// Copyright 2013 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "src/v8.h" #include "src/arm64/utils-arm64.h" #include "src/macro-assembler.h" #include "test/cctest/cctest.h" #include "test/cctest/test-utils-arm64.h" using namespace v8::internal; #define __ masm-> bool Equal32(uint32_t expected, const RegisterDump*, uint32_t result) { if (result != expected) { printf("Expected 0x%08" PRIx32 "\t Found 0x%08" PRIx32 "\n", expected, result); } return expected == result; } bool Equal64(uint64_t expected, const RegisterDump*, uint64_t result) { if (result != expected) { printf("Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n", expected, result); } return expected == result; } bool EqualFP32(float expected, const RegisterDump*, float result) { if (float_to_rawbits(expected) == float_to_rawbits(result)) { return true; } else { if (std::isnan(expected) || (expected == 0.0)) { printf("Expected 0x%08" PRIx32 "\t Found 0x%08" PRIx32 "\n", float_to_rawbits(expected), float_to_rawbits(result)); } else { printf("Expected %.9f (0x%08" PRIx32 ")\t " "Found %.9f (0x%08" PRIx32 ")\n", expected, float_to_rawbits(expected), result, float_to_rawbits(result)); } return false; } } bool EqualFP64(double expected, const RegisterDump*, double result) { if (double_to_rawbits(expected) == double_to_rawbits(result)) { return true; } if (std::isnan(expected) || (expected == 0.0)) { printf("Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n", double_to_rawbits(expected), double_to_rawbits(result)); } else { printf("Expected %.17f (0x%016" PRIx64 ")\t " "Found %.17f (0x%016" PRIx64 ")\n", expected, double_to_rawbits(expected), result, double_to_rawbits(result)); } return false; } bool Equal32(uint32_t expected, const RegisterDump* core, const Register& reg) { DCHECK(reg.Is32Bits()); // Retrieve the corresponding X register so we can check that the upper part // was properly cleared. int64_t result_x = core->xreg(reg.code()); if ((result_x & 0xffffffff00000000L) != 0) { printf("Expected 0x%08" PRIx32 "\t Found 0x%016" PRIx64 "\n", expected, result_x); return false; } uint32_t result_w = core->wreg(reg.code()); return Equal32(expected, core, result_w); } bool Equal64(uint64_t expected, const RegisterDump* core, const Register& reg) { DCHECK(reg.Is64Bits()); uint64_t result = core->xreg(reg.code()); return Equal64(expected, core, result); } bool EqualFP32(float expected, const RegisterDump* core, const FPRegister& fpreg) { DCHECK(fpreg.Is32Bits()); // Retrieve the corresponding D register so we can check that the upper part // was properly cleared. uint64_t result_64 = core->dreg_bits(fpreg.code()); if ((result_64 & 0xffffffff00000000L) != 0) { printf("Expected 0x%08" PRIx32 " (%f)\t Found 0x%016" PRIx64 "\n", float_to_rawbits(expected), expected, result_64); return false; } return EqualFP32(expected, core, core->sreg(fpreg.code())); } bool EqualFP64(double expected, const RegisterDump* core, const FPRegister& fpreg) { DCHECK(fpreg.Is64Bits()); return EqualFP64(expected, core, core->dreg(fpreg.code())); } bool Equal64(const Register& reg0, const RegisterDump* core, const Register& reg1) { DCHECK(reg0.Is64Bits() && reg1.Is64Bits()); int64_t expected = core->xreg(reg0.code()); int64_t result = core->xreg(reg1.code()); return Equal64(expected, core, result); } static char FlagN(uint32_t flags) { return (flags & NFlag) ? 'N' : 'n'; } static char FlagZ(uint32_t flags) { return (flags & ZFlag) ? 'Z' : 'z'; } static char FlagC(uint32_t flags) { return (flags & CFlag) ? 