// Copyright 2010 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if defined(V8_TARGET_ARCH_X64) #include "codegen-inl.h" #include "ic-inl.h" #include "runtime.h" #include "stub-cache.h" #include "utils.h" namespace v8 { namespace internal { // ---------------------------------------------------------------------------- // Static IC stub generators. // #define __ ACCESS_MASM(masm) // Helper function used to load a property from a dictionary backing storage. // This function may return false negatives, so miss_label // must always call a backup property load that is complete. // This function is safe to call if the receiver has fast properties, // or if name is not a symbol, and will jump to the miss_label in that case. static void GenerateDictionaryLoad(MacroAssembler* masm, Label* miss_label, Register r0, Register r1, Register r2, Register name, Register r4, DictionaryCheck check_dictionary) { // Register use: // // r0 - used to hold the property dictionary. // // r1 - initially the receiver. // - unchanged on any jump to miss_label. // - holds the result on exit. // // r2 - used to hold the capacity of the property dictionary. // // name - holds the name of the property and is unchanged. // r4 - used to hold the index into the property dictionary. Label done; // Check for the absence of an interceptor. // Load the map into r0. __ movq(r0, FieldOperand(r1, JSObject::kMapOffset)); // Bail out if the receiver has a named interceptor. __ testl(FieldOperand(r0, Map::kBitFieldOffset), Immediate(1 << Map::kHasNamedInterceptor)); __ j(not_zero, miss_label); // Bail out if we have a JS global proxy object. __ movzxbq(r0, FieldOperand(r0, Map::kInstanceTypeOffset)); __ cmpb(r0, Immediate(JS_GLOBAL_PROXY_TYPE)); __ j(equal, miss_label); // Possible work-around for http://crbug.com/16276. __ cmpb(r0, Immediate(JS_GLOBAL_OBJECT_TYPE)); __ j(equal, miss_label); __ cmpb(r0, Immediate(JS_BUILTINS_OBJECT_TYPE)); __ j(equal, miss_label); // Load properties array. __ movq(r0, FieldOperand(r1, JSObject::kPropertiesOffset)); if (check_dictionary == CHECK_DICTIONARY) { // Check that the properties array is a dictionary. __ Cmp(FieldOperand(r0, HeapObject::kMapOffset), Factory::hash_table_map()); __ j(not_equal, miss_label); } // Compute the capacity mask. const int kCapacityOffset = StringDictionary::kHeaderSize + StringDictionary::kCapacityIndex * kPointerSize; __ SmiToInteger32(r2, FieldOperand(r0, kCapacityOffset)); __ decl(r2); // Generate an unrolled loop that performs a few probes before // giving up. Measurements done on Gmail indicate that 2 probes // cover ~93% of loads from dictionaries. static const int kProbes = 4; const int kElementsStartOffset = StringDictionary::kHeaderSize + StringDictionary::kElementsStartIndex * kPointerSize; for (int i = 0; i < kProbes; i++) { // Compute the masked index: (hash + i + i * i) & mask. __ movl(r4, FieldOperand(name, String::kHashFieldOffset)); __ shrl(r4, Immediate(String::kHashShift)); if (i > 0) { __ addl(r4, Immediate(StringDictionary::GetProbeOffset(i))); } __ and_(r4, r2); // Scale the index by multiplying by the entry size. ASSERT(StringDictionary::kEntrySize == 3); __ lea(r4, Operand(r4, r4, times_2, 0)); // r4 = r4 * 3 // Check if the key is identical to the name. __ cmpq(name, Operand(r0, r4, times_pointer_size, kElementsStartOffset - kHeapObjectTag)); if (i != kProbes - 1) { __ j(equal, &done); } else { __ j(not_equal, miss_label); } } // Check that the value is a normal property. __ bind(&done); const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize; __ Test(Operand(r0, r4, times_pointer_size, kDetailsOffset - kHeapObjectTag), Smi::FromInt(PropertyDetails::TypeField::mask())); __ j(not_zero, miss_label); // Get the value at the masked, scaled index. const int kValueOffset = kElementsStartOffset + kPointerSize; __ movq(r1, Operand(r0, r4, times_pointer_size, kValueOffset - kHeapObjectTag)); } static void GenerateNumberDictionaryLoad(MacroAssembler* masm, Label* miss, Register elements, Register key, Register r0, Register r1, Register r2) { // Register use: // // elements - holds the slow-case elements of the receiver and is unchanged. // // key - holds the smi key on entry and is unchanged if a branch is // performed to the miss label. // Holds the result on exit if the load succeeded. // // Scratch registers: // // r0 - holds the untagged key on entry and holds the hash once computed. // // r1 - used to hold the capacity mask of the dictionary // // r2 - used for the index into the dictionary. Label done; // Compute the hash code from the untagged key. This must be kept in sync // with ComputeIntegerHash in utils.h. // // hash = ~hash + (hash << 15); __ movl(r1, r0); __ notl(r0); __ shll(r1, Immediate(15)); __ addl(r0, r1); // hash = hash ^ (hash >> 12); __ movl(r1, r0); __ shrl(r1, Immediate(12)); __ xorl(r0, r1); // hash = hash + (hash << 2); __ leal(r0, Operand(r0, r0, times_4, 0)); // hash = hash ^ (hash >> 4); __ movl(r1, r0); __ shrl(r1, Immediate(4)); __ xorl(r0, r1); // hash = hash * 2057; __ imull(r0, r0, Immediate(2057)); // hash = hash ^ (hash >> 16); __ movl(r1, r0); __ shrl(r1, Immediate(16)); __ xorl(r0, r1); // Compute capacity mask. __ SmiToInteger32(r1, FieldOperand(elements, NumberDictionary::kCapacityOffset)); __ decl(r1); // Generate an unrolled loop that performs a few probes before giving up. const int kProbes = 4; for (int i = 0; i < kProbes; i++) { // Use r2 for index calculations and keep the hash intact in r0. __ movq(r2, r0); // Compute the masked index: (hash + i + i * i) & mask. if (i > 0) { __ addl(r2, Immediate(NumberDictionary::GetProbeOffset(i))); } __ and_(r2, r1); // Scale the index by multiplying by the entry size. ASSERT(NumberDictionary::kEntrySize == 3); __ lea(r2, Operand(r2, r2, times_2, 0)); // r2 = r2 * 3 // Check if the key matches. __ cmpq(key, FieldOperand(elements, r2, times_pointer_size, NumberDictionary::kElementsStartOffset)); if (i != (kProbes - 1)) { __ j(equal, &done); } else { __ j(not_equal, miss); } } __ bind(&done); // Check that the value is a normal propety. const int kDetailsOffset = NumberDictionary::kElementsStartOffset + 2 * kPointerSize; ASSERT_EQ(NORMAL, 0); __ Test(FieldOperand(elements, r2, times_pointer_size, kDetailsOffset), Smi::FromInt(PropertyDetails::TypeField::mask())); __ j(not_zero, miss); // Get the value at the masked, scaled index. const int kValueOffset = NumberDictionary::kElementsStartOffset + kPointerSize; __ movq(key, FieldOperand(elements, r2, times_pointer_size, kValueOffset)); } // One byte opcode for test eax,0xXXXXXXXX. static const byte kTestEaxByte = 0xA9; static bool PatchInlinedMapCheck(Address address, Object* map) { // Arguments are address of start of call sequence that called // the IC, Address test_instruction_address = address + Assembler::kCallTargetAddressOffset; // The keyed load has a fast inlined case if the IC call instruction // is immediately followed by a test instruction. if (*test_instruction_address != kTestEaxByte) return false; // Fetch the offset from the test instruction to the map compare // instructions (starting with the 64-bit immediate mov of the map // address). This offset is stored in the last 4 bytes of the 5 // byte test instruction. Address delta_address = test_instruction_address + 1; int delta = *reinterpret_cast(delta_address); // Compute the map address. The map address is in the last 8 bytes // of the 10-byte immediate mov instruction (incl. REX prefix), so we add 2 // to the offset to get the map address. Address map_address = test_instruction_address + delta + 2; // Patch the map check. *(reinterpret_cast(map_address)) = map; return true; } bool KeyedLoadIC::PatchInlinedLoad(Address address, Object* map) { return PatchInlinedMapCheck(address, map); } bool KeyedStoreIC::PatchInlinedStore(Address address, Object* map) { return PatchInlinedMapCheck(address, map); } void KeyedLoadIC::ClearInlinedVersion(Address address) { // Insert null as the map to check for to make sure the map check fails // sending control flow to the IC instead of the inlined version. PatchInlinedLoad(address, Heap::null_value()); } void KeyedStoreIC::ClearInlinedVersion(Address address) { // Insert null as the elements map to check for. This will make // sure that the elements fast-case map check fails so that control // flows to the IC instead of the inlined version. PatchInlinedStore(address, Heap::null_value()); } void KeyedStoreIC::RestoreInlinedVersion(Address address) { // Restore the fast-case elements map check so that the inlined // version can be used again. PatchInlinedStore(address, Heap::fixed_array_map()); } void KeyedLoadIC::GenerateMiss(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- __ pop(rbx); __ push(rdx); // receiver __ push(rax); // name __ push(rbx); // return address // Perform tail call to the entry. ExternalReference ref = ExternalReference(IC_Utility(kKeyedLoadIC_Miss)); __ TailCallExternalReference(ref, 2, 1); } void KeyedLoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- __ pop(rbx); __ push(rdx); // receiver __ push(rax); // name __ push(rbx); // return address // Perform tail call to the entry. __ TailCallRuntime(Runtime::kKeyedGetProperty, 2, 1); } void KeyedLoadIC::GenerateGeneric(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- Label slow, check_string, index_smi, index_string; Label check_pixel_array, probe_dictionary, check_number_dictionary; // Check that the object isn't a smi. __ JumpIfSmi(rdx, &slow); // Check that the object is some kind of JS object EXCEPT JS Value type. // In the case that the object is a value-wrapper object, // we enter the runtime system to make sure that indexing // into string objects work as intended. ASSERT(JS_OBJECT_TYPE > JS_VALUE_TYPE); __ CmpObjectType(rdx, JS_OBJECT_TYPE, rcx); __ j(below, &slow); // Check bit field. __ testb(FieldOperand(rcx, Map::kBitFieldOffset), Immediate(kSlowCaseBitFieldMask)); __ j(not_zero, &slow); // Check that the key is a smi. __ JumpIfNotSmi(rax, &check_string); __ bind(&index_smi); // Now the key is known to be a smi. This place is also jumped to from below // where a numeric string is converted to a smi. __ movq(rcx, FieldOperand(rdx, JSObject::kElementsOffset)); // Check that the object is in fast mode (not dictionary). __ CompareRoot(FieldOperand(rcx, HeapObject::kMapOffset), Heap::kFixedArrayMapRootIndex); __ j(not_equal, &check_pixel_array); // Check that the key (index) is within bounds. __ SmiCompare(rax, FieldOperand(rcx, FixedArray::kLengthOffset)); __ j(above_equal, &slow); // Unsigned comparison rejects negative indices. // Fast case: Do the load. SmiIndex index = masm->SmiToIndex(rbx, rax, kPointerSizeLog2); __ movq(rbx, FieldOperand(rcx, index.reg, index.scale, FixedArray::kHeaderSize)); __ CompareRoot(rbx, Heap::kTheHoleValueRootIndex); // In case the loaded value is the_hole we have to consult GetProperty // to ensure the prototype chain is searched. __ j(equal, &slow); __ movq(rax, rbx); __ IncrementCounter(&Counters::keyed_load_generic_smi, 1); __ ret(0); __ bind(&check_pixel_array); // Check whether the elements object is a pixel array. // rdx: receiver // rax: key // rcx: elements array __ SmiToInteger32(rbx, rax); // Used on both directions of next branch. __ CompareRoot(FieldOperand(rcx, HeapObject::kMapOffset), Heap::kPixelArrayMapRootIndex); __ j(not_equal, &check_number_dictionary); __ cmpl(rbx, FieldOperand(rcx, PixelArray::kLengthOffset)); __ j(above_equal, &slow); __ movq(rax, FieldOperand(rcx, PixelArray::kExternalPointerOffset)); __ movzxbq(rax, Operand(rax, rbx, times_1, 0)); __ Integer32ToSmi(rax, rax); __ ret(0); __ bind(&check_number_dictionary); // Check whether the elements is a number dictionary. // rdx: receiver // rax: key // rbx: key as untagged int32 // rcx: elements __ CompareRoot(FieldOperand(rcx, HeapObject::kMapOffset), Heap::kHashTableMapRootIndex); __ j(not_equal, &slow); GenerateNumberDictionaryLoad(masm, &slow, rcx, rax, rbx, r9, rdi); __ ret(0); __ bind(&slow); // Slow case: Jump to runtime. // rdx: receiver // rax: key __ IncrementCounter(&Counters::keyed_load_generic_slow, 1); GenerateRuntimeGetProperty(masm); __ bind(&check_string); // The key is not a smi. // Is it a string? // rdx: receiver // rax: key __ CmpObjectType(rax, FIRST_NONSTRING_TYPE, rcx); __ j(above_equal, &slow); // Is the string an array index, with cached numeric value? __ movl(rbx, FieldOperand(rax, String::kHashFieldOffset)); __ testl(rbx, Immediate(String::kContainsCachedArrayIndexMask)); __ j(zero, &index_string); // The value in rbx is used at jump target. // Is the string a symbol? ASSERT(kSymbolTag != 0); __ testb(FieldOperand(rcx, Map::kInstanceTypeOffset), Immediate(kIsSymbolMask)); __ j(zero, &slow); // If the receiver is a fast-case object, check the keyed lookup // cache. Otherwise probe the dictionary leaving result in rcx. __ movq(rbx, FieldOperand(rdx, JSObject::kPropertiesOffset)); __ CompareRoot(FieldOperand(rbx, HeapObject::kMapOffset), Heap::kHashTableMapRootIndex); __ j(equal, &probe_dictionary); // Load the map of the receiver, compute the keyed lookup cache hash // based on 32 bits of the map pointer and the string hash. __ movq(rbx, FieldOperand(rdx, HeapObject::kMapOffset)); __ movl(rcx, rbx); __ shr(rcx, Immediate(KeyedLookupCache::kMapHashShift)); __ movl(rdi, FieldOperand(rax, String::kHashFieldOffset)); __ shr(rdi, Immediate(String::kHashShift)); __ xor_(rcx, rdi); __ and_(rcx, Immediate(KeyedLookupCache::kCapacityMask)); // Load the key (consisting of map and symbol) from the cache and // check for match. ExternalReference cache_keys = ExternalReference::keyed_lookup_cache_keys(); __ movq(rdi, rcx); __ shl(rdi, Immediate(kPointerSizeLog2 + 1)); __ movq(kScratchRegister, cache_keys); __ cmpq(rbx, Operand(kScratchRegister, rdi, times_1, 0)); __ j(not_equal, &slow); __ cmpq(rax, Operand(kScratchRegister, rdi, times_1, kPointerSize)); __ j(not_equal, &slow); // Get field offset which is a 32-bit integer and check that it is // an in-object property. ExternalReference cache_field_offsets = ExternalReference::keyed_lookup_cache_field_offsets(); __ movq(kScratchRegister, cache_field_offsets); __ movl(rdi, Operand(kScratchRegister, rcx, times_4, 0)); __ movzxbq(rcx, FieldOperand(rbx, Map::kInObjectPropertiesOffset)); __ subq(rdi, rcx); __ j(above_equal, &slow); // Load in-object property. __ movzxbq(rcx, FieldOperand(rbx, Map::kInstanceSizeOffset)); __ addq(rcx, rdi); __ movq(rax, FieldOperand(rdx, rcx, times_pointer_size, 0)); __ IncrementCounter(&Counters::keyed_load_generic_lookup_cache, 1); __ ret(0); // Do a quick inline probe of the receiver's dictionary, if it // exists. __ bind(&probe_dictionary); // rdx: receiver // rax: key GenerateDictionaryLoad(masm, &slow, rbx, rdx, rcx, rax, rdi, DICTIONARY_CHECK_DONE); __ movq(rax, rdx); __ IncrementCounter(&Counters::keyed_load_generic_symbol, 1); __ ret(0); // If the hash field contains an array index pick it out. The assert checks // that the constants for the maximum number of digits for an array index // cached in the hash field and the number of bits reserved for it does not // conflict. ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) < (1 << String::kArrayIndexValueBits)); __ bind(&index_string); // We want the smi-tagged index in rax. Even if we subsequently go to // the slow case, converting the key to a smi is always valid. // rdx: receiver // rax: key (a string) // rbx: key's hash field, including its array index value. __ and_(rbx, Immediate(String::kArrayIndexValueMask)); __ shr(rbx, Immediate(String::kHashShift)); // Here we actually clobber the key (rax) which will be used if calling into // runtime later. However as the new key is the numeric value of a string key // there is no difference in using either key. __ Integer32ToSmi(rax, rbx); // Now jump to the place where smi keys are handled. __ jmp(&index_smi); } void KeyedLoadIC::GenerateString(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- Label miss; Label index_out_of_range; Register receiver = rdx; Register index = rax; Register scratch1 = rbx; Register scratch2 = rcx; Register result = rax; StringCharAtGenerator char_at_generator(receiver, index, scratch1, scratch2, result, &miss, // When not a string. &miss, // When not a number. &index_out_of_range, STRING_INDEX_IS_ARRAY_INDEX); char_at_generator.GenerateFast(masm); __ ret(0); ICRuntimeCallHelper call_helper; char_at_generator.GenerateSlow(masm, call_helper); __ bind(&index_out_of_range); __ LoadRoot(rax, Heap::kUndefinedValueRootIndex); __ ret(0); __ bind(&miss); GenerateMiss(masm); } void KeyedLoadIC::GenerateExternalArray(MacroAssembler* masm, ExternalArrayType array_type) { // ----------- S t a t e ------------- // -- rax : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- Label slow, failed_allocation; // Check that the object isn't a smi. __ JumpIfSmi(rdx, &slow); // Check that the key is a smi. __ JumpIfNotSmi(rax, &slow); // Check that the object is a JS object. __ CmpObjectType(rdx, JS_OBJECT_TYPE, rcx); __ j(not_equal, &slow); // Check that the receiver does not require access checks. We need // to check this explicitly since this generic stub does not perform // map checks. The map is already in rdx. __ testb(FieldOperand(rcx, Map::kBitFieldOffset), Immediate(1 << Map::kIsAccessCheckNeeded)); __ j(not_zero, &slow); // Check that the elements array is the appropriate type of // ExternalArray. // rax: index (as a smi) // rdx: JSObject __ movq(rbx, FieldOperand(rdx, JSObject::kElementsOffset)); __ CompareRoot(FieldOperand(rbx, HeapObject::kMapOffset), Heap::RootIndexForExternalArrayType(array_type)); __ j(not_equal, &slow); // Check that the index is in range. __ SmiToInteger32(rcx, rax); __ cmpl(rcx, FieldOperand(rbx, ExternalArray::kLengthOffset)); // Unsigned comparison catches both negative and too-large values. __ j(above_equal, &slow); // rax: index (as a smi) // rdx: receiver (JSObject) // rcx: untagged index // rbx: elements array __ movq(rbx, FieldOperand(rbx, ExternalArray::kExternalPointerOffset)); // rbx: base pointer of external storage switch (array_type) { case kExternalByteArray: __ movsxbq(rcx, Operand(rbx, rcx, times_1, 0)); break; case kExternalUnsignedByteArray: __ movzxbq(rcx, Operand(rbx, rcx, times_1, 0)); break; case kExternalShortArray: __ movsxwq(rcx, Operand(rbx, rcx, times_2, 0)); break; case kExternalUnsignedShortArray: __ movzxwq(rcx, Operand(rbx, rcx, times_2, 0)); break; case kExternalIntArray: __ movsxlq(rcx, Operand(rbx, rcx, times_4, 0)); break; case kExternalUnsignedIntArray: __ movl(rcx, Operand(rbx, rcx, times_4, 0)); break; case kExternalFloatArray: __ fld_s(Operand(rbx, rcx, times_4, 0)); break; default: UNREACHABLE(); break; } // rax: index // rdx: receiver // For integer array types: // rcx: value // For floating-point array type: // FP(0): value if (array_type == kExternalIntArray || array_type == kExternalUnsignedIntArray) { // For the Int and UnsignedInt array types, we need to see whether // the value can be represented in a Smi. If not, we need to convert // it to a HeapNumber. Label box_int; if (array_type == kExternalIntArray) { __ JumpIfNotValidSmiValue(rcx, &box_int); } else { ASSERT_EQ(array_type, kExternalUnsignedIntArray); __ JumpIfUIntNotValidSmiValue(rcx, &box_int); } __ Integer32ToSmi(rax, rcx); __ ret(0); __ bind(&box_int); // Allocate a HeapNumber for the int and perform int-to-double // conversion. __ push(rcx); if (array_type == kExternalIntArray) { __ fild_s(Operand(rsp, 0)); } else { ASSERT(array_type == kExternalUnsignedIntArray); // The value is zero-extended on the stack, because all pushes are // 64-bit and we loaded the value from memory with movl. __ fild_d(Operand(rsp, 0)); } __ pop(rcx); // FP(0): value __ AllocateHeapNumber(rcx, rbx, &failed_allocation); // Set the value. __ movq(rax, rcx); __ fstp_d(FieldOperand(rax, HeapNumber::kValueOffset)); __ ret(0); } else if (array_type == kExternalFloatArray) { // For the floating-point array type, we need to always allocate a // HeapNumber. __ AllocateHeapNumber(rcx, rbx, &failed_allocation); // Set the value. __ movq(rax, rcx); __ fstp_d(FieldOperand(rax, HeapNumber::kValueOffset)); __ ret(0); } else { __ Integer32ToSmi(rax, rcx); __ ret(0); } // If we fail allocation of the HeapNumber, we still have a value on // top of the FPU stack. Remove it. __ bind(&failed_allocation); __ ffree(); __ fincstp(); // Fall through to slow case. // Slow case: Jump to runtime. __ bind(&slow); __ IncrementCounter(&Counters::keyed_load_external_array_slow, 1); GenerateRuntimeGetProperty(masm); } void KeyedLoadIC::GenerateIndexedInterceptor(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- Label slow; // Check that the receiver isn't a smi. __ JumpIfSmi(rdx, &slow); // Check that the key is a smi. __ JumpIfNotSmi(rax, &slow); // Get the map of the receiver. __ movq(rcx, FieldOperand(rdx, HeapObject::kMapOffset)); // Check that it has indexed interceptor and access checks // are not enabled for this object. __ movb(rcx, FieldOperand(rcx, Map::kBitFieldOffset)); __ andb(rcx, Immediate(kSlowCaseBitFieldMask)); __ cmpb(rcx, Immediate(1 << Map::kHasIndexedInterceptor)); __ j(not_zero, &slow); // Everything is fine, call runtime. __ pop(rcx); __ push(rdx); // receiver __ push(rax); // key __ push(rcx); // return address // Perform tail call to the entry. __ TailCallExternalReference(ExternalReference( IC_Utility(kKeyedLoadPropertyWithInterceptor)), 2, 1); __ bind(&slow); GenerateMiss(masm); } void KeyedStoreIC::GenerateMiss(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : value // -- rcx : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- __ pop(rbx); __ push(rdx); // receiver __ push(rcx); // key __ push(rax); // value __ push(rbx); // return address // Do tail-call to runtime routine. ExternalReference ref = ExternalReference(IC_Utility(kKeyedStoreIC_Miss)); __ TailCallExternalReference(ref, 3, 1); } void KeyedStoreIC::GenerateRuntimeSetProperty(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : value // -- rcx : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- __ pop(rbx); __ push(rdx); // receiver __ push(rcx); // key __ push(rax); // value __ push(rbx); // return address // Do tail-call to runtime routine. __ TailCallRuntime(Runtime::kSetProperty, 3, 1); } void KeyedStoreIC::GenerateGeneric(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : value // -- rcx : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- Label slow, fast, array, extra, check_pixel_array; // Check that the object isn't a smi. __ JumpIfSmi(rdx, &slow); // Get the map from the receiver. __ movq(rbx, FieldOperand(rdx, HeapObject::kMapOffset)); // Check that the receiver does not require access checks. We need // to do this because this generic stub does not perform map checks. __ testb(FieldOperand(rbx, Map::kBitFieldOffset), Immediate(1 << Map::kIsAccessCheckNeeded)); __ j(not_zero, &slow); // Check that the key is a smi. __ JumpIfNotSmi(rcx, &slow); __ CmpInstanceType(rbx, JS_ARRAY_TYPE); __ j(equal, &array); // Check that the object is some kind of JS object. __ CmpInstanceType(rbx, FIRST_JS_OBJECT_TYPE); __ j(below, &slow); // Object case: Check key against length in the elements array. // rax: value // rdx: JSObject // rcx: index (as a smi) __ movq(rbx, FieldOperand(rdx, JSObject::kElementsOffset)); // Check that the object is in fast mode (not dictionary). __ CompareRoot(FieldOperand(rbx, HeapObject::kMapOffset), Heap::kFixedArrayMapRootIndex); __ j(not_equal, &check_pixel_array); __ SmiCompare(rcx, FieldOperand(rbx, FixedArray::kLengthOffset)); // rax: value // rbx: FixedArray // rcx: index (as a smi) __ j(below, &fast); // Slow case: call runtime. __ bind(&slow); GenerateRuntimeSetProperty(masm); // Check whether the elements is a pixel array. // rax: value // rdx: receiver // rbx: receiver's elements array // rcx: index (as a smi), zero-extended. __ bind(&check_pixel_array); __ CompareRoot(FieldOperand(rbx, HeapObject::kMapOffset), Heap::kPixelArrayMapRootIndex); __ j(not_equal, &slow); // Check that the value is a smi. If a conversion is needed call into the // runtime to convert and clamp. __ JumpIfNotSmi(rax, &slow); __ SmiToInteger32(rdi, rcx); __ cmpl(rdi, FieldOperand(rbx, PixelArray::kLengthOffset)); __ j(above_equal, &slow); // No more bailouts to slow case on this path, so key not needed. __ SmiToInteger32(rcx, rax); { // Clamp the value to [0..255]. Label done; __ testl(rcx, Immediate(0xFFFFFF00)); __ j(zero, &done); __ setcc(negative, rcx); // 1 if negative, 0 if positive. __ decb(rcx); // 0 if negative, 255 if positive. __ bind(&done); } __ movq(rbx, FieldOperand(rbx, PixelArray::kExternalPointerOffset)); __ movb(Operand(rbx, rdi, times_1, 0), rcx); __ ret(0); // Extra capacity case: Check if there is extra capacity to // perform the store and update the length. Used for adding one // element to the array by writing to array[array.length]. __ bind(&extra); // rax: value // rdx: receiver (a JSArray) // rbx: receiver's elements array (a FixedArray) // rcx: index (as a smi) // flags: smicompare (rdx.length(), rbx) __ j(not_equal, &slow); // do not leave holes in the array __ SmiCompare(rcx, FieldOperand(rbx, FixedArray::kLengthOffset)); __ j(above_equal, &slow); // Increment index to get new length. __ SmiAddConstant(rdi, rcx, Smi::FromInt(1)); __ movq(FieldOperand(rdx, JSArray::kLengthOffset), rdi); __ jmp(&fast); // Array case: Get the length and the elements array from the JS // array. Check that the array is in fast mode; if it is the // length is always a smi. __ bind(&array); // rax: value // rdx: receiver (a JSArray) // rcx: index (as a smi) __ movq(rbx, FieldOperand(rdx, JSObject::kElementsOffset)); __ CompareRoot(FieldOperand(rbx, HeapObject::kMapOffset), Heap::kFixedArrayMapRootIndex); __ j(not_equal, &slow); // Check the key against the length in the array, compute the // address to store into and fall through to fast case. __ SmiCompare(FieldOperand(rdx, JSArray::kLengthOffset), rcx); __ j(below_equal, &extra); // Fast case: Do the store. __ bind(&fast); // rax: value // rbx: receiver's elements array (a FixedArray) // rcx: index (as a smi) Label non_smi_value; __ JumpIfNotSmi(rax, &non_smi_value); SmiIndex index = masm->SmiToIndex(rcx, rcx, kPointerSizeLog2); __ movq(FieldOperand(rbx, index.reg, index.scale, FixedArray::kHeaderSize), rax); __ ret(0); __ bind(&non_smi_value); // Slow case that needs to retain rcx for use by RecordWrite. // Update write barrier for the elements array address. SmiIndex index2 = masm->SmiToIndex(kScratchRegister, rcx, kPointerSizeLog2); __ movq(FieldOperand(rbx, index2.reg, index2.scale, FixedArray::kHeaderSize), rax); __ movq(rdx, rax); __ RecordWriteNonSmi(rbx, 0, rdx, rcx); __ ret(0); } void KeyedStoreIC::GenerateExternalArray(MacroAssembler* masm, ExternalArrayType array_type) { // ----------- S t a t e ------------- // -- rax : value // -- rcx : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- Label slow, check_heap_number; // Check that the object isn't a smi. __ JumpIfSmi(rdx, &slow); // Get the map from the receiver. __ movq(rbx, FieldOperand(rdx, HeapObject::kMapOffset)); // Check that the receiver does not require access checks. We need // to do this because this generic stub does not perform map checks. __ testb(FieldOperand(rbx, Map::kBitFieldOffset), Immediate(1 << Map::kIsAccessCheckNeeded)); __ j(not_zero, &slow); // Check that the key is a smi. __ JumpIfNotSmi(rcx, &slow); // Check that the object is a JS object. __ CmpInstanceType(rbx, JS_OBJECT_TYPE); __ j(not_equal, &slow); // Check that the elements array is the appropriate type of // ExternalArray. // rax: value // rcx: key (a smi) // rdx: receiver (a JSObject) __ movq(rbx, FieldOperand(rdx, JSObject::kElementsOffset)); __ CompareRoot(FieldOperand(rbx, HeapObject::kMapOffset), Heap::RootIndexForExternalArrayType(array_type)); __ j(not_equal, &slow); // Check that the index is in range. __ SmiToInteger32(rdi, rcx); // Untag the index. __ cmpl(rdi, FieldOperand(rbx, ExternalArray::kLengthOffset)); // Unsigned comparison catches both negative and too-large values. __ j(above_equal, &slow); // Handle both smis and HeapNumbers in the fast path. Go to the // runtime for all other kinds of values. // rax: value // rcx: key (a smi) // rdx: receiver (a JSObject) // rbx: elements array // rdi: untagged key __ JumpIfNotSmi(rax, &check_heap_number); // No more branches to slow case on this path. Key and receiver not needed. __ SmiToInteger32(rdx, rax); __ movq(rbx, FieldOperand(rbx, ExternalArray::kExternalPointerOffset)); // rbx: base pointer of external storage switch (array_type) { case kExternalByteArray: case kExternalUnsignedByteArray: __ movb(Operand(rbx, rdi, times_1, 0), rdx); break; case kExternalShortArray: case kExternalUnsignedShortArray: __ movw(Operand(rbx, rdi, times_2, 0), rdx); break; case kExternalIntArray: case kExternalUnsignedIntArray: __ movl(Operand(rbx, rdi, times_4, 0), rdx); break; case kExternalFloatArray: // Need to perform int-to-float conversion. __ push(rdx); __ fild_s(Operand(rsp, 0)); __ pop(rdx); __ fstp_s(Operand(rbx, rdi, times_4, 0)); break; default: UNREACHABLE(); break; } __ ret(0); __ bind(&check_heap_number); // rax: value // rcx: key (a smi) // rdx: receiver (a JSObject) // rbx: elements array // rdi: untagged key __ CmpObjectType(rax, HEAP_NUMBER_TYPE, kScratchRegister); __ j(not_equal, &slow); // No more branches to slow case on this path. // The WebGL specification leaves the behavior of storing NaN and // +/-Infinity into integer arrays basically undefined. For more // reproducible behavior, convert these to zero. __ fld_d(FieldOperand(rax, HeapNumber::kValueOffset)); __ movq(rbx, FieldOperand(rbx, ExternalArray::kExternalPointerOffset)); // rdi: untagged index // rbx: base pointer of external storage // top of FPU stack: value if (array_type == kExternalFloatArray) { __ fstp_s(Operand(rbx, rdi, times_4, 0)); __ ret(0); } else { // Need to perform float-to-int conversion. // Test the top of the FP stack for NaN. Label is_nan; __ fucomi(0); __ j(parity_even, &is_nan); __ push(rdx); // Make room on the stack. Receiver is no longer needed. __ fistp_d(Operand(rsp, 0)); __ pop(rdx); // rdx: value (converted to an untagged integer) // rdi: untagged index // rbx: base pointer of external storage switch (array_type) { case kExternalByteArray: case kExternalUnsignedByteArray: __ movb(Operand(rbx, rdi, times_1, 0), rdx); break; case kExternalShortArray: case kExternalUnsignedShortArray: __ movw(Operand(rbx, rdi, times_2, 0), rdx); break; case kExternalIntArray: case kExternalUnsignedIntArray: { // We also need to explicitly check for +/-Infinity. These are // converted to MIN_INT, but we need to be careful not to // confuse with legal uses of MIN_INT. Since MIN_INT truncated // to 8 or 16 bits is zero, we only perform this test when storing // 32-bit ints. Label not_infinity; // This test would apparently detect both NaN and Infinity, // but we've already checked for NaN using the FPU hardware // above. __ movzxwq(rcx, FieldOperand(rax, HeapNumber::kValueOffset + 6)); __ and_(rcx, Immediate(0x7FF0)); __ cmpw(rcx, Immediate(0x7FF0)); __ j(not_equal, ¬_infinity); __ movq(rdx, Immediate(0)); __ bind(¬_infinity); __ movl(Operand(rbx, rdi, times_4, 0), rdx); break; } default: UNREACHABLE(); break; } __ ret(0); __ bind(&is_nan); // rdi: untagged index // rbx: base pointer of external storage __ ffree(); __ fincstp(); __ movq(rdx, Immediate(0)); switch (array_type) { case kExternalByteArray: case kExternalUnsignedByteArray: __ movb(Operand(rbx, rdi, times_1, 0), rdx); break; case kExternalShortArray: case kExternalUnsignedShortArray: __ movw(Operand(rbx, rdi, times_2, 0), rdx); break; case kExternalIntArray: case kExternalUnsignedIntArray: __ movl(Operand(rbx, rdi, times_4, 0), rdx); break; default: UNREACHABLE(); break; } __ ret(0); } // Slow case: call runtime. __ bind(&slow); GenerateRuntimeSetProperty(masm); } void CallIC::GenerateMiss(MacroAssembler* masm, int argc) { // ----------- S t a t e ------------- // rcx : function name // rsp[0] : return address // rsp[8] : argument argc // rsp[16] : argument argc - 1 // ... // rsp[argc * 8] : argument 1 // rsp[(argc + 1) * 8] : argument 0 = receiver // ----------------------------------- // Get the receiver of the function from the stack; 1 ~ return address. __ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize)); // Enter an internal frame. __ EnterInternalFrame(); // Push the receiver and the name of the function. __ push(rdx); __ push(rcx); // Call the entry. CEntryStub stub(1); __ movq(rax, Immediate(2)); __ movq(rbx, ExternalReference(IC_Utility(kCallIC_Miss))); __ CallStub(&stub); // Move result to rdi and exit the internal frame. __ movq(rdi, rax); __ LeaveInternalFrame(); // Check if the receiver is a global object of some sort. Label invoke, global; __ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize)); // receiver __ JumpIfSmi(rdx, &invoke); __ CmpObjectType(rdx, JS_GLOBAL_OBJECT_TYPE, rcx); __ j(equal, &global); __ CmpInstanceType(rcx, JS_BUILTINS_OBJECT_TYPE); __ j(not_equal, &invoke); // Patch the receiver on the stack. __ bind(&global); __ movq(rdx, FieldOperand(rdx, GlobalObject::kGlobalReceiverOffset)); __ movq(Operand(rsp, (argc + 1) * kPointerSize), rdx); // Invoke the function. ParameterCount actual(argc); __ bind(&invoke); __ InvokeFunction(rdi, actual, JUMP_FUNCTION); } // Defined in ic.cc. Object* CallIC_Miss(Arguments args); void CallIC::GenerateMegamorphic(MacroAssembler* masm, int argc) { // ----------- S t a t e ------------- // rcx : function name // rsp[0] : return address // rsp[8] : argument argc // rsp[16] : argument argc - 1 // ... // rsp[argc * 8] : argument 1 // rsp[(argc + 1) * 8] : argument 0 = receiver // ----------------------------------- Label number, non_number, non_string, boolean, probe, miss; // Get the receiver of the function from the stack; 1 ~ return address. __ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize)); // Probe the stub cache. Code::Flags flags = Code::ComputeFlags(Code::CALL_IC, NOT_IN_LOOP, MONOMORPHIC, NORMAL, argc); StubCache::GenerateProbe(masm, flags, rdx, rcx, rbx, rax); // If the stub cache probing failed, the receiver might be a value. // For value objects, we use the map of the prototype objects for // the