// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include "src/types.h" #include "src/handles-inl.h" #include "src/ostreams.h" namespace v8 { namespace internal { // NOTE: If code is marked as being a "shortcut", this means that removing // the code won't affect the semantics of the surrounding function definition. // static bool Type::IsInteger(i::Object* x) { return x->IsNumber() && Type::IsInteger(x->Number()); } // ----------------------------------------------------------------------------- // Range-related helper functions. bool RangeType::Limits::IsEmpty() { return this->min > this->max; } RangeType::Limits RangeType::Limits::Intersect(Limits lhs, Limits rhs) { DisallowHeapAllocation no_allocation; Limits result(lhs); if (lhs.min < rhs.min) result.min = rhs.min; if (lhs.max > rhs.max) result.max = rhs.max; return result; } RangeType::Limits RangeType::Limits::Union(Limits lhs, Limits rhs) { DisallowHeapAllocation no_allocation; if (lhs.IsEmpty()) return rhs; if (rhs.IsEmpty()) return lhs; Limits result(lhs); if (lhs.min > rhs.min) result.min = rhs.min; if (lhs.max < rhs.max) result.max = rhs.max; return result; } bool Type::Overlap(RangeType* lhs, RangeType* rhs) { DisallowHeapAllocation no_allocation; return !RangeType::Limits::Intersect(RangeType::Limits(lhs), RangeType::Limits(rhs)) .IsEmpty(); } bool Type::Contains(RangeType* lhs, RangeType* rhs) { DisallowHeapAllocation no_allocation; return lhs->Min() <= rhs->Min() && rhs->Max() <= lhs->Max(); } bool Type::Contains(RangeType* lhs, ConstantType* rhs) { DisallowHeapAllocation no_allocation; return IsInteger(*rhs->Value()) && lhs->Min() <= rhs->Value()->Number() && rhs->Value()->Number() <= lhs->Max(); } bool Type::Contains(RangeType* range, i::Object* val) { DisallowHeapAllocation no_allocation; return IsInteger(val) && range->Min() <= val->Number() && val->Number() <= range->Max(); } // ----------------------------------------------------------------------------- // Min and Max computation. double Type::Min() { DCHECK(this->SemanticIs(Number())); if (this->IsBitset()) return BitsetType::Min(this->AsBitset()); if (this->IsUnion()) { double min = +V8_INFINITY; for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) { min = std::min(min, this->AsUnion()->Get(i)->Min()); } return min; } if (this->IsRange()) return this->AsRange()->Min(); if (this->IsConstant()) return this->AsConstant()->Value()->Number(); UNREACHABLE(); return 0; } double Type::Max() { DCHECK(this->SemanticIs(Number())); if (this->IsBitset()) return BitsetType::Max(this->AsBitset()); if (this->IsUnion()) { double max = -V8_INFINITY; for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) { max = std::max(max, this->AsUnion()->Get(i)->Max()); } return max; } if (this->IsRange()) return this->AsRange()->Max(); if (this->IsConstant()) return this->AsConstant()->Value()->Number(); UNREACHABLE(); return 0; } // ----------------------------------------------------------------------------- // Glb and lub computation. // The largest bitset subsumed by this type. Type::bitset BitsetType::Glb(Type* type) { DisallowHeapAllocation no_allocation; // Fast case. if (IsBitset(type)) { return type->AsBitset(); } else if (type->IsUnion()) { SLOW_DCHECK(type->AsUnion()->Wellformed()); return type->AsUnion()->Get(0)->BitsetGlb() | SEMANTIC(type->AsUnion()->Get(1)->BitsetGlb()); // Shortcut. } else if (type->IsRange()) { bitset glb = SEMANTIC( BitsetType::Glb(type->AsRange()->Min(), type->AsRange()->Max())); return glb | REPRESENTATION(type->BitsetLub()); } else { return type->Representation(); } } // The smallest bitset subsuming this type, possibly not a proper one. Type::bitset BitsetType::Lub(Type* type) { DisallowHeapAllocation no_allocation; if (IsBitset(type)) return type->AsBitset(); if (type->IsUnion()) { // Take the representation from the first element, which is always // a bitset. int bitset = type->AsUnion()->Get(0)->BitsetLub(); for (int i = 0, n = type->AsUnion()->Length(); i < n; ++i) { // Other elements only contribute their semantic part. bitset |= SEMANTIC(type->AsUnion()->Get(i)->BitsetLub()); } return bitset; } if (type->IsClass()) return type->AsClass()->Lub(); if (type->IsConstant()) return type->AsConstant()->Lub(); if (type->IsRange()) return type->AsRange()->Lub(); if (type->IsContext()) return kInternal & kTaggedPointer; if (type->IsArray()) return kOtherObject; if (type->IsFunction()) return kFunction; if (type->IsTuple()) return kInternal; UNREACHABLE(); return kNone; } Type::bitset BitsetType::Lub(i::Map* map) { DisallowHeapAllocation no_allocation; switch (map->instance_type()) { case STRING_TYPE: case ONE_BYTE_STRING_TYPE: case CONS_STRING_TYPE: case CONS_ONE_BYTE_STRING_TYPE: case SLICED_STRING_TYPE: case SLICED_ONE_BYTE_STRING_TYPE: case EXTERNAL_STRING_TYPE: case EXTERNAL_ONE_BYTE_STRING_TYPE: case EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE: case SHORT_EXTERNAL_STRING_TYPE: case SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE: case SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE: return kOtherString; case INTERNALIZED_STRING_TYPE: case ONE_BYTE_INTERNALIZED_STRING_TYPE: case EXTERNAL_INTERNALIZED_STRING_TYPE: case EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE: case EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE: case SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE: case SHORT_EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE: case SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE: return kInternalizedString; case SYMBOL_TYPE: return kSymbol; case ODDBALL_TYPE: { Heap* heap = map->GetHeap(); if (map == heap->undefined_map()) return kUndefined; if (map == heap->null_map()) return kNull; if (map == heap->boolean_map()) return kBoolean; DCHECK(map == heap->the_hole_map() || map == heap->uninitialized_map() || map == heap->no_interceptor_result_sentinel_map() || map == heap->termination_exception_map() || map == heap->arguments_marker_map()); return kInternal & kTaggedPointer; } case HEAP_NUMBER_TYPE: return kNumber & kTaggedPointer; case SIMD128_VALUE_TYPE: return kSimd; case JS_VALUE_TYPE: case JS_MESSAGE_OBJECT_TYPE: case JS_DATE_TYPE: case JS_OBJECT_TYPE: case JS_CONTEXT_EXTENSION_OBJECT_TYPE: case JS_GENERATOR_OBJECT_TYPE: case JS_MODULE_TYPE: case JS_GLOBAL_OBJECT_TYPE: case JS_GLOBAL_PROXY_TYPE: case JS_ARRAY_BUFFER_TYPE: case JS_ARRAY_TYPE: case JS_TYPED_ARRAY_TYPE: case JS_DATA_VIEW_TYPE: case JS_SET_TYPE: case JS_MAP_TYPE: case JS_SET_ITERATOR_TYPE: case JS_MAP_ITERATOR_TYPE: case JS_WEAK_MAP_TYPE: case JS_WEAK_SET_TYPE: case JS_PROMISE_TYPE: case JS_BOUND_FUNCTION_TYPE: if (map->is_undetectable()) return kUndetectable; return kOtherObject; case JS_FUNCTION_TYPE: if (map->is_undetectable()) return kUndetectable; return kFunction; case JS_REGEXP_TYPE: return kOtherObject; // TODO(rossberg): there should be a RegExp type. case JS_PROXY_TYPE: return kProxy; case MAP_TYPE: // When compiling stub templates, the meta map is used as a place holder // for the actual map with which the template is later instantiated. // We treat it as a kind of type variable whose upper bound is Any. // TODO(rossberg): for caching of CompareNilIC stubs to work correctly, // we must exclude Undetectable here. This makes no sense, really, // because it means that the template isn't actually parametric. // Also, it doesn't apply elsewhere. 8-( // We ought to find a cleaner solution for compiling stubs parameterised // over type or class variables, esp ones with bounds... return kDetectable & kTaggedPointer; case ALLOCATION_SITE_TYPE: case ACCESSOR_INFO_TYPE: case SHARED_FUNCTION_INFO_TYPE: case ACCESSOR_PAIR_TYPE: case FIXED_ARRAY_TYPE: case FIXED_DOUBLE_ARRAY_TYPE: case BYTE_ARRAY_TYPE: case BYTECODE_ARRAY_TYPE: case TRANSITION_ARRAY_TYPE: case FOREIGN_TYPE: case SCRIPT_TYPE: case CODE_TYPE: case PROPERTY_CELL_TYPE: return kInternal & kTaggedPointer; // Remaining instance types are unsupported for now. If any of them do // require bit set types, they should get kInternal & kTaggedPointer. case MUTABLE_HEAP_NUMBER_TYPE: case FREE_SPACE_TYPE: #define FIXED_TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \ case FIXED_##TYPE##_ARRAY_TYPE: TYPED_ARRAYS(FIXED_TYPED_ARRAY_CASE) #undef FIXED_TYPED_ARRAY_CASE case FILLER_TYPE: case ACCESS_CHECK_INFO_TYPE: case INTERCEPTOR_INFO_TYPE: case CALL_HANDLER_INFO_TYPE: case FUNCTION_TEMPLATE_INFO_TYPE: case OBJECT_TEMPLATE_INFO_TYPE: case SIGNATURE_INFO_TYPE: case TYPE_SWITCH_INFO_TYPE: case ALLOCATION_MEMENTO_TYPE: case CODE_CACHE_TYPE: case POLYMORPHIC_CODE_CACHE_TYPE: case TYPE_FEEDBACK_INFO_TYPE: case ALIASED_ARGUMENTS_ENTRY_TYPE: case BOX_TYPE: case DEBUG_INFO_TYPE: case BREAK_POINT_INFO_TYPE: case CELL_TYPE: case WEAK_CELL_TYPE: case PROTOTYPE_INFO_TYPE: case SLOPPY_BLOCK_WITH_EVAL_CONTEXT_EXTENSION_TYPE: UNREACHABLE(); return kNone; } UNREACHABLE(); return kNone; } Type::bitset BitsetType::Lub(i::Object* value) { DisallowHeapAllocation no_allocation; if (value->IsNumber()) { return Lub(value->Number()) & (value->IsSmi() ? kTaggedSigned : kTaggedPointer); } return Lub(i::HeapObject::cast(value)->map()); } Type::bitset BitsetType::Lub(double value) { DisallowHeapAllocation no_allocation; if (i::IsMinusZero(value)) return kMinusZero; if (std::isnan(value)) return kNaN; if (IsUint32Double(value) || IsInt32Double(value)) return Lub(value, value); return kOtherNumber; } // Minimum values of plain numeric bitsets. const BitsetType::Boundary BitsetType::BoundariesArray[] = { {kOtherNumber, kPlainNumber, -V8_INFINITY}, {kOtherSigned32, kNegative32, kMinInt}, {kNegative31, kNegative31, -0x40000000}, {kUnsigned30, kUnsigned30, 0}, {kOtherUnsigned31, kUnsigned31, 0x40000000}, {kOtherUnsigned32, kUnsigned32, 0x80000000}, {kOtherNumber, kPlainNumber, static_cast(kMaxUInt32) + 1}}; const BitsetType::Boundary* BitsetType::Boundaries() { return BoundariesArray; } size_t BitsetType::BoundariesSize() { // Windows doesn't like arraysize here. // return arraysize(BoundariesArray); return 7; } Type::bitset BitsetType::ExpandInternals(Type::bitset bits) { DisallowHeapAllocation no_allocation; if (!(bits & SEMANTIC(kPlainNumber))) return bits; // Shortcut. const Boundary* boundaries = Boundaries(); for (size_t i = 0; i < BoundariesSize(); ++i) { DCHECK(BitsetType::Is(boundaries[i].internal, boundaries[i].external)); if (bits & SEMANTIC(boundaries[i].internal)) bits |= SEMANTIC(boundaries[i].external); } return bits; } Type::bitset BitsetType::Lub(double min, double max) { DisallowHeapAllocation no_allocation; int lub = kNone; const Boundary* mins = Boundaries(); for (size_t i = 1; i < BoundariesSize(); ++i) { if (min < mins[i].min) { lub |= mins[i-1].internal; if (max < mins[i].min) return lub; } } return lub | mins[BoundariesSize() - 1].internal; } Type::bitset BitsetType::NumberBits(bitset bits) { return SEMANTIC(bits & kPlainNumber); } Type::bitset BitsetType::Glb(double min, double max) { DisallowHeapAllocation no_allocation; int glb = kNone; const Boundary* mins = Boundaries(); // If the range does not touch 0, the bound is empty. if (max < -1 || min > 0) return glb; for (size_t i = 1; i + 1 < BoundariesSize(); ++i) { if (min <= mins[i].min) { if (max + 1 < mins[i + 1].min) break; glb |= mins[i].external; } } // OtherNumber also contains float numbers, so it can never be // in the greatest lower bound. return glb & ~(SEMANTIC(kOtherNumber)); } double BitsetType::Min(bitset bits) { DisallowHeapAllocation no_allocation; DCHECK(Is(SEMANTIC(bits), kNumber)); const Boundary* mins = Boundaries(); bool mz = SEMANTIC(bits & kMinusZero); for (size_t i = 0; i < BoundariesSize(); ++i) { if (Is(SEMANTIC(mins[i].internal), bits)) { return mz ? std::min(0.0, mins[i].min) : mins[i].min; } } if (mz) return 0; return std::numeric_limits::quiet_NaN(); } double BitsetType::Max(bitset bits) { DisallowHeapAllocation no_allocation; DCHECK(Is(SEMANTIC(bits), kNumber)); const Boundary* mins = Boundaries(); bool mz = SEMANTIC(bits & kMinusZero); if (BitsetType::Is(SEMANTIC(mins[BoundariesSize() - 1].internal), bits)) { return +V8_INFINITY; } for (size_t i = BoundariesSize() - 1; i-- > 0;) { if (Is(SEMANTIC(mins[i].internal), bits)) { return mz ? std::max(0.0, mins[i+1].min - 1) : mins[i+1].min - 1; } } if (mz) return 0; return std::numeric_limits::quiet_NaN(); } // ----------------------------------------------------------------------------- // Predicates. bool Type::SimplyEquals(Type* that) { DisallowHeapAllocation no_allocation; if (this->IsClass()) { return that->IsClass() && *this->AsClass()->Map() == *that->AsClass()->Map(); } if (this->IsConstant()) { return that->IsConstant() && *this->AsConstant()->Value() == *that->AsConstant()->Value(); } if (this->IsContext()) { return that->IsContext() && this->AsContext()->Outer()->Equals(that->AsContext()->Outer()); } if (this->IsArray()) { return that->IsArray() && this->AsArray()->Element()->Equals(that->AsArray()->Element()); } if (this->IsFunction()) { if (!that->IsFunction()) return false; FunctionType* this_fun = this->AsFunction(); FunctionType* that_fun = that->AsFunction(); if (this_fun->Arity() != that_fun->Arity() || !this_fun->Result()->Equals(that_fun->Result()) || !this_fun->Receiver()->Equals(that_fun->Receiver())) { return false; } for (int i = 0, n = this_fun->Arity(); i < n; ++i) { if (!this_fun->Parameter(i)->Equals(that_fun->Parameter(i))) return false; } return true; } if (this->IsTuple()) { if (!that->IsTuple()) return false; TupleType* this_tuple = this->AsTuple(); TupleType* that_tuple = that->AsTuple(); if (this_tuple->Arity() != that_tuple->Arity()) { return false; } for (int i = 0, n = this_tuple->Arity(); i < n; ++i) { if (!this_tuple->Element(i)->Equals(that_tuple->Element(i))) return false; } return true; } UNREACHABLE(); return false; } Type::bitset Type::Representation() { return REPRESENTATION(this->BitsetLub()); } // Check if [this] <= [that]. bool Type::SlowIs(Type* that) { DisallowHeapAllocation no_allocation; // Fast bitset cases if (that->IsBitset()) { return BitsetType::Is(this->BitsetLub(), that->AsBitset()); } if (this->IsBitset()) { return BitsetType::Is(this->AsBitset(), that->BitsetGlb()); } // Check the representations. if (!BitsetType::Is(Representation(), that->Representation())) { return false; } // Check the semantic part. return SemanticIs(that); } // Check if SEMANTIC([this]) <= SEMANTIC([that]). The result of the method // should be independent of the representation axis of the types. bool Type::SemanticIs(Type* that) { DisallowHeapAllocation no_allocation; if (this == that) return true; if (that->IsBitset()) { return BitsetType::Is(SEMANTIC(this->BitsetLub()), that->AsBitset()); } if (this->IsBitset()) { return BitsetType::Is(SEMANTIC(this->AsBitset()), that->BitsetGlb()); } // (T1 \/ ... \/ Tn) <= T if (T1 <= T) /\ ... /\ (Tn <= T) if (this->IsUnion()) { for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) { if (!this->AsUnion()->Get(i)->SemanticIs(that)) return false; } return true; } // T <= (T1 \/ ... \/ Tn) if (T <= T1) \/ ... \/ (T <= Tn) if (that->IsUnion()) { for (int i = 0, n = that->AsUnion()->Length(); i < n; ++i) { if (this->SemanticIs(that->AsUnion()->Get(i))) return true; if (i > 1 && this->IsRange()) return false; // Shortcut. } return false; } if (that->IsRange()) { return (this->IsRange() && Contains(that->AsRange(), this->AsRange())) || (this->IsConstant() && Contains(that->AsRange(), this->AsConstant())); } if (this->IsRange()) return false; return this->SimplyEquals(that); } // Most precise _current_ type of a value (usually its class). Type* Type::NowOf(i::Object* value, Zone* zone) { if (value->IsSmi() || i::HeapObject::cast(value)->map()->instance_type() == HEAP_NUMBER_TYPE) { return Of(value, zone); } return Class(i::handle(i::HeapObject::cast(value)->map()), zone); } bool Type::NowContains(i::Object* value) { DisallowHeapAllocation no_allocation; if (this->IsAny()) return true; if (value->IsHeapObject()) { i::Map* map = i::HeapObject::cast(value)->map(); for (Iterator it = this->Classes(); !it.Done(); it.Advance()) { if (*it.Current() == map) return true; } } return this->Contains(value); } bool Type::NowIs(Type* that) { DisallowHeapAllocation no_allocation; // TODO(rossberg): this is incorrect for // Union(Constant(V), T)->NowIs(Class(M)) // but fuzzing does not cover that! if (this->IsConstant()) { i::Object* object = *this->AsConstant()->Value(); if (object->IsHeapObject()) { i::Map* map = i::HeapObject::cast(object)->map(); for (Iterator it = that->Classes(); !it.Done(); it.Advance()) { if (*it.Current() == map) return true; } } } return this->Is(that); } // Check if [this] contains only (currently) stable classes. bool Type::NowStable() { DisallowHeapAllocation no_allocation; return !this->IsClass() || this->AsClass()->Map()->is_stable(); } // Check if [this] and [that] overlap. bool Type::Maybe(Type* that) { DisallowHeapAllocation no_allocation; // Take care of the representation part (and also approximate // the semantic part). if (!BitsetType::IsInhabited(this->BitsetLub() & that->BitsetLub())) return false; return SemanticMaybe(that); } bool Type::SemanticMaybe(Type* that) { DisallowHeapAllocation no_allocation; // (T1 \/ ... \/ Tn) overlaps T if (T1 overlaps T) \/ ... \/ (Tn overlaps T) if (this->IsUnion()) { for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) { if (this->AsUnion()->Get(i)->SemanticMaybe(that)) return true; } return false; } // T overlaps (T1 \/ ... \/ Tn) if (T overlaps T1) \/ ... \/ (T overlaps Tn) if (that->IsUnion()) { for (int i = 0, n = that->AsUnion()->Length(); i < n; ++i) { if (this->SemanticMaybe(that->AsUnion()->Get(i))) return true; } return false; } if (!BitsetType::SemanticIsInhabited(this->BitsetLub() & that->BitsetLub())) return false; if (this->IsBitset() && that->IsBitset()) return true; if (this->IsClass() != that->IsClass()) return true; if (this->IsRange()) { if (that->IsConstant()) { return Contains(this->AsRange(), that->AsConstant()); } if (that->IsRange()) { return Overlap(this->AsRange(), that->AsRange()); } if (that->IsBitset()) { bitset number_bits = BitsetType::NumberBits(that->AsBitset()); if (number_bits == BitsetType::kNone) { return false; } double min = std::max(BitsetType::Min(number_bits), this->Min()); double max = std::min(BitsetType::Max(number_bits), this->Max()); return min <= max; } } if (that->IsRange()) { return that->SemanticMaybe(this); // This case is handled above. } if (this->IsBitset() || that->IsBitset()) return true; return this->SimplyEquals(that); } // Return the range in [this], or [NULL]. Type* Type::GetRange() { DisallowHeapAllocation no_allocation; if (this->IsRange()) return this; if (this->IsUnion() && this->AsUnion()->Get(1)->IsRange()) { return this->AsUnion()->Get(1); } return NULL; } bool Type::Contains(i::Object* value) { DisallowHeapAllocation no_allocation; for (Iterator it = this->Constants(); !it.Done(); it.Advance()) { if (*it.Current() == value) return true; } if (IsInteger(value)) { Type* range = this->GetRange(); if (range != NULL && Contains(range->AsRange(), value)) return true; } return BitsetType::New(BitsetType::Lub(value))->Is(this); } bool UnionType::Wellformed() { DisallowHeapAllocation no_allocation; // This checks the invariants of the union representation: // 1. There are at least two elements. // 2. The first element is a bitset, no other element is a bitset. // 3. At most one element is a range, and it must be the second one. // 4. No element is itself a union. // 5. No element (except the bitset) is a subtype of any other. // 6. If there is a range, then the bitset type does not contain // plain number bits. DCHECK(this->Length() >= 2); // (1) DCHECK(this->Get(0)->IsBitset()); // (2a) for (int i = 0; i < this->Length(); ++i) { if (i != 0) DCHECK(!this->Get(i)->IsBitset()); // (2b) if (i != 1) DCHECK(!this->Get(i)->IsRange()); // (3) DCHECK(!this->Get(i)->IsUnion()); // (4) for (int j = 0; j < this->Length(); ++j) { if (i != j && i != 0) DCHECK(!this->Get(i)->SemanticIs(this->Get(j))); // (5) } } DCHECK(!this->Get(1)->IsRange() || (BitsetType::NumberBits(this->Get(0)->AsBitset()) == BitsetType::kNone)); // (6) return true; } // ----------------------------------------------------------------------------- // Union and intersection static bool AddIsSafe(int x, int y) { return x >= 0 ? y <= std::numeric_limits::max() - x : y >= std::numeric_limits::min() - x; } Type* Type::Intersect(Type* type1, Type* type2, Zone* zone) { // Fast case: bit sets. if (type1->IsBitset() && type2->IsBitset()) { return BitsetType::New(type1->AsBitset() & type2->AsBitset()); } // Fast case: top or bottom types. if (type1->IsNone() || type2->IsAny()) return type1; // Shortcut. if (type2->IsNone() || type1->IsAny()) return type2; // Shortcut. // Semi-fast case. if (type1->Is(type2)) return type1; if (type2->Is(type1)) return type2; // Slow case: create union. // Figure out the representation of the result first. // The rest of the method should not change this representation and // it should not make any decisions based on representations (i.e., // it should only use the semantic part of types). const bitset representation = type1->Representation() & type2->Representation(); // Semantic subtyping check - this is needed for consistency with the // semi-fast case above - we should behave the same way regardless of // representations. Intersection with a universal bitset should only update // the representations. if (type1->SemanticIs(type2)) { type2 = Any(); } else if (type2->SemanticIs(type1)) { type1 = Any(); } bitset bits = SEMANTIC(type1->BitsetGlb() & type2->BitsetGlb()) | representation; int size1 = type1->IsUnion() ? type1->AsUnion()->Length() : 1; int size2 = type2->IsUnion() ? type2->AsUnion()->Length() : 1; if (!AddIsSafe(size1, size2)) return Any(); int size = size1 + size2; if (!AddIsSafe(size, 2)) return Any(); size += 2; Type* result_type = UnionType::New(size, zone); UnionType* result = result_type->AsUnion(); size = 0; // Deal with bitsets. result->Set(size++, BitsetType::New(bits)); RangeType::Limits lims = RangeType::Limits::Empty(); size = IntersectAux(type1, type2, result, size, &lims, zone); // If the range is not empty, then insert it into the union and // remove the number bits from the bitset. if (!lims.IsEmpty()) { size = UpdateRange(RangeType::New(lims, representation, zone), result, size, zone); // Remove the number bits. bitset number_bits = BitsetType::NumberBits(bits); bits &= ~number_bits; result->Set(0, BitsetType::New(bits)); } return NormalizeUnion(result_type, size, zone); } int Type::UpdateRange(Type* range, UnionType* result, int size, Zone* zone) { if (size == 1) { result->Set(size++, range); } else { // Make space for the range. result->Set(size++, result->Get(1)); result->Set(1, range); } // Remove any components that just got subsumed. for (int i = 2; i < size; ) { if (result->Get(i)->SemanticIs(range)) { result->Set(i, result->Get(--size)); } else { ++i; } } return size; } RangeType::Limits Type::ToLimits(bitset bits, Zone* zone) { bitset number_bits = BitsetType::NumberBits(bits); if (number_bits == BitsetType::kNone) { return RangeType::Limits::Empty(); } return RangeType::Limits(BitsetType::Min(number_bits), BitsetType::Max(number_bits)); } RangeType::Limits Type::IntersectRangeAndBitset(Type* range, Type* bitset, Zone* zone) { RangeType::Limits range_lims(range->AsRange()); RangeType::Limits bitset_lims = ToLimits(bitset->AsBitset(), zone); return RangeType::Limits::Intersect(range_lims, bitset_lims); } int Type::IntersectAux(Type* lhs, Type* rhs, UnionType* result, int size, RangeType::Limits* lims, Zone* zone) { if (lhs->IsUnion()) { for (int i = 0, n = lhs->AsUnion()->Length(); i < n; ++i) { size = IntersectAux(lhs->AsUnion()->Get(i), rhs, result, size, lims, zone); } return size; } if (rhs->IsUnion()) { for (int i = 0, n = rhs->AsUnion()->Length(); i < n; ++i) { size = IntersectAux(lhs, rhs->AsUnion()->Get(i), result, size, lims, zone); } return size; } if (!BitsetType::SemanticIsInhabited(lhs->BitsetLub() & rhs->BitsetLub())) { return