// Copyright 2009 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "accessors.h" #include "api.h" #include "bootstrapper.h" #include "compiler.h" #include "debug.h" #include "execution.h" #include "global-handles.h" #include "natives.h" #include "runtime.h" namespace v8 { namespace internal { v8::ImplementationUtilities::HandleScopeData HandleScope::current_ = { -1, NULL, NULL }; int HandleScope::NumberOfHandles() { int n = HandleScopeImplementer::instance()->Blocks()->length(); if (n == 0) return 0; return ((n - 1) * kHandleBlockSize) + (current_.next - HandleScopeImplementer::instance()->Blocks()->last()); } void** HandleScope::Extend() { void** result = current_.next; ASSERT(result == current_.limit); // Make sure there's at least one scope on the stack and that the // top of the scope stack isn't a barrier. if (current_.extensions < 0) { Utils::ReportApiFailure("v8::HandleScope::CreateHandle()", "Cannot create a handle without a HandleScope"); return NULL; } HandleScopeImplementer* impl = HandleScopeImplementer::instance(); // If there's more room in the last block, we use that. This is used // for fast creation of scopes after scope barriers. if (!impl->Blocks()->is_empty()) { void** limit = &impl->Blocks()->last()[kHandleBlockSize]; if (current_.limit != limit) { current_.limit = limit; } } // If we still haven't found a slot for the handle, we extend the // current handle scope by allocating a new handle block. if (result == current_.limit) { // If there's a spare block, use it for growing the current scope. result = impl->GetSpareOrNewBlock(); // Add the extension to the global list of blocks, but count the // extension as part of the current scope. impl->Blocks()->Add(result); current_.extensions++; current_.limit = &result[kHandleBlockSize]; } return result; } void HandleScope::DeleteExtensions() { ASSERT(current_.extensions != 0); HandleScopeImplementer::instance()->DeleteExtensions(current_.extensions); } void HandleScope::ZapRange(void** start, void** end) { if (start == NULL) return; for (void** p = start; p < end; p++) { *p = reinterpret_cast(v8::internal::kHandleZapValue); } } Handle AddKeysFromJSArray(Handle content, Handle array) { CALL_HEAP_FUNCTION(content->AddKeysFromJSArray(*array), FixedArray); } Handle UnionOfKeys(Handle first, Handle second) { CALL_HEAP_FUNCTION(first->UnionOfKeys(*second), FixedArray); } Handle ReinitializeJSGlobalProxy( Handle constructor, Handle global) { CALL_HEAP_FUNCTION(Heap::ReinitializeJSGlobalProxy(*constructor, *global), JSGlobalProxy); } void SetExpectedNofProperties(Handle func, int nof) { func->shared()->set_expected_nof_properties(nof); if (func->has_initial_map()) { Handle new_initial_map = Factory::CopyMapDropTransitions(Handle(func->initial_map())); new_initial_map->set_unused_property_fields(nof); func->set_initial_map(*new_initial_map); } } void SetPrototypeProperty(Handle func, Handle value) { CALL_HEAP_FUNCTION_VOID(func->SetPrototype(*value)); } static int ExpectedNofPropertiesFromEstimate(int estimate) { // TODO(1231235): We need dynamic feedback to estimate the number // of expected properties in an object. The static hack below // is barely a solution. if (estimate == 0) return 4; return estimate + 2; } void SetExpectedNofPropertiesFromEstimate(Handle shared, int estimate) { shared->set_expected_nof_properties( ExpectedNofPropertiesFromEstimate(estimate)); } void SetExpectedNofPropertiesFromEstimate(Handle func, int estimate) { SetExpectedNofProperties( func, ExpectedNofPropertiesFromEstimate(estimate)); } void NormalizeProperties(Handle object, PropertyNormalizationMode mode) { CALL_HEAP_FUNCTION_VOID(object->NormalizeProperties(mode)); } void NormalizeElements(Handle object) { CALL_HEAP_FUNCTION_VOID(object->NormalizeElements()); } void TransformToFastProperties(Handle object, int unused_property_fields) { CALL_HEAP_FUNCTION_VOID( object->TransformToFastProperties(unused_property_fields)); } void FlattenString(Handle string) { CALL_HEAP_FUNCTION_VOID(string->TryFlattenIfNotFlat()); ASSERT(string->IsFlat()); } Handle SetPrototype(Handle function, Handle prototype) { CALL_HEAP_FUNCTION(Accessors::FunctionSetPrototype(*function, *prototype, NULL), Object); } Handle SetProperty(Handle object, Handle key, Handle value, PropertyAttributes attributes) { CALL_HEAP_FUNCTION(object->SetProperty(*key, *value, attributes), Object); } Handle SetProperty(Handle object, Handle key, Handle value, PropertyAttributes attributes) { CALL_HEAP_FUNCTION( Runtime::SetObjectProperty(object, key, value, attributes), Object); } Handle ForceSetProperty(Handle object, Handle key, Handle value, PropertyAttributes attributes) { CALL_HEAP_FUNCTION( Runtime::ForceSetObjectProperty(object, key, value, attributes), Object); } Handle IgnoreAttributesAndSetLocalProperty( Handle object, Handle key, Handle value, PropertyAttributes attributes) { CALL_HEAP_FUNCTION(object-> IgnoreAttributesAndSetLocalProperty(*key, *value, attributes), Object); } Handle SetPropertyWithInterceptor(Handle object, Handle key, Handle value, PropertyAttributes attributes) { CALL_HEAP_FUNCTION(object->SetPropertyWithInterceptor(*key, *value, attributes), Object); } Handle GetProperty(Handle obj, const char* name) { Handle str = Factory::LookupAsciiSymbol(name); CALL_HEAP_FUNCTION(obj->GetProperty(*str), Object); } Handle GetProperty(Handle obj, Handle key) { CALL_HEAP_FUNCTION(Runtime::GetObjectProperty(obj, key), Object); } Handle GetPropertyWithInterceptor(Handle receiver, Handle holder, Handle name, PropertyAttributes* attributes) { CALL_HEAP_FUNCTION(holder->GetPropertyWithInterceptor(*receiver, *name, attributes), Object); } Handle GetPrototype(Handle obj) { Handle result(obj->GetPrototype()); return result; } Handle GetHiddenProperties(Handle obj, bool create_if_needed) { Handle key = Factory::hidden_symbol(); if (obj->HasFastProperties()) { // If the object has fast properties, check whether the first slot // in the descriptor array matches the hidden symbol. Since the // hidden symbols hash code is zero (and no other string has hash // code zero) it will always occupy the first entry if present. DescriptorArray* descriptors = obj->map()->instance_descriptors(); DescriptorReader r(descriptors, 0); // Explicitly position reader at zero. if (!r.eos() && (r.GetKey() == *key) && r.IsProperty()) { ASSERT(r.type() == FIELD); return Handle(obj->FastPropertyAt(r.GetFieldIndex())); } } // Only attempt to find the hidden properties in the local object and not // in the prototype chain. Note that HasLocalProperty() can cause a GC in // the general case in the presence of interceptors. if (!obj->HasLocalProperty(*key)) { // Hidden properties object not found. Allocate a new hidden properties // object if requested. Otherwise return the undefined value. if (create_if_needed) { Handle hidden_obj = Factory::NewJSObject(Top::object_function()); return SetProperty(obj, key, hidden_obj, DONT_ENUM); } else { return Factory::undefined_value(); } } return GetProperty(obj, key); } Handle DeleteElement(Handle obj, uint32_t index) { CALL_HEAP_FUNCTION(obj->DeleteElement(index), Object); } Handle DeleteProperty(Handle obj, Handle prop) { CALL_HEAP_FUNCTION(obj->DeleteProperty(*prop), Object); } Handle LookupSingleCharacterStringFromCode(uint32_t index) { CALL_HEAP_FUNCTION(Heap::LookupSingleCharacterStringFromCode(index), Object); } Handle SubString(Handle str, int start, int end) { CALL_HEAP_FUNCTION(str->Slice(start, end), String); } Handle SetElement(Handle object, uint32_t index, Handle value) { CALL_HEAP_FUNCTION(object->SetElement(index, *value), Object); } Handle Copy(Handle obj) { CALL_HEAP_FUNCTION(Heap::CopyJSObject(*obj), JSObject); } // Wrappers for scripts are kept alive and cached in weak global // handles referred from proxy objects held by the scripts as long as // they are used. When they are not used anymore, the garbage // collector will call the weak callback on the global handle // associated with the wrapper and get rid of both the wrapper and the // handle. static void ClearWrapperCache(Persistent handle, void*) { #ifdef ENABLE_HEAP_PROTECTION // Weak reference callbacks are called as if from outside V8. We // need to reeenter to unprotect the heap. VMState state(OTHER); #endif Handle cache = Utils::OpenHandle(*handle); JSValue* wrapper = JSValue::cast(*cache); Proxy* proxy = Script::cast(wrapper->value())->wrapper(); ASSERT(proxy->proxy() == reinterpret_cast
(cache.location())); proxy->set_proxy(0); GlobalHandles::Destroy(cache.location()); Counters::script_wrappers.Decrement(); } Handle GetScriptWrapper(Handle