// Copyright 2006-2008 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include #include "v8.h" #include "global-handles.h" #include "snapshot.h" #include "cctest.h" using namespace v8::internal; static v8::Persistent env; static void InitializeVM() { if (env.IsEmpty()) env = v8::Context::New(); v8::HandleScope scope; env->Enter(); } TEST(MarkingStack) { int mem_size = 20 * kPointerSize; byte* mem = NewArray(20*kPointerSize); Address low = reinterpret_cast
(mem); Address high = low + mem_size; MarkingStack s; s.Initialize(low, high); Address address = NULL; while (!s.is_full()) { s.Push(HeapObject::FromAddress(address)); address += kPointerSize; } while (!s.is_empty()) { Address value = s.Pop()->address(); address -= kPointerSize; CHECK_EQ(address, value); } CHECK_EQ(NULL, address); DeleteArray(mem); } TEST(Promotion) { // This test requires compaction. If compaction is turned off, we // skip the entire test. if (FLAG_never_compact) return; // Ensure that we get a compacting collection so that objects are promoted // from new space. FLAG_gc_global = true; FLAG_always_compact = true; HEAP->ConfigureHeap(2*256*KB, 4*MB, 4*MB); InitializeVM(); v8::HandleScope sc; // Allocate a fixed array in the new space. int array_size = (HEAP->MaxObjectSizeInPagedSpace() - FixedArray::kHeaderSize) / (kPointerSize * 4); Object* obj = HEAP->AllocateFixedArray(array_size)->ToObjectChecked(); Handle array(FixedArray::cast(obj)); // Array should be in the new space. CHECK(HEAP->InSpace(*array, NEW_SPACE)); // Call the m-c collector, so array becomes an old object. HEAP->CollectGarbage(OLD_POINTER_SPACE); // Array now sits in the old space CHECK(HEAP->InSpace(*array, OLD_POINTER_SPACE)); } TEST(NoPromotion) { HEAP->ConfigureHeap(2*256*KB, 4*MB, 4*MB); // Test the situation that some objects in new space are promoted to // the old space InitializeVM(); v8::HandleScope sc; // Do a mark compact GC to shrink the heap. HEAP->CollectGarbage(OLD_POINTER_SPACE); // Allocate a big Fixed array in the new space. int size = (HEAP->MaxObjectSizeInPagedSpace() - FixedArray::kHeaderSize) / kPointerSize; Object* obj = HEAP->AllocateFixedArray(size)->ToObjectChecked(); Handle array(FixedArray::cast(obj)); // Array still stays in the new space. CHECK(HEAP->InSpace(*array, NEW_SPACE)); // Allocate objects in the old space until out of memory. FixedArray* host = *array; while (true) { Object* obj; { MaybeObject* maybe_obj = HEAP->AllocateFixedArray(100, TENURED); if (!maybe_obj->ToObject(&obj)) break; } host->set(0, obj); host = FixedArray::cast(obj); } // Call mark compact GC, and it should pass. HEAP->CollectGarbage(OLD_POINTER_SPACE); // array should not be promoted because the old space is full. CHECK(HEAP->InSpace(*array, NEW_SPACE)); } TEST(MarkCompactCollector) { InitializeVM(); v8::HandleScope sc; // call mark-compact when heap is empty HEAP->CollectGarbage(OLD_POINTER_SPACE); // keep allocating garbage in new space until it fails const int ARRAY_SIZE = 100; Object* array; MaybeObject* maybe_array; do { maybe_array = HEAP->AllocateFixedArray(ARRAY_SIZE); } while (maybe_array->ToObject(&array)); HEAP->CollectGarbage(NEW_SPACE); array = HEAP->AllocateFixedArray(ARRAY_SIZE)->ToObjectChecked(); // keep allocating maps until it fails Object* mapp; MaybeObject* maybe_mapp; do { maybe_mapp = HEAP->AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize); } while (maybe_mapp->ToObject(&mapp)); HEAP->CollectGarbage(MAP_SPACE); mapp = HEAP->AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize)->ToObjectChecked(); // allocate