// Copyright 2008 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "ast.h" #include "assembler.h" #include "regexp-stack.h" #include "regexp-macro-assembler.h" #if V8_TARGET_ARCH_ARM #include "arm/simulator-arm.h" #elif V8_TARGET_ARCH_IA32 #include "ia32/simulator-ia32.h" #elif V8_TARGET_ARCH_X64 #include "x64/simulator-x64.h" #endif namespace v8 { namespace internal { RegExpMacroAssembler::RegExpMacroAssembler() { } RegExpMacroAssembler::~RegExpMacroAssembler() { } bool RegExpMacroAssembler::CanReadUnaligned() { #ifdef V8_HOST_CAN_READ_UNALIGNED return true; #else return false; #endif } #ifdef V8_NATIVE_REGEXP // Avoid unused code, e.g., on ARM. NativeRegExpMacroAssembler::NativeRegExpMacroAssembler() { } NativeRegExpMacroAssembler::~NativeRegExpMacroAssembler() { } bool NativeRegExpMacroAssembler::CanReadUnaligned() { #ifdef V8_TARGET_CAN_READ_UNALIGNED return true; #else return false; #endif } const byte* NativeRegExpMacroAssembler::StringCharacterPosition( String* subject, int start_index) { // Not just flat, but ultra flat. ASSERT(subject->IsExternalString() || subject->IsSeqString()); ASSERT(start_index >= 0); ASSERT(start_index <= subject->length()); if (subject->IsAsciiRepresentation()) { const byte* address; if (StringShape(subject).IsExternal()) { const char* data = ExternalAsciiString::cast(subject)->resource()->data(); address = reinterpret_cast(data); } else { ASSERT(subject->IsSeqAsciiString()); char* data = SeqAsciiString::cast(subject)->GetChars(); address = reinterpret_cast(data); } return address + start_index; } const uc16* data; if (StringShape(subject).IsExternal()) { data = ExternalTwoByteString::cast(subject)->resource()->data(); } else { ASSERT(subject->IsSeqTwoByteString()); data = SeqTwoByteString::cast(subject)->GetChars(); } return reinterpret_cast(data + start_index); } NativeRegExpMacroAssembler::Result NativeRegExpMacroAssembler::Match( Handle regexp_code, Handle subject, int* offsets_vector, int offsets_vector_length, int previous_index) { ASSERT(subject->IsFlat()); ASSERT(previous_index >= 0); ASSERT(previous_index <= subject->length()); // No allocations before calling the regexp, but we can't use // AssertNoAllocation, since regexps might be preempted, and another thread // might do allocation anyway. String* subject_ptr = *subject; // Character offsets into string. int start_offset = previous_index; int end_offset = subject_ptr->length(); bool is_ascii = subject->IsAsciiRepresentation(); if (StringShape(subject_ptr).IsCons()) { subject_ptr = ConsString::cast(subject_ptr)->first(); } else if (StringShape(subject_ptr).IsSliced()) { SlicedString* slice = SlicedString::cast(subject_ptr); start_offset += slice->start(); end_offset += slice->start(); subject_ptr = slice->buffer(); } // Ensure that an underlying string has the same ascii-ness. ASSERT(subject_ptr->IsAsciiRepresentation() == is_ascii); ASSERT(subject_ptr->IsExternalString() || subject_ptr->IsSeqString()); // String is now either Sequential or External int char_size_shift = is_ascii ? 0 : 1; int char_length = end_offset - start_offset; const byte* input_start = StringCharacterPosition(subject_ptr, start_offset); int byte_length = char_length << char_size_shift; const byte* input_end = input_start + byte_length; Result res = Execute(*regexp_code, subject_ptr, start_offset, input_start, input_end, offsets_vector, previous_index == 0); if (res == SUCCESS) { // Capture values are relative to start_offset only. // Convert them to be relative to start of string. for (int i = 0; i < offsets_vector_length; i++) { if (offsets_vector[i] >= 0) { offsets_vector[i] += previous_index; } } } return res; } NativeRegExpMacroAssembler::Result NativeRegExpMacroAssembler::Execute( Code* code, String* input, int start_offset, const byte* input_start, const byte* input_end, int* output, bool at_start) { typedef int (*matcher)(String*, int, const byte*, const byte*, int*, int, Address); matcher matcher_func = FUNCTION_CAST(code->entry()); int at_start_val = at_start ? 1 : 0; // Ensure that the minimum stack has been allocated. RegExpStack stack; Address stack_base = RegExpStack::stack_base(); int result = CALL_GENERATED_REGEXP_CODE(matcher_func, input, start_offset, input_start, input_end, output, at_start_val, stack_base); ASSERT(result <= SUCCESS); ASSERT(result >= RETRY); if (result == EXCEPTION && !Top::has_pending_exception()) { // We detected a stack overflow (on the backtrack stack) in RegExp code, // but haven't created the exception yet. Top::StackOverflow(); } return static_cast(result); } static unibrow::Mapping canonicalize; int NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16( Address byte_offset1, Address byte_offset2, size_t byte_length) { // This function is not allowed to cause a garbage collection. // A GC might move the calling generated code and invalidate the // return address on the stack. ASSERT(byte_length % 2 == 0); uc16* substring1 = reinterpret_cast(byte_offset1); uc16* substring2 = reinterpret_cast(byte_offset2); size_t length = byte_length >> 1; for (size_t i = 0; i < length; i++) { unibrow::uchar c1 = substring1[i]; unibrow::uchar c2 = substring2[i]; if (c1 != c2) { unibrow::uchar s1[1] = { c1 }; canonicalize.get(c1, '\0', s1); if (s1[0] != c2) { unibrow::uchar s2[1] = { c2 }; canonicalize.get(c2, '\0', s2); if (s1[0] != s2[0]) { return 0; } } } } return 1; } Address NativeRegExpMacroAssembler::GrowStack(Address stack_pointer, Address* stack_base) { size_t size = RegExpStack::stack_capacity(); Address old_stack_base = RegExpStack::stack_base(); ASSERT(old_stack_base == *stack_base); ASSERT(stack_pointer <= old_stack_base); ASSERT(static_cast(old_stack_base - stack_pointer) <= size); Address new_stack_base = RegExpStack::EnsureCapacity(size * 2); if (new_stack_base == NULL) { return NULL; } *stack_base = new_stack_base; intptr_t stack_content_size = old_stack_base - stack_pointer; return new_stack_base - stack_content_size; } #endif // V8_NATIVE_REGEXP } } // namespace v8::internal