapObject(), NOT_TENURED, MUTABLE_HEAP_NUMBER_TYPE); AddStoreMapConstant(heap_number, isolate()->factory()->mutable_heap_number_map()); Add(heap_number, HObjectAccess::ForHeapNumberValue(), value); // Store the new mutable heap number into the object. access = heap_number_access; value = heap_number; } else { // Load the heap number. object = Add(object, nullptr, heap_number_access); // Store the double value into it. access = HObjectAccess::ForHeapNumberValue(); } } } else if (representation.IsHeapObject()) { BuildCheckHeapObject(value); } Add(object, access, value, INITIALIZING_STORE); } template <> HValue* CodeStubGraphBuilder::BuildCodeStub() { BuildStoreNamedField(GetParameter(0), GetParameter(2), casted_stub()->index(), casted_stub()->representation(), false); return GetParameter(2); } Handle StoreFieldStub::GenerateCode() { return DoGenerateCode(this); } template <> HValue* CodeStubGraphBuilder::BuildCodeStub() { HValue* object = GetParameter(StoreTransitionHelper::ReceiverIndex()); switch (casted_stub()->store_mode()) { case StoreTransitionStub::ExtendStorageAndStoreMapAndValue: { HValue* properties = Add( object, nullptr, HObjectAccess::ForPropertiesPointer()); HValue* length = AddLoadFixedArrayLength(properties); HValue* delta = Add(static_cast(JSObject::kFieldsAdded)); HValue* new_capacity = AddUncasted(length, delta); // Grow properties array. ElementsKind kind = FAST_ELEMENTS; Add(new_capacity, Add((Page::kMaxRegularHeapObjectSize - FixedArray::kHeaderSize) >> ElementsKindToShiftSize(kind))); // Reuse this code for properties backing store allocation. HValue* new_properties = BuildAllocateAndInitializeArray(kind, new_capacity); BuildCopyProperties(properties, new_properties, length, new_capacity); Add(object, HObjectAccess::ForPropertiesPointer(), new_properties); } // Fall through. case StoreTransitionStub::StoreMapAndValue: // Store the new value into the "extended" object. BuildStoreNamedField( object, GetParameter(StoreTransitionHelper::ValueIndex()), casted_stub()->index(), casted_stub()->representation(), true); // Fall through. case StoreTransitionStub::StoreMapOnly: // And finally update the map. Add(object, HObjectAccess::ForMap(), GetParameter(StoreTransitionHelper::MapIndex())); break; } return GetParameter(StoreTransitionHelper::ValueIndex()); } Handle StoreTransitionStub::GenerateCode() { return DoGenerateCode(this); } template <> HValue* CodeStubGraphBuilder::BuildCodeStub() { HValue* string = BuildLoadNamedField(GetParameter(0), FieldIndex::ForInObjectOffset(JSValue::kValueOffset)); return BuildLoadNamedField(string, FieldIndex::ForInObjectOffset(String::kLengthOffset)); } Handle StringLengthStub::GenerateCode() { return DoGenerateCode(this); } template <> HValue* CodeStubGraphBuilder::BuildCodeStub() { BuildUncheckedMonomorphicElementAccess( GetParameter(StoreDescriptor::kReceiverIndex), GetParameter(StoreDescriptor::kNameIndex), GetParameter(StoreDescriptor::kValueIndex), casted_stub()->is_js_array(), casted_stub()->elements_kind(), STORE, NEVER_RETURN_HOLE, casted_stub()->store_mode()); return GetParameter(2); } Handle StoreFastElementStub::GenerateCode() { return DoGenerateCode(this); } template <> HValue* CodeStubGraphBuilder::BuildCodeStub() { info()->MarkAsSavesCallerDoubles(); BuildTransitionElementsKind(GetParameter(0), GetParameter(1), casted_stub()->from_kind(), casted_stub()->to_kind(), casted_stub()->is_js_array()); return GetParameter(0); } Handle TransitionElementsKindStub::GenerateCode() { return DoGenerateCode(this); } template <> HValue* CodeStubGraphBuilder::BuildCodeStub() { HValue* result = Add(Add(HeapNumber::kSize), HType::HeapNumber(), NOT_TENURED, HEAP_NUMBER_TYPE); AddStoreMapConstant(result, isolate()->factory()->heap_number_map()); return result; } Handle AllocateHeapNumberStub::GenerateCode() { return DoGenerateCode(this); } HValue* CodeStubGraphBuilderBase::BuildArrayConstructor( ElementsKind kind, AllocationSiteOverrideMode override_mode, ArgumentClass argument_class) { HValue* constructor = GetParameter(ArrayConstructorStubBase::kConstructor); HValue* alloc_site = GetParameter(ArrayConstructorStubBase::kAllocationSite); JSArrayBuilder array_builder(this, kind, alloc_site, constructor, override_mode); HValue* result = NULL; switch (argument_class) { case NONE: // This stub is very performance sensitive, the generated code must be // tuned so that it doesn't build and eager frame. info()->MarkMustNotHaveEagerFrame(); result = array_builder.AllocateEmptyArray(); break; case SINGLE: result = BuildArraySingleArgumentConstructor(&array_builder); break; case MULTIPLE: result = BuildArrayNArgumentsConstructor(&array_builder, kind); break; } return result; } HValue* CodeStubGraphBuilderBase::BuildInternalArrayConstructor( ElementsKind kind, ArgumentClass argument_class) { HValue* constructor = GetParameter( InternalArrayConstructorStubBase::kConstructor); JSArrayBuilder array_builder(this, kind, constructor); HValue* result = NULL; switch (argument_class) { case NONE: // This stub is very performance sensitive, the generated code must be // tuned so that it doesn't build and eager frame. info()->MarkMustNotHaveEagerFrame(); result = array_builder.AllocateEmptyArray(); break; case SINGLE: result = BuildArraySingleArgumentConstructor(&array_builder); break; case MULTIPLE: result = BuildArrayNArgumentsConstructor(&array_builder, kind); break; } return result; } HValue* CodeStubGraphBuilderBase::BuildArraySingleArgumentConstructor( JSArrayBuilder* array_builder) { // Smi check and range check on the input arg. HValue* constant_one = graph()->GetConstant1(); HValue* constant_zero = graph()->GetConstant0(); HInstruction* elements = Add(false); HInstruction* argument = Add( elements, constant_one, constant_zero); return BuildAllocateArrayFromLength(array_builder, argument); } HValue* CodeStubGraphBuilderBase::BuildArrayNArgumentsConstructor( JSArrayBuilder* array_builder, ElementsKind kind) { // Insert a bounds check because the number of arguments might exceed // the kInitialMaxFastElementArray limit. This cannot happen for code // that was parsed, but calling via Array.apply(thisArg, [...]) might // trigger it. HValue* length = GetArgumentsLength(); HConstant* max_alloc_length = Add(JSObject::kInitialMaxFastElementArray); HValue* checked_length = Add(length, max_alloc_length); // We need to fill with the hole if it's a smi array in the multi-argument // case because we might have to bail out while copying arguments into // the array because they aren't compatible with a smi array. // If it's a double array, no problem, and if it's fast then no // problem either because doubles are boxed. // // TODO(mvstanton): consider an instruction to memset fill the array // with zero in this case instead. JSArrayBuilder::FillMode fill_mode = IsFastSmiElementsKind(kind) ? JSArrayBuilder::FILL_WITH_HOLE : JSArrayBuilder::DONT_FILL_WITH_HOLE; HValue* new_object = array_builder->AllocateArray(checked_length, max_alloc_length, checked_length, fill_mode); HValue* elements = array_builder->GetElementsLocation(); DCHECK(elements != NULL); // Now populate the elements correctly. LoopBuilder builder(this, context(), LoopBuilder::kPostIncrement); HValue* start = graph()->GetConstant0(); HValue* key = builder.BeginBody(start, checked_length, Token::LT); HInstruction* argument_elements = Add(false); HInstruction* argument = Add( argument_elements, checked_length, key); Add(elements, key, argument, kind); builder.EndBody(); return new_object; } template <> HValue* CodeStubGraphBuilder::BuildCodeStub() { ElementsKind kind = casted_stub()->elements_kind(); AllocationSiteOverrideMode override_mode = casted_stub()->override_mode(); return BuildArrayConstructor(kind, override_mode, NONE); } Handle ArrayNoArgumentConstructorStub::GenerateCode() { return DoGenerateCode(this); } template <> HValue* CodeStubGraphBuilder:: BuildCodeStub() { ElementsKind kind = casted_stub()->elements_kind(); AllocationSiteOverrideMode override_mode = casted_stub()->override_mode(); return BuildArrayConstructor(kind, override_mode, SINGLE); } Handle ArraySingleArgumentConstructorStub::GenerateCode() { return DoGenerateCode(this); } template <> HValue* CodeStubGraphBuilder::BuildCodeStub() { ElementsKind kind = casted_stub()->elements_kind(); AllocationSiteOverrideMode override_mode = casted_stub()->override_mode(); return BuildArrayConstructor(kind, override_mode, MULTIPLE); } Handle ArrayNArgumentsConstructorStub::GenerateCode() { return DoGenerateCode(this); } template <> HValue* CodeStubGraphBuilder:: BuildCodeStub() { ElementsKind kind = casted_stub()->elements_kind(); return BuildInternalArrayConstructor(kind, NONE); } Handle InternalArrayNoArgumentConstructorStub::GenerateCode() { return DoGenerateCode(this); } template <> HValue* CodeStubGraphBuilder:: BuildCodeStub() { ElementsKind kind = casted_stub()->elements_kind(); return BuildInternalArrayConstructor(kind, SINGLE); } Handle InternalArraySingleArgumentConstructorStub::GenerateCode() { return DoGenerateCode(this); } template <> HValue* CodeStubGraphBuilder:: BuildCodeStub() { ElementsKind kind = casted_stub()->elements_kind(); return BuildInternalArrayConstructor(kind, MULTIPLE); } Handle InternalArrayNArgumentsConstructorStub::GenerateCode() { return DoGenerateCode(this); } template <> HValue* CodeStubGraphBuilder::BuildCodeInitializedStub() { Isolate* isolate = graph()->isolate(); CompareNilICStub* stub = casted_stub(); HIfContinuation continuation; Handle sentinel_map(isolate->heap()->meta_map()); Type* type = stub->GetType(zone(), sentinel_map); BuildCompareNil(GetParameter(0), type, &continuation, kEmbedMapsViaWeakCells); IfBuilder if_nil(this, &continuation); if_nil.Then(); if (continuation.IsFalseReachable()) { if_nil.Else(); if_nil.Return(graph()->GetConstant0()); } if_nil.End(); return continuation.IsTrueReachable() ? graph()->GetConstant1() : graph()->GetConstantUndefined(); } Handle CompareNilICStub::GenerateCode() { return DoGenerateCode(this); } template <> HValue* CodeStubGraphBuilder::BuildCodeInitializedStub() { BinaryOpICState state = casted_stub()->state(); HValue* left = GetParameter(BinaryOpICStub::kLeft); HValue* right = GetParameter(BinaryOpICStub::kRight); Type* left_type = state.GetLeftType(zone()); Type* right_type = state.GetRightType(zone()); Type* result_type = state.GetResultType(zone()); DCHECK(!left_type->Is(Type::None()) && !right_type->Is(Type::None()) && (state.HasSideEffects() || !result_type->Is(Type::None()))); HValue* result = NULL; HAllocationMode allocation_mode(NOT_TENURED); if (state.op() == Token::ADD && (left_type->Maybe(Type::String()) || right_type->Maybe(Type::String())) && !left_type->Is(Type::String()) && !right_type->Is(Type::String())) { // For the generic add stub a fast case for string addition is performance // critical. if (left_type->Maybe(Type::String())) { IfBuilder if_leftisstring(this); if_leftisstring.If(left); if_leftisstring.Then(); { Push(BuildBinaryOperation(state.op(), left, right, Type::String(zone()), right_type, result_type, state.fixed_right_arg(), allocation_mode, state.strength())); } if_leftisstring.Else(); { Push(BuildBinaryOperation( state.op(), left, right, left_type, right_type, result_type, state.fixed_right_arg(), allocation_mode, state.strength())); } if_leftisstring.End(); result = Pop(); } else { IfBuilder if_rightisstring(this); if_rightisstring.If(right); if_rightisstring.Then(); { Push(BuildBinaryOperation(state.op(), left, right, left_type, Type::String(zone()), result_type, state.fixed_right_arg(), allocation_mode, state.strength())); } if_rightisstring.Else(); { Push(BuildBinaryOperation( state.op(), left, right, left_type, right_type, result_type, state.fixed_right_arg(), allocation_mode, state.strength())); } if_rightisstring.End(); result = Pop(); } } else { result = BuildBinaryOperation( state.op(), left, right, left_type, right_type, result_type, state.fixed_right_arg(), allocation_mode, state.strength()); } // If we encounter a generic argument, the number conversion is // observable, thus we cannot afford to bail out after the fact. if (!state.HasSideEffects()) { result = EnforceNumberType(result, result_type); } return result; } Handle BinaryOpICStub::GenerateCode() { return DoGenerateCode(this); } template <> HValue* CodeStubGraphBuilder::BuildCodeStub() { BinaryOpICState state = casted_stub()->state(); HValue* allocation_site = GetParameter( BinaryOpWithAllocationSiteStub::kAllocationSite); HValue* left = GetParameter(BinaryOpWithAllocationSiteStub::kLeft); HValue* right = GetParameter(BinaryOpWithAllocationSiteStub::kRight); Type* left_type = state.GetLeftType(zone()); Type* right_type = state.GetRightType(zone()); Type* result_type = state.GetResultType(zone()); HAllocationMode allocation_mode(allocation_site); return BuildBinaryOperation(state.op(), left, right, left_type, right_type, result_type, state.fixed_right_arg(), allocation_mode, state.strength()); } Handle BinaryOpWithAllocationSiteStub::GenerateCode() { return DoGenerateCode(this); } template <> HValue* CodeStubGraphBuilder::BuildCodeInitializedStub() { StringAddStub* stub = casted_stub(); StringAddFlags flags = stub->flags(); PretenureFlag pretenure_flag = stub->pretenure_flag(); HValue* left = GetParameter(StringAddStub::kLeft); HValue* right = GetParameter(StringAddStub::kRight); // Make sure that both arguments are strings if not known in advance. if ((flags & STRING_ADD_CHECK_LEFT) == STRING_ADD_CHECK_LEFT) { left = BuildCheckString(left); } if ((flags & STRING_ADD_CHECK_RIGHT) == STRING_ADD_CHECK_RIGHT) { right = BuildCheckString(right); } return BuildStringAdd(left, right, HAllocationMode(pretenure_flag)); } Handle StringAddStub::GenerateCode() { return DoGenerateCode(this); } template <> HValue* CodeStubGraphBuilder::BuildCodeInitializedStub() { ToBooleanStub* stub = casted_stub(); HValue* true_value = NULL; HValue* false_value = NULL; switch (stub->mode()) { case ToBooleanStub::RESULT_AS_SMI: true_value = graph()->GetConstant1(); false_value = graph()->GetConstant0(); break; case ToBooleanStub::RESULT_AS_ODDBALL: true_value = graph()->GetConstantTrue(); false_value = graph()->GetConstantFalse(); break; case ToBooleanStub::RESULT_AS_INVERSE_ODDBALL: true_value = graph()->GetConstantFalse(); false_value = graph()->GetConstantTrue(); break; } IfBuilder if_true(this); if_true.If(GetParameter(0), stub->types()); if_true.Then(); if_true.Return(true_value); if_true.Else(); if_true.End(); return false_value; } Handle ToBooleanStub::GenerateCode() { return DoGenerateCode(this); } template <> HValue* CodeStubGraphBuilder::BuildCodeInitializedStub() { StoreGlobalStub* stub = casted_stub(); HParameter* value = GetParameter(StoreDescriptor::kValueIndex); if (stub->check_global()) { // Check that the map of the global has not changed: use a placeholder map // that will be replaced later with the global object's map. HParameter* proxy = GetParameter(StoreDescriptor::kReceiverIndex); HValue* proxy_map = Add(proxy, nullptr, HObjectAccess::ForMap()); HValue* global = Add(proxy_map, nullptr, HObjectAccess::ForPrototype()); HValue* map_cell = Add(isolate()->factory()->NewWeakCell( StoreGlobalStub::global_map_placeholder(isolate()))); HValue* expected_map = Add( map_cell, nullptr, HObjectAccess::ForWeakCellValue()); HValue* map = Add(global, nullptr, HObjectAccess::ForMap()); IfBuilder map_check(this); map_check.IfNot(expected_map, map); map_check.ThenDeopt(Deoptimizer::kUnknownMap); map_check.End(); } HValue* weak_cell = Add(isolate()->factory()->NewWeakCell( StoreGlobalStub::property_cell_placeholder(isolate()))); HValue* cell = Add(weak_cell, nullptr, HObjectAccess::ForWeakCellValue()); Add(cell); HObjectAccess access = HObjectAccess::ForPropertyCellValue(); // Load the payload of the global parameter cell. A hole indicates that the // cell has been invalidated and that the store must be handled by the // runtime. HValue* cell_contents = Add(cell, nullptr, access); auto cell_type = stub->cell_type(); if (cell_type == PropertyCellType::kConstant || cell_type == PropertyCellType::kUndefined) { // This is always valid for all states a cell can be in. IfBuilder builder(this); builder.If(cell_contents, value); builder.Then(); builder.ElseDeopt( Deoptimizer::kUnexpectedCellContentsInConstantGlobalStore); builder.End(); } else { IfBuilder builder(this); HValue* hole_value = graph()->GetConstantHole(); builder.If(cell_contents, hole_value); builder.Then(); builder.Deopt(Deoptimizer::kUnexpectedCellContentsInGlobalStore); builder.Else(); // When dealing with constant types, the type may be allowed to change, as // long as optimized code remains valid. if (cell_type == PropertyCellType::kConstantType) { switch (stub->constant_type()) { case PropertyCellConstantType::kSmi: access = access.WithRepresentation(Representation::Smi()); break; case PropertyCellConstantType::kStableMap: { // It is sufficient here to check that the value and cell contents // have identical maps, no matter if they are stable or not or if they // are the maps that were originally in the cell or not. If optimized // code will deopt when a cell has a unstable map and if it has a // dependency on a stable map, it will deopt if the map destabilizes. Add(value); Add(cell_contents); HValue* expected_map = Add(cell_contents, nullptr, HObjectAccess::ForMap()); HValue* map = Add(value, nullptr, HObjectAccess::ForMap()); IfBuilder map_check(this); map_check.IfNot(expected_map, map); map_check.ThenDeopt(Deoptimizer::kUnknownMap); map_check.End(); access = access.WithRepresentation(Representation::HeapObject()); break; } } } Add(cell, access, value); builder.End(); } return value; } Handle StoreGlobalStub::GenerateCode() { return DoGenerateCode(this); } template <> HValue* CodeStubGraphBuilder::BuildCodeStub() { HValue* object = GetParameter(StoreTransitionHelper::ReceiverIndex()); HValue* key = GetParameter(StoreTransitionHelper::NameIndex()); HValue* value = GetParameter(StoreTransitionHelper::ValueIndex()); HValue* map = GetParameter(StoreTransitionHelper::MapIndex()); if (FLAG_trace_elements_transitions) { // Tracing elements transitions is the job of the runtime. Add(Deoptimizer::kTracingElementsTransitions, Deoptimizer::EAGER); } else { info()->MarkAsSavesCallerDoubles(); BuildTransitionElementsKind(object, map, casted_stub()->from_kind(), casted_stub()->to_kind(), casted_stub()->is_jsarray()); BuildUncheckedMonomorphicElementAccess(object, key, value, casted_stub()->is_jsarray(), casted_stub()->to_kind(), STORE, ALLOW_RETURN_HOLE, casted_stub()->store_mode()); } return value; } Handle ElementsTransitionAndStoreStub::GenerateCode() { return DoGenerateCode(this); } template <> HValue* CodeStubGraphBuilder::BuildCodeStub() { HValue* receiver = GetParameter(ToObjectDescriptor::kReceiverIndex); return BuildToObject(receiver); } Handle ToObjectStub::GenerateCode() { return DoGenerateCode(this); } void CodeStubGraphBuilderBase::BuildCheckAndInstallOptimizedCode( HValue* js_function, HValue* native_context, IfBuilder* builder, HValue* optimized_map, HValue* map_index) { HValue* osr_ast_id_none = Add(BailoutId::None().ToInt()); HValue* context_slot = LoadFromOptimizedCodeMap( optimized_map, map_index, SharedFunctionInfo::kContextOffset); HValue* osr_ast_slot = LoadFromOptimizedCodeMap( optimized_map, map_index, SharedFunctionInfo::kOsrAstIdOffset); builder->If(native_context, context_slot); builder->AndIf(osr_ast_slot, osr_ast_id_none); builder->Then(); HValue* code_object = LoadFromOptimizedCodeMap(optimized_map, map_index, SharedFunctionInfo::kCachedCodeOffset); // and the literals HValue* literals = LoadFromOptimizedCodeMap(optimized_map, map_index, SharedFunctionInfo::kLiteralsOffset); BuildInstallOptimizedCode(js_function, native_context, code_object, literals); // The builder continues in the "then" after this function. } void CodeStubGraphBuilderBase::BuildInstallOptimizedCode(HValue* js_function, HValue* native_context, HValue* code_object, HValue* literals) { Counters* counters = isolate()->counters(); AddIncrementCounter(counters->fast_new_closure_install_optimized()); // TODO(fschneider): Idea: store proper code pointers in the optimized code // map and either unmangle them on marking or do nothing as the whole map is // discarded on major GC anyway. Add(js_function, code_object); Add(js_function, HObjectAccess::ForLiteralsPointer(), literals); // Now link a function into a list of optimized functions. HValue* optimized_functions_list = Add( native_context, nullptr, HObjectAccess::ForContextSlot(Context::OPTIMIZED_FUNCTIONS_LIST)); Add(js_function, HObjectAccess::ForNextFunctionLinkPointer(), optimized_functions_list); // This store is the only one that should have a write barrier. Add(native_context, HObjectAccess::ForContextSlot(Context::OPTIMIZED_FUNCTIONS_LIST), js_function); } void CodeStubGraphBuilderBase::BuildInstallCode(HValue* js_function, HValue* shared_info) { Add(js_function, HObjectAccess::ForNextFunctionLinkPointer(), graph()->GetConstantUndefined()); HValue* code_object = Add(shared_info, nullptr, HObjectAccess::ForCodeOffset()); Add(js_function, code_object); } HInstruction* CodeStubGraphBuilderBase::LoadFromOptimizedCodeMap( HValue* optimized_map, HValue* iterator, int field_offset) { // By making sure to express these loads in the form [ + constant] // the keyed load can be hoisted. DCHECK(field_offset >= 0 && field_offset < SharedFunctionInfo::kEntryLength); HValue* field_slot = iterator; if (field_offset > 0) { HValue* field_offset_value = Add(field_offset); field_slot = AddUncasted(iterator, field_offset_value); } HInstruction* field_entry = Add(optimized_map, field_slot, nullptr, FAST_ELEMENTS); return field_entry; } void CodeStubGraphBuilderBase::BuildInstallFromOptimizedCodeMap( HValue* js_function, HValue* shared_info, HValue* native_context) { Counters* counters = isolate()->counters(); Factory* factory = isolate()->factory(); IfBuilder is_optimized(this); HInstruction* optimized_map = Add( shared_info, nullptr, HObjectAccess::ForOptimizedCodeMap()); HValue* null_constant = Add(0); is_optimized.If(optimized_map, null_constant); is_optimized.Then(); { BuildInstallCode(js_function, shared_info); } is_optimized.Else(); { AddIncrementCounter(counters->fast_new_closure_try_optimized()); // The {optimized_map} points to fixed array of 4-element entries: // (native context, optimized code, literals, ast-id). // Iterate through the {optimized_map} backwards. After the loop, if no // matching optimized code was found, install unoptimized code. // for(i = map.length() - SharedFunctionInfo::kEntryLength; // i >= SharedFunctionInfo::kEntriesStart; // i -= SharedFunctionInfo::kEntryLength) { ... } HValue* first_entry_index = Add(SharedFunctionInfo::kEntriesStart); HValue* shared_function_entry_length = Add(SharedFunctionInfo::kEntryLength); LoopBuilder loop_builder(this, context(), LoopBuilder::kPostDecrement, shared_function_entry_length); HValue* array_length = Add( optimized_map, nullptr, HObjectAccess::ForFixedArrayLength()); HValue* start_pos = AddUncasted(array_length, shared_function_entry_length); HValue* slot_iterator = loop_builder.BeginBody(start_pos, first_entry_index, Token::GTE); { IfBuilder done_check(this); BuildCheckAndInstallOptimizedCode(js_function, native_context, &done_check, optimized_map, slot_iterator); // Fall out of the loop loop_builder.Break(); } loop_builder.EndBody(); // If {slot_iterator} is less than the first entry index, then we failed to // find a context-dependent code and try context-independent code next. IfBuilder no_optimized_code_check(this); no_optimized_code_check.If( slot_iterator, first_entry_index, Token::LT); no_optimized_code_check.Then(); { IfBuilder shared_code_check(this); HValue* shared_code = Add(optimized_map, nullptr, HObjectAccess::ForOptimizedCodeMapSharedCode()); shared_code_check.IfNot( shared_code, graph()->GetConstantUndefined()); shared_code_check.Then(); { // Store the context-independent optimized code. HValue* literals = Add(factory->empty_fixed_array()); BuildInstallOptimizedCode(js_function, native_context, shared_code, literals); } shared_code_check.Else(); { // Store the unoptimized code. BuildInstallCode(js_function, shared_info); } } } } template<> HValue* CodeStubGraphBuilder::BuildCodeStub() { Counters* counters = isolate()->counters(); Factory* factory = isolate()->factory(); HInstruction* empty_fixed_array = Add(factory->empty_fixed_array()); HValue* shared_info = GetParameter(0); AddIncrementCounter(counters->fast_new_closure_total()); // Create a new closure from the given function info in new space HValue* size = Add(JSFunction::kSize); HInstruction* js_function = Add(size, HType::JSObject(), NOT_TENURED, JS_FUNCTION_TYPE); int map_index = Context::FunctionMapIndex(casted_stub()->language_mode(), casted_stub()->kind()); // Compute the function map in the current native context and set that // as the map of the allocated object. HInstruction* native_context = BuildGetNativeContext(); HInstruction* map_slot_value = Add( native_context, nullptr, HObjectAccess::ForContextSlot(map_index)); Add(js_function, HObjectAccess::ForMap(), map_slot_value); // Initialize the rest of the function. Add(js_function, HObjectAccess::ForPropertiesPointer(), empty_fixed_array); Add(js_function, HObjectAccess::ForElementsPointer(), empty_fixed_array); Add(js_function, HObjectAccess::ForLiteralsPointer(), empty_fixed_array); Add(js_function, HObjectAccess::ForPrototypeOrInitialMap(), graph()->GetConstantHole()); Add( js_function, HObjectAccess::ForSharedFunctionInfoPointer(), shared_info); Add(js_function, HObjectAccess::ForFunctionContextPointer(), context()); // Initialize the code pointer in the function to be the one found in the // shared function info object. But first check if there is an optimized // version for our context. BuildInstallFromOptimizedCodeMap(js_function, shared_info, native_context); return js_function; } Handle FastNewClosureStub::GenerateCode() { return DoGenerateCode(this); } template<> HValue* CodeStubGraphBuilder::BuildCodeStub() { int length = casted_stub()->slots() + Context::MIN_CONTEXT_SLOTS; // Get the function. HParameter* function = GetParameter(FastNewContextStub::kFunction); // Allocate the context in new space. HAllocate* function_context = Add( Add(length * kPointerSize + FixedArray::kHeaderSize), HType::HeapObject(), NOT_TENURED, FIXED_ARRAY_TYPE); // Set up the object header. AddStoreMapConstant(function_context, isolate()->factory()->function_context_map()); Add(function_context, HObjectAccess::ForFixedArrayLength(), Add(length)); // Set up the fixed slots. Add(function_context, HObjectAccess::ForContextSlot(Context::CLOSURE_INDEX), function); Add(function_context, HObjectAccess::ForContextSlot(Context::PREVIOUS_INDEX), context()); Add(function_context, HObjectAccess::ForContextSlot(Context::EXTENSION_INDEX), graph()->GetConstant0()); // Copy the global object from the previous context. HValue* global_object = Add( context(), nullptr, HObjectAccess::ForContextSlot(Context::GLOBAL_OBJECT_INDEX)); Add(function_context, HObjectAccess::ForContextSlot( Context::GLOBAL_OBJECT_INDEX), global_object); // Initialize the rest of the slots to undefined. for (int i = Context::MIN_CONTEXT_SLOTS; i < length; ++i) { Add(function_context, HObjectAccess::ForContextSlot(i), graph()->GetConstantUndefined()); } return function_context; } Handle FastNewContextStub::GenerateCode() { return DoGenerateCode(this); } template <> HValue* CodeStubGraphBuilder::BuildCodeStub() { HValue* receiver = GetParameter(LoadDescriptor::kReceiverIndex); HValue* key = GetParameter(LoadDescriptor::kNameIndex); Add(key); HValue* elements = AddLoadElements(receiver); HValue* hash = BuildElementIndexHash(key); return BuildUncheckedDictionaryElementLoad(receiver, elements, key, hash, casted_stub()->language_mode()); } Handle LoadDictionaryElementStub::GenerateCode() { return DoGenerateCode(this); } template<> HValue* CodeStubGraphBuilder::BuildCodeStub() { // Determine the parameters. HValue* length = GetParameter(RegExpConstructResultStub::kLength); HValue* index = GetParameter(RegExpConstructResultStub::kIndex); HValue* input = GetParameter(RegExpConstructResultStub::kInput); info()->MarkMustNotHaveEagerFrame(); return BuildRegExpConstructResult(length, index, input); } Handle RegExpConstructResultStub::GenerateCode() { return DoGenerateCode(this); } template <> class CodeStubGraphBuilder : public CodeStubGraphBuilderBase { public: explicit CodeStubGraphBuilder(CompilationInfo* info) : CodeStubGraphBuilderBase(info) {} protected: virtual HValue* BuildCodeStub(); void BuildElementsKindLimitCheck(HGraphBuilder::IfBuilder* if_builder, HValue* bit_field2, ElementsKind kind); void BuildFastElementLoad(HGraphBuilder::IfBuilder* if_builder, HValue* receiver, HValue* key, HValue* instance_type, HValue* bit_field2, ElementsKind kind); KeyedLoadGenericStub* casted_stub() { return static_cast(stub()); } }; void CodeStubGraphBuilder::BuildElementsKindLimitCheck( HGraphBuilder::IfBuilder* if_builder, HValue* bit_field2, ElementsKind kind) { ElementsKind next_kind = static_cast(kind + 1); HValue* kind_limit = Add( static_cast(Map::ElementsKindBits::encode(next_kind))); if_builder->If(bit_field2, kind_limit, Token::LT); if_builder->Then(); } void CodeStubGraphBuilder::BuildFastElementLoad( HGraphBuilder::IfBuilder* if_builder, HValue* receiver, HValue* key, HValue* instance_type, HValue* bit_field2, ElementsKind kind) { BuildElementsKindLimitCheck(if_builder, bit_field2, kind); IfBuilder js_array_check(this); js_array_check.If( instance_type, Add(JS_ARRAY_TYPE), Token::EQ); js_array_check.Then(); Push(BuildUncheckedMonomorphicElementAccess(receiver, key, NULL, true, kind, LOAD, NEVER_RETURN_HOLE, STANDARD_STORE)); js_array_check.Else(); Push(BuildUncheckedMonomorphicElementAccess(receiver, key, NULL, false, kind, LOAD, NEVER_RETURN_HOLE, STANDARD_STORE)); js_array_check.End(); } HValue* CodeStubGraphBuilder::BuildCodeStub() { HValue* receiver = GetParameter(LoadDescriptor::kReceiverIndex); HValue* key = GetParameter(LoadDescriptor::kNameIndex); // Split into a smi/integer case and unique string case. HIfContinuation index_name_split_continuation(graph()->CreateBasicBlock(), graph()->CreateBasicBlock()); BuildKeyedIndexCheck(key, &index_name_split_continuation); IfBuilder index_name_split(this, &index_name_split_continuation); index_name_split.Then(); { // Key is an index (number) key = Pop(); int bit_field_mask = (1 << Map::kIsAccessCheckNeeded) | (1 << Map::kHasIndexedInterceptor); BuildJSObjectCheck(receiver, bit_field_mask); HValue* map = Add(receiver, nullptr, HObjectAccess::ForMap()); HValue* instance_type = Add(map, nullptr, HObjectAccess::ForMapInstanceType()); HValue* bit_field2 = Add(map, nullptr, HObjectAccess::ForMapBitField2()); IfBuilder kind_if(this); BuildFastElementLoad(&kind_if, receiver, key, instance_type, bit_field2, FAST_HOLEY_ELEMENTS); kind_if.Else(); { BuildFastElementLoad(&kind_if, receiver, key, instance_type, bit_field2, FAST_HOLEY_DOUBLE_ELEMENTS); } kind_if.Else(); // The DICTIONARY_ELEMENTS check generates a "kind_if.Then" BuildElementsKindLimitCheck(&kind_if, bit_field2, DICTIONARY_ELEMENTS); { HValue* elements = AddLoadElements(receiver); HValue* hash = BuildElementIndexHash(key); Push(BuildUncheckedDictionaryElementLoad(receiver, elements, key, hash, casted_stub()->language_mode())); } kind_if.Else(); // The SLOW_SLOPPY_ARGUMENTS_ELEMENTS check generates a "kind_if.Then" STATIC_ASSERT(FAST_SLOPPY_ARGUMENTS_ELEMENTS < SLOW_SLOPPY_ARGUMENTS_ELEMENTS); BuildElementsKindLimitCheck(&kind_if, bit_field2, SLOW_SLOPPY_ARGUMENTS_ELEMENTS); // Non-strict elements are not handled. Add(Deoptimizer::kNonStrictElementsInKeyedLoadGenericStub, Deoptimizer::EAGER); Push(graph()->GetConstant0()); kind_if.ElseDeopt( Deoptimizer::kElementsKindUnhandledInKeyedLoadGenericStub); kind_if.End(); } index_name_split.Else(); { // Key is a unique string. key = Pop(); int bit_field_mask = (1 << Map::kIsAccessCheckNeeded) | (1 << Map::kHasNamedInterceptor); BuildJSObjectCheck(receiver, bit_field_mask); HIfContinuation continuation; BuildTestForDictionaryProperties(receiver, &continuation); IfBuilder if_dict_properties(this, &continuation); if_dict_properties.Then(); { // Key is string, properties are dictionary mode BuildNonGlobalObjectCheck(receiver); HValue* properties = Add( receiver, nullptr, HObjectAccess::ForPropertiesPointer()); HValue* hash = Add(key, nullptr, HObjectAccess::ForNameHashField()); hash = AddUncasted(hash, Add(Name::kHashShift)); HValue* value = BuildUncheckedDictionaryElementLoad( receiver, properties, key, hash, casted_stub()->language_mode()); Push(value); } if_dict_properties.Else(); { // TODO(dcarney): don't use keyed lookup cache, but convert to use // megamorphic stub cache. UNREACHABLE(); // Key is string, properties are fast mode HValue* hash = BuildKeyedLookupCacheHash(receiver, key); ExternalReference cache_keys_ref = ExternalReference::keyed_lookup_cache_keys(isolate()); HValue* cache_keys = Add(cache_keys_ref); HValue* map = Add(receiver, nullptr, HObjectAccess::ForMap()); HValue* base_index = AddUncasted(hash, Add(2)); base_index->ClearFlag(HValue::kCanOverflow); HIfContinuation inline_or_runtime_continuation( graph()->CreateBasicBlock(), graph()->CreateBasicBlock()); { IfBuilder lookup_ifs[KeyedLookupCache::kEntriesPerBucket]; for (int probe = 0; probe < KeyedLookupCache::kEntriesPerBucket; ++probe) { IfBuilder* lookup_if = &lookup_ifs[probe]; lookup_if->Initialize(this); int probe_base = probe * KeyedLookupCache::kEntryLength; HValue* map_index = AddUncasted( base_index, Add(probe_base + KeyedLookupCache::kMapIndex)); map_index->ClearFlag(HValue::kCanOverflow); HValue* key_index = AddUncasted( base_index, Add(probe_base + KeyedLookupCache::kKeyIndex)); key_index->ClearFlag(HValue::kCanOverflow); HValue* map_to_check = Add(cache_keys, map_index, nullptr, FAST_ELEMENTS, NEVER_RETURN_HOLE, 0); lookup_if->If(map_to_check, map); lookup_if->And(); HValue* key_to_check = Add(cache_keys, key_index, nullptr, FAST_ELEMENTS, NEVER_RETURN_HOLE, 0); lookup_if->If(key_to_check, key); lookup_if->Then(); { ExternalReference cache_field_offsets_ref = ExternalReference::keyed_lookup_cache_field_offsets(isolate()); HValue* cache_field_offsets = Add(cache_field_offsets_ref); HValue* index = AddUncasted(hash, Add(probe)); index->ClearFlag(HValue::kCanOverflow); HValue* property_index = Add(cache_field_offsets, index, nullptr, INT32_ELEMENTS, NEVER_RETURN_HOLE, 0); Push(property_index); } lookup_if->Else(); } for (int i = 0; i < KeyedLookupCache::kEntriesPerBucket; ++i) { lookup_ifs[i].JoinContinuation(&inline_or_runtime_continuation); } } IfBuilder inline_or_runtime(this, &inline_or_runtime_continuation); inline_or_runtime.Then(); { // Found a cached index, load property inline. Push(Add(receiver, Pop())); } inline_or_runtime.Else(); { // KeyedLookupCache miss; call runtime. Add(receiver, key); Push(Add( isolate()->factory()->empty_string(), Runtime::FunctionForId(is_strong(casted_stub()->language_mode()) ? Runtime::kKeyedGetPropertyStrong : Runtime::kKeyedGetProperty), 2)); } inline_or_runtime.End(); } if_dict_properties.End(); } index_name_split.End(); return Pop(); } Handle KeyedLoadGenericStub::GenerateCode() { return DoGenerateCode(this); } } // namespace internal } // namespace v8