a garbage String* func_name = String::cast(HEAP->LookupAsciiSymbol("theFunction")->ToObjectChecked()); SharedFunctionInfo* function_share = SharedFunctionInfo::cast( HEAP->AllocateSharedFunctionInfo(func_name)->ToObjectChecked()); JSFunction* function = JSFunction::cast( HEAP->AllocateFunction(*Isolate::Current()->function_map(), function_share, HEAP->undefined_value())->ToObjectChecked()); Map* initial_map = Map::cast(HEAP->AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize)->ToObjectChecked()); function->set_initial_map(initial_map); Isolate::Current()->context()->global()->SetProperty( func_name, function, NONE, kNonStrictMode)->ToObjectChecked(); JSObject* obj = JSObject::cast( HEAP->AllocateJSObject(function)->ToObjectChecked()); HEAP->CollectGarbage(OLD_POINTER_SPACE); func_name = String::cast(HEAP->LookupAsciiSymbol("theFunction")->ToObjectChecked()); CHECK(Isolate::Current()->context()->global()->HasLocalProperty(func_name)); Object* func_value = Isolate::Current()->context()->global()-> GetProperty(func_name)->ToObjectChecked(); CHECK(func_value->IsJSFunction()); function = JSFunction::cast(func_value); obj = JSObject::cast(HEAP->AllocateJSObject(function)->ToObjectChecked()); String* obj_name = String::cast(HEAP->LookupAsciiSymbol("theObject")->ToObjectChecked()); Isolate::Current()->context()->global()->SetProperty( obj_name, obj, NONE, kNonStrictMode)->ToObjectChecked(); String* prop_name = String::cast(HEAP->LookupAsciiSymbol("theSlot")->ToObjectChecked()); obj->SetProperty(prop_name, Smi::FromInt(23), NONE, kNonStrictMode)->ToObjectChecked(); HEAP->CollectGarbage(OLD_POINTER_SPACE); obj_name = String::cast(HEAP->LookupAsciiSymbol("theObject")->ToObjectChecked()); CHECK(Isolate::Current()->context()->global()->HasLocalProperty(obj_name)); CHECK(Isolate::Current()->context()->global()-> GetProperty(obj_name)->ToObjectChecked()->IsJSObject()); obj = JSObject::cast(Isolate::Current()->context()->global()-> GetProperty(obj_name)->ToObjectChecked()); prop_name = String::cast(HEAP->LookupAsciiSymbol("theSlot")->ToObjectChecked()); CHECK(obj->GetProperty(prop_name) == Smi::FromInt(23)); } static Handle CreateMap() { return FACTORY->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize); } TEST(MapCompact) { FLAG_max_map_space_pages = 16; InitializeVM(); { v8::HandleScope sc; // keep allocating maps while pointers are still encodable and thus // mark compact is permitted. Handle root = FACTORY->NewJSObjectFromMap(CreateMap()); do { Handle map = CreateMap(); map->set_prototype(*root); root = FACTORY->NewJSObjectFromMap(map); } while (HEAP->map_space()->MapPointersEncodable()); } // Now, as we don't have any handles to just allocated maps, we should // be able to trigger map compaction. // To give an additional chance to fail, try to force compaction which // should be impossible right now. HEAP->CollectAllGarbage(true); // And now map pointers should be encodable again. CHECK(HEAP->map_space()->MapPointersEncodable()); } static int gc_starts = 0; static int gc_ends = 0; static void GCPrologueCallbackFunc() { CHECK(gc_starts == gc_ends); gc_starts++; } static void GCEpilogueCallbackFunc() { CHECK(gc_starts == gc_ends + 1); gc_ends++; } TEST(GCCallback) { InitializeVM(); HEAP->SetGlobalGCPrologueCallback(&GCPrologueCallbackFunc); HEAP->SetGlobalGCEpilogueCallback(&GCEpilogueCallbackFunc); // Scavenge does not call GC callback functions. HEAP->PerformScavenge(); CHECK_EQ(0, gc_starts); CHECK_EQ(gc_ends, gc_starts); HEAP->CollectGarbage(OLD_POINTER_SPACE); CHECK_EQ(1, gc_starts); CHECK_EQ(gc_ends, gc_starts); } static