// Copyright 2009 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if defined(V8_TARGET_ARCH_X64) #include "bootstrapper.h" #include "codegen-inl.h" #include "assembler-x64.h" #include "macro-assembler-x64.h" #include "serialize.h" #include "debug.h" #include "heap.h" namespace v8 { namespace internal { MacroAssembler::MacroAssembler(void* buffer, int size) : Assembler(buffer, size), generating_stub_(false), allow_stub_calls_(true), code_object_(Heap::undefined_value()) { } void MacroAssembler::LoadRoot(Register destination, Heap::RootListIndex index) { movq(destination, Operand(kRootRegister, index << kPointerSizeLog2)); } void MacroAssembler::StoreRoot(Register source, Heap::RootListIndex index) { movq(Operand(kRootRegister, index << kPointerSizeLog2), source); } void MacroAssembler::PushRoot(Heap::RootListIndex index) { push(Operand(kRootRegister, index << kPointerSizeLog2)); } void MacroAssembler::CompareRoot(Register with, Heap::RootListIndex index) { cmpq(with, Operand(kRootRegister, index << kPointerSizeLog2)); } void MacroAssembler::CompareRoot(Operand with, Heap::RootListIndex index) { LoadRoot(kScratchRegister, index); cmpq(with, kScratchRegister); } void MacroAssembler::StackLimitCheck(Label* on_stack_overflow) { CompareRoot(rsp, Heap::kStackLimitRootIndex); j(below, on_stack_overflow); } void MacroAssembler::RecordWriteHelper(Register object, Register addr, Register scratch) { if (FLAG_debug_code) { // Check that the object is not in new space. Label not_in_new_space; InNewSpace(object, scratch, not_equal, ¬_in_new_space); Abort("new-space object passed to RecordWriteHelper"); bind(¬_in_new_space); } // Compute the page start address from the heap object pointer, and reuse // the 'object' register for it. and_(object, Immediate(~Page::kPageAlignmentMask)); // Compute number of region covering addr. See Page::GetRegionNumberForAddress // method for more details. shrl(addr, Immediate(Page::kRegionSizeLog2)); andl(addr, Immediate(Page::kPageAlignmentMask >> Page::kRegionSizeLog2)); // Set dirty mark for region. bts(Operand(object, Page::kDirtyFlagOffset), addr); } void MacroAssembler::RecordWrite(Register object, int offset, Register value, Register index) { // The compiled code assumes that record write doesn't change the // context register, so we check that none of the clobbered // registers are rsi. ASSERT(!object.is(rsi) && !value.is(rsi) && !index.is(rsi)); // First, check if a write barrier is even needed. The tests below // catch stores of Smis and stores into young gen. Label done; JumpIfSmi(value, &done); RecordWriteNonSmi(object, offset, value, index); bind(&done); // Clobber all input registers when running with the debug-code flag // turned on to provoke errors. This clobbering repeats the // clobbering done inside RecordWriteNonSmi but it's necessary to // avoid having the fast case for smis leave the registers // unchanged. if (FLAG_debug_code) { movq(object, BitCast(kZapValue), RelocInfo::NONE); movq(value, BitCast(kZapValue), RelocInfo::NONE); movq(index, BitCast(kZapValue), RelocInfo::NONE); } } void MacroAssembler::RecordWrite(Register object, Register address, Register value) { // The compiled code assumes that record write doesn't change the // context register, so we check that none of the clobbered // registers are esi. ASSERT(!object.is(rsi) && !value.is(rsi) && !address.is(rsi)); // First, check if a write barrier is even needed. The tests below // catch stores of Smis and stores into young gen. Label done; JumpIfSmi(value, &done); InNewSpace(object, value, equal, &done); RecordWriteHelper(object, address, value); bind(&done); // Clobber all input registers when running with the debug-code flag // turned on to provoke errors. if (FLAG_debug_code) { movq(object, BitCast(kZapValue), RelocInfo::NONE); movq(address, BitCast(kZapValue), RelocInfo::NONE); movq(value, BitCast(kZapValue), RelocInfo::NONE); } } void MacroAssembler::RecordWriteNonSmi(Register object, int offset, Register scratch, Register index) { Label done; if (FLAG_debug_code) { Label okay; JumpIfNotSmi(object, &okay); Abort("MacroAssembler::RecordWriteNonSmi cannot deal with smis"); bind(&okay); if (offset == 0) { // index must be int32. Register tmp = index.is(rax) ? rbx : rax; push(tmp); movl(tmp, index); cmpq(tmp, index); Check(equal, "Index register for RecordWrite must be untagged int32."); pop(tmp); } } // Test that the object address is not in the new space. We cannot // update page dirty marks for new space pages. InNewSpace(object, scratch, equal, &done); // The offset is relative to a tagged or untagged HeapObject pointer, // so either offset or offset + kHeapObjectTag must be a // multiple of kPointerSize. ASSERT(IsAligned(offset, kPointerSize) || IsAligned(offset + kHeapObjectTag, kPointerSize)); Register dst = index; if (offset != 0) { lea(dst, Operand(object, offset)); } else { // array access: calculate the destination address in the same manner as // KeyedStoreIC::GenerateGeneric. lea(dst, FieldOperand(object, index, times_pointer_size, FixedArray::kHeaderSize)); } RecordWriteHelper(object, dst, scratch); bind(&done); // Clobber all input registers when running with the debug-code flag // turned on to provoke errors. if (FLAG_debug_code) { movq(object, BitCast(kZapValue), RelocInfo::NONE); movq(scratch, BitCast(kZapValue), RelocInfo::NONE); movq(index, BitCast(kZapValue), RelocInfo::NONE); } } void MacroAssembler::InNewSpace(Register object, Register scratch, Condition cc, Label* branch) { if (Serializer::enabled()) { // Can't do arithmetic on external references if it might get serialized. // The mask isn't really an address. We load it as an external reference in // case the size of the new space is different between the snapshot maker // and the running system. if (scratch.is(object)) { movq(kScratchRegister, ExternalReference::new_space_mask()); and_(scratch, kScratchRegister); } else { movq(scratch, ExternalReference::new_space_mask()); and_(scratch, object); } movq(kScratchRegister, ExternalReference::new_space_start()); cmpq(scratch, kScratchRegister); j(cc, branch); } else { ASSERT(is_int32(static_cast(Heap::NewSpaceMask()))); intptr_t new_space_start = reinterpret_cast(Heap::NewSpaceStart()); movq(kScratchRegister, -new_space_start, RelocInfo::NONE); if (scratch.is(object)) { addq(scratch, kScratchRegister); } else { lea(scratch, Operand(object, kScratchRegister, times_1, 0)); } and_(scratch, Immediate(static_cast(Heap::NewSpaceMask()))); j(cc, branch); } } void MacroAssembler::Assert(Condition cc, const char* msg) { if (FLAG_debug_code) Check(cc, msg); } void MacroAssembler::AssertFastElements(Register elements) { if (FLAG_debug_code) { Label ok; CompareRoot(FieldOperand(elements, HeapObject::kMapOffset), Heap::kFixedArrayMapRootIndex); j(equal, &ok); CompareRoot(FieldOperand(elements, HeapObject::kMapOffset), Heap::kFixedCOWArrayMapRootIndex); j(equal, &ok); Abort("JSObject with fast elements map has slow elements"); bind(&ok); } } void MacroAssembler::Check(Condition cc, const char* msg) { Label L; j(cc, &L); Abort(msg); // will not return here bind(&L); } void MacroAssembler::CheckStackAlignment() { int frame_alignment = OS::ActivationFrameAlignment(); int frame_alignment_mask = frame_alignment - 1; if (frame_alignment > kPointerSize) { ASSERT(IsPowerOf2(frame_alignment)); Label alignment_as_expected; testq(rsp, Immediate(frame_alignment_mask)); j(zero, &alignment_as_expected); // Abort if stack is not aligned. int3(); bind(&alignment_as_expected); } } void MacroAssembler::NegativeZeroTest(Register result, Register op, Label* then_label) { Label ok; testl(result, result); j(not_zero, &ok); testl(op, op); j(sign, then_label); bind(&ok); } void MacroAssembler::Abort(const char* msg) { // We want to pass the msg string like a smi to avoid GC // problems, however msg is not guaranteed to be aligned // properly. Instead, we pass an aligned pointer that is // a proper v8 smi, but also pass the alignment difference // from the real pointer as a smi. intptr_t p1 = reinterpret_cast(msg); intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag; // Note: p0 might not be a valid Smi *value*, but it has a valid Smi tag. ASSERT(reinterpret_cast(p0)->IsSmi()); #ifdef DEBUG if (msg != NULL) { RecordComment("Abort message: "); RecordComment(msg); } #endif // Disable stub call restrictions to always allow calls to abort. set_allow_stub_calls(true); push(rax); movq(kScratchRegister, p0, RelocInfo::NONE); push(kScratchRegister); movq(kScratchRegister, reinterpret_cast(Smi::FromInt(static_cast(p1 - p0))), RelocInfo::NONE); push(kScratchRegister); CallRuntime(Runtime::kAbort, 2); // will not return here int3(); } void MacroAssembler::CallStub(CodeStub* stub) { ASSERT(allow_stub_calls()); // calls are not allowed in some stubs Call(stub->GetCode(), RelocInfo::CODE_TARGET); } Object* MacroAssembler::TryCallStub(CodeStub* stub) { ASSERT(allow_stub_calls()); // Calls are not allowed in some stubs. Object* result = stub->TryGetCode(); if (!result->IsFailure()) { call(Handle(Code::cast(result)), RelocInfo::CODE_TARGET); } return result; } void MacroAssembler::TailCallStub(CodeStub* stub) { ASSERT(allow_stub_calls()); // calls are not allowed in some stubs Jump(stub->GetCode(), RelocInfo::CODE_TARGET); } Object* MacroAssembler::TryTailCallStub(CodeStub* stub) { ASSERT(allow_stub_calls()); // Calls are not allowed in some stubs. Object* result = stub->TryGetCode(); if (!result->IsFailure()) { jmp(Handle(Code::cast(result)), RelocInfo::CODE_TARGET); } return result; } void MacroAssembler::StubReturn(int argc) { ASSERT(argc >= 1 && generating_stub()); ret((argc - 1) * kPointerSize); } void MacroAssembler::IllegalOperation(int num_arguments) { if (num_arguments > 0) { addq(rsp, Immediate(num_arguments * kPointerSize)); } LoadRoot(rax, Heap::kUndefinedValueRootIndex); } void MacroAssembler::CallRuntime(Runtime::FunctionId id, int num_arguments) { CallRuntime(Runtime::FunctionForId(id), num_arguments); } Object* MacroAssembler::TryCallRuntime(Runtime::FunctionId id, int num_arguments) { return TryCallRuntime(Runtime::FunctionForId(id), num_arguments); } void MacroAssembler::CallRuntime(Runtime::Function* f, int num_arguments) { // If the expected number of arguments of the runtime function is // constant, we check that the actual number of arguments match the // expectation. if (f->nargs >= 0 && f->nargs != num_arguments) { IllegalOperation(num_arguments); return; } // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. Set(rax, num_arguments); movq(rbx, ExternalReference(f)); CEntryStub ces(f->result_size); CallStub(&ces); } Object* MacroAssembler::TryCallRuntime(Runtime::Function* f, int num_arguments) { if (f->nargs >= 0 && f->nargs != num_arguments) { IllegalOperation(num_arguments); // Since we did not call the stub, there was no allocation failure. // Return some non-failure object. return Heap::undefined_value(); } // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. Set(rax, num_arguments); movq(rbx, ExternalReference(f)); CEntryStub ces(f->result_size); return TryCallStub(&ces); } void MacroAssembler::CallExternalReference(const ExternalReference& ext, int num_arguments) { Set(rax, num_arguments); movq(rbx, ext); CEntryStub stub(1); CallStub(&stub); } void MacroAssembler::TailCallExternalReference(const ExternalReference& ext, int num_arguments, int result_size) { // ----------- S t a t e ------------- // -- rsp[0] : return address // -- rsp[8] : argument num_arguments - 1 // ... // -- rsp[8 * num_arguments] : argument 0 (receiver) // ----------------------------------- // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. Set(rax, num_arguments); JumpToExternalReference(ext, result_size); } void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid, int num_arguments, int result_size) { TailCallExternalReference(ExternalReference(fid), num_arguments, result_size); } static int Offset(ExternalReference ref0, ExternalReference ref1) { int64_t offset = (ref0.address() - ref1.address()); // Check that fits into int. ASSERT(static_cast(offset) == offset); return static_cast(offset); } void MacroAssembler::PushHandleScope(Register scratch) { ExternalReference extensions_address = ExternalReference::handle_scope_extensions_address(); const int kExtensionsOffset = 0; const int kNextOffset = Offset( ExternalReference::handle_scope_next_address(), extensions_address); const int kLimitOffset = Offset( ExternalReference::handle_scope_limit_address(), extensions_address); // Push the number of extensions, smi-tagged so the gc will ignore it. movq(kScratchRegister, extensions_address); movq(scratch, Operand(kScratchRegister, kExtensionsOffset)); movq(Operand(kScratchRegister, kExtensionsOffset), Immediate(0)); Integer32ToSmi(scratch, scratch); push(scratch); // Push next and limit pointers which will be wordsize aligned and // hence automatically smi tagged. push(Operand(kScratchRegister, kNextOffset)); push(Operand(kScratchRegister, kLimitOffset)); } Object* MacroAssembler::PopHandleScopeHelper(Register saved, Register scratch, bool gc_allowed) { ExternalReference extensions_address = ExternalReference::handle_scope_extensions_address(); const int kExtensionsOffset = 0; const int kNextOffset = Offset( ExternalReference::handle_scope_next_address(), extensions_address); const int kLimitOffset = Offset( ExternalReference::handle_scope_limit_address(), extensions_address); Object* result = NULL; Label write_back; movq(kScratchRegister, extensions_address); cmpq(Operand(kScratchRegister, kExtensionsOffset), Immediate(0)); j(equal, &write_back); push(saved); if (gc_allowed) { CallRuntime(Runtime::kDeleteHandleScopeExtensions, 0); } else { result = TryCallRuntime(Runtime::kDeleteHandleScopeExtensions, 0); if (result->IsFailure()) return result; } pop(saved); movq(kScratchRegister, extensions_address); bind(&write_back); pop(Operand(kScratchRegister, kLimitOffset)); pop(Operand(kScratchRegister, kNextOffset)); pop(scratch); SmiToInteger32(scratch, scratch); movq(Operand(kScratchRegister, kExtensionsOffset), scratch); return result; } void MacroAssembler::PopHandleScope(Register saved, Register scratch) { PopHandleScopeHelper(saved, scratch, true); } Object* MacroAssembler::TryPopHandleScope(Register saved, Register scratch) { return PopHandleScopeHelper(saved, scratch, false); } void MacroAssembler::JumpToExternalReference(const ExternalReference& ext, int result_size) { // Set the entry point and jump to the C entry runtime stub. movq(rbx, ext); CEntryStub ces(result_size); jmp(ces.GetCode(), RelocInfo::CODE_TARGET); } void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id, InvokeFlag flag) { // Calls are not allowed in some stubs. ASSERT(flag == JUMP_FUNCTION || allow_stub_calls()); // Rely on the assertion to check that the number of provided // arguments match the expected number of arguments. Fake a // parameter count to avoid emitting code to do the check. ParameterCount expected(0); GetBuiltinEntry(rdx, id); InvokeCode(rdx, expected, expected, flag); } void MacroAssembler::GetBuiltinFunction(Register target, Builtins::JavaScript id) { // Load the builtins object into target register. movq(target, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX))); movq(target, FieldOperand(target, GlobalObject::kBuiltinsOffset)); movq(target, FieldOperand(target, JSBuiltinsObject::OffsetOfFunctionWithId(id))); } void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) { ASSERT(!target.is(rdi)); // Load the JavaScript builtin function from the builtins object. GetBuiltinFunction(rdi, id); movq(target, FieldOperand(rdi, JSFunction::kCodeEntryOffset)); } void MacroAssembler::Set(Register dst, int64_t x) { if (x == 0) { xorl(dst, dst); } else if (is_int32(x)) { movq(dst, Immediate(static_cast(x))); } else if (is_uint32(x)) { movl(dst, Immediate(static_cast(x))); } else { movq(dst, x, RelocInfo::NONE); } } void MacroAssembler::Set(const Operand& dst, int64_t x) { if (is_int32(x)) { movq(dst, Immediate(static_cast(x))); } else { movq(kScratchRegister, x, RelocInfo::NONE); movq(dst, kScratchRegister); } } // ---------------------------------------------------------------------------- // Smi tagging, untagging and tag detection. static int kSmiShift = kSmiTagSize + kSmiShiftSize; Register MacroAssembler::GetSmiConstant(Smi* source) { int value = source->value(); if (value == 0) { xorl(kScratchRegister, kScratchRegister); return kScratchRegister; } if (value == 1) { return kSmiConstantRegister; } LoadSmiConstant(kScratchRegister, source); return kScratchRegister; } void MacroAssembler::LoadSmiConstant(Register dst, Smi* source) { if (FLAG_debug_code) { movq(dst, reinterpret_cast(Smi::FromInt(kSmiConstantRegisterValue)), RelocInfo::NONE); cmpq(dst, kSmiConstantRegister); if (allow_stub_calls()) { Assert(equal, "Uninitialized kSmiConstantRegister"); } else { Label ok; j(equal, &ok); int3(); bind(&ok); } } if (source->value() == 0) { xorl(dst, dst); return; } int value = source->value(); bool negative = value < 0; unsigned int uvalue = negative ? -value : value; switch (uvalue) { case 9: lea(dst, Operand(kSmiConstantRegister, kSmiConstantRegister, times_8, 0)); break; case 8: xorl(dst, dst); lea(dst, Operand(dst, kSmiConstantRegister, times_8, 0)); break; case 4: xorl(dst, dst); lea(dst, Operand(dst, kSmiConstantRegister, times_4, 0)); break; case 5: lea(dst, Operand(kSmiConstantRegister, kSmiConstantRegister, times_4, 0)); break; case 3: lea(dst, Operand(kSmiConstantRegister, kSmiConstantRegister, times_2, 0)); break; case 2: lea(dst, Operand(kSmiConstantRegister, kSmiConstantRegister, times_1, 0)); break; case 1: movq(dst, kSmiConstantRegister); break; case 0: UNREACHABLE(); return; default: movq(dst, reinterpret_cast(source), RelocInfo::NONE); return; } if (negative) { neg(dst); } } void MacroAssembler::Integer32ToSmi(Register dst, Register src) { ASSERT_EQ(0, kSmiTag); if (!dst.is(src)) { movl(dst, src); } shl(dst, Immediate(kSmiShift)); } void MacroAssembler::Integer32ToSmi(Register dst, Register src, Label* on_overflow) { ASSERT_EQ(0, kSmiTag); // 32-bit integer always fits in a long smi. if (!dst.is(src)) { movl(dst, src); } shl(dst, Immediate(kSmiShift)); } void MacroAssembler::Integer32ToSmiField(const Operand& dst, Register src) { if (FLAG_debug_code) { testb(dst, Immediate(0x01)); Label ok; j(zero, &ok); if (allow_stub_calls()) { Abort("Integer32ToSmiField writing to non-smi location"); } else { int3(); } bind(&ok); } ASSERT(kSmiShift % kBitsPerByte == 0); movl(Operand(dst, kSmiShift / kBitsPerByte), src); } void MacroAssembler::Integer64PlusConstantToSmi(Register dst, Register src, int constant) { if (dst.is(src)) { addq(dst, Immediate(constant)); } else { lea(dst, Operand(src, constant)); } shl(dst, Immediate(kSmiShift)); } void MacroAssembler::SmiToInteger32(Register dst, Register src) { ASSERT_EQ(0, kSmiTag); if (!dst.is(src)) { movq(dst, src); } shr(dst, Immediate(kSmiShift)); } void MacroAssembler::SmiToInteger32(Register dst, const Operand& src) { movl(dst, Operand(src, kSmiShift / kBitsPerByte)); } void MacroAssembler::SmiToInteger64(Register dst, Register src) { ASSERT_EQ(0, kSmiTag); if (!dst.is(src)) { movq(dst, src); } sar(dst, Immediate(kSmiShift)); } void MacroAssembler::SmiToInteger64(Register dst, const Operand& src) { movsxlq(dst, Operand(src, kSmiShift / kBitsPerByte)); } void MacroAssembler::SmiTest(Register src) { testq(src, src); } void MacroAssembler::SmiCompare(Register dst, Register src) { cmpq(dst, src); } void MacroAssembler::SmiCompare(Register dst, Smi* src) { ASSERT(!dst.is(kScratchRegister)); if (src->value() == 0) { testq(dst, dst); } else { Register constant_reg = GetSmiConstant(src); cmpq(dst, constant_reg); } } void MacroAssembler::SmiCompare(Register dst, const Operand& src) { cmpq(dst, src); } void MacroAssembler::SmiCompare(const Operand& dst, Register src) { cmpq(dst, src); } void MacroAssembler::SmiCompare(const Operand& dst, Smi* src) { cmpl(Operand(dst, kSmiShift / kBitsPerByte), Immediate(src->value())); } void MacroAssembler::SmiCompareInteger32(const Operand& dst, Register src) { cmpl(Operand(dst, kSmiShift / kBitsPerByte), src); } void MacroAssembler::PositiveSmiTimesPowerOfTwoToInteger64(Register dst, Register src, int power) { ASSERT(power >= 0); ASSERT(power < 64); if (power == 0) { SmiToInteger64(dst, src); return; } if (!dst.is(src)) { movq(dst, src); } if (power < kSmiShift) { sar(dst, Immediate(kSmiShift - power)); } else if (power > kSmiShift) { shl(dst, Immediate(power - kSmiShift)); } } void MacroAssembler::PositiveSmiDivPowerOfTwoToInteger32(Register dst, Register src, int power) { ASSERT((0 <= power) && (power < 32)); if (dst.is(src)) { shr(dst, Immediate(power + kSmiShift)); } else { UNIMPLEMENTED(); // Not used. } } Condition MacroAssembler::CheckSmi(Register src) { ASSERT_EQ(0, kSmiTag); testb(src, Immediate(kSmiTagMask)); return zero; } Condition MacroAssembler::CheckPositiveSmi(Register src) { ASSERT_EQ(0, kSmiTag); // Make mask 0x8000000000000001 and test that both bits are zero. movq(kScratchRegister, src); rol(kScratchRegister, Immediate(1)); testb(kScratchRegister, Immediate(3)); return zero; } Condition MacroAssembler::CheckBothSmi(Register first, Register second) { if (first.is(second)) { return CheckSmi(first); } ASSERT(kSmiTag == 0 && kHeapObjectTag == 1 && kHeapObjectTagMask == 3); leal(kScratchRegister, Operand(first, second, times_1, 0)); testb(kScratchRegister, Immediate(0x03)); return zero; } Condition MacroAssembler::CheckBothPositiveSmi(Register first, Register second) { if (first.is(second)) { return CheckPositiveSmi(first); } movq(kScratchRegister, first); or_(kScratchRegister, second); rol(kScratchRegister, Immediate(1)); testl(kScratchRegister, Immediate(0x03)); return zero; } Condition MacroAssembler::CheckEitherSmi(Register first, Register second, Register scratch) { if (first.is(second)) { return CheckSmi(first); } if (scratch.is(second)) { andl(scratch, first); } else { if (!scratch.is(first)) { movl(scratch, first); } andl(scratch, second); } testb(scratch, Immediate(kSmiTagMask)); return zero; } Condition MacroAssembler::CheckIsMinSmi(Register src) { ASSERT(!src.is(kScratchRegister)); // If we overflow by subtracting one, it's the minimal smi value. cmpq(src, kSmiConstantRegister); return overflow; } Condition MacroAssembler::CheckInteger32ValidSmiValue(Register src) { // A 32-bit integer value can always be converted to a smi. return always; } Condition MacroAssembler::CheckUInteger32ValidSmiValue(Register src) { // An unsigned 32-bit integer value is valid as long as the high bit // is not set. testl(src, src); return positive; } void MacroAssembler::SmiNeg(Register dst, Register src, Label* on_smi_result) { if (dst.is(src)) { ASSERT(!dst.is(kScratchRegister)); movq(kScratchRegister, src); neg(dst); // Low 32 bits are retained as zero by negation. // Test if result is zero or Smi::kMinValue. cmpq(dst, kScratchRegister); j(not_equal, on_smi_result); movq(src, kScratchRegister); } else { movq(dst, src); neg(dst); cmpq(dst, src); // If the result is zero or Smi::kMinValue, negation failed to create a smi. j(not_equal, on_smi_result); } } void MacroAssembler::SmiAdd(Register dst, Register src1, Register src2, Label* on_not_smi_result) { ASSERT(!dst.is(src2)); if (on_not_smi_result == NULL) { // No overflow checking. Use only when it's known that // overflowing is impossible. if (dst.is(src1)) { addq(dst, src2); } else { movq(dst, src1); addq(dst, src2); } Assert(no_overflow, "Smi addition overflow"); } else if (dst.is(src1)) { movq(kScratchRegister, src1); addq(kScratchRegister, src2); j(overflow, on_not_smi_result); movq(dst, kScratchRegister); } else { movq(dst, src1); addq(dst, src2); j(overflow, on_not_smi_result); } } void MacroAssembler::SmiSub(Register dst, Register src1, Register src2, Label* on_not_smi_result) { ASSERT(!dst.is(src2)); if (on_not_smi_result == NULL) { // No overflow checking. Use only when it's known that // overflowing is impossible (e.g., subtracting two positive smis). if (dst.is(src1)) { subq(dst, src2); } else { movq(dst, src1); subq(dst, src2); } Assert(no_overflow, "Smi subtraction overflow"); } else if (dst.is(src1)) { cmpq(dst, src2); j(overflow, on_not_smi_result); subq(dst, src2); } else { movq(dst, src1); subq(dst, src2); j(overflow, on_not_smi_result); } } void MacroAssembler::SmiSub(Register dst, Register src1, const Operand& src2, Label* on_not_smi_result) { if (on_not_smi_result == NULL) { // No overflow checking. Use only when it's known that // overflowing is impossible (e.g., subtracting two positive smis). if (dst.is(src1)) { subq(dst, src2); } else { movq(dst, src1); subq(dst, src2); } Assert(no_overflow, "Smi subtraction overflow"); } else if (dst.is(src1)) { movq(kScratchRegister, src2); cmpq(src1, kScratchRegister); j(overflow, on_not_smi_result); subq(src1, kScratchRegister); } else { movq(dst, src1); subq(dst, src2); j(overflow, on_not_smi_result); } } void MacroAssembler::SmiMul(Register dst, Register src1, Register src2, Label* on_not_smi_result) { ASSERT(!dst.is(src2)); ASSERT(!dst.is(kScratchRegister)); ASSERT(!src1.is(kScratchRegister)); ASSERT(!src2.is(kScratchRegister)); if (dst.is(src1)) { Label failure, zero_correct_result; movq(kScratchRegister, src1); // Create backup for later testing. SmiToInteger64(dst, src1); imul(dst, src2); j(overflow, &failure); // Check for negative zero result. If product is zero, and one // argument is negative, go to slow case. Label correct_result; testq(dst, dst); j(not_zero, &correct_result); movq(dst, kScratchRegister); xor_(dst, src2); j(positive, &zero_correct_result); // Result was positive zero. bind(&failure); // Reused failure exit, restores src1. movq(src1, kScratchRegister); jmp(on_not_smi_result); bind(&zero_correct_result); xor_(dst, dst); bind(&correct_result); } else { SmiToInteger64(dst, src1); imul(dst, src2); j(overflow, on_not_smi_result); // Check for negative zero result. If product is zero, and one // argument is negative, go to slow case. Label correct_result; testq(dst, dst); j(not_zero, &correct_result); // One of src1 and src2 is zero, the check whether the other is // negative. movq(kScratchRegister, src1); xor_(kScratchRegister, src2); j(negative, on_not_smi_result); bind(&correct_result); } } void MacroAssembler::SmiTryAddConstant(Register dst, Register src, Smi* constant, Label* on_not_smi_result) { // Does not assume that src is a smi. ASSERT_EQ(static_cast(1), static_cast(kSmiTagMask)); ASSERT_EQ(0, kSmiTag); ASSERT(!dst.is(kScratchRegister)); ASSERT(!src.is(kScratchRegister)); JumpIfNotSmi(src, on_not_smi_result); Register tmp = (dst.is(src) ? kScratchRegister : dst); LoadSmiConstant(tmp, constant); addq(tmp, src); j(overflow, on_not_smi_result); if (dst.is(src)) { movq(dst, tmp); } } void MacroAssembler::SmiAddConstant(Register dst, Register src, Smi* constant) { if (constant->value() == 0) { if (!dst.is(src)) { movq(dst, src); } return; } else if (dst.is(src)) { ASSERT(!dst.is(kScratchRegister)); switch (constant->value()) { case 1: addq(dst, kSmiConstantRegister); return; case 2: lea(dst, Operand(src, kSmiConstantRegister, times_2, 0)); return; case 4: lea(dst, Operand(src, kSmiConstantRegister, times_4, 0)); return; case 8: lea(dst, Operand(src, kSmiConstantRegister, times_8, 0)); return; default: Register constant_reg = GetSmiConstant(constant); addq(dst, constant_reg); return; } } else { switch (constant->value()) { case 1: lea(dst, Operand(src, kSmiConstantRegister, times_1, 0)); return; case 2: lea(dst, Operand(src, kSmiConstantRegister, times_2, 0)); return; case 4: lea(dst, Operand(src, kSmiConstantRegister, times_4, 0)); return; case 8: lea(dst, Operand(src, kSmiConstantRegister, times_8, 0)); return; default: LoadSmiConstant(dst, constant); addq(dst, src); return; } } } void MacroAssembler::SmiAddConstant(const Operand& dst, Smi* constant) { if (constant->value() != 0) { addl(Operand(dst, kSmiShift / kBitsPerByte), Immediate(constant->value())); } } void MacroAssembler::SmiAddConstant(Register dst, Register src, Smi* constant, Label* on_not_smi_result) { if (constant->value() == 0) { if (!dst.is(src)) { movq(dst, src); } } else if (dst.is(src)) { ASSERT(!dst.is(kScratchRegister)); LoadSmiConstant(kScratchRegister, constant); addq(kScratchRegister, src); j(overflow, on_not_smi_result); movq(dst, kScratchRegister); } else { LoadSmiConstant(dst, constant); addq(dst, src); j(overflow, on_not_smi_result); } } void MacroAssembler::SmiSubConstant(Register dst, Register src, Smi* constant) { if (constant->value() == 0) { if (!dst.is(src)) { movq(dst, src); } } else if (dst.is(src)) { ASSERT(!dst.is(kScratchRegister)); Register constant_reg = GetSmiConstant(constant); subq(dst, constant_reg); } else { if (constant->value() == Smi::kMinValue) { LoadSmiConstant(dst, constant); // Adding and subtracting the min-value gives the same result, it only // differs on the overflow bit, which we don't check here. addq(dst, src); } else { // Subtract by adding the negation. LoadSmiConstant(dst, Smi::FromInt(-constant->value())); addq(dst, src); } } } void MacroAssembler::SmiSubConstant(Register dst, Register src, Smi* constant, Label* on_not_smi_result) { if (constant->value() == 0) { if (!dst.is(src)) { movq(dst, src); } } else if (dst.is(src)) { ASSERT(!dst.is(kScratchRegister)); if (constant->value() == Smi::kMinValue) { // Subtracting min-value from any non-negative value will overflow. // We test the non-negativeness before doing the subtraction. testq(src, src); j(not_sign, on_not_smi_result); LoadSmiConstant(kScratchRegister, constant); subq(dst, kScratchRegister); } else { // Subtract by adding the negation. LoadSmiConstant(kScratchRegister, Smi::FromInt(-constant->value())); addq(kScratchRegister, dst); j(overflow, on_not_smi_result); movq(dst, kScratchRegister); } } else { if (constant->value() == Smi::kMinValue) { // Subtracting min-value from any non-negative value will overflow. // We test the non-negativeness before doing the subtraction. testq(src, src); j(not_sign, on_not_smi_result); LoadSmiConstant(dst, constant); // Adding and subtracting the min-value gives the same result, it only // differs on the overflow bit, which we don't check here. addq(dst, src); } else { // Subtract by adding the negation. LoadSmiConstant(dst, Smi::FromInt(-(constant->value()))); addq(dst, src); j(overflow, on_not_smi_result); } } } void MacroAssembler::SmiDiv(Register dst, Register src1, Register src2, Label* on_not_smi_result) { ASSERT(!src1.is(kScratchRegister)); ASSERT(!src2.is(kScratchRegister)); ASSERT(!dst.is(kScratchRegister)); ASSERT(!src2.is(rax)); ASSERT(!src2.is(rdx)); ASSERT(!src1.is(rdx)); // Check for 0 divisor (result is +/-Infinity). Label positive_divisor; testq(src2, src2); j(zero, on_not_smi_result); if (src1.is(rax)) { movq(kScratchRegister, src1); } SmiToInteger32(rax, src1); // We need to rule out dividing Smi::kMinValue by -1, since that would // overflow in idiv and raise an exception. // We combine this with negative zero test (negative zero only happens // when dividing zero by a negative number). // We overshoot a little and go to slow case if we divide min-value // by any negative value, not just -1. Label safe_div; testl(rax, Immediate(0x7fffffff)); j(not_zero, &safe_div); testq(src2, src2); if (src1.is(rax)) { j(positive, &safe_div); movq(src1, kScratchRegister); jmp(on_not_smi_result); } else { j(negative, on_not_smi_result); } bind(&safe_div); SmiToInteger32(src2, src2); // Sign extend src1 into edx:eax. cdq(); idivl(src2); Integer32ToSmi(src2, src2); // Check that the remainder is zero. testl(rdx, rdx); if (src1.is(rax)) { Label smi_result; j(zero, &smi_result); movq(src1, kScratchRegister); jmp(on_not_smi_result); bind(&smi_result); } else { j(not_zero, on_not_smi_result); } if (!dst.is(src1) && src1.is(rax)) { movq(src1, kScratchRegister); } Integer32ToSmi(dst, rax); } void MacroAssembler::SmiMod(Register dst, Register src1, Register src2, Label* on_not_smi_result) { ASSERT(!dst.is(kScratchRegister)); ASSERT(!src1.is(kScratchRegister)); ASSERT(!src2.is(kScratchRegister)); ASSERT(!src2.is(rax)); ASSERT(!src2.is(rdx)); ASSERT(!src1.is(rdx)); ASSERT(!src1.is(src2)); testq(src2, src2); j(zero, on_not_smi_result); if (src1.is(rax)) { movq(kScratchRegister, src1); } SmiToInteger32(rax, src1); SmiToInteger32(src2, src2); // Test for the edge case of dividing Smi::kMinValue by -1 (will overflow). Label safe_div; cmpl(rax, Immediate(Smi::kMinValue)); j(not_equal, &safe_div); cmpl(src2, Immediate(-1)); j(not_equal, &safe_div); // Retag inputs and go slow case. Integer32ToSmi(src2, src2); if (src1.is(rax)) { movq(src1, kScratchRegister); } jmp(on_not_smi_result); bind(&safe_div); // Sign extend eax into edx:eax. cdq(); idivl(src2); // Restore smi tags on inputs. Integer32ToSmi(src2, src2); if (src1.is(rax)) { movq(src1, kScratchRegister); } // Check for a negative zero result. If the result is zero, and the // dividend is negative, go slow to return a floating point negative zero. Label smi_result; testl(rdx, rdx); j(not_zero, &smi_result); testq(src1, src1); j(negative, on_not_smi_result); bind(&smi_result); Integer32ToSmi(dst, rdx); } void MacroAssembler::SmiNot(Register dst, Register src) { ASSERT(!dst.is(kScratchRegister)); ASSERT(!src.is(kScratchRegister)); // Set tag and padding bits before negating, so that they are zero afterwards. movl(kScratchRegister, Immediate(~0)); if (dst.is(src)) { xor_(dst, kScratchRegister); } else { lea(dst, Operand(src, kScratchRegister, times_1, 0)); } not_(dst); } void MacroAssembler::SmiAnd(Register dst, Register src1, Register src2) { ASSERT(!dst.is(src2)); if (!dst.is(src1)) { movq(dst, src1); } and_(dst, src2); } void MacroAssembler::SmiAndConstant(Register dst, Register src, Smi* constant) { if (constant->value() == 0) { xor_(dst, dst); } else if (dst.is(src)) { ASSERT(!dst.is(kScratchRegister)); Register constant_reg = GetSmiConstant(constant); and_(dst, constant_reg); } else { LoadSmiConstant(dst, constant); and_(dst, src); } } void MacroAssembler::SmiOr(Register dst, Register src1, Register src2) { if (!dst.is(src1)) { movq(dst, src1); } or_(dst, src2); } void MacroAssembler::SmiOrConstant(Register dst, Register src, Smi* constant) { if (dst.is(src)) { ASSERT(!dst.is(kScratchRegister)); Register constant_reg = GetSmiConstant(constant); or_(dst, constant_reg); } else { LoadSmiConstant(dst, constant); or_(dst, src); } } void MacroAssembler::SmiXor(Register dst, Register src1, Register src2) { if (!dst.is(src1)) { movq(dst, src1); } xor_(dst, src2); } void MacroAssembler::SmiXorConstant(Register dst, Register src, Smi* constant) { if (dst.is(src)) { ASSERT(!dst.is(kScratchRegister)); Register constant_reg = GetSmiConstant(constant); xor_(dst, constant_reg); } else { LoadSmiConstant(dst, constant); xor_(dst, src); } } void MacroAssembler::SmiShiftArithmeticRightConstant(Register dst, Register src, int shift_value) { ASSERT(is_uint5(shift_value)); if (shift_value > 0) { if (dst.is(src)) { sar(dst, Immediate(shift_value + kSmiShift)); shl(dst, Immediate(kSmiShift)); } else { UNIMPLEMENTED(); // Not used. } } } void MacroAssembler::SmiShiftLogicalRightConstant(Register dst, Register src, int shift_value, Label* on_not_smi_result) { // Logic right shift interprets its result as an *unsigned* number. if (dst.is(src)) { UNIMPLEMENTED(); // Not used. } else { movq(dst, src); if (shift_value == 0) { testq(dst, dst); j(negative, on_not_smi_result); } shr(dst, Immediate(shift_value + kSmiShift)); shl(dst, Immediate(kSmiShift)); } } void MacroAssembler::SmiShiftLeftConstant(Register dst, Register src, int shift_value) { if (!dst.is(src)) { movq(dst, src); } if (shift_value > 0) { shl(dst, Immediate(shift_value)); } } void MacroAssembler::SmiShiftLeft(Register dst, Register src1, Register src2) { ASSERT(!dst.is(rcx)); Label result_ok; // Untag shift amount. if (!dst.is(src1)) { movq(dst, src1); } SmiToInteger32(rcx, src2); // Shift amount specified by lower 5 bits, not six as the shl opcode. and_(rcx, Immediate(0x1f)); shl_cl(dst); } void MacroAssembler::SmiShiftLogicalRight(Register dst, Register src1, Register src2, Label* on_not_smi_result) { ASSERT(!dst.is(kScratchRegister)); ASSERT(!src1.is(kScratchRegister)); ASSERT(!src2.is(kScratchRegister)); ASSERT(!dst.is(rcx)); Label result_ok; if (src1.is(rcx) || src2.is(rcx)) { movq(kScratchRegister, rcx); } if (!dst.is(src1)) { movq(dst, src1); } SmiToInteger32(rcx, src2); orl(rcx, Immediate(kSmiShift)); shr_cl(dst); // Shift is rcx modulo 0x1f + 32. shl(dst, Immediate(kSmiShift)); testq(dst, dst); if (src1.is(rcx) || src2.is(rcx)) { Label positive_result; j(positive, &positive_result); if (src1.is(rcx)) { movq(src1, kScratchRegister); } else { movq(src2, kScratchRegister); } jmp(on_not_smi_result); bind(&positive_result); } else { j(negative, on_not_smi_result); // src2 was zero and src1 negative. } } void MacroAssembler::SmiShiftArithmeticRight(Register dst, Register src1, Register src2) { ASSERT(!dst.is(kScratchRegister)); ASSERT(!src1.is(kScratchRegister)); ASSERT(!src2.is(kScratchRegister)); ASSERT(!dst.is(rcx)); if (src1.is(rcx)) { movq(kScratchRegister, src1); } else if (src2.is(rcx)) { movq(kScratchRegister, src2); } if (!dst.is(src1)) { movq(dst, src1); } SmiToInteger32(rcx, src2); orl(rcx, Immediate(kSmiShift)); sar_cl(dst); // Shift 32 + original rcx & 0x1f. shl(dst, Immediate(kSmiShift)); if (src1.is(rcx)) { movq(src1, kScratchRegister); } else if (src2.is(rcx)) { movq(src2, kScratchRegister); } } void MacroAssembler::SelectNonSmi(Register dst, Register src1, Register src2, Label* on_not_smis) { ASSERT(!dst.is(kScratchRegister)); ASSERT(!src1.is(kScratchRegister)); ASSERT(!src2.is(kScratchRegister)); ASSERT(!dst.is(src1)); ASSERT(!dst.is(src2)); // Both operands must not be smis. #ifdef DEBUG if (allow_stub_calls()) { // Check contains a stub call. Condition not_both_smis = NegateCondition(CheckBothSmi(src1, src2)); Check(not_both_smis, "Both registers were smis in SelectNonSmi."); } #endif ASSERT_EQ(0, kSmiTag); ASSERT_EQ(0, Smi::FromInt(0)); movl(kScratchRegister, Immediate(kSmiTagMask)); and_(kScratchRegister, src1); testl(kScratchRegister, src2); // If non-zero then both are smis. j(not_zero, on_not_smis); // Exactly one operand is a smi. ASSERT_EQ(1, static_cast(kSmiTagMask)); // kScratchRegister still holds src1 & kSmiTag, which is either zero or one. subq(kScratchRegister, Immediate(1)); // If src1 is a smi, then scratch register all 1s, else it is all 0s. movq(dst, src1); xor_(dst, src2); and_(dst, kScratchRegister); // If src1 is a smi, dst holds src1 ^ src2, else it is zero. xor_(dst, src1); // If src1 is a smi, dst is src2, else it is src1, i.e., the non-smi. } SmiIndex MacroAssembler::SmiToIndex(Register dst, Register src, int shift) { ASSERT(is_uint6(shift)); // There