// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/code-stubs.h" #include #include "src/bailout-reason.h" #include "src/crankshaft/hydrogen.h" #include "src/crankshaft/lithium.h" #include "src/field-index.h" #include "src/ic/ic.h" namespace v8 { namespace internal { static LChunk* OptimizeGraph(HGraph* graph) { DisallowHeapAllocation no_allocation; DisallowHandleAllocation no_handles; DisallowHandleDereference no_deref; DCHECK(graph != NULL); BailoutReason bailout_reason = kNoReason; if (!graph->Optimize(&bailout_reason)) { FATAL(GetBailoutReason(bailout_reason)); } LChunk* chunk = LChunk::NewChunk(graph); if (chunk == NULL) { FATAL(GetBailoutReason(graph->info()->bailout_reason())); } return chunk; } class CodeStubGraphBuilderBase : public HGraphBuilder { public: explicit CodeStubGraphBuilderBase(CompilationInfo* info, CodeStub* code_stub) : HGraphBuilder(info, code_stub->GetCallInterfaceDescriptor()), arguments_length_(NULL), info_(info), code_stub_(code_stub), descriptor_(code_stub), context_(NULL) { int parameter_count = GetParameterCount(); parameters_.reset(new HParameter*[parameter_count]); } virtual bool BuildGraph(); protected: virtual HValue* BuildCodeStub() = 0; int GetParameterCount() const { return descriptor_.GetParameterCount(); } int GetRegisterParameterCount() const { return descriptor_.GetRegisterParameterCount(); } HParameter* GetParameter(int parameter) { DCHECK(parameter < GetParameterCount()); return parameters_[parameter]; } Representation GetParameterRepresentation(int parameter) { return RepresentationFromMachineType( descriptor_.GetParameterType(parameter)); } bool IsParameterCountRegister(int index) const { return descriptor_.GetRegisterParameter(index) .is(descriptor_.stack_parameter_count()); } HValue* GetArgumentsLength() { // This is initialized in BuildGraph() DCHECK(arguments_length_ != NULL); return arguments_length_; } CompilationInfo* info() { return info_; } CodeStub* stub() { return code_stub_; } HContext* context() { return context_; } Isolate* isolate() { return info_->isolate(); } HLoadNamedField* BuildLoadNamedField(HValue* object, FieldIndex index); void BuildStoreNamedField(HValue* object, HValue* value, FieldIndex index, Representation representation, bool transition_to_field); HValue* BuildPushElement(HValue* object, HValue* argc, HValue* argument_elements, ElementsKind kind); HValue* BuildToString(HValue* input, bool convert); HValue* BuildToPrimitive(HValue* input, HValue* input_map); private: std::unique_ptr parameters_; HValue* arguments_length_; CompilationInfo* info_; CodeStub* code_stub_; CodeStubDescriptor descriptor_; HContext* context_; }; bool CodeStubGraphBuilderBase::BuildGraph() { // Update the static counter each time a new code stub is generated. isolate()->counters()->code_stubs()->Increment(); if (FLAG_trace_hydrogen_stubs) { const char* name = CodeStub::MajorName(stub()->MajorKey()); PrintF("-----------------------------------------------------------\n"); PrintF("Compiling stub %s using hydrogen\n", name); isolate()->GetHTracer()->TraceCompilation(info()); } int param_count = GetParameterCount(); int register_param_count = GetRegisterParameterCount(); HEnvironment* start_environment = graph()->start_environment(); HBasicBlock* next_block = CreateBasicBlock(start_environment); Goto(next_block); next_block->SetJoinId(BailoutId::StubEntry()); set_current_block(next_block); bool runtime_stack_params = descriptor_.stack_parameter_count().is_valid(); HInstruction* stack_parameter_count = NULL; for (int i = 0; i < param_count; ++i) { Representation r = GetParameterRepresentation(i); HParameter* param; if (i >= register_param_count) { param = Add(i - register_param_count, HParameter::STACK_PARAMETER, r); } else { param = Add(i, HParameter::REGISTER_PARAMETER, r); } start_environment->Bind(i, param); parameters_[i] = param; if (i < register_param_count && IsParameterCountRegister(i)) { param->set_type(HType::Smi()); stack_parameter_count = param; arguments_length_ = stack_parameter_count; } } DCHECK(!runtime_stack_params || arguments_length_ != NULL); if (!runtime_stack_params) { stack_parameter_count = Add(param_count - register_param_count - 1); // graph()->GetConstantMinus1(); arguments_length_ = graph()->GetConstant0(); } context_ = Add(); start_environment->BindContext(context_); start_environment->Bind(param_count, context_); Add(BailoutId::StubEntry()); NoObservableSideEffectsScope no_effects(this); HValue* return_value = BuildCodeStub(); // We might have extra expressions to pop from the stack in addition to the // arguments above. HInstruction* stack_pop_count = stack_parameter_count; if (descriptor_.function_mode() == JS_FUNCTION_STUB_MODE) { if (!stack_parameter_count->IsConstant() && descriptor_.hint_stack_parameter_count() < 0) { HInstruction* constant_one = graph()->GetConstant1(); stack_pop_count = AddUncasted(stack_parameter_count, constant_one); stack_pop_count->ClearFlag(HValue::kCanOverflow); // TODO(mvstanton): verify that stack_parameter_count+1 really fits in a // smi. } else { int count = descriptor_.hint_stack_parameter_count(); stack_pop_count = Add(count); } } if (current_block() != NULL) { HReturn* hreturn_instruction = New(return_value, stack_pop_count); FinishCurrentBlock(hreturn_instruction); } return true; } template class CodeStubGraphBuilder: public CodeStubGraphBuilderBase { public: explicit CodeStubGraphBuilder(CompilationInfo* info, CodeStub* stub) : CodeStubGraphBuilderBase(info, stub) {} typedef typename Stub::Descriptor Descriptor; protected: virtual HValue* BuildCodeStub() { if (casted_stub()->IsUninitialized()) { return BuildCodeUninitializedStub(); } else { return BuildCodeInitializedStub(); } } virtual HValue* BuildCodeInitializedStub() { UNIMPLEMENTED(); return NULL; } virtual HValue* BuildCodeUninitializedStub() { // Force a deopt that falls back to the runtime. HValue* undefined = graph()->GetConstantUndefined(); IfBuilder builder(this); builder.IfNot(undefined, undefined); builder.Then(); builder.ElseDeopt(DeoptimizeReason::kForcedDeoptToRuntime); return undefined; } Stub* casted_stub() { return static_cast(stub()); } }; Handle HydrogenCodeStub::GenerateLightweightMissCode( ExternalReference miss) { Factory* factory = isolate()->factory(); // Generate the new code. MacroAssembler masm(isolate(), NULL, 256, CodeObjectRequired::kYes); { // Update the static counter each time a new code stub is generated. isolate()->counters()->code_stubs()->Increment(); // Generate the code for the stub. masm.set_generating_stub(true); // TODO(yangguo): remove this once we can serialize IC stubs. masm.enable_serializer(); NoCurrentFrameScope scope(&masm); GenerateLightweightMiss(&masm, miss); } // Create the code object. CodeDesc desc; masm.GetCode(&desc); // Copy the generated code into a heap object. Handle new_object = factory->NewCode( desc, GetCodeFlags(), masm.CodeObject(), NeedsImmovableCode()); return new_object; } Handle HydrogenCodeStub::GenerateRuntimeTailCall( CodeStubDescriptor* descriptor) { const char* name = CodeStub::MajorName(MajorKey()); Zone zone(isolate()->allocator()); CallInterfaceDescriptor interface_descriptor(GetCallInterfaceDescriptor()); CodeStubAssembler assembler(isolate(), &zone, interface_descriptor, GetCodeFlags(), name); int total_params = interface_descriptor.GetStackParameterCount() + interface_descriptor.GetRegisterParameterCount(); switch (total_params) { case 0: assembler.TailCallRuntime(descriptor->miss_handler_id(), assembler.Parameter(0)); break; case 1: assembler.TailCallRuntime(descriptor->miss_handler_id(), assembler.Parameter(1), assembler.Parameter(0)); break; case 2: assembler.TailCallRuntime(descriptor->miss_handler_id(), assembler.Parameter(2), assembler.Parameter(0), assembler.Parameter(1)); break; case 3: assembler.TailCallRuntime(descriptor->miss_handler_id(), assembler.Parameter(3), assembler.Parameter(0), assembler.Parameter(1), assembler.Parameter(2)); break; case 4: assembler.TailCallRuntime(descriptor->miss_handler_id(), assembler.Parameter(4), assembler.Parameter(0), assembler.Parameter(1), assembler.Parameter(2), assembler.Parameter(3)); break; default: UNIMPLEMENTED(); break; } return assembler.GenerateCode(); } template static Handle DoGenerateCode(Stub* stub) { Isolate* isolate = stub->isolate(); CodeStubDescriptor descriptor(stub); if (FLAG_minimal && descriptor.has_miss_handler()) { return stub->GenerateRuntimeTailCall(&descriptor); } // If we are uninitialized we can use a light-weight stub to enter // the runtime that is significantly faster than using the standard // stub-failure deopt mechanism. if (stub->IsUninitialized() && descriptor.has_miss_handler()) { DCHECK(!descriptor.stack_parameter_count().is_valid()); return stub->GenerateLightweightMissCode(descriptor.miss_handler()); } base::ElapsedTimer timer; if (FLAG_profile_hydrogen_code_stub_compilation) { timer.Start(); } Zone zone(isolate->allocator()); CompilationInfo info(CStrVector(CodeStub::MajorName(stub->MajorKey())), isolate, &zone, stub->GetCodeFlags()); // Parameter count is number of stack parameters. int parameter_count = descriptor.GetStackParameterCount(); if (descriptor.function_mode() == NOT_JS_FUNCTION_STUB_MODE) { parameter_count--; } info.set_parameter_count(parameter_count); CodeStubGraphBuilder builder(&info, stub); LChunk* chunk = OptimizeGraph(builder.CreateGraph()); Handle code = chunk->Codegen(); if (FLAG_profile_hydrogen_code_stub_compilation) { OFStream os(stdout); os << "[Lazy compilation of " << stub << " took " << timer.Elapsed().InMillisecondsF() << " ms]" << std::endl; } return code; } template <> HValue* CodeStubGraphBuilder::BuildCodeStub() { info()->MarkAsSavesCallerDoubles(); HValue* number = GetParameter(Descriptor::kArgument); return BuildNumberToString(number, AstType::Number()); } Handle NumberToStringStub::GenerateCode() { return DoGenerateCode(this); } HValue* CodeStubGraphBuilderBase::BuildPushElement(HValue* object, HValue* argc, HValue* argument_elements, ElementsKind kind) { // Precheck whether all elements fit into the array. if (!IsFastObjectElementsKind(kind)) { LoopBuilder builder(this, context(), LoopBuilder::kPostIncrement); HValue* start = graph()->GetConstant0(); HValue* key = builder.BeginBody(start, argc, Token::LT); { HInstruction* argument = Add(argument_elements, argc, key); IfBuilder can_store(this); can_store.IfNot(argument); if (IsFastDoubleElementsKind(kind)) { can_store.And(); can_store.IfNot(argument, isolate()->factory()->heap_number_map()); } can_store.ThenDeopt(DeoptimizeReason::kFastPathFailed); can_store.End(); } builder.EndBody(); } HValue* length = Add(object, nullptr, HObjectAccess::ForArrayLength(kind)); HValue* new_length = AddUncasted(length, argc); HValue* max_key = AddUncasted(new_length, graph()->GetConstant1()); HValue* elements = Add(object, nullptr, HObjectAccess::ForElementsPointer()); elements = BuildCheckForCapacityGrow(object, elements, kind, length, max_key, true, STORE); LoopBuilder builder(this, context(), LoopBuilder::kPostIncrement); HValue* start = graph()->GetConstant0(); HValue* key = builder.BeginBody(start, argc, Token::LT); { HValue* argument = Add(argument_elements, argc, key); HValue* index = AddUncasted(key, length); AddElementAccess(elements, index, argument, object, nullptr, kind, STORE); } builder.EndBody(); return new_length; } template <> HValue* CodeStubGraphBuilder::BuildCodeStub() { // TODO(verwaest): Fix deoptimizer messages. HValue* argc = GetArgumentsLength(); HInstruction* argument_elements = Add(false, false); HInstruction* object = Add(argument_elements, argc, graph()->GetConstantMinus1()); BuildCheckHeapObject(object); HValue* map = Add(object, nullptr, HObjectAccