// Copyright 2011 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "store-buffer.h" #include "store-buffer-inl.h" #include "v8-counters.h" namespace v8 { namespace internal { StoreBuffer::StoreBuffer(Heap* heap) : heap_(heap), start_(NULL), limit_(NULL), old_start_(NULL), old_limit_(NULL), old_top_(NULL), old_reserved_limit_(NULL), old_buffer_is_sorted_(false), old_buffer_is_filtered_(false), during_gc_(false), store_buffer_rebuilding_enabled_(false), callback_(NULL), may_move_store_buffer_entries_(true), virtual_memory_(NULL), hash_map_1_(NULL), hash_map_2_(NULL) { } void StoreBuffer::Setup() { virtual_memory_ = new VirtualMemory(kStoreBufferSize * 3); uintptr_t start_as_int = reinterpret_cast(virtual_memory_->address()); start_ = reinterpret_cast(RoundUp(start_as_int, kStoreBufferSize * 2)); limit_ = start_ + (kStoreBufferSize / kPointerSize); old_virtual_memory_ = new VirtualMemory(kOldStoreBufferLength * kPointerSize); old_top_ = old_start_ = reinterpret_cast(old_virtual_memory_->address()); // Don't know the alignment requirements of the OS, but it is certainly not // less than 0xfff. ASSERT((reinterpret_cast(old_start_) & 0xfff) == 0); int initial_length = static_cast(OS::CommitPageSize() / kPointerSize); ASSERT(initial_length > 0); ASSERT(initial_length <= kOldStoreBufferLength); old_limit_ = old_start_ + initial_length; old_reserved_limit_ = old_start_ + kOldStoreBufferLength; CHECK(old_virtual_memory_->Commit( reinterpret_cast(old_start_), (old_limit_ - old_start_) * kPointerSize, false)); ASSERT(reinterpret_cast
(start_) >= virtual_memory_->address()); ASSERT(reinterpret_cast
(limit_) >= virtual_memory_->address()); Address* vm_limit = reinterpret_cast( reinterpret_cast(virtual_memory_->address()) + virtual_memory_->size()); ASSERT(start_ <= vm_limit); ASSERT(limit_ <= vm_limit); USE(vm_limit); ASSERT((reinterpret_cast(limit_) & kStoreBufferOverflowBit) != 0); ASSERT((reinterpret_cast(limit_ - 1) & kStoreBufferOverflowBit) == 0); CHECK(virtual_memory_->Commit(reinterpret_cast
(start_), kStoreBufferSize, false)); // Not executable. heap_->public_set_store_buffer_top(start_); hash_map_1_ = new uintptr_t[kHashMapLength]; hash_map_2_ = new uintptr_t[kHashMapLength]; ZapHashTables(); } void StoreBuffer::TearDown() { delete virtual_memory_; delete old_virtual_memory_; delete[] hash_map_1_; delete[] hash_map_2_; old_start_ = old_top_ = old_limit_ = old_reserved_limit_ = NULL; start_ = limit_ = NULL; heap_->public_set_store_buffer_top(start_); } void StoreBuffer::StoreBufferOverflow(Isolate* isolate) { isolate->heap()->store_buffer()->Compact(); } #if V8_TARGET_ARCH_X64 static int CompareAddresses(const void* void_a, const void* void_b) { intptr_t a = reinterpret_cast(*reinterpret_cast(void_a)); intptr_t b = reinterpret_cast(*reinterpret_cast(void_b)); // Unfortunately if int is smaller than intptr_t there is no branch-free // way to return a number with the same sign as the difference between the // pointers. if (a == b) return 0; if (a < b) return -1; ASSERT(a > b); return 1; } #else static int CompareAddresses(const void* void_a, const void* void_b) { intptr_t a = reinterpret_cast(*reinterpret_cast(void_a)); intptr_t b = reinterpret_cast(*reinterpret_cast(void_b)); ASSERT(sizeof(1) == sizeof(a)); // Shift down to avoid wraparound. return (a >> kPointerSizeLog2) - (b >> kPointerSizeLog2); } #endif void StoreBuffer::Uniq() { ASSERT(HashTablesAreZapped()); // Remove adjacent duplicates and cells that do not point at new space. Address previous = NULL; Address* write = old_start_; ASSERT(may_move_store_buffer_entries_); for (Address* read = old_start_; read < old_top_; read++) { Address current = *read; if (current != previous) { if (heap_->InNewSpace(*reinterpret_cast(current))) { *write++ = current; } } previous = current; } old_top_ = write; } void StoreBuffer::EnsureSpace(intptr_t space_needed) { while (old_limit_ - old_top_ < space_needed && old_limit_ < old_reserved_limit_) { size_t grow = old_limit_ - old_start_; // Double size. CHECK(old_virtual_memory_->Commit(reinterpret_cast(old_limit_), grow * kPointerSize, false)); old_limit_ += grow; } if (old_limit_ - old_top_ >= space_needed) return; if (old_buffer_is_filtered_) return; ASSERT(may_move_store_buffer_entries_); Compact(); old_buffer_is_filtered_ = true; bool page_has_scan_on_scavenge_flag = false; PointerChunkIterator it(heap_); MemoryChunk* chunk; while ((chunk = it.next()) != NULL) { if (chunk->scan_on_scavenge()) page_has_scan_on_scavenge_flag = true; } if (page_has_scan_on_scavenge_flag) { Filter(MemoryChunk::SCAN_ON_SCAVENGE); } // If filtering out the entries from scan_on_scavenge pages got us down to // less than half full, then we are satisfied with that. if (old_limit_ - old_top_ > old_top_ - old_start_) return; // Sample 1 entry in 97 and filter out the pages where we estimate that more // than 1 in 8 pointers are to new space. static const int kSampleFinenesses = 5; static const struct Samples { int prime_sample_step; int threshold; } samples[kSampleFinenesses] = { { 97, ((Page::kPageSize / kPointerSize) / 97) / 8 }, { 23, ((Page::kPageSize / kPointerSize) / 23) / 16 }, { 7, ((Page::kPageSize / kPointerSize) / 7) / 32 }, { 3, ((Page::kPageSize / kPointerSize) / 3) / 256 }, { 1, 0} }; for (int i = kSampleFinenesses - 1; i >= 0; i--) { ExemptPopularPages(samples[i].prime_sample_step, samples[i].threshold); // As a last resort we mark all pages as being exempt from the store buffer. ASSERT(i != 0 || old_top_ == old_start_); if (old_limit_ - old_top_ > old_top_ - old_start_) return; } UNREACHABLE(); } // Sample the store buffer to see if some pages are taking up a lot of space // in the store buffer. void StoreBuffer::ExemptPopularPages(int prime_sample_step, int threshold) { PointerChunkIterator it(heap_); MemoryChunk* chunk; while ((chunk = it.next()) != NULL) { chunk->set_store_buffer_counter(0); } bool created_new_scan_on_scavenge_pages = false; MemoryChunk* previous_chunk = NULL; for (Address* p = old_start_; p < old_top_; p += prime_sample_step) { Address addr = *p; MemoryChunk* containing_chunk = NULL; if (previous_chunk != NULL && previous_chunk->Contains(addr)) { containing_chunk = previous_chunk; } else { containing_chunk = MemoryChunk::FromAnyPointerAddress(addr); } int old_counter = containing_chunk->store_buffer_counter(); if (old_counter == threshold) { containing_chunk->set_scan_on_scavenge(true); created_new_scan_on_scavenge_pages = true; } containing_chunk->set_store_buffer_counter(old_counter + 1); previous_chunk = containing_chunk; } if (created_new_scan_on_scavenge_pages) { Filter(MemoryChunk::SCAN_ON_SCAVENGE); } old_buffer_is_filtered_ = true; } void StoreBuffer::Filter(int flag) { Address* new_top = old_start_; MemoryChunk* previous_chunk = NULL; for (Address* p = old_start_; p < old_top_; p++) { Address addr = *p; MemoryChunk* containing_chunk = NULL; if (previous_chunk != NULL && previous_chunk->Contains(addr)) { containing_chunk = previous_chunk; } else { containing_chunk = MemoryChunk::FromAnyPointerAddress(addr); previous_chunk = containing_chunk; } if (!containing_chunk->IsFlagSet(flag)) { *new_top++ = addr; } } old_top_ = new_top; } void StoreBuffer::SortUniq() { Compact(); if (old_buffer_is_sorted_) return; ZapHashTables(); qsort(reinterpret_cast(old_start_), old_top_ - old_start_, sizeof(*old_top_), &CompareAddresses); Uniq(); old_buffer_is_sorted_ = true; } bool StoreBuffer::PrepareForIteration() { Compact(); PointerChunkIterator it(heap_); MemoryChunk* chunk; bool page_has_scan_on_scavenge_flag = false; while ((chunk = it.next()) != NULL) { if (chunk->scan_on_scavenge()) page_has_scan_on_scavenge_flag = true; } if (page_has_scan_on_scavenge_flag) { Filter(MemoryChunk::SCAN_ON_SCAVENGE); } ZapHashTables(); return page_has_scan_on_scavenge_flag; } #ifdef DEBUG void StoreBuffer::Clean() { ZapHashTables(); Uniq(); // Also removes things that no longer point to new space. CheckForFullBuffer(); } static bool Zapped(char* start, int size) { for (int i = 0; i < size; i++) { if (start[i] != 0) return false; } return true; } bool StoreBuffer::HashTablesAreZapped() { return Zapped(reinterpret_cast(hash_map_1_), sizeof(uintptr_t) * kHashMapLength) && Zapped(reinterpret_cast(hash_map_2_), sizeof(uintptr_t) * kHashMapLength); } static Address* in_store_buffer_1_element_cache = NULL; bool StoreBuffer::CellIsInStoreBuffer(Address cell_address) { if (!FLAG_enable_slow_asserts) return true; if (in_store_buffer_1_element_cache != NULL && *in_store_buffer_1_element_cache == cell_address) { return true; } Address* top = reinterpret_cast(heap_->store_buffer_top()); for (Address* current = top - 1; current >= start_; current--) { if (*current == cell_address) { in_store_buffer_1_element_cache = current; return true; } } for (Address* current = old_top_ - 1; current >= old_start_; current--) { if (*current == cell_address) { in_store_buffer_1_element_cache = current; return true; } } return false; } #endif void StoreBuffer::ZapHashTables() { memset(reinterpret_cast(hash_map_1_), 0, sizeof(uintptr_t) * kHashMapLength); memset(reinterpret_cast(hash_map_2_), 0, sizeof(uintptr_t) * kHashMapLength); } void StoreBuffer::GCPrologue() { ZapHashTables(); during_gc_ = true; } #ifdef DEBUG static void DummyScavengePointer(HeapObject** p, HeapObject* o) { // Do nothing. } void StoreBuffer::VerifyPointers(PagedSpace* space, RegionCallback region_callback) { PageIterator it(space); while (it.has_next()) { Page* page = it.next(); FindPointersToNewSpaceOnPage( reinterpret_cast(page->owner()), page, region_callback, &DummyScavengePointer); } } void StoreBuffer::VerifyPointers(LargeObjectSpace* space) { LargeObjectIterator it(space); for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) { if (object->IsFixedArray()) { Address slot_address = object->address(); Address end = object->address() + object->Size(); while (slot_address < end) { HeapObject** slot = reinterpret_cast(slot_address); // When we are not in GC the Heap::InNewSpace() predicate // checks that pointers which satisfy predicate point into // the active semispace. heap_->InNewSpace(*slot); slot_address += kPointerSize; } } } } #endif void StoreBuffer::Verify() { #ifdef DEBUG VerifyPointers(heap_->old_pointer_space(), &StoreBuffer::FindPointersToNewSpaceInRegion); VerifyPointers(heap_->map_space(), &StoreBuffer::FindPointersToNewSpaceInMapsRegion); VerifyPointers(heap_->lo_space()); #endif } void StoreBuffer::GCEpilogue() { during_gc_ = false; if (FLAG_verify_heap) { Verify(); } } void StoreBuffer::FindPointersToNewSpaceInRegion( Address start, Address end, ObjectSlotCallback slot_callback) { for (Address slot_address = start; slot_address < end; slot_address += kPointerSize) { Object** slot = reinterpret_cast(slot_address); if (heap_->InNewSpace(*slot)) { HeapObject* object = reinterpret_cast(*slot); ASSERT(object->IsHeapObject()); slot_callback(reinterpret_cast(slot), object); if (heap_->InNewSpace(*slot)) { EnterDirectlyIntoStoreBuffer(slot_address); } } } } // Compute start address of the first map following given addr. static inline Address MapStartAlign(Address addr) { Address page = Page::FromAddress(addr)->ObjectAreaStart(); return page + (((addr - page) + (Map::kSize - 1)) / Map::kSize * Map::kSize); } // Compute end address of the first map preceding given addr. static inline Address MapEndAlign(Address addr) { Address page = Page::FromAllocationTop(addr)->ObjectAreaStart(); return page + ((addr - page) / Map::kSize * Map::kSize); } void StoreBuffer::FindPointersToNewSpaceInMaps( Address start, Address end, ObjectSlotCallback slot_callback) { ASSERT(MapStartAlign(start) == start); ASSERT(MapEndAlign(end) == end); Address map_address = start; while (map_address < end) { ASSERT(!heap_->InNewSpace(Memory::Object_at(map_address))); ASSERT(Memory::Object_at(map_address)->IsMap()); Address pointer_fields_start = map_address + Map::kPointerFieldsBeginOffset; Address pointer_fields_end = map_address + Map::kPointerFieldsEndOffset; FindPointersToNewSpaceInRegion(pointer_fields_start, pointer_fields_end, slot_callback); map_address += Map::kSize; } } void StoreBuffer::FindPointersToNewSpaceInMapsRegion( Address start, Address end, ObjectSlotCallback slot_callback) { Address