// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "ast.h" #include "deoptimizer.h" #include "frames-inl.h" #include "full-codegen.h" #include "lazy-instance.h" #include "mark-compact.h" #include "safepoint-table.h" #include "scopeinfo.h" #include "string-stream.h" #include "vm-state-inl.h" #include "allocation-inl.h" namespace v8 { namespace internal { ReturnAddressLocationResolver StackFrame::return_address_location_resolver_ = NULL; // Iterator that supports traversing the stack handlers of a // particular frame. Needs to know the top of the handler chain. class StackHandlerIterator BASE_EMBEDDED { public: StackHandlerIterator(const StackFrame* frame, StackHandler* handler) : limit_(frame->fp()), handler_(handler) { // Make sure the handler has already been unwound to this frame. ASSERT(frame->sp() <= handler->address()); } StackHandler* handler() const { return handler_; } bool done() { return handler_ == NULL || handler_->address() > limit_; } void Advance() { ASSERT(!done()); handler_ = handler_->next(); } private: const Address limit_; StackHandler* handler_; }; // ------------------------------------------------------------------------- #define INITIALIZE_SINGLETON(type, field) field##_(this), StackFrameIteratorBase::StackFrameIteratorBase(Isolate* isolate, bool can_access_heap_objects) : isolate_(isolate), STACK_FRAME_TYPE_LIST(INITIALIZE_SINGLETON) frame_(NULL), handler_(NULL), can_access_heap_objects_(can_access_heap_objects) { } #undef INITIALIZE_SINGLETON StackFrameIterator::StackFrameIterator(Isolate* isolate) : StackFrameIteratorBase(isolate, true) { Reset(isolate->thread_local_top()); } StackFrameIterator::StackFrameIterator(Isolate* isolate, ThreadLocalTop* t) : StackFrameIteratorBase(isolate, true) { Reset(t); } void StackFrameIterator::Advance() { ASSERT(!done()); // Compute the state of the calling frame before restoring // callee-saved registers and unwinding handlers. This allows the // frame code that computes the caller state to access the top // handler and the value of any callee-saved register if needed. StackFrame::State state; StackFrame::Type type = frame_->GetCallerState(&state); // Unwind handlers corresponding to the current frame. StackHandlerIterator it(frame_, handler_); while (!it.done()) it.Advance(); handler_ = it.handler(); // Advance to the calling frame. frame_ = SingletonFor(type, &state); // When we're done iterating over the stack frames, the handler // chain must have been completely unwound. ASSERT(!done() || handler_ == NULL); } void StackFrameIterator::Reset(ThreadLocalTop* top) { StackFrame::State state; StackFrame::Type type = ExitFrame::GetStateForFramePointer( Isolate::c_entry_fp(top), &state); handler_ = StackHandler::FromAddress(Isolate::handler(top)); if (SingletonFor(type) == NULL) return; frame_ = SingletonFor(type, &state); } StackFrame* StackFrameIteratorBase::SingletonFor(StackFrame::Type type, StackFrame::State* state) { if (type == StackFrame::NONE) return NULL; StackFrame* result = SingletonFor(type); ASSERT(result != NULL); result->state_ = *state; return result; } StackFrame* StackFrameIteratorBase::SingletonFor(StackFrame::Type type) { #define FRAME_TYPE_CASE(type, field) \ case StackFrame::type: result = &field##_; break; StackFrame* result = NULL; switch (type) { case StackFrame::NONE: return NULL; STACK_FRAME_TYPE_LIST(FRAME_TYPE_CASE) default: break; } return result; #undef FRAME_TYPE_CASE } // ------------------------------------------------------------------------- JavaScriptFrameIterator::JavaScriptFrameIterator( Isolate* isolate, StackFrame::Id id) : iterator_(isolate) { while (!done()) { Advance(); if (frame()->id() == id) return; } } void JavaScriptFrameIterator::Advance() { do { iterator_.Advance(); } while (!iterator_.done() && !iterator_.frame()->is_java_script()); } void JavaScriptFrameIterator::AdvanceToArgumentsFrame() { if (!frame()->has_adapted_arguments()) return; iterator_.Advance(); ASSERT(iterator_.frame()->is_arguments_adaptor()); } // ------------------------------------------------------------------------- StackTraceFrameIterator::StackTraceFrameIterator(Isolate* isolate) : JavaScriptFrameIterator(isolate) { if (!done() && !IsValidFrame()) Advance(); } void StackTraceFrameIterator::Advance() { while (true) { JavaScriptFrameIterator::Advance(); if (done()) return; if (IsValidFrame()) return; } } bool StackTraceFrameIterator::IsValidFrame() { if (!frame()->function()->IsJSFunction()) return false; Object* script = frame()->function()->shared()->script(); // Don't show functions from native scripts to user. return (script->IsScript() && Script::TYPE_NATIVE != Script::cast(script)->type()->value()); } // ------------------------------------------------------------------------- SafeStackFrameIterator::SafeStackFrameIterator( Isolate* isolate, Address fp, Address sp, Address js_entry_sp) : StackFrameIteratorBase(isolate, false), low_bound_(sp), high_bound_(js_entry_sp), top_frame_type_(StackFrame::NONE), external_callback_scope_(isolate->external_callback_scope()) { StackFrame::State state; StackFrame::Type type; ThreadLocalTop* top = isolate->thread_local_top(); if (IsValidTop(top)) { type = ExitFrame::GetStateForFramePointer(Isolate::c_entry_fp(top), &state); top_frame_type_ = type; } else if (IsValidStackAddress(fp)) { ASSERT(fp != NULL); state.fp = fp; state.sp = sp; state.pc_address = StackFrame::ResolveReturnAddressLocation( reinterpret_cast(StandardFrame::ComputePCAddress(fp))); // StackFrame::ComputeType will read both kContextOffset and kMarkerOffset, // we check only that kMarkerOffset is within the stack bounds and do // compile time check that kContextOffset slot is pushed on the stack before // kMarkerOffset. STATIC_ASSERT(StandardFrameConstants::kMarkerOffset < StandardFrameConstants::kContextOffset); Address frame_marker = fp + StandardFrameConstants::kMarkerOffset; if (IsValidStackAddress(frame_marker)) { type = StackFrame::ComputeType(this, &state); top_frame_type_ = type; } else { // Mark the frame as JAVA_SCRIPT if we cannot determine its type. // The frame anyways will be skipped. type = StackFrame::JAVA_SCRIPT; // Top frame is incomplete so we cannot reliably determine its type. top_frame_type_ = StackFrame::NONE; } } else { return; } if (SingletonFor(type) == NULL) return; frame_ = SingletonFor(type, &state); if (frame_ == NULL) return; Advance(); if (frame_ != NULL && !frame_->is_exit() && external_callback_scope_ != NULL && external_callback_scope_->scope_address() < frame_->fp()) { // Skip top ExternalCallbackScope if we already advanced to a JS frame // under it. Sampler will anyways take this top external callback. external_callback_scope_ = external_callback_scope_->previous(); } } bool SafeStackFrameIterator::IsValidTop(ThreadLocalTop* top) const { Address c_entry_fp = Isolate::c_entry_fp(top); if (!IsValidExitFrame(c_entry_fp)) return false; // There should be at least one JS_ENTRY stack handler. Address handler = Isolate::handler(top); if (handler == NULL) return false; // Check that there are no js frames on top of the native frames. return c_entry_fp < handler; } void SafeStackFrameIterator::AdvanceOneFrame() { ASSERT(!done()); StackFrame* last_frame = frame_; Address last_sp = last_frame->sp(), last_fp = last_frame->fp(); // Before advancing to the next stack frame, perform pointer validity tests. if (!IsValidFrame(last_frame) || !IsValidCaller(last_frame)) { frame_ = NULL; return; } // Advance to the previous frame. StackFrame::State state; StackFrame::Type type = frame_->GetCallerState(&state); frame_ = SingletonFor(type, &state); if (frame_ == NULL) return; // Check that we have actually moved to the previous frame in the stack. if (frame_->sp() < last_sp || frame_->fp() < last_fp) { frame_ = NULL; } } bool SafeStackFrameIterator::IsValidFrame(StackFrame* frame) const { return IsValidStackAddress(frame->sp()) && IsValidStackAddress(frame->fp()); } bool SafeStackFrameIterator::IsValidCaller(StackFrame* frame) { StackFrame::State state; if (frame->is_entry() || frame->is_entry_construct()) { // See EntryFrame::GetCallerState. It computes the caller FP address // and calls ExitFrame::GetStateForFramePointer on it. We need to be // sure that caller FP address is valid. Address caller_fp = Memory::Address_at( frame->fp() + EntryFrameConstants::kCallerFPOffset); if (!IsValidExitFrame(caller_fp)) return false; } else if (frame->is_arguments_adaptor()) { // See ArgumentsAdaptorFrame::GetCallerStackPointer. It assumes that // the number of arguments is stored on stack as Smi. We need to check // that it really an Smi. Object* number_of_args = reinterpret_cast(frame)-> GetExpression(0); if (!number_of_args->IsSmi()) { return false; } } frame->ComputeCallerState(&state); return IsValidStackAddress(state.sp) && IsValidStackAddress(state.fp) && SingletonFor(frame->GetCallerState(&state)) != NULL; } bool SafeStackFrameIterator::IsValidExitFrame(Address fp) const { if (!IsValidStackAddress(fp)) return false; Address sp = ExitFrame::ComputeStackPointer(fp); if (!IsValidStackAddress(sp)) return false; StackFrame::State state; ExitFrame::FillState(fp, sp, &state); if (!IsValidStackAddress(reinterpret_cast
(state.pc_address))) { return false; } return *state.pc_address != NULL; } void SafeStackFrameIterator::Advance() { while (true) { AdvanceOneFrame(); if (done()) return; if (frame_->is_java_script()) return; if (frame_->is_exit() && external_callback_scope_) { // Some of the EXIT frames may have ExternalCallbackScope allocated on // top of them. In that case the scope corresponds to the first EXIT // frame beneath it. There may be other EXIT frames on top of the // ExternalCallbackScope, just skip them as we cannot collect any useful // information about them. if (external_callback_scope_->scope_address() < frame_->fp()) { Address* callback_address = external_callback_scope_->callback_address(); if (*callback_address != NULL) { frame_->state_.pc_address = callback_address; } external_callback_scope_ = external_callback_scope_->previous(); ASSERT(external_callback_scope_ == NULL || external_callback_scope_->scope_address() > frame_->fp()); return; } } } } // ------------------------------------------------------------------------- Code* StackFrame::GetSafepointData(Isolate* isolate, Address inner_pointer, SafepointEntry* safepoint_entry, unsigned* stack_slots) { InnerPointerToCodeCache::InnerPointerToCodeCacheEntry* entry = isolate->inner_pointer_to_code_cache()->GetCacheEntry(inner_pointer); if (!entry->safepoint_entry.is_valid()) { entry->safepoint_entry = entry->code->GetSafepointEntry(inner_pointer); ASSERT(entry->safepoint_entry.is_valid()); } else { ASSERT(entry->safepoint_entry.Equals( entry->code->GetSafepointEntry(inner_pointer))); } // Fill in the results and return the code. Code* code = entry->code; *safepoint_entry = entry->safepoint_entry; *stack_slots = code->stack_slots(); return code; } bool StackFrame::HasHandler() const { StackHandlerIterator it(this, top_handler()); return !it.done(); } #ifdef DEBUG static bool GcSafeCodeContains(HeapObject* object, Address addr); #endif void StackFrame::IteratePc(ObjectVisitor* v, Address* pc_address, Code* holder) { Address pc = *pc_address; ASSERT(GcSafeCodeContains(holder, pc)); unsigned pc_offset = static_cast(pc - holder->instruction_start()); Object* code = holder; v->VisitPointer(&code); if (code != holder) { holder = reinterpret_cast(code); pc = holder->instruction_start() + pc_offset; *pc_address = pc; } } void StackFrame::SetReturnAddressLocationResolver( ReturnAddressLocationResolver resolver) { ASSERT(return_address_location_resolver_ == NULL); return_address_location_resolver_ = resolver; } StackFrame::Type StackFrame::ComputeType(const StackFrameIteratorBase* iterator, State* state) { ASSERT(state->fp != NULL); if (StandardFrame::IsArgumentsAdaptorFrame(state->fp)) { return ARGUMENTS_ADAPTOR; } // The marker and function offsets overlap. If the marker isn't a // smi then the frame is a JavaScript frame -- and the marker is // really the function. const int offset = StandardFrameConstants::kMarkerOffset; Object* marker = Memory::Object_at(state->fp + offset); if (!marker->IsSmi()) { // If we're using a "safe" stack iterator, we treat optimized // frames as normal JavaScript frames to avoid having to look // into the heap to determine the state. This is safe as long // as nobody tries to GC... if (!iterator->can_access_heap_objects_) return JAVA_SCRIPT; Code::Kind kind = GetContainingCode(iterator->isolate(), *(state->pc_address))->kind(); ASSERT(kind == Code::FUNCTION || kind == Code::OPTIMIZED_FUNCTION); return (kind == Code::OPTIMIZED_FUNCTION) ? OPTIMIZED : JAVA_SCRIPT; } return static_cast(Smi::cast(marker)->value()); } #ifdef DEBUG bool StackFrame::can_access_heap_objects() const { return iterator_->can_access_heap_objects_; } #endif StackFrame::Type StackFrame::GetCallerState(State* state) const { ComputeCallerState(state); return ComputeType(iterator_, state); } Address StackFrame::UnpaddedFP() const { #if V8_TARGET_ARCH_IA32 if (!is_optimized()) return fp(); int32_t alignment_state = Memory::int32_at( fp() + JavaScriptFrameConstants::kDynamicAlignmentStateOffset); return (alignment_state == kAlignmentPaddingPushed) ? (fp() + kPointerSize) : fp(); #else return fp(); #endif } Code* EntryFrame::unchecked_code() const { return HEAP->js_entry_code(); } void EntryFrame::ComputeCallerState(State* state) const { GetCallerState(state); } void EntryFrame::SetCallerFp(Address caller_fp) { const int offset = EntryFrameConstants::kCallerFPOffset; Memory::Address_at(this->fp() + offset) = caller_fp; } StackFrame::Type EntryFrame::GetCallerState(State* state) const { const int offset = EntryFrameConstants::kCallerFPOffset; Address fp = Memory::Address_at(this->fp() + offset); return ExitFrame::GetStateForFramePointer(fp, state); } Code* EntryConstructFrame::unchecked_code() const { return HEAP->js_construct_entry_code(); } Object*& ExitFrame::code_slot() const { const int offset = ExitFrameConstants::kCodeOffset; return Memory::Object_at(fp() + offset); } Code* ExitFrame::unchecked_code() const { return reinterpret_cast(code_slot()); } void ExitFrame::ComputeCallerState(State* state) const { // Set up the caller state. state->sp = caller_sp(); state->fp = Memory::Address_at(fp() + ExitFrameConstants::kCallerFPOffset); state->pc_address = ResolveReturnAddressLocation( reinterpret_cast(fp() + ExitFrameConstants::kCallerPCOffset)); } void ExitFrame::SetCallerFp(Address caller_fp) { Memory::Address_at(fp() + ExitFrameConstants::kCallerFPOffset) = caller_fp; } void ExitFrame::Iterate(ObjectVisitor* v) const { // The arguments are traversed as part of the expression stack of // the calling frame. IteratePc(v, pc_address(), LookupCode()); v->VisitPointer(&code_slot()); } Address ExitFrame::GetCallerStackPointer() const { return fp() + ExitFrameConstants::kCallerSPDisplacement; } StackFrame::Type ExitFrame::GetStateForFramePointer(Address fp, State* state) { if (fp == 0) return NONE; Address sp = ComputeStackPointer(fp); FillState(fp, sp, state); ASSERT(*state->pc_address != NULL); return EXIT; } Address ExitFrame::ComputeStackPointer(Address fp) { return Memory::Address_at(fp + ExitFrameConstants::kSPOffset); } void ExitFrame::FillState(Address fp, Address sp, State* state) { state->sp = sp; state->fp = fp; state->pc_address = ResolveReturnAddressLocation( reinterpret_cast(sp - 1 * kPCOnStackSize)); } Address StandardFrame::GetExpressionAddress(int n) const { const int offset = StandardFrameConstants::kExpressionsOffset; return fp() + offset - n * kPointerSize; } Object* StandardFrame::GetExpression(Address fp, int index) { return Memory::Object_at(GetExpressionAddress(fp, index)); } Address StandardFrame::GetExpressionAddress(Address fp, int n) { const int offset = StandardFrameConstants::kExpressionsOffset; return fp + offset - n * kPointerSize; } int StandardFrame::ComputeExpressionsCount() const { const int offset = StandardFrameConstants::kExpressionsOffset + kPointerSize; Address base = fp() + offset; Address limit = sp(); ASSERT(base >= limit); // stack grows downwards // Include register-allocated locals in number of expressions. return static_cast((base - limit) / kPointerSize); } void StandardFrame::ComputeCallerState(State* state) const { state->sp = caller_sp(); state->fp = caller_fp(); state->pc_address = ResolveReturnAddressLocation( reinterpret_cast(ComputePCAddress(fp()))); } void StandardFrame::SetCallerFp(Address caller_fp) { Memory::Address_at(fp() + StandardFrameConstants::kCallerFPOffset) = caller_fp; } bool StandardFrame::IsExpressionInsideHandler(int n) const { Address address = GetExpressionAddress(n); for (StackHandlerIterator it(this, top_handler()); !it.done(); it.Advance()) { if (it.handler()->includes(address)) return true; } return false; } void StandardFrame::IterateCompiledFrame(ObjectVisitor* v) const { // Make sure that we're not doing "safe" stack frame iteration. We cannot // possibly find pointers in optimized frames in that state. ASSERT(can_access_heap_objects()); // Compute the safepoint information. unsigned stack_slots = 0; SafepointEntry safepoint_entry; Code* code = StackFrame::GetSafepointData( isolate(), pc(), &safepoint_entry, &stack_slots); unsigned slot_space = stack_slots * kPointerSize; // Visit the outgoing parameters. Object** parameters_base = &Memory::Object_at(sp()); Object** parameters_limit = &Memory::Object_at( fp() + JavaScriptFrameConstants::kFunctionOffset - slot_space); // Visit the parameters that may be on top of the saved registers. if (safepoint_entry.argument_count() > 0) { v->VisitPointers(parameters_base, parameters_base + safepoint_entry.argument_count()); parameters_base += safepoint_entry.argument_count(); } // Skip saved double registers. if (safepoint_entry.has_doubles()) { // Number of doubles not known at snapshot time. ASSERT(!Serializer::enabled()); parameters_base += DoubleRegister::NumAllocatableRegisters() * kDoubleSize / kPointerSize; } // Visit the registers that contain pointers if any. if (safepoint_entry.HasRegisters()) { for (int i = kNumSafepointRegisters - 1; i >=0; i--) { if (safepoint_entry.HasRegisterAt(i)) { int reg_stack_index = MacroAssembler::SafepointRegisterStackIndex(i); v->VisitPointer(parameters_base + reg_stack_index); } } // Skip the words containing the register values. parameters_base += kNumSafepointRegisters; } // We're done dealing with the register bits. uint8_t* safepoint_bits = safepoint_entry.bits(); safepoint_bits += kNumSafepointRegisters >> kBitsPerByteLog2; // Visit the rest of the parameters. v->VisitPointers(parameters_base, parameters_limit); // Visit pointer spill slots and locals. for (unsigned index = 0; index < stack_slots; index++) { int byte_index = index >> kBitsPerByteLog2; int bit_index = index & (kBitsPerByte - 1); if ((safepoint_bits[byte_index] & (1U << bit_index)) != 0) { v->VisitPointer(parameters_limit + index); } } // Visit the return address in the callee and incoming arguments. IteratePc(v, pc_address(), code); // Visit the context in stub frame and JavaScript frame. // Visit the function in JavaScript frame. Object** fixed_base = &Memory::Object_at( fp() + StandardFrameConstants::kMarkerOffset); Object** fixed_limit = &Memory::Object_at(fp()); v->VisitPointers(fixed_base, fixed_limit); } void StubFrame::Iterate(ObjectVisitor* v) const { IterateCompiledFrame(v); } Code* StubFrame::unchecked_code() const { return static_cast(isolate()->FindCodeObject(pc())); } Address StubFrame::GetCallerStackPointer() const { return fp() + ExitFrameConstants::kCallerSPDisplacement; } int StubFrame::GetNumberOfIncomingArguments() const { return 0; } void OptimizedFrame::Iterate(ObjectVisitor* v) const { #ifdef DEBUG // Make sure that optimized frames do not contain any stack handlers. StackHandlerIterator it(this, top_handler()); ASSERT(it.done()); #endif IterateCompiledFrame(v); } void JavaScriptFrame::SetParameterValue(int index, Object* value) const { Memory::Object_at(GetParameterSlot(index)) = value; } bool JavaScriptFrame::IsConstructor() const { Address fp = caller_fp(); if (has_adapted_arguments()) { // Skip the arguments adaptor frame and look at the real caller. fp = Memory::Address_at(fp + StandardFrameConstants::kCallerFPOffset); } return IsConstructFrame(fp); } int JavaScriptFrame::GetArgumentsLength() const { // If there is an arguments adaptor frame get the arguments length from it. if (has_adapted_arguments()) { return Smi::cast(GetExpression(caller_fp(), 0))->value(); } else { return GetNumberOfIncomingArguments(); } } Code* JavaScriptFrame::unchecked_code() const { return function()->code(); } int JavaScriptFrame::GetNumberOfIncomingArguments() const { ASSERT(can_access_heap_objects() && isolate()->heap()->gc_state() == Heap::NOT_IN_GC); return function()->shared()->formal_parameter_count(); } Address JavaScriptFrame::GetCallerStackPointer() const { return fp() + StandardFrameConstants::kCallerSPOffset; } void JavaScriptFrame::GetFunctions(List* functions) { ASSERT(functions->length() == 0); functions->Add(function()); } void JavaScriptFrame::Summarize(List* functions) { ASSERT(functions->length() == 0); Code* code_pointer = LookupCode(); int offset = static_cast(pc() - code_pointer->address()); FrameSummary summary(receiver(), function(), code_pointer, offset, IsConstructor()); functions->Add(summary); } void JavaScriptFrame::PrintTop(Isolate* isolate, FILE* file, bool print_args, bool print_line_number) { // constructor calls HandleScope scope(isolate); DisallowHeapAllocation no_allocation; JavaScriptFrameIterator it(isolate); while (!it.done()) { if (it.frame()->is_java_script()) { JavaScriptFrame* frame = it.frame(); if (frame->IsConstructor()) PrintF(file, "new "); // function name JSFunction* fun = frame->function(); fun->PrintName(); Code* js_code = frame->unchecked_code(); Address pc = frame->pc(); int code_offset = static_cast(pc - js_code->instruction_start()); PrintF("+%d", code_offset); SharedFunctionInfo* shared = fun->shared(); if (print_line_number) { Code* code = Code::cast( v8::internal::Isolate::Current()->FindCodeObject(pc)); int source_pos = code->SourcePosition(pc); Object* maybe_script = shared->script(); if (maybe_script->IsScript()) { Handle