corresponding JSValue for the cache and that is what we need // to probe. // // Check for number. __ JumpIfSmi(rdx, &number); __ CmpObjectType(rdx, HEAP_NUMBER_TYPE, rbx); __ j(not_equal, &non_number); __ bind(&number); StubCompiler::GenerateLoadGlobalFunctionPrototype( masm, Context::NUMBER_FUNCTION_INDEX, rdx); __ jmp(&probe); // Check for string. __ bind(&non_number); __ CmpInstanceType(rbx, FIRST_NONSTRING_TYPE); __ j(above_equal, &non_string); StubCompiler::GenerateLoadGlobalFunctionPrototype( masm, Context::STRING_FUNCTION_INDEX, rdx); __ jmp(&probe); // Check for boolean. __ bind(&non_string); __ CompareRoot(rdx, Heap::kTrueValueRootIndex); __ j(equal, &boolean); __ CompareRoot(rdx, Heap::kFalseValueRootIndex); __ j(not_equal, &miss); __ bind(&boolean); StubCompiler::GenerateLoadGlobalFunctionPrototype( masm, Context::BOOLEAN_FUNCTION_INDEX, rdx); // Probe the stub cache for the value object. __ bind(&probe); StubCache::GenerateProbe(masm, flags, rdx, rcx, rbx, no_reg); // Cache miss: Jump to runtime. __ bind(&miss); GenerateMiss(masm, argc); } static void GenerateNormalHelper(MacroAssembler* masm, int argc, bool is_global_object, Label* miss) { // ----------- S t a t e ------------- // rcx : function name // rdx : receiver // rsp[0] : return address // rsp[8] : argument argc // rsp[16] : argument argc - 1 // ... // rsp[argc * 8] : argument 1 // rsp[(argc + 1) * 8] : argument 0 = receiver // ----------------------------------- // Search dictionary - put result in register rdx. GenerateDictionaryLoad(masm, miss, rax, rdx, rbx, rcx, rdi, CHECK_DICTIONARY); // Move the result to register rdi and check that it isn't a smi. __ movq(rdi, rdx); __ JumpIfSmi(rdx, miss); // Check that the value is a JavaScript function. __ CmpObjectType(rdx, JS_FUNCTION_TYPE, rdx); __ j(not_equal, miss); // Patch the receiver with the global proxy if necessary. if (is_global_object) { __ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize)); __ movq(rdx, FieldOperand(rdx, GlobalObject::kGlobalReceiverOffset)); __ movq(Operand(rsp, (argc + 1) * kPointerSize), rdx); } // Invoke the function. ParameterCount actual(argc); __ InvokeFunction(rdi, actual, JUMP_FUNCTION); } void CallIC::GenerateNormal(MacroAssembler* masm, int argc) { // ----------- S t a t e ------------- // rcx : function name // rsp[0] : return address // rsp[8] : argument argc // rsp[16] : argument argc - 1 // ... // rsp[argc * 8] : argument 1 // rsp[(argc + 1) * 8] : argument 0 = receiver // ----------------------------------- Label miss, global_object, non_global_object; // Get the receiver of the function from the stack. __ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize)); // Check that the receiver isn't a smi. __ JumpIfSmi(rdx, &miss); // Check that the receiver is a valid JS object. // Because there are so many map checks and type checks, do not // use CmpObjectType, but load map and type into registers. __ movq(rbx, FieldOperand(rdx, HeapObject::kMapOffset)); __ movb(rax, FieldOperand(rbx, Map::kInstanceTypeOffset)); __ cmpb(rax, Immediate(FIRST_JS_OBJECT_TYPE)); __ j(below, &miss); // If this assert fails, we have to check upper bound too. ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); // Check for access to global object. __ cmpb(rax, Immediate(JS_GLOBAL_OBJECT_TYPE)); __ j(equal, &global_object); __ cmpb(rax, Immediate(JS_BUILTINS_OBJECT_TYPE)); __ j(not_equal, &non_global_object); // Accessing global object: Load and invoke. __ bind(&global_object); // Check that the global object does not require access checks. __ movb(rbx, FieldOperand(rbx, Map::kBitFieldOffset)); __ testb(rbx, Immediate(1 << Map::kIsAccessCheckNeeded)); __ j(not_equal, &miss); GenerateNormalHelper(masm, argc, true, &miss); // Accessing non-global object: Check for access to global proxy. Label global_proxy, invoke; __ bind(&non_global_object); __ cmpb(rax, Immediate(JS_GLOBAL_PROXY_TYPE)); __ j(equal, &global_proxy); // Check that the non-global, non-global-proxy object does not // require access checks. __ movb(rbx, FieldOperand(rbx, Map::kBitFieldOffset)); __ testb(rbx, Immediate(1 << Map::kIsAccessCheckNeeded)); __ j(not_equal, &miss); __ bind(&invoke); GenerateNormalHelper(masm, argc, false, &miss); // Global object proxy access: Check access rights. __ bind(&global_proxy); __ CheckAccessGlobalProxy(rdx, rax, &miss); __ jmp(&invoke); // Cache miss: Jump to runtime. __ bind(&miss); GenerateMiss(masm, argc); } void KeyedCallIC::GenerateMiss(MacroAssembler* masm, int argc) { UNREACHABLE(); } void KeyedCallIC::GenerateMegamorphic(MacroAssembler* masm, int argc) { UNREACHABLE(); } void KeyedCallIC::GenerateNormal(MacroAssembler* masm, int argc) { UNREACHABLE(); } // The offset from the inlined patch site to the start of the // inlined load instruction. const int LoadIC::kOffsetToLoadInstruction = 20; void LoadIC::ClearInlinedVersion(Address address) { // Reset the map check of the inlined inobject property load (if // present) to guarantee failure by holding an invalid map (the null // value). The offset can be patched to anything. PatchInlinedLoad(address, Heap::null_value(), kMaxInt); } void LoadIC::GenerateMiss(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : receiver // -- rcx : name // -- rsp[0] : return address // ----------------------------------- __ pop(rbx); __ push(rax); // receiver __ push(rcx); // name __ push(rbx); // return address // Perform tail call to the entry. ExternalReference ref = ExternalReference(IC_Utility(kLoadIC_Miss)); __ TailCallExternalReference(ref, 2, 1); } void LoadIC::GenerateArrayLength(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : receiver // -- rcx : name // -- rsp[0] : return address // ----------------------------------- Label