// Copyright 2017 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include "src/base/overflowing-math.h" #include "src/codegen/assembler-inl.h" #include "src/objects/objects-inl.h" #include "src/wasm/wasm-objects.h" #include "test/cctest/cctest.h" #include "test/cctest/compiler/value-helper.h" #include "test/cctest/wasm/wasm-run-utils.h" #include "test/common/wasm/wasm-macro-gen.h" namespace v8 { namespace internal { namespace wasm { /** * We test the interface from Wasm compiled code to the Wasm interpreter by * building a module with two functions. The external function is called from * this test, and will be compiled code. It takes its arguments and passes them * on to the internal function, which will be redirected to the interpreter. * If the internal function has an i64 parameter, is has to be replaced by two * i32 parameters on the external function. * The internal function just converts all its arguments to f64, sums them up * and returns the sum. */ namespace { template class ArgPassingHelper { public: ArgPassingHelper(WasmRunnerBase* runner, WasmFunctionCompiler* inner_compiler, std::initializer_list bytes_inner_function, std::initializer_list bytes_outer_function, const T& expected_lambda) : isolate_(runner->main_isolate()), expected_lambda_(expected_lambda), debug_info_(WasmInstanceObject::GetOrCreateDebugInfo( runner->builder().instance_object())) { std::vector inner_code{bytes_inner_function}; inner_compiler->Build(inner_code.data(), inner_code.data() + inner_code.size()); std::vector outer_code{bytes_outer_function}; runner->Build(outer_code.data(), outer_code.data() + outer_code.size()); int funcs_to_redict[] = { static_cast(inner_compiler->function_index())}; runner->builder().SetExecutable(); WasmDebugInfo::RedirectToInterpreter(debug_info_, ArrayVector(funcs_to_redict)); main_fun_wrapper_ = runner->builder().WrapCode(runner->function_index()); } template void CheckCall(Args... args) { Handle arg_objs[] = {isolate_->factory()->NewNumber(args)...}; uint64_t num_interpreted_before = debug_info_->NumInterpretedCalls(); Handle global(isolate_->context().global_object(), isolate_); MaybeHandle retval = Execution::Call( isolate_, main_fun_wrapper_, global, arraysize(arg_objs), arg_objs); uint64_t num_interpreted_after = debug_info_->NumInterpretedCalls(); // Check that we really went through the interpreter. CHECK_EQ(num_interpreted_before + 1, num_interpreted_after); // Check the result. double result = retval.ToHandleChecked()->Number(); double expected = expected_lambda_(args...); CHECK_DOUBLE_EQ(expected, result); } private: Isolate* isolate_; T expected_lambda_; Handle debug_info_; Handle main_fun_wrapper_; }; template static ArgPassingHelper GetHelper( WasmRunnerBase* runner, WasmFunctionCompiler* inner_compiler, std::initializer_list bytes_inner_function, std::initializer_list bytes_outer_function, const T& expected_lambda) { return ArgPassingHelper(runner, inner_compiler, bytes_inner_function, bytes_outer_function, expected_lambda); } } // namespace // Pass int32_t, return int32_t. TEST(TestArgumentPassing_int32) { WasmRunner runner(ExecutionTier::kTurbofan); WasmFunctionCompiler& f2 = runner.NewFunction(); auto helper = GetHelper( &runner, &f2, {// Return 2*<0> + 1. WASM_I32_ADD(WASM_I32_MUL(WASM_I32V_1(2), WASM_GET_LOCAL(0)), WASM_ONE)}, {// Call f2 with param <0>. WASM_GET_LOCAL(0), WASM_CALL_FUNCTION0(f2.function_index())}, [](int32_t a) { return base::AddWithWraparound(base::MulWithWraparound(2, a), 1); }); FOR_INT32_INPUTS(v) { helper.CheckCall(v); } } // Pass int64_t, return double. TEST(TestArgumentPassing_double_int64) { WasmRunner runner(ExecutionTier::kTurbofan); WasmFunctionCompiler& f2 = runner.NewFunction(); auto helper = GetHelper( &runner, &f2, {// Return (double)<0>. WASM_F64_SCONVERT_I64(WASM_GET_LOCAL(0))}, {// Call f2 with param (<0> | (<1> << 32)). WASM_I64_IOR(WASM_I64_UCONVERT_I32(WASM_GET_LOCAL(0)), WASM_I64_SHL(WASM_I64_UCONVERT_I32(WASM_GET_LOCAL(1)), WASM_I64V_1(32))), WASM_CALL_FUNCTION0(f2.function_index())}, [](int32_t a, int32_t b) { int64_t a64 = static_cast(a) & 0xFFFFFFFF; int64_t b64 = static_cast(static_cast(b)) << 32; return static_cast(a64 | b64); }); FOR_INT32_INPUTS(v1) { FOR_INT32_INPUTS(v2) { helper.CheckCall(v1, v2); } } FOR_INT64_INPUTS(v) { int32_t v1 = static_cast(v); int32_t v2 = static_cast(v >> 32); helper.CheckCall(v1, v2); helper.CheckCall(v2, v1); } } // Pass double, return int64_t. TEST(TestArgumentPassing_int64_double) { // Outer function still returns double. WasmRunner runner(ExecutionTier::kTurbofan); WasmFunctionCompiler& f2 = runner.NewFunction(); auto helper = GetHelper( &runner, &f2, {// Return (int64_t)<0>. WASM_I64_SCONVERT_F64(WASM_GET_LOCAL(0))}, {// Call f2 with param <0>, convert returned value back to double. WASM_F64_SCONVERT_I64(WASM_SEQ( WASM_GET_LOCAL(0), WASM_CALL_FUNCTION0(f2.function_index())))}, [](double d) { return d; }); for (int64_t i : compiler::ValueHelper::int64_vector()) { helper.CheckCall(i); } } // Pass float, return double. TEST(TestArgumentPassing_float_double) { WasmRunner runner(ExecutionTier::kTurbofan); WasmFunctionCompiler& f2 = runner.NewFunction(); auto helper = GetHelper( &runner, &f2, {// Return 2*(double)<0> + 1. WASM_F64_ADD( WASM_F64_MUL(WASM_F64(2), WASM_F64_CONVERT_F32(WASM_GET_LOCAL(0))), WASM_F64(1))}, {// Call f2 with param <0>. WASM_GET_LOCAL(0), WASM_CALL_FUNCTION0(f2.function_index())}, [](float f) { return 2. * static_cast(f) + 1.; }); FOR_FLOAT32_INPUTS(f) { helper.CheckCall(f); } } // Pass two doubles, return double. TEST(TestArgumentPassing_double_double) { WasmRunner runner(ExecutionTier::kTurbofan); WasmFunctionCompiler& f2 = runner.NewFunction(); auto helper = GetHelper(&runner, &f2, {// Return <0> + <1>. WASM_F64_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))}, {// Call f2 with params <0>, <1>. WASM_GET_LOCAL(0), WASM_GET_LOCAL(1), WASM_CALL_FUNCTION0(f2.function_index())}, [](double a, double b) { return a + b; }); FOR_FLOAT64_INPUTS(d1) { FOR_FLOAT64_INPUTS(d2) { helper.CheckCall(d1, d2); } } } // Pass int32_t, int64_t, float and double, return double. TEST(TestArgumentPassing_AllTypes) { // The second and third argument will be combined to an i64. WasmRunner runner( ExecutionTier::kTurbofan); WasmFunctionCompiler& f2 = runner.NewFunction(); auto helper = GetHelper( &runner, &f2, { // Convert all arguments to double, add them and return the sum. WASM_F64_ADD( // <0+1+2> + <3> WASM_F64_ADD( // <0+1> + <2> WASM_F64_ADD( // <0> + <1> WASM_F64_SCONVERT_I32( WASM_GET_LOCAL(0)), // <0> to double WASM_F64_SCONVERT_I64( WASM_GET_LOCAL(1))), // <1> to double WASM_F64_CONVERT_F32(WASM_GET_LOCAL(2))), // <2> to double WASM_GET_LOCAL(3)) // <3> }, {WASM_GET_LOCAL(0), // first arg WASM_I64_IOR(WASM_I64_UCONVERT_I32(WASM_GET_LOCAL(1)), // second arg WASM_I64_SHL(WASM_I64_UCONVERT_I32(WASM_GET_LOCAL(2)), WASM_I64V_1(32))), WASM_GET_LOCAL(3), // third arg WASM_GET_LOCAL(4), // fourth arg WASM_CALL_FUNCTION0(f2.function_index())}, [](int32_t a, int32_t b, int32_t c, float d, double e) { return 0. + a + (static_cast(b) & 0xFFFFFFFF) + ((static_cast(c) & 0xFFFFFFFF) << 32) + d + e; }); auto CheckCall = [&](int32_t a, int64_t b, float c, double d) { int32_t b0 = static_cast(b); int32_t b1 = static_cast(b >> 32); helper.CheckCall(a, b0, b1, c, d); helper.CheckCall(a, b1, b0, c, d); }; Vector test_values_i32 = compiler::ValueHelper::int32_vector(); Vector test_values_i64 = compiler::ValueHelper::int64_vector(); Vector test_values_f32 = compiler::ValueHelper::float32_vector(); Vector test_values_f64 = compiler::ValueHelper::float64_vector(); size_t max_len = std::max(std::max(test_values_i32.size(), test_values_i64.size()), std::max(test_values_f32.size(), test_values_f64.size())); for (size_t i = 0; i < max_len; ++i) { int32_t i32 = test_values_i32[i % test_values_i32.size()]; int64_t i64 = test_values_i64[i % test_values_i64.size()]; float f32 = test_values_f32[i % test_values_f32.size()]; double f64 = test_values_f64[i % test_values_f64.size()]; CheckCall(i32, i64, f32, f64); } } } // namespace wasm } // namespace internal } // namespace v8