is a possible optimization if shift is in the range 60-63, but that // will (and must) never happen. if (!dst.is(src)) { movq(dst, src); } if (shift < kSmiShift) { sar(dst, Immediate(kSmiShift - shift)); } else { shl(dst, Immediate(shift - kSmiShift)); } return SmiIndex(dst, times_1); } SmiIndex MacroAssembler::SmiToNegativeIndex(Register dst, Register src, int shift) { // Register src holds a positive smi. ASSERT(is_uint6(shift)); if (!dst.is(src)) { movq(dst, src); } neg(dst); if (shift < kSmiShift) { sar(dst, Immediate(kSmiShift - shift)); } else { shl(dst, Immediate(shift - kSmiShift)); } return SmiIndex(dst, times_1); } void MacroAssembler::JumpIfSmi(Register src, Label* on_smi) { ASSERT_EQ(0, kSmiTag); Condition smi = CheckSmi(src); j(smi, on_smi); } void MacroAssembler::JumpIfNotSmi(Register src, Label* on_not_smi) { Condition smi = CheckSmi(src); j(NegateCondition(smi), on_not_smi); } void MacroAssembler::JumpIfNotPositiveSmi(Register src, Label* on_not_positive_smi) { Condition positive_smi = CheckPositiveSmi(src); j(NegateCondition(positive_smi), on_not_positive_smi); } void MacroAssembler::JumpIfSmiEqualsConstant(Register src, Smi* constant, Label* on_equals) { SmiCompare(src, constant); j(equal, on_equals); } void MacroAssembler::JumpIfNotValidSmiValue(Register src, Label* on_invalid) { Condition is_valid = CheckInteger32ValidSmiValue(src); j(NegateCondition(is_valid), on_invalid); } void MacroAssembler::JumpIfUIntNotValidSmiValue(Register src, Label* on_invalid) { Condition is_valid = CheckUInteger32ValidSmiValue(src); j(NegateCondition(is_valid), on_invalid); } void MacroAssembler::JumpIfNotBothSmi(Register src1, Register src2, Label* on_not_both_smi) { Condition both_smi = CheckBothSmi(src1, src2); j(NegateCondition(both_smi), on_not_both_smi); } void MacroAssembler::JumpIfNotBothPositiveSmi(Register src1, Register src2, Label* on_not_both_smi) { Condition both_smi = CheckBothPositiveSmi(src1, src2); j(NegateCondition(both_smi), on_not_both_smi); } void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(Register first_object, Register second_object, Register scratch1, Register scratch2, Label* on_fail) { // Check that both objects are not smis. Condition either_smi = CheckEitherSmi(first_object, second_object); j(either_smi, on_fail); // Load instance type for both strings. movq(scratch1, FieldOperand(first_object, HeapObject::kMapOffset)); movq(scratch2, FieldOperand(second_object, HeapObject::kMapOffset)); movzxbl(scratch1, FieldOperand(scratch1, Map::kInstanceTypeOffset)); movzxbl(scratch2, FieldOperand(scratch2, Map::kInstanceTypeOffset)); // Check that both are flat ascii strings. ASSERT(kNotStringTag != 0); const int kFlatAsciiStringMask = kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask; const int kFlatAsciiStringTag = ASCII_STRING_TYPE; andl(scratch1, Immediate(kFlatAsciiStringMask)); andl(scratch2, Immediate(kFlatAsciiStringMask)); // Interleave the bits to check both scratch1 and scratch2 in one test. ASSERT_EQ(0, kFlatAsciiStringMask & (kFlatAsciiStringMask << 3)); lea(scratch1, Operand(scratch1, scratch2, times_8, 0)); cmpl(scratch1, Immediate(kFlatAsciiStringTag + (kFlatAsciiStringTag << 3))); j(not_equal, on_fail); } void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii( Register instance_type, Register scratch, Label *failure) { if (!scratch.is(instance_type)) { movl(scratch, instance_type); } const int kFlatAsciiStringMask = kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask; andl(scratch, Immediate(kFlatAsciiStringMask)); cmpl(scratch, Immediate(kStringTag | kSeqStringTag | kAsciiStringTag)); j(not_equal, failure); } void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialAscii( Register first_object_instance_type, Register second_object_instance_type, Register scratch1, Register scratch2, Label* on_fail) { // Load instance type for both strings. movq(scratch1, first_object_instance_type); movq(scratch2, second_object_instance_type); // Check that both are flat ascii strings. ASSERT(kNotStringTag != 0); const int kFlatAsciiStringMask = kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask; const int kFlatAsciiStringTag = ASCII_STRING_TYPE; andl(scratch1, Immediate(kFlatAsciiStringMask)); andl(scratch2, Immediate(kFlatAsciiStringMask)); // Interleave the bits to check both scratch1 and scratch2 in one test. ASSERT_EQ(0, kFlatAsciiStringMask & (kFlatAsciiStringMask << 3)); lea(scratch1, Operand(scratch1, scratch2, times_8, 0)); cmpl(scratch1, Immediate(kFlatAsciiStringTag + (kFlatAsciiStringTag << 3))); j(not_equal, on_fail); } void MacroAssembler::Move(Register dst, Handle source) { ASSERT(!source->IsFailure()); if (source->IsSmi()) { Move(dst, Smi::cast(*source)); } else { movq(dst, source, RelocInfo::EMBEDDED_OBJECT); } } void MacroAssembler::Move(const Operand& dst, Handle source) { ASSERT(!source->IsFailure()); if (source->IsSmi()) { Move(dst, Smi::cast(*source)); } else { movq(kScratchRegister, source, RelocInfo::EMBEDDED_OBJECT); movq(dst, kScratchRegister); } } void MacroAssembler::Cmp(Register dst, Handle source) { if (source->IsSmi()) { SmiCompare(dst, Smi::cast(*source)); } else { Move(kScratchRegister, source); cmpq(dst, kScratchRegister); } } void MacroAssembler::Cmp(const Operand& dst, Handle source) { if (source->IsSmi()) { SmiCompare(dst, Smi::cast(*source)); } else { ASSERT(source->IsHeapObject()); movq(kScratchRegister, source, RelocInfo::EMBEDDED_OBJECT); cmpq(dst, kScratchRegister); } } void MacroAssembler::Push(Handle source) { if (source->IsSmi()) { Push(Smi::cast(*source)); } else { ASSERT(source->IsHeapObject()); movq(kScratchRegister, source, RelocInfo::EMBEDDED_OBJECT); push(kScratchRegister); } } void MacroAssembler::Push(Smi* source) { intptr_t smi = reinterpret_cast(source); if (is_int32(smi)) { push(Immediate(static_cast(smi))); } else { Register constant = GetSmiConstant(source); push(constant); } } void MacroAssembler::Drop(int stack_elements) { if (stack_elements > 0) { addq(rsp, Immediate(stack_elements * kPointerSize)); } } void MacroAssembler::Test(const Operand& src, Smi* source) { testl(Operand(src, kIntSize), Immediate(source->value())); } void MacroAssembler::Jump(ExternalReference ext) { movq(kScratchRegister, ext); jmp(kScratchRegister); } void MacroAssembler::Jump(Address destination, RelocInfo::Mode rmode) { movq(kScratchRegister, destination, rmode); jmp(kScratchRegister); } void MacroAssembler::Jump(Handle code_object, RelocInfo::Mode rmode) { // TODO(X64): Inline this jmp(code_object, rmode); } void MacroAssembler::Call(ExternalReference ext) { movq(kScratchRegister, ext); call(kScratchRegister); } void MacroAssembler::Call(Address destination, RelocInfo::Mode rmode) { movq(kScratchRegister, destination, rmode); call(kScratchRegister); } void MacroAssembler::Call(Handle code_object, RelocInfo::Mode rmode) { ASSERT(RelocInfo::IsCodeTarget(rmode)); WriteRecordedPositions(); call(code_object, rmode); } void MacroAssembler::PushTryHandler(CodeLocation try_location, HandlerType type) { // Adjust this code if not the case. ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize); // The pc (return address) is already on TOS. This code pushes state, // frame pointer and current handler. Check that they are expected // next on the stack, in that order. ASSERT_EQ(StackHandlerConstants::kStateOffset, StackHandlerConstants::kPCOffset - kPointerSize); ASSERT_EQ(StackHandlerConstants::kFPOffset, StackHandlerConstants::kStateOffset - kPointerSize); ASSERT_EQ(StackHandlerConstants::kNextOffset, StackHandlerConstants::kFPOffset - kPointerSize); if (try_location == IN_JAVASCRIPT) { if (type == TRY_CATCH_HANDLER) { push(Immediate(StackHandler::TRY_CATCH)); } else { push(Immediate(StackHandler::TRY_FINALLY)); } push(rbp); } else { ASSERT(try_location == IN_JS_ENTRY); // The frame pointer does not point to a JS frame so we save NULL // for rbp. We expect the code throwing an exception to check rbp // before dereferencing it to restore the context. push(Immediate(StackHandler::ENTRY)); push(Immediate(0)); // NULL frame pointer. } // Save the current handler. movq(kScratchRegister, ExternalReference(Top::k_handler_address)); push(Operand(kScratchRegister, 0)); // Link this handler. movq(Operand(kScratchRegister, 0), rsp); } void MacroAssembler::PopTryHandler() { ASSERT_EQ(0, StackHandlerConstants::kNextOffset); // Unlink this handler. movq(kScratchRegister, ExternalReference(Top::k_handler_address)); pop(Operand(kScratchRegister, 0)); // Remove the remaining fields. addq(rsp, Immediate(StackHandlerConstants::kSize - kPointerSize)); } void MacroAssembler::Ret() { ret(0); } void MacroAssembler::FCmp() { fucomip(); fstp(0); } void MacroAssembler::CmpObjectType(Register heap_object, InstanceType type, Register map) { movq(map, FieldOperand(heap_object, HeapObject::kMapOffset)); CmpInstanceType(map, type); } void MacroAssembler::CmpInstanceType(Register map, InstanceType type) { cmpb(FieldOperand(map, Map::kInstanceTypeOffset), Immediate(static_cast(type))); } void MacroAssembler::CheckMap(Register obj, Handle map, Label* fail, bool is_heap_object) { if (!is_heap_object) { JumpIfSmi(obj, fail); } Cmp(FieldOperand(obj, HeapObject::kMapOffset), map); j(not_equal, fail); } void MacroAssembler::AbortIfNotNumber(Register object) { Label ok; Condition is_smi = CheckSmi(object); j(is_smi, &ok); Cmp(FieldOperand(object, HeapObject::kMapOffset), Factory::heap_number_map()); Assert(equal, "Operand not a number"); bind(&ok); } void MacroAssembler::AbortIfSmi(Register object) { Label ok; Condition is_smi = CheckSmi(object); Assert(NegateCondition(is_smi), "Operand is a smi"); } void MacroAssembler::AbortIfNotSmi(Register object) { Label ok; Condition is_smi = CheckSmi(object); Assert(is_smi, "Operand is not a smi"); } void MacroAssembler::AbortIfNotRootValue(Register src, Heap::RootListIndex root_value_index, const char* message) { ASSERT(!src.is(kScratchRegister)); LoadRoot(kScratchRegister, root_value_index); cmpq(src, kScratchRegister); Check(equal, message); } Condition MacroAssembler::IsObjectStringType(Register heap_object, Register map, Register instance_type) { movq(map, FieldOperand(heap_object, HeapObject::kMapOffset)); movzxbl(instance_type, FieldOperand(map, Map::kInstanceTypeOffset)); ASSERT(kNotStringTag != 0); testb(instance_type, Immediate(kIsNotStringMask)); return zero; } void MacroAssembler::TryGetFunctionPrototype(Register function, Register result, Label* miss) { // Check that the receiver isn't a smi. testl(function, Immediate(kSmiTagMask)); j(zero, miss); // Check that the function really is a function. CmpObjectType(function, JS_FUNCTION_TYPE, result); j(not_equal, miss); // Make sure that the function has an instance prototype. Label non_instance; testb(FieldOperand(result, Map::kBitFieldOffset), Immediate(1 << Map::kHasNonInstancePrototype)); j(not_zero, &non_instance); // Get the prototype or initial map from the function. movq(result, FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); // If the prototype or initial map is the hole, don't return it and // simply miss the cache instead. This will allow us to allocate a // prototype object on-demand in the runtime system. CompareRoot(result, Heap::kTheHoleValueRootIndex); j(equal, miss); // If the function does not have an initial map, we're done. Label done; CmpObjectType(result, MAP_TYPE, kScratchRegister); j(not_equal, &done); // Get the prototype from the initial map. movq(result, FieldOperand(result, Map::kPrototypeOffset)); jmp(&done); // Non-instance prototype: Fetch prototype from constructor field // in initial map. bind(&non_instance); movq(result, FieldOperand(result, Map::kConstructorOffset)); // All done. bind(&done); } void MacroAssembler::SetCounter(StatsCounter* counter, int value) { if (FLAG_native_code_counters && counter->Enabled()) { movq(kScratchRegister, ExternalReference(counter)); movl(Operand(kScratchRegister, 0), Immediate(value)); } } void MacroAssembler::IncrementCounter(StatsCounter* counter, int value) { ASSERT(value > 0); if (FLAG_native_code_counters && counter->Enabled()) { movq(kScratchRegister, ExternalReference(counter)); Operand operand(kScratchRegister, 0); if (value == 1) { incl(operand); } else { addl(operand, Immediate(value)); } } } void MacroAssembler::DecrementCounter(StatsCounter* counter, int value) { ASSERT(value > 0); if (FLAG_native_code_counters && counter->Enabled()) { movq(kScratchRegister, ExternalReference(counter)); Operand operand(kScratchRegister, 0); if (value == 1) { decl(operand); } else { subl(operand, Immediate(value)); } } } #ifdef ENABLE_DEBUGGER_SUPPORT void MacroAssembler::PushRegistersFromMemory(RegList regs) { ASSERT((regs & ~kJSCallerSaved) == 0); // Push the content of the memory location to the stack. for (int i = 0; i < kNumJSCallerSaved; i++) { int r = JSCallerSavedCode(i); if ((regs & (1 << r)) != 0) { ExternalReference reg_addr = ExternalReference(Debug_Address::Register(i)); movq(kScratchRegister, reg_addr); push(Operand(kScratchRegister, 0)); } } } void MacroAssembler::SaveRegistersToMemory(RegList regs) { ASSERT((regs & ~kJSCallerSaved) == 0); // Copy the content of registers to memory location. for (int i = 0; i < kNumJSCallerSaved; i++) { int r = JSCallerSavedCode(i); if ((regs & (1 << r)) != 0) { Register reg = { r }; ExternalReference reg_addr = ExternalReference(Debug_Address::Register(i)); movq(kScratchRegister, reg_addr); movq(Operand(kScratchRegister, 0), reg); } } } void MacroAssembler::RestoreRegistersFromMemory(RegList regs) { ASSERT((regs & ~kJSCallerSaved) == 0); // Copy the content of memory location to registers. for (int i = kNumJSCallerSaved - 1; i >= 0; i--) { int r = JSCallerSavedCode(i); if ((regs & (1 << r)) != 0) { Register reg = { r }; ExternalReference reg_addr = ExternalReference(Debug_Address::Register(i)); movq(kScratchRegister, reg_addr); movq(reg, Operand(kScratchRegister, 0)); } } } void MacroAssembler::PopRegistersToMemory(RegList regs) { ASSERT((regs & ~kJSCallerSaved) == 0); // Pop the content from the stack to the memory location. for (int i = kNumJSCallerSaved - 1; i >= 0; i--) { int r = JSCallerSavedCode(i); if ((regs & (1 << r)) != 0) { ExternalReference reg_addr = ExternalReference(Debug_Address::Register(i)); movq(kScratchRegister, reg_addr); pop(Operand(kScratchRegister, 0)); } } } void MacroAssembler::CopyRegistersFromStackToMemory(Register base, Register scratch, RegList regs) { ASSERT(!scratch.is(kScratchRegister)); ASSERT(!base.is(kScratchRegister)); ASSERT(!base.is(scratch)); ASSERT((regs & ~kJSCallerSaved) == 0); // Copy the content of the stack to the memory location and adjust base. for (int i = kNumJSCallerSaved - 1; i >= 0; i--) { int r = JSCallerSavedCode(i); if ((regs & (1 << r)) != 0) { movq(scratch, Operand(base, 0)); ExternalReference reg_addr = ExternalReference(Debug_Address::Register(i)); movq(kScratchRegister, reg_addr); movq(Operand(kScratchRegister, 0), scratch); lea(base, Operand(base, kPointerSize)); } } } void MacroAssembler::DebugBreak() { ASSERT(allow_stub_calls()); xor_(rax, rax); // no arguments movq(rbx, ExternalReference(Runtime::kDebugBreak)); CEntryStub ces(1); Call(ces.GetCode(), RelocInfo::DEBUG_BREAK); } #endif // ENABLE_DEBUGGER_SUPPORT void MacroAssembler::InvokePrologue(const ParameterCount& expected, const ParameterCount& actual, Handle code_constant, Register code_register, Label* done, InvokeFlag flag) { bool definitely_matches = false; Label invoke; if (expected.is_immediate()) { ASSERT(actual.is_immediate()); if (expected.immediate() == actual.immediate()) { definitely_matches = true; } else { Set(rax, actual.immediate()); if (expected.immediate() == SharedFunctionInfo::kDontAdaptArgumentsSentinel) { // Don't worry about adapting arguments for built-ins that // don't want that done. Skip adaption code by making it look // like we have a match between expected and actual number of // arguments. definitely_matches = true; } else { Set(rbx, expected.immediate()); } } } else { if (actual.is_immediate()) { // Expected is in register, actual is immediate. This is the // case when we invoke function values without going through the // IC mechanism. cmpq(expected.reg(), Immediate(actual.immediate())); j(equal, &invoke); ASSERT(expected.reg().is(rbx)); Set(rax, actual.immediate()); } else if (!expected.reg().is(actual.reg())) { // Both expected and actual are in (different) registers. This // is the case when we invoke functions using call and apply. cmpq(expected.reg(), actual.reg()); j(equal, &invoke); ASSERT(actual.reg().is(rax)); ASSERT(expected.reg().is(rbx)); } } if (!definitely_matches) { Handle adaptor = Handle(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline)); if (!code_constant.is_null()) { movq(rdx, code_constant, RelocInfo::EMBEDDED_OBJECT); addq(rdx, Immediate(Code::kHeaderSize - kHeapObjectTag)); } else if (!code_register.is(rdx)) { movq(rdx, code_register); } if (flag == CALL_FUNCTION) { Call(adaptor, RelocInfo::CODE_TARGET); jmp(done); } else { Jump(adaptor, RelocInfo::CODE_TARGET); } bind(&invoke); } } void MacroAssembler::InvokeCode(Register code, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag) { Label done; InvokePrologue(expected, actual, Handle::null(), code, &done, flag); if (flag == CALL_FUNCTION) { call(code); } else { ASSERT(flag == JUMP_FUNCTION); jmp(code); } bind(&done); } void MacroAssembler::InvokeCode(Handle code, const ParameterCount& expected, const ParameterCount& actual, RelocInfo::Mode rmode, InvokeFlag flag) { Label done; Register dummy = rax; InvokePrologue(expected, actual, code, dummy, &done, flag); if (flag == CALL_FUNCTION) { Call(code, rmode); } else { ASSERT(flag == JUMP_FUNCTION); Jump(code, rmode); } bind(&done); } void MacroAssembler::InvokeFunction(Register function, const ParameterCount& actual, InvokeFlag flag) { ASSERT(function.is(rdi)); movq(rdx, FieldOperand(function, JSFunction::kSharedFunctionInfoOffset)); movq(rsi, FieldOperand(function, JSFunction::kContextOffset)); movsxlq(rbx, FieldOperand(rdx, SharedFunctionInfo::kFormalParameterCountOffset)); // Advances rdx to the end of the Code object header, to the start of // the executable code. movq(rdx, FieldOperand(rdi, JSFunction::kCodeEntryOffset)); ParameterCount expected(rbx); InvokeCode(rdx, expected, actual, flag); } void MacroAssembler::InvokeFunction(JSFunction* function, const ParameterCount& actual, InvokeFlag flag) { ASSERT(function->is_compiled()); // Get the function and setup the context. Move(rdi, Handle(function)); movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); // Invoke the cached code. Handle code(function->code()); ParameterCount expected(function->shared()->formal_parameter_count()); InvokeCode(code, expected, actual, RelocInfo::CODE_TARGET, flag); } void MacroAssembler::EnterFrame(StackFrame::Type type) { push(rbp); movq(rbp, rsp); push(rsi); // Context. Push(Smi::FromInt(type)); movq(kScratchRegister, CodeObject(), RelocInfo::EMBEDDED_OBJECT); push(kScratchRegister); if (FLAG_debug_code) { movq(kScratchRegister, Factory::undefined_value(), RelocInfo::EMBEDDED_OBJECT); cmpq(Operand(rsp, 0), kScratchRegister); Check(not_equal, "code object not properly patched"); } } void MacroAssembler::LeaveFrame(StackFrame::Type type) { if (FLAG_debug_code) { Move(kScratchRegister, Smi::FromInt(type)); cmpq(Operand(rbp, StandardFrameConstants::kMarkerOffset), kScratchRegister); Check(equal, "stack