size; } if (lhs->IsRange()) { if (rhs->IsBitset()) { RangeType::Limits lim = IntersectRangeAndBitset(lhs, rhs, zone); if (!lim.IsEmpty()) { *lims = RangeType::Limits::Union(lim, *lims); } return size; } if (rhs->IsClass()) { *lims = RangeType::Limits::Union(RangeType::Limits(lhs->AsRange()), *lims); } if (rhs->IsConstant() && Contains(lhs->AsRange(), rhs->AsConstant())) { return AddToUnion(rhs, result, size, zone); } if (rhs->IsRange()) { RangeType::Limits lim = RangeType::Limits::Intersect( RangeType::Limits(lhs->AsRange()), RangeType::Limits(rhs->AsRange())); if (!lim.IsEmpty()) { *lims = RangeType::Limits::Union(lim, *lims); } } return size; } if (rhs->IsRange()) { // This case is handled symmetrically above. return IntersectAux(rhs, lhs, result, size, lims, zone); } if (lhs->IsBitset() || rhs->IsBitset()) { return AddToUnion(lhs->IsBitset() ? rhs : lhs, result, size, zone); } if (lhs->IsClass() != rhs->IsClass()) { return AddToUnion(lhs->IsClass() ? rhs : lhs, result, size, zone); } if (lhs->SimplyEquals(rhs)) { return AddToUnion(lhs, result, size, zone); } return size; } // Make sure that we produce a well-formed range and bitset: // If the range is non-empty, the number bits in the bitset should be // clear. Moreover, if we have a canonical range (such as Signed32), // we want to produce a bitset rather than a range. Type* Type::NormalizeRangeAndBitset(Type* range, bitset* bits, Zone* zone) { // Fast path: If the bitset does not mention numbers, we can just keep the // range. bitset number_bits = BitsetType::NumberBits(*bits); if (number_bits == 0) { return range; } // If the range is semantically contained within the bitset, return None and // leave the bitset untouched. bitset range_lub = SEMANTIC(range->BitsetLub()); if (BitsetType::Is(range_lub, *bits)) { return None(); } // Slow path: reconcile the bitset range and the range. double bitset_min = BitsetType::Min(number_bits); double bitset_max = BitsetType::Max(number_bits); double range_min = range->Min(); double range_max = range->Max(); // Remove the number bits from the bitset, they would just confuse us now. // NOTE: bits contains OtherNumber iff bits contains PlainNumber, in which // case we already returned after the subtype check above. *bits &= ~number_bits; if (range_min <= bitset_min && range_max >= bitset_max) { // Bitset is contained within the range, just return the range. return range; } if (bitset_min < range_min) { range_min = bitset_min; } if (bitset_max > range_max) { range_max = bitset_max; } return RangeType::New(range_min, range_max, BitsetType::kNone, zone); } Type* Type::Union(Type* type1, Type* type2, Zone* zone) { // Fast case: bit sets. if (type1->IsBitset() && type2->IsBitset()) { return BitsetType::New(type1->AsBitset() | type2->AsBitset()); } // Fast case: top or bottom types. if (type1->IsAny() || type2->IsNone()) return type1; if (type2->IsAny() || type1->IsNone()) return type2; // Semi-fast case. if (type1->Is(type2)) return type2; if (type2->Is(type1)) return type1; // Figure out the representation of the result. // The rest of the method should not change this representation and // it should not make any decisions based on representations (i.e., // it should only use the semantic part of types). const bitset representation = type1->Representation() | type2->Representation(); // Slow case: create union. int size1 = type1->IsUnion() ? type1->AsUnion()->Length() : 1; int size2 = type2->IsUnion() ? type2->AsUnion()->Length() : 1; if (!AddIsSafe(size1, size2)) return Any(); int size = size1 + size2; if (!AddIsSafe(size, 2)) return Any(); size += 2; Type* result_type = UnionType::New(size, zone); UnionType* result = result_type->AsUnion(); size = 0; // Compute the new bitset. bitset new_bitset = SEMANTIC(type1->BitsetGlb() | type2->BitsetGlb()); // Deal with ranges. Type* range = None(); Type* range1 = type1->GetRange(); Type* range2 = type2->GetRange(); if (range1 != NULL && range2 != NULL) { RangeType::Limits lims = RangeType::Limits::Union(RangeType::Limits(range1->AsRange()), RangeType::Limits(range2->AsRange())); Type* union_range = RangeType::New(lims, representation, zone); range = NormalizeRangeAndBitset(union_range, &new_bitset, zone); } else if (range1 != NULL) { range = NormalizeRangeAndBitset(range1, &new_bitset, zone); } else if (range2 != NULL) { range = NormalizeRangeAndBitset(range2, &new_bitset, zone); } new_bitset = SEMANTIC(new_bitset) | representation; Type* bits = BitsetType::New(new_bitset); result->Set(size++, bits); if (!range->IsNone()) result->Set(size++, range); size = AddToUnion(type1, result, size, zone); size = AddToUnion(type2, result, size, zone); return NormalizeUnion(result_type, size, zone); } // Add [type] to [result] unless [type] is bitset, range, or already subsumed. // Return new size of [result]. int Type::AddToUnion(Type* type, UnionType* result, int size, Zone* zone) { if (type->IsBitset() || type->IsRange()) return size; if (type->IsUnion()) { for (int i = 0, n = type->AsUnion()->Length(); i < n; ++i) { size = AddToUnion(type->AsUnion()->Get(i), result, size, zone); } return size; } for (int i = 0; i < size; ++i) { if (type->SemanticIs(result->Get(i))) return size; } result->Set(size++, type); return size; } Type* Type::NormalizeUnion(Type* union_type, int size, Zone* zone) { UnionType* unioned = union_type->AsUnion(); DCHECK(size >= 1); DCHECK(unioned->Get(0)->IsBitset()); // If the union has just one element, return it. if (size == 1) { return unioned->Get(0); } bitset bits = unioned->Get(0)->AsBitset(); // If the union only consists of a range, we can get rid of the union. if (size == 2 && SEMANTIC(bits) == BitsetType::kNone) { bitset representation = REPRESENTATION(bits); if (representation == unioned->Get(1)->Representation()) { return unioned->Get(1); } if (unioned->Get(1)->IsRange()) { return RangeType::New(unioned->Get(1)->AsRange()->Min(), unioned->Get(1)->AsRange()->Max(), unioned->Get(0)->AsBitset(), zone); } } unioned->Shrink(size); SLOW_DCHECK(unioned->Wellformed()); return union_type; } // ----------------------------------------------------------------------------- // Component extraction // static Type* Type::Representation(Type* t, Zone* zone) { return BitsetType::New(t->Representation()); } // static Type* Type::Semantic(Type* t, Zone* zone) { return Intersect(t, BitsetType::New(BitsetType::kSemantic), zone); } // ----------------------------------------------------------------------------- // Iteration. int Type::NumClasses() { DisallowHeapAllocation no_allocation; if (this->IsClass()) { return 1; } else if (this->IsUnion()) { int result = 0; for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) { if (this->AsUnion()->Get(i)->IsClass()) ++result; } return result; } else { return 0; } } int Type::NumConstants() { DisallowHeapAllocation no_allocation; if (this->IsConstant()) { return 1; } else if (this->IsUnion()) { int result = 0; for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) { if (this->AsUnion()->Get(i)->IsConstant()) ++result; } return result; } else { return 0; } } template Type* Type::Iterator::get_type() { DCHECK(!Done()); return type_->IsUnion() ? type_->AsUnion()->Get(index_) : type_; } // C++ cannot specialise nested templates, so we have to go through this // contortion with an auxiliary template to simulate it. template struct TypeImplIteratorAux { static bool matches(Type* type); static i::Handle current(Type* type); }; template <> struct TypeImplIteratorAux { static bool matches(Type* type) { return type->IsClass(); } static i::Handle current(Type* type) { return type->AsClass()->Map(); } }; template <> struct TypeImplIteratorAux { static bool matches(Type* type) { return type->IsConstant(); } static i::Handle current(Type* type) { return type->AsConstant()->Value(); } }; template bool Type::Iterator::matches(Type* type) { return TypeImplIteratorAux::matches(type); } template i::Handle Type::Iterator::Current() { return TypeImplIteratorAux::current(get_type()); } template void Type::Iterator::Advance() { DisallowHeapAllocation no_allocation; ++index_; if (type_->IsUnion()) { for (int n = type_->AsUnion()->Length(); index_ < n; ++index_) { if (matches(type_->AsUnion()->Get(index_))) return; } } else if (index_ == 0 && matches(type_)) { return; } index_ = -1; } // ----------------------------------------------------------------------------- // Printing. const char* BitsetType::Name(bitset bits) { switch (bits) { case REPRESENTATION(kAny): return "Any"; #define RETURN_NAMED_REPRESENTATION_TYPE(type, value) \ case REPRESENTATION(k##type): return #type; REPRESENTATION_BITSET_TYPE_LIST(RETURN_NAMED_REPRESENTATION_TYPE) #undef RETURN_NAMED_REPRESENTATION_TYPE #define RETURN_NAMED_SEMANTIC_TYPE(type, value) \ case SEMANTIC(k##type): return #type; SEMANTIC_BITSET_TYPE_LIST(RETURN_NAMED_SEMANTIC_TYPE) INTERNAL_BITSET_TYPE_LIST(RETURN_NAMED_SEMANTIC_TYPE) #undef RETURN_NAMED_SEMANTIC_TYPE default: return NULL; } } void BitsetType::Print(std::ostream& os, // NOLINT bitset bits) { DisallowHeapAllocation no_allocation; const char* name = Name(bits); if (name != NULL) { os << name; return; } // clang-format off static const bitset named_bitsets[] = { #define BITSET_CONSTANT(type, value) REPRESENTATION(k##type), REPRESENTATION_BITSET_TYPE_LIST(BITSET_CONSTANT) #undef BITSET_CONSTANT #define BITSET_CONSTANT(type, value) SEMANTIC(k##type), INTERNAL_BITSET_TYPE_LIST(BITSET_CONSTANT) SEMANTIC_BITSET_TYPE_LIST(BITSET_CONSTANT) #undef BITSET_CONSTANT }; // clang-format on bool is_first = true; os << "("; for (int i(arraysize(named_bitsets) - 1); bits != 0 && i >= 0; --i) { bitset subset = named_bitsets[i]; if ((bits & subset) == subset) { if (!is_first) os << " | "; is_first = false; os << Name(subset); bits -= subset; } } DCHECK(bits == 0); os << ")"; } void Type::PrintTo(std::ostream& os, PrintDimension dim) { DisallowHeapAllocation no_allocation; if (dim != REPRESENTATION_DIM) { if (this->IsBitset()) { BitsetType::Print(os, SEMANTIC(this->AsBitset())); } else if (this->IsClass()) { os << "Class(" << static_cast(*this->AsClass()->Map()) << " < "; BitsetType::New(BitsetType::Lub(this))->PrintTo(os, dim); os << ")"; } else if (this->IsConstant()) { os << "Constant(" << Brief(*this->AsConstant()->Value()) << ")"; } else if (this->IsRange()) { std::ostream::fmtflags saved_flags = os.setf(std::ios::fixed); std::streamsize saved_precision = os.precision(0); os << "Range(" << this->AsRange()->Min() << ", " << this->AsRange()->Max() << ")"; os.flags(saved_flags); os.precision(saved_precision); } else if (this->IsContext()) { os << "Context("; this->AsContext()->Outer()->PrintTo(os, dim); os << ")"; } else if (this->IsUnion()) { os << "("; for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) { Type* type_i = this->AsUnion()->Get(i); if (i > 0) os << " | "; type_i->PrintTo(os, dim); } os << ")"; } else if (this->IsArray()) { os << "Array("; AsArray()->Element()->PrintTo(os, dim); os << ")"; } else if (this->IsFunction()) { if (!this->AsFunction()->Receiver()->IsAny()) { this->AsFunction()->Receiver()->PrintTo(os, dim); os << "."; } os << "("; for (int i = 0; i < this->AsFunction()->Arity(); ++i) { if (i > 0) os << ", "; this->AsFunction()->Parameter(i)->PrintTo(os, dim); } os << ")->"; this->AsFunction()->Result()->PrintTo(os, dim); } else if (this->IsTuple()) { os << "<"; for (int i = 0, n = this->AsTuple()->Arity(); i < n; ++i) { Type* type_i = this->AsTuple()->Element(i); if (i > 0) os << ", "; type_i->PrintTo(os, dim); } os << ">"; } else { UNREACHABLE(); } } if (dim == BOTH_DIMS) os << "/"; if (dim != SEMANTIC_DIM) { BitsetType::Print(os, REPRESENTATION(this->BitsetLub())); } } #ifdef DEBUG void Type::Print() { OFStream os(stdout); PrintTo(os); os << std::endl; } void BitsetType::Print(bitset bits) { OFStream os(stdout); Print(os, bits); os << std::endl; } #endif // static FieldType* FieldType::None() { return reinterpret_cast(Smi::FromInt(0)); } // static FieldType* FieldType::Any() { return reinterpret_cast(Smi::FromInt(1)); } // static Handle FieldType::None(Isolate* isolate) { return handle(None(), isolate); } // static Handle FieldType::Any(Isolate* isolate) { return handle(Any(), isolate); } // static FieldType* FieldType::Class(i::Map* map) { return FieldType::cast(map); } // static Handle FieldType::Class(i::Handle map, Isolate* isolate) { return handle(Class(*map), isolate); } // static FieldType* FieldType::cast(Object* object) { DCHECK(object == None() || object == Any() || object->IsMap()); return reinterpret_cast(object); } bool FieldType::NowContains(Object* value) { if (this == Any()) return true; if (this == None()) return false; if (!value->IsHeapObject()) return false; return HeapObject::cast(value)->map() == Map::cast(this); } bool FieldType::NowContains(Handle value) { return NowContains(*value); } bool FieldType::IsClass() { return this->IsMap(); } Handle FieldType::AsClass() { DCHECK(IsClass()); i::Map* map = Map::cast(this); return handle(map, map->GetIsolate()); } bool FieldType::NowStable() { return !this->IsClass() || this->AsClass()->is_stable(); } bool FieldType::NowIs(FieldType* other) { if (other->IsAny()) return true; if (IsNone()) return true; if (other->IsNone()) return false; if (IsAny()) return false; DCHECK(IsClass()); DCHECK(other->IsClass()); return this == other; } bool FieldType::NowIs(Handle other) { return NowIs(*other); } Type* FieldType::Convert(Zone* zone) { if (IsAny()) return Type::Any(); if (IsNone()) return Type::None(); DCHECK(IsClass()); return Type::Class(AsClass(), zone); } void FieldType::PrintTo(std::ostream& os) { if (IsAny()) { os << "Any"; } else if (IsNone()) { os << "None"; } else { DCHECK(IsClass()); os << "Class(" << static_cast(*AsClass()) << ")"; } } BitsetType::bitset BitsetType::SignedSmall() { return i::SmiValuesAre31Bits() ? kSigned31 : kSigned32; } BitsetType::bitset BitsetType::UnsignedSmall() { return i::SmiValuesAre31Bits() ? kUnsigned30 : kUnsigned31; } #define CONSTRUCT_SIMD_TYPE(NAME, Name, name, lane_count, lane_type) \ Type* Type::Name(Isolate* isolate, Zone* zone) { \ return Class(i::handle(isolate->heap()->name##_map()), zone); \ } SIMD128_TYPES(CONSTRUCT_SIMD_TYPE) #undef CONSTRUCT_SIMD_TYPE // ----------------------------------------------------------------------------- // Instantiations. template class Type::Iterator; template class Type::Iterator; } // namespace internal } // namespace v8