map_aligned_start = MapStartAlign(start); Address map_aligned_end = MapEndAlign(end); ASSERT(map_aligned_start == start); ASSERT(map_aligned_end == end); FindPointersToNewSpaceInMaps(map_aligned_start, map_aligned_end, slot_callback); } // This function iterates over all the pointers in a paged space in the heap, // looking for pointers into new space. Within the pages there may be dead // objects that have not been overwritten by free spaces or fillers because of // lazy sweeping. These dead objects may not contain pointers to new space. // The garbage areas that have been swept properly (these will normally be the // large ones) will be marked with free space and filler map words. In // addition any area that has never been used at all for object allocation must // be marked with a free space or filler. Because the free space and filler // maps do not move we can always recognize these even after a compaction. // Normal objects like FixedArrays and JSObjects should not contain references // to these maps. The special garbage section (see comment in spaces.h) is // skipped since it can contain absolutely anything. Any objects that are // allocated during iteration may or may not be visited by the iteration, but // they will not be partially visited. void StoreBuffer::FindPointersToNewSpaceOnPage( PagedSpace* space, Page* page, RegionCallback region_callback, ObjectSlotCallback slot_callback) { Address visitable_start = page->ObjectAreaStart(); Address end_of_page = page->ObjectAreaEnd(); Address visitable_end = visitable_start; Object* free_space_map = heap_->free_space_map(); Object* two_pointer_filler_map = heap_->two_pointer_filler_map(); while (visitable_end < end_of_page) { Object* o = *reinterpret_cast(visitable_end); // Skip fillers but not things that look like fillers in the special // garbage section which can contain anything. if (o == free_space_map || o == two_pointer_filler_map || (visitable_end == space->top() && visitable_end != space->limit())) { if (visitable_start != visitable_end) { // After calling this the special garbage section may have moved. (this->*region_callback)(visitable_start, visitable_end, slot_callback); if (visitable_end >= space->top() && visitable_end < space->limit()) { visitable_end = space->limit(); visitable_start = visitable_end; continue; } } if (visitable_end == space->top() && visitable_end != space->limit()) { visitable_start = visitable_end = space->limit(); } else { // At this point we are either at the start of a filler or we are at // the point where the space->top() used to be before the // visit_pointer_region call above. Either way we can skip the // object at the current spot: We don't promise to visit objects // allocated during heap traversal, and if space->top() moved then it // must be because an object was allocated at this point. visitable_start = visitable_end + HeapObject::FromAddress(visitable_end)->Size(); visitable_end = visitable_start; } } else { ASSERT(o != free_space_map); ASSERT(o != two_pointer_filler_map); ASSERT(visitable_end < space->top() || visitable_end >= space->limit()); visitable_end += kPointerSize; } } ASSERT(visitable_end == end_of_page); if (visitable_start != visitable_end) { (this->*region_callback)(visitable_start, visitable_end, slot_callback); } } void StoreBuffer::IteratePointersInStoreBuffer( ObjectSlotCallback slot_callback) { Address* limit = old_top_; old_top_ = old_start_; { DontMoveStoreBufferEntriesScope scope(this); for (Address* current = old_start_; current < limit; current++) { #ifdef DEBUG Address* saved_top = old_top_; #endif Object** slot = reinterpret_cast(*current); Object* object = *slot; if (heap_->InFromSpace(object)) { HeapObject* heap_object = reinterpret_cast(object); slot_callback(reinterpret_cast(slot), heap_object); if (heap_->InNewSpace(*slot)) { EnterDirectlyIntoStoreBuffer(reinterpret_cast
(slot)); } } ASSERT(old_top_ == saved_top + 1 || old_top_ == saved_top); } } } void StoreBuffer::IteratePointersToNewSpace(ObjectSlotCallback slot_callback) { // We do not sort or remove duplicated entries from the store buffer because // we expect that callback will rebuild the store buffer thus removing // all duplicates and pointers to old space. bool some_pages_to_scan = PrepareForIteration(); // TODO(gc): we want to skip slots on evacuation candidates // but we can't simply figure that out from slot address // because slot can belong to a large object. IteratePointersInStoreBuffer(slot_callback); // We are done scanning all the pointers that were in the store buffer, but // there may be some pages marked scan_on_scavenge that have pointers to new // space that are not in the store buffer. We must scan them now. As we // scan, the surviving pointers to new space will be added to the store // buffer. If there are still a lot of pointers to new space then we will // keep the scan_on_scavenge flag on the page and discard the pointers that // were added to the store buffer. If there are not many pointers to new // space left on the page we will keep the pointers in the store buffer and // remove the flag from the page. if (some_pages_to_scan) { if (callback_ != NULL) { (*callback_)(heap_, NULL, kStoreBufferStartScanningPagesEvent); } PointerChunkIterator it(heap_); MemoryChunk* chunk; while ((chunk = it.next()) != NULL) { if (chunk->scan_on_scavenge()) { chunk->set_scan_on_scavenge(false); if (callback_ != NULL) { (*callback_)(heap_, chunk, kStoreBufferScanningPageEvent); } if (chunk->owner() == heap_->lo_space()) { LargePage* large_page = reinterpret_cast(chunk); HeapObject* array = large_page->GetObject(); ASSERT(array->IsFixedArray()); Address start = array->address(); Address end = start + array->Size(); FindPointersToNewSpaceInRegion(start, end, slot_callback); } else { Page* page = reinterpret_cast(chunk); PagedSpace* owner = reinterpret_cast(page->owner()); FindPointersToNewSpaceOnPage( owner, page, (owner == heap_->map_space() ? &StoreBuffer::FindPointersToNewSpaceInMapsRegion : &StoreBuffer::FindPointersToNewSpaceInRegion), slot_callback); } } } if (callback_ != NULL) { (*callback_)(heap_, NULL, kStoreBufferScanningPageEvent); } } } void StoreBuffer::Compact() { Address* top = reinterpret_cast(heap_->store_buffer_top()); if (top == start_) return; // There's no check of the limit in the loop below so we check here for // the worst case (compaction doesn't eliminate any pointers). ASSERT(top <= limit_); heap_->public_set_store_buffer_top(start_); EnsureSpace(top - start_); ASSERT(may_move_store_buffer_entries_); // Goes through the addresses in the store buffer attempting to remove // duplicates. In the interest of speed this is a lossy operation. Some // duplicates will remain. We have two hash tables with different hash // functions to reduce the number of unnecessary clashes. for (Address* current = start_; current < top; current++) { ASSERT(!heap_->cell_space()->Contains(*current)); ASSERT(!heap_->code_space()->Contains(*current)); ASSERT(!heap_->old_data_space()->Contains(*current)); uintptr_t int_addr = reinterpret_cast(*current); // Shift out the last bits including any tags. int_addr >>= kPointerSizeLog2; int hash1 = ((int_addr ^ (int_addr >> kHashMapLengthLog2)) & (kHashMapLength - 1)); if (hash_map_1_[hash1] == int_addr) continue; int hash2 = ((int_addr - (int_addr >> kHashMapLengthLog2)) & (kHashMapLength - 1)); hash2 ^= hash2 >> (kHashMapLengthLog2 * 2); if (hash_map_2_[hash2] == int_addr) continue; if (hash_map_1_[hash1] == 0) { hash_map_1_[hash1] = int_addr; } else if (hash_map_2_[hash2] == 0) { hash_map_2_[hash2] = int_addr; } else { // Rather than slowing down we just throw away some entries. This will // cause some duplicates to remain undetected. hash_map_1_[hash1] = int_addr; hash_map_2_[hash2] = 0; } old_buffer_is_sorted_ = false; old_buffer_is_filtered_ = false; *old_top_++ = reinterpret_cast
(int_addr << kPointerSizeLog2); ASSERT(old_top_ <= old_limit_); } heap_->isolate()->counters()->store_buffer_compactions()->Increment(); CheckForFullBuffer(); } void StoreBuffer::CheckForFullBuffer() { EnsureSpace(kStoreBufferSize * 2); } } } // namespace v8::internal