int NumberOfWeakCalls = 0; static void WeakPointerCallback(v8::Persistent handle, void* id) { ASSERT(id == reinterpret_cast(1234)); NumberOfWeakCalls++; handle.Dispose(); } TEST(ObjectGroups) { GlobalHandles* global_handles = Isolate::Current()->global_handles(); InitializeVM(); NumberOfWeakCalls = 0; v8::HandleScope handle_scope; Handle g1s1 = global_handles->Create(HEAP->AllocateFixedArray(1)->ToObjectChecked()); Handle g1s2 = global_handles->Create(HEAP->AllocateFixedArray(1)->ToObjectChecked()); Handle g1c1 = global_handles->Create(HEAP->AllocateFixedArray(1)->ToObjectChecked()); global_handles->MakeWeak(g1s1.location(), reinterpret_cast(1234), &WeakPointerCallback); global_handles->MakeWeak(g1s2.location(), reinterpret_cast(1234), &WeakPointerCallback); global_handles->MakeWeak(g1c1.location(), reinterpret_cast(1234), &WeakPointerCallback); Handle g2s1 = global_handles->Create(HEAP->AllocateFixedArray(1)->ToObjectChecked()); Handle g2s2 = global_handles->Create(HEAP->AllocateFixedArray(1)->ToObjectChecked()); Handle g2c1 = global_handles->Create(HEAP->AllocateFixedArray(1)->ToObjectChecked()); global_handles->MakeWeak(g2s1.location(), reinterpret_cast(1234), &WeakPointerCallback); global_handles->MakeWeak(g2s2.location(), reinterpret_cast(1234), &WeakPointerCallback); global_handles->MakeWeak(g2c1.location(), reinterpret_cast(1234), &WeakPointerCallback); Handle root = global_handles->Create(*g1s1); // make a root. // Connect group 1 and 2, make a cycle. Handle::cast(g1s2)->set(0, *g2s2); Handle::cast(g2s1)->set(0, *g1s1); { Object** g1_objects[] = { g1s1.location(), g1s2.location() }; Object** g1_children[] = { g1c1.location() }; Object** g2_objects[] = { g2s1.location(), g2s2.location() }; Object** g2_children[] = { g2c1.location() }; global_handles->AddObjectGroup(g1_objects, 2, NULL); global_handles->AddImplicitReferences(HeapObject::cast(*g1s1), g1_children, 1); global_handles->AddObjectGroup(g2_objects, 2, NULL); global_handles->AddImplicitReferences(HeapObject::cast(*g2s2), g2_children, 1); } // Do a full GC HEAP->CollectGarbage(OLD_POINTER_SPACE); // All object should be alive. CHECK_EQ(0, NumberOfWeakCalls); // Weaken the root. global_handles->MakeWeak(root.location(), reinterpret_cast(1234), &WeakPointerCallback); // But make children strong roots---all the objects (except for children) // should be collectable now. global_handles->ClearWeakness(g1c1.location()); global_handles->ClearWeakness(g2c1.location()); // Groups are deleted, rebuild groups. { Object** g1_objects[] = { g1s1.location(), g1s2.location() }; Object** g1_children[] = { g1c1.location() }; Object** g2_objects[] = { g2s1.location(), g2s2.location() }; Object** g2_children[] = { g2c1.location() }; global_handles->AddObjectGroup(g1_objects, 2, NULL); global_handles->AddImplicitReferences(HeapObject::cast(*g1s1), g1_children, 1); global_handles->AddObjectGroup(g2_objects, 2, NULL); global_handles->AddImplicitReferences(HeapObject::cast(*g2s2), g2_children, 1); } HEAP->CollectGarbage(OLD_POINTER_SPACE); // All objects should be gone. 5 global handles in total. CHECK_EQ(5, NumberOfWeakCalls); // And now make children weak again and collect them. global_handles->MakeWeak(g1c1.location(), reinterpret_cast(1234), &WeakPointerCallback); global_handles->MakeWeak(g2c1.location(), reinterpret_cast(1234), &WeakPointerCallback); HEAP->CollectGarbage(OLD_POINTER_SPACE); CHECK_EQ(7, NumberOfWeakCalls); }