miss; StubCompiler::GenerateLoadArrayLength(masm, rax, rdx, &miss); __ bind(&miss); StubCompiler::GenerateLoadMiss(masm, Code::LOAD_IC); } void LoadIC::GenerateFunctionPrototype(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : receiver // -- rcx : name // -- rsp[0] : return address // ----------------------------------- Label miss; StubCompiler::GenerateLoadFunctionPrototype(masm, rax, rdx, rbx, &miss); __ bind(&miss); StubCompiler::GenerateLoadMiss(masm, Code::LOAD_IC); } void LoadIC::GenerateMegamorphic(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : receiver // -- rcx : name // -- rsp[0] : return address // ----------------------------------- // Probe the stub cache. Code::Flags flags = Code::ComputeFlags(Code::LOAD_IC, NOT_IN_LOOP, MONOMORPHIC); StubCache::GenerateProbe(masm, flags, rax, rcx, rbx, rdx); // Cache miss: Jump to runtime. StubCompiler::GenerateLoadMiss(masm, Code::LOAD_IC); } void LoadIC::GenerateNormal(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : receiver // -- rcx : name // -- rsp[0] : return address // ----------------------------------- Label miss, probe, global; // Check that the receiver isn't a smi. __ JumpIfSmi(rax, &miss); // Check that the receiver is a valid JS object. __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rbx); __ j(below, &miss); // If this assert fails, we have to check upper bound too. ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); // Check for access to global object (unlikely). __ CmpInstanceType(rbx, JS_GLOBAL_PROXY_TYPE); __ j(equal, &global); // Check for non-global object that requires access check. __ testl(FieldOperand(rbx, Map::kBitFieldOffset), Immediate(1 << Map::kIsAccessCheckNeeded)); __ j(not_zero, &miss); // Search the dictionary placing the result in rax. __ bind(&probe); GenerateDictionaryLoad(masm, &miss, rdx, rax, rbx, rcx, rdi, CHECK_DICTIONARY); __ ret(0); // Global object access: Check access rights. __ bind(&global); __ CheckAccessGlobalProxy(rax, rdx, &miss); __ jmp(&probe); // Cache miss: Jump to runtime. __ bind(&miss); GenerateMiss(masm); } void LoadIC::GenerateStringLength(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : receiver // -- rcx : name // -- rsp[0] : return address // ----------------------------------- Label miss; StubCompiler::GenerateLoadStringLength(masm, rax, rdx, rbx, &miss); __ bind(&miss); StubCompiler::GenerateLoadMiss(masm, Code::LOAD_IC); } bool LoadIC::PatchInlinedLoad(Address address, Object* map, int offset) { // The address of the instruction following the call. Address test_instruction_address = address + Assembler::kCallTargetAddressOffset; // If the instruction following the call is not a test eax, nothing // was inlined. if (*test_instruction_address != kTestEaxByte) return false; Address delta_address = test_instruction_address + 1; // The delta to the start of the map check instruction. int delta = *reinterpret_cast(delta_address); // The map address is the last 8 bytes of the 10-byte // immediate move instruction, so we add 2 to get the // offset to the last 8 bytes. Address map_address = test_instruction_address + delta + 2; *(reinterpret_cast(map_address)) = map; // The offset is in the 32-bit displacement of a seven byte // memory-to-register move instruction (REX.W 0x88 ModR/M disp32), // so we add 3 to get the offset of the displacement. Address offset_address = test_instruction_address + delta + kOffsetToLoadInstruction + 3; *reinterpret_cast(offset_address) = offset - kHeapObjectTag; return true; } void StoreIC::GenerateMiss(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : value // -- rcx : name // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- __ pop(rbx); __ push(rdx); // receiver __ push(rcx); // name __ push(rax); // value __ push(rbx); // return address // Perform tail call to the entry. ExternalReference ref = ExternalReference(IC_Utility(kStoreIC_Miss)); __ TailCallExternalReference(ref, 3, 1); } void StoreIC::GenerateMegamorphic(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : value // -- rcx : name // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- // Get the receiver from the stack and probe the stub cache. Code::Flags flags = Code::ComputeFlags(Code::STORE_IC, NOT_IN_LOOP, MONOMORPHIC); StubCache::GenerateProbe(masm, flags, rdx, rcx, rbx, no_reg); // Cache miss: Jump to runtime. GenerateMiss(masm); } void StoreIC::GenerateArrayLength(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : value // -- rcx : name // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- // // This accepts as a receiver anything JSObject::SetElementsLength accepts // (currently anything except for external and pixel arrays which means // anything with elements of FixedArray type.), but currently is restricted // to JSArray. // Value must be a number, but only smis are accepted as the most common case. Label miss; Register receiver = rdx; Register value = rax; Register scratch = rbx; // Check that the receiver isn't a smi. __ JumpIfSmi(receiver, &miss); // Check that the object is a JS array. __ CmpObjectType(receiver, JS_ARRAY_TYPE, scratch); __ j(not_equal, &miss); // Check that elements are FixedArray. __ movq(scratch, FieldOperand(receiver, JSArray::kElementsOffset)); __ CmpObjectType(scratch, FIXED_ARRAY_TYPE, scratch); __ j(not_equal, &miss); // Check that value is a smi. __ JumpIfNotSmi(value, &miss); // Prepare tail call to StoreIC_ArrayLength. __ pop(scratch); __ push(receiver); __ push(value); __ push(scratch); // return address ExternalReference ref = ExternalReference(IC_Utility(kStoreIC_ArrayLength)); __ TailCallExternalReference(ref, 2, 1); __ bind(&miss); GenerateMiss(masm); } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_X64