'C' : 'c'; } static char FlagV(uint32_t flags) { return (flags & VFlag) ? 'V' : 'v'; } bool EqualNzcv(uint32_t expected, uint32_t result) { DCHECK((expected & ~NZCVFlag) == 0); DCHECK((result & ~NZCVFlag) == 0); if (result != expected) { printf("Expected: %c%c%c%c\t Found: %c%c%c%c\n", FlagN(expected), FlagZ(expected), FlagC(expected), FlagV(expected), FlagN(result), FlagZ(result), FlagC(result), FlagV(result)); return false; } return true; } bool EqualRegisters(const RegisterDump* a, const RegisterDump* b) { for (unsigned i = 0; i < kNumberOfRegisters; i++) { if (a->xreg(i) != b->xreg(i)) { printf("x%d\t Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n", i, a->xreg(i), b->xreg(i)); return false; } } for (unsigned i = 0; i < kNumberOfFPRegisters; i++) { uint64_t a_bits = a->dreg_bits(i); uint64_t b_bits = b->dreg_bits(i); if (a_bits != b_bits) { printf("d%d\t Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n", i, a_bits, b_bits); return false; } } return true; } RegList PopulateRegisterArray(Register* w, Register* x, Register* r, int reg_size, int reg_count, RegList allowed) { RegList list = 0; int i = 0; for (unsigned n = 0; (n < kNumberOfRegisters) && (i < reg_count); n++) { if (((1UL << n) & allowed) != 0) { // Only assign allowed registers. if (r) { r[i] = Register::Create(n, reg_size); } if (x) { x[i] = Register::Create(n, kXRegSizeInBits); } if (w) { w[i] = Register::Create(n, kWRegSizeInBits); } list |= (1UL << n); i++; } } // Check that we got enough registers. DCHECK(CountSetBits(list, kNumberOfRegisters) == reg_count); return list; } RegList PopulateFPRegisterArray(FPRegister* s, FPRegister* d, FPRegister* v, int reg_size, int reg_count, RegList allowed) { RegList list = 0; int i = 0; for (unsigned n = 0; (n < kNumberOfFPRegisters) && (i < reg_count); n++) { if (((1UL << n) & allowed) != 0) { // Only assigned allowed registers. if (v) { v[i] = FPRegister::Create(n, reg_size); } if (d) { d[i] = FPRegister::Create(n, kDRegSizeInBits); } if (s) { s[i] = FPRegister::Create(n, kSRegSizeInBits); } list |= (1UL << n); i++; } } // Check that we got enough registers. DCHECK(CountSetBits(list, kNumberOfFPRegisters) == reg_count); return list; } void Clobber(MacroAssembler* masm, RegList reg_list, uint64_t const value) { Register first = NoReg; for (unsigned i = 0; i < kNumberOfRegisters; i++) { if (reg_list & (1UL << i)) { Register xn = Register::Create(i, kXRegSizeInBits); // We should never write into csp here. DCHECK(!xn.Is(csp)); if (!xn.IsZero()) { if (!first.IsValid()) { // This is the first register we've hit, so construct the literal. __ Mov(xn, value); first = xn; } else { // We've already loaded the literal, so re-use the value already // loaded into the first register we hit. __ Mov(xn, first); } } } } } void ClobberFP(MacroAssembler* masm, RegList reg_list, double const value) { FPRegister first = NoFPReg; for (unsigned i = 0; i < kNumberOfFPRegisters; i++) { if (reg_list & (1UL << i)) { FPRegister dn = FPRegister::Create(i, kDRegSizeInBits); if (!first.IsValid()) { // This is the first register we've hit, so construct the literal. __ Fmov(dn, value); first = dn; } else { // We've already loaded the literal, so re-use the value already loaded // into the first register we hit. __ Fmov(dn, first); } } } } void Clobber(MacroAssembler* masm, CPURegList reg_list) { if (reg_list.type() == CPURegister::kRegister) { // This will always clobber X registers. Clobber(masm, reg_list.list()); } else if (reg_list.type() == CPURegister::kFPRegister) { // This will always clobber D