frame types must match"); } movq(rsp, rbp); pop(rbp); } void MacroAssembler::EnterExitFramePrologue(ExitFrame::Mode mode, bool save_rax) { // Setup the frame structure on the stack. // All constants are relative to the frame pointer of the exit frame. ASSERT(ExitFrameConstants::kCallerSPDisplacement == +2 * kPointerSize); ASSERT(ExitFrameConstants::kCallerPCOffset == +1 * kPointerSize); ASSERT(ExitFrameConstants::kCallerFPOffset == 0 * kPointerSize); push(rbp); movq(rbp, rsp); // Reserve room for entry stack pointer and push the debug marker. ASSERT(ExitFrameConstants::kSPOffset == -1 * kPointerSize); push(Immediate(0)); // Saved entry sp, patched before call. movq(kScratchRegister, CodeObject(), RelocInfo::EMBEDDED_OBJECT); push(kScratchRegister); // Accessed from EditFrame::code_slot. // Save the frame pointer and the context in top. ExternalReference c_entry_fp_address(Top::k_c_entry_fp_address); ExternalReference context_address(Top::k_context_address); if (save_rax) { movq(r14, rax); // Backup rax before we use it. } movq(rax, rbp); store_rax(c_entry_fp_address); movq(rax, rsi); store_rax(context_address); } void MacroAssembler::EnterExitFrameEpilogue(ExitFrame::Mode mode, int result_size, int argc) { #ifdef ENABLE_DEBUGGER_SUPPORT // Save the state of all registers to the stack from the memory // location. This is needed to allow nested break points. if (mode == ExitFrame::MODE_DEBUG) { // TODO(1243899): This should be symmetric to // CopyRegistersFromStackToMemory() but it isn't! esp is assumed // correct here, but computed for the other call. Very error // prone! FIX THIS. Actually there are deeper problems with // register saving than this asymmetry (see the bug report // associated with this issue). PushRegistersFromMemory(kJSCallerSaved); } #endif #ifdef _WIN64 // Reserve space on stack for result and argument structures, if necessary. int result_stack_space = (result_size < 2) ? 0 : result_size * kPointerSize; // Reserve space for the Arguments object. The Windows 64-bit ABI // requires us to pass this structure as a pointer to its location on // the stack. The structure contains 2 values. int argument_stack_space = argc * kPointerSize; // We also need backing space for 4 parameters, even though // we only pass one or two parameter, and it is in a register. int argument_mirror_space = 4 * kPointerSize; int total_stack_space = argument_mirror_space + argument_stack_space + result_stack_space; subq(rsp, Immediate(total_stack_space)); #endif // Get the required frame alignment for the OS. static const int kFrameAlignment = OS::ActivationFrameAlignment(); if (kFrameAlignment > 0) { ASSERT(IsPowerOf2(kFrameAlignment)); movq(kScratchRegister, Immediate(-kFrameAlignment)); and_(rsp, kScratchRegister); } // Patch the saved entry sp. movq(Operand(rbp, ExitFrameConstants::kSPOffset), rsp); } void MacroAssembler::EnterExitFrame(ExitFrame::Mode mode, int result_size) { EnterExitFramePrologue(mode, true); // Setup argv in callee-saved register r12. It is reused in LeaveExitFrame, // so it must be retained across the C-call. int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize; lea(r12, Operand(rbp, r14, times_pointer_size, offset)); EnterExitFrameEpilogue(mode, result_size, 2); } void MacroAssembler::EnterApiExitFrame(ExitFrame::Mode mode, int stack_space, int argc, int result_size) { EnterExitFramePrologue(mode, false); // Setup argv in callee-saved register r12. It is reused in LeaveExitFrame, // so it must be retained across the C-call. int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize; lea(r12, Operand(rbp, (stack_space * kPointerSize) + offset)); EnterExitFrameEpilogue(mode, result_size, argc); } void MacroAssembler::LeaveExitFrame(ExitFrame::Mode mode, int result_size) { // Registers: // r12 : argv #ifdef ENABLE_DEBUGGER_SUPPORT // Restore the memory copy of the registers by digging them out from // the stack. This is needed to allow nested break points. if (mode == ExitFrame::MODE_DEBUG) { // It's okay to clobber register rbx below because we don't need // the function pointer after this. const int kCallerSavedSize = kNumJSCallerSaved * kPointerSize; int kOffset = ExitFrameConstants::kCodeOffset - kCallerSavedSize; lea(rbx, Operand(rbp, kOffset)); CopyRegistersFromStackToMemory(rbx, rcx, kJSCallerSaved); } #endif // Get the return address from the stack and restore the frame pointer. movq(rcx, Operand(rbp, 1 * kPointerSize)); movq(rbp, Operand(rbp, 0 * kPointerSize)); // Pop everything up to and including the arguments and the receiver // from the caller stack. lea(rsp, Operand(r12, 1 * kPointerSize)); // Restore current context from top and clear it in debug mode. ExternalReference context_address(Top::k_context_address); movq(kScratchRegister, context_address); movq(rsi, Operand(kScratchRegister, 0)); #ifdef DEBUG movq(Operand(kScratchRegister, 0), Immediate(0)); #endif // Push the return address to get ready to return. push(rcx); // Clear the top frame. ExternalReference c_entry_fp_address(Top::k_c_entry_fp_address); movq(kScratchRegister, c_entry_fp_address); movq(Operand(kScratchRegister, 0), Immediate(0)); } void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg, Register scratch, Label* miss) { Label same_contexts; ASSERT(!holder_reg.is(scratch)); ASSERT(!scratch.is(kScratchRegister)); // Load current lexical context from the stack frame. movq(scratch, Operand(rbp, StandardFrameConstants::kContextOffset)); // When generating debug code, make sure the lexical context is set. if (FLAG_debug_code) { cmpq(scratch, Immediate(0)); Check(not_equal, "we should not have an empty lexical context"); } // Load the global context of the current context. int offset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize; movq(scratch, FieldOperand(scratch, offset)); movq(scratch, FieldOperand(scratch, GlobalObject::kGlobalContextOffset)); // Check the context is a global context. if (FLAG_debug_code) { Cmp(FieldOperand(scratch, HeapObject::kMapOffset), Factory::global_context_map()); Check(equal, "JSGlobalObject::global_context should be a global context."); } // Check if both contexts are the same. cmpq(scratch, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset)); j(equal, &same_contexts); // Compare security tokens. // Check that the security token in the calling global object is // compatible with the security token in the receiving global // object. // Check the context is a global context. if (FLAG_debug_code) { // Preserve original value of holder_reg. push(holder_reg); movq(holder_reg, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset)); CompareRoot(holder_reg, Heap::kNullValueRootIndex); Check(not_equal, "JSGlobalProxy::context() should not be null."); // Read the first word and compare to global_context_map(), movq(holder_reg, FieldOperand(holder_reg, HeapObject::kMapOffset)); CompareRoot(holder_reg, Heap::kGlobalContextMapRootIndex); Check(equal, "JSGlobalObject::global_context should be a global context."); pop(holder_reg); } movq(kScratchRegister, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset)); int token_offset = Context::kHeaderSize + Context::SECURITY_TOKEN_INDEX * kPointerSize; movq(scratch, FieldOperand(scratch, token_offset)); cmpq(scratch, FieldOperand(kScratchRegister, token_offset)); j(not_equal, miss); bind(&same_contexts); } void MacroAssembler::LoadAllocationTopHelper(Register result, Register result_end, Register scratch, AllocationFlags flags) { ExternalReference new_space_allocation_top = ExternalReference::new_space_allocation_top_address(); // Just return if allocation top is already known. if ((flags & RESULT_CONTAINS_TOP) != 0) { // No use of scratch if allocation top is provided. ASSERT(!scratch.is_valid()); #ifdef DEBUG // Assert that result actually contains top on entry. movq(kScratchRegister, new_space_allocation_top); cmpq(result, Operand(kScratchRegister, 0)); Check(equal, "Unexpected allocation top"); #endif return; } // Move address of new object to result. Use scratch register if available, // and keep address in scratch until call to UpdateAllocationTopHelper. if (scratch.is_valid()) { ASSERT(!scratch.is(result_end)); movq(scratch, new_space_allocation_top); movq(result, Operand(scratch, 0)); } else if (result.is(rax)) { load_rax(new_space_allocation_top); } else { movq(kScratchRegister, new_space_allocation_top); movq(result, Operand(kScratchRegister, 0)); } } void MacroAssembler::UpdateAllocationTopHelper(Register result_end, Register scratch) { if (FLAG_debug_code) { testq(result_end, Immediate(kObjectAlignmentMask)); Check(zero, "Unaligned allocation in new space"); } ExternalReference new_space_allocation_top = ExternalReference::new_space_allocation_top_address(); // Update new top. if (result_end.is(rax)) { // rax can be stored directly to a memory location. store_rax(new_space_allocation_top); } else { // Register required - use scratch provided if available. if (scratch.is_valid()) { movq(Operand(scratch, 0), result_end); } else { movq(kScratchRegister, new_space_allocation_top); movq(Operand(kScratchRegister, 0), result_end); } } } void MacroAssembler::AllocateInNewSpace(int object_size, Register result, Register result_end, Register scratch, Label* gc_required, AllocationFlags flags) { ASSERT(!result.is(result_end)); // Load address of new object into result. LoadAllocationTopHelper(result, result_end, scratch, flags); // Calculate new top and bail out if new space is exhausted. ExternalReference new_space_allocation_limit = ExternalReference::new_space_allocation_limit_address(); Register top_reg = result_end.is_valid() ? result_end : result; if (top_reg.is(result)) { addq(top_reg, Immediate(object_size)); } else { lea(top_reg, Operand(result, object_size)); } movq(kScratchRegister, new_space_allocation_limit); cmpq(top_reg, Operand(kScratchRegister, 0)); j(above, gc_required); // Update allocation top. UpdateAllocationTopHelper(top_reg, scratch); if (top_reg.is(result)) { if ((flags & TAG_OBJECT) != 0) { subq(result, Immediate(object_size - kHeapObjectTag)); } else { subq(result, Immediate(object_size)); } } else if ((flags & TAG_OBJECT) != 0) { // Tag the result if requested. addq(result, Immediate(kHeapObjectTag)); } } void MacroAssembler::AllocateInNewSpace(int header_size, ScaleFactor element_size, Register element_count, Register result, Register result_end, Register scratch, Label* gc_required, AllocationFlags flags) { ASSERT(!result.is(result_end)); // Load address of new object into result. LoadAllocationTopHelper(result, result_end, scratch, flags); // Calculate new top and bail out if new space is exhausted. ExternalReference new_space_allocation_limit = ExternalReference::new_space_allocation_limit_address(); lea(result_end, Operand(result, element_count, element_size, header_size)); movq(kScratchRegister, new_space_allocation_limit); cmpq(result_end, Operand(kScratchRegister, 0)); j(above, gc_required); // Update allocation top. UpdateAllocationTopHelper(result_end, scratch); // Tag the result if requested. if ((flags & TAG_OBJECT) != 0) { addq(result, Immediate(kHeapObjectTag)); } } void MacroAssembler::AllocateInNewSpace(Register object_size, Register result, Register result_end, Register scratch, Label* gc_required, AllocationFlags flags) { // Load address of new object into result. LoadAllocationTopHelper(result, result_end, scratch, flags); // Calculate new top and bail out if new space is exhausted. ExternalReference new_space_allocation_limit = ExternalReference::new_space_allocation_limit_address(); if (!object_size.is(result_end)) { movq(result_end, object_size); } addq(result_end, result); movq(kScratchRegister, new_space_allocation_limit); cmpq(result_end, Operand(kScratchRegister, 0)); j(above, gc_required); // Update allocation top. UpdateAllocationTopHelper(result_end, scratch); // Tag the result if requested. if ((flags & TAG_OBJECT) != 0) { addq(result, Immediate(kHeapObjectTag)); } } void MacroAssembler::UndoAllocationInNewSpace(Register object) { ExternalReference new_space_allocation_top = ExternalReference::new_space_allocation_top_address(); // Make sure the object has no tag before resetting top. and_(object, Immediate(~kHeapObjectTagMask)); movq(kScratchRegister, new_space_allocation_top); #ifdef DEBUG cmpq(object, Operand(kScratchRegister, 0)); Check(below, "Undo allocation of non allocated memory"); #endif movq(Operand(kScratchRegister, 0), object); } void MacroAssembler::AllocateHeapNumber(Register result, Register scratch, Label* gc_required) { // Allocate heap number in new space. AllocateInNewSpace(HeapNumber::kSize, result, scratch, no_reg, gc_required, TAG_OBJECT); // Set the map. LoadRoot(kScratchRegister, Heap::kHeapNumberMapRootIndex); movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister); } void MacroAssembler::AllocateTwoByteString(Register result, Register length, Register scratch1, Register scratch2, Register scratch3, Label* gc_required) { // Calculate the number of bytes needed for the characters in the string while // observing object alignment. const int kHeaderAlignment = SeqTwoByteString::kHeaderSize & kObjectAlignmentMask; ASSERT(kShortSize == 2); // scratch1 = length * 2 + kObjectAlignmentMask. lea(scratch1, Operand(length, length, times_1, kObjectAlignmentMask + kHeaderAlignment)); and_(scratch1, Immediate(~kObjectAlignmentMask)); if (kHeaderAlignment > 0) { subq(scratch1, Immediate(kHeaderAlignment)); } // Allocate two byte string in new space. AllocateInNewSpace(SeqTwoByteString::kHeaderSize, times_1, scratch1, result, scratch2, scratch3, gc_required, TAG_OBJECT); // Set the map, length and hash field. LoadRoot(kScratchRegister, Heap::kStringMapRootIndex); movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister); Integer32ToSmi(scratch1, length); movq(FieldOperand(result, String::kLengthOffset), scratch1); movq(FieldOperand(result, String::kHashFieldOffset), Immediate(String::kEmptyHashField)); } void MacroAssembler::AllocateAsciiString(Register result, Register length, Register scratch1, Register scratch2, Register scratch3, Label* gc_required) { // Calculate the number of bytes needed for the characters in the string while // observing object alignment. const int kHeaderAlignment = SeqAsciiString::kHeaderSize & kObjectAlignmentMask; movl(scratch1, length); ASSERT(kCharSize == 1); addq(scratch1, Immediate(kObjectAlignmentMask + kHeaderAlignment)); and_(scratch1, Immediate(~kObjectAlignmentMask)); if (kHeaderAlignment > 0) { subq(scratch1, Immediate(kHeaderAlignment)); } // Allocate ascii string in new space. AllocateInNewSpace(SeqAsciiString::kHeaderSize, times_1, scratch1, result, scratch2, scratch3, gc_required, TAG_OBJECT); // Set the map, length and hash field. LoadRoot(kScratchRegister, Heap::kAsciiStringMapRootIndex); movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister); Integer32ToSmi(scratch1, length); movq(FieldOperand(result, String::kLengthOffset), scratch1); movq(FieldOperand(result, String::kHashFieldOffset), Immediate(String::kEmptyHashField)); } void MacroAssembler::AllocateConsString(Register result, Register scratch1, Register scratch2, Label* gc_required) { // Allocate heap number in new space. AllocateInNewSpace(ConsString::kSize, result, scratch1, scratch2, gc_required, TAG_OBJECT); // Set the map. The other fields are left uninitialized. LoadRoot(kScratchRegister, Heap::kConsStringMapRootIndex); movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister); } void MacroAssembler::AllocateAsciiConsString(Register result, Register scratch1, Register scratch2, Label* gc_required) { // Allocate heap number in new space. AllocateInNewSpace(ConsString::kSize, result, scratch1, scratch2, gc_required, TAG_OBJECT); // Set the map. The other fields are left uninitialized. LoadRoot(kScratchRegister, Heap::kConsAsciiStringMapRootIndex); movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister); } void MacroAssembler::LoadContext(Register dst, int context_chain_length) { if (context_chain_length > 0) { // Move up the chain of contexts to the context containing the slot. movq(dst, Operand(rsi, Context::SlotOffset(Context::CLOSURE_INDEX))); // Load the function context (which is the incoming, outer context). movq(dst, FieldOperand(dst, JSFunction::kContextOffset)); for (int i = 1; i < context_chain_length; i++) { movq(dst, Operand(dst, Context::SlotOffset(Context::CLOSURE_INDEX))); movq(dst, FieldOperand(dst, JSFunction::kContextOffset)); } // The context may be an intermediate context, not a function context. movq(dst, Operand(dst, Context::SlotOffset(Context::FCONTEXT_INDEX))); } else { // context is the current function context. // The context may be an intermediate context, not a function context. movq(dst, Operand(rsi, Context::SlotOffset(Context::FCONTEXT_INDEX))); } } int MacroAssembler::ArgumentStackSlotsForCFunctionCall(int num_arguments) { // On Windows 64 stack slots are reserved by the caller for all arguments // including the ones passed in registers, and space is always allocated for // the four register arguments even if the function takes fewer than four // arguments. // On AMD64 ABI (Linux/Mac) the first six arguments are passed in registers // and the caller does not reserve stack slots for them. ASSERT(num_arguments >= 0); #ifdef _WIN64 static const int kMinimumStackSlots = 4; if (num_arguments < kMinimumStackSlots) return kMinimumStackSlots; return num_arguments; #else static const int kRegisterPassedArguments = 6; if (num_arguments < kRegisterPassedArguments) return 0; return num_arguments - kRegisterPassedArguments; #endif } void MacroAssembler::PrepareCallCFunction(int num_arguments) { int frame_alignment = OS::ActivationFrameAlignment(); ASSERT(frame_alignment != 0); ASSERT(num_arguments >= 0); // Make stack end at alignment and allocate space for arguments and old rsp. movq(kScratchRegister, rsp); ASSERT(IsPowerOf2(frame_alignment)); int argument_slots_on_stack = ArgumentStackSlotsForCFunctionCall(num_arguments); subq(rsp, Immediate((argument_slots_on_stack + 1) * kPointerSize)); and_(rsp, Immediate(-frame_alignment)); movq(Operand(rsp, argument_slots_on_stack * kPointerSize), kScratchRegister); } void MacroAssembler::CallCFunction(ExternalReference function, int num_arguments) { movq(rax, function); CallCFunction(rax, num_arguments); } void MacroAssembler::CallCFunction(Register function, int num_arguments) { // Check stack alignment. if (FLAG_debug_code) { CheckStackAlignment(); } call(function); ASSERT(OS::ActivationFrameAlignment() != 0); ASSERT(num_arguments >= 0); int argument_slots_on_stack = ArgumentStackSlotsForCFunctionCall(num_arguments); movq(rsp, Operand(rsp, argument_slots_on_stack * kPointerSize)); } CodePatcher::CodePatcher(byte* address, int size) : address_(address), size_(size), masm_(address, size + Assembler::kGap) { // Create a new macro assembler pointing to the address of the code to patch. // The size is adjusted with kGap on order for the assembler to generate size // bytes of instructions without failing with buffer size constraints. ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); } CodePatcher::~CodePatcher() { // Indicate that code has changed. CPU::FlushICache(address_, size_); // Check that the code was patched as expected. ASSERT(masm_.pc_ == address_ + size_); ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); } } } // namespace v8::internal #endif // V8_TARGET_ARCH_X64