registers. ClobberFP(masm, reg_list.list()); } else { UNREACHABLE(); } } void RegisterDump::Dump(MacroAssembler* masm) { DCHECK(__ StackPointer().Is(csp)); // Ensure that we don't unintentionally clobber any registers. RegList old_tmp_list = masm->TmpList()->list(); RegList old_fptmp_list = masm->FPTmpList()->list(); masm->TmpList()->set_list(0); masm->FPTmpList()->set_list(0); // Preserve some temporary registers. Register dump_base = x0; Register dump = x1; Register tmp = x2; Register dump_base_w = dump_base.W(); Register dump_w = dump.W(); Register tmp_w = tmp.W(); // Offsets into the dump_ structure. const int x_offset = offsetof(dump_t, x_); const int w_offset = offsetof(dump_t, w_); const int d_offset = offsetof(dump_t, d_); const int s_offset = offsetof(dump_t, s_); const int sp_offset = offsetof(dump_t, sp_); const int wsp_offset = offsetof(dump_t, wsp_); const int flags_offset = offsetof(dump_t, flags_); __ Push(xzr, dump_base, dump, tmp); // Load the address where we will dump the state. __ Mov(dump_base, reinterpret_cast(&dump_)); // Dump the stack pointer (csp and wcsp). // The stack pointer cannot be stored directly; it needs to be moved into // another register first. Also, we pushed four X registers, so we need to // compensate here. __ Add(tmp, csp, 4 * kXRegSize); __ Str(tmp, MemOperand(dump_base, sp_offset)); __ Add(tmp_w, wcsp, 4 * kXRegSize); __ Str(tmp_w, MemOperand(dump_base, wsp_offset)); // Dump X registers. __ Add(dump, dump_base, x_offset); for (unsigned i = 0; i < kNumberOfRegisters; i += 2) { __ Stp(Register::XRegFromCode(i), Register::XRegFromCode(i + 1), MemOperand(dump, i * kXRegSize)); } // Dump W registers. __ Add(dump, dump_base, w_offset); for (unsigned i = 0; i < kNumberOfRegisters; i += 2) { __ Stp(Register::WRegFromCode(i), Register::WRegFromCode(i + 1), MemOperand(dump, i * kWRegSize)); } // Dump D registers. __ Add(dump, dump_base, d_offset); for (unsigned i = 0; i < kNumberOfFPRegisters; i += 2) { __ Stp(FPRegister::DRegFromCode(i), FPRegister::DRegFromCode(i + 1), MemOperand(dump, i * kDRegSize)); } // Dump S registers. __ Add(dump, dump_base, s_offset); for (unsigned i = 0; i < kNumberOfFPRegisters; i += 2) { __ Stp(FPRegister::SRegFromCode(i), FPRegister::SRegFromCode(i + 1), MemOperand(dump, i * kSRegSize)); } // Dump the flags. __ Mrs(tmp, NZCV); __ Str(tmp, MemOperand(dump_base, flags_offset)); // To dump the values that were in tmp amd dump, we need a new scratch // register. We can use any of the already dumped registers since we can // easily restore them. Register dump2_base = x10; Register dump2 = x11; DCHECK(!AreAliased(dump_base, dump, tmp, dump2_base, dump2)); // Don't lose the dump_ address. __ Mov(dump2_base, dump_base); __ Pop(tmp, dump, dump_base, xzr); __ Add(dump2, dump2_base, w_offset); __ Str(dump_base_w, MemOperand(dump2, dump_base.code() * kWRegSize)); __ Str(dump_w, MemOperand(dump2, dump.code() * kWRegSize)); __ Str(tmp_w, MemOperand(dump2, tmp.code() * kWRegSize)); __ Add(dump2, dump2_base, x_offset); __ Str(dump_base, MemOperand(dump2, dump_base.code() * kXRegSize)); __ Str(dump, MemOperand(dump2, dump.code() * kXRegSize)); __ Str(tmp, MemOperand(dump2, tmp.code() * kXRegSize)); // Finally, restore dump2_base and dump2. __ Ldr(dump2_base, MemOperand(dump2, dump2_base.code() * kXRegSize)); __ Ldr(dump2, MemOperand(dump2, dump2.code() * kXRegSize)); // Restore the MacroAssembler's scratch registers. masm->TmpList()->set_list(old_tmp_list); masm->FPTmpList()->set_list(old_fptmp_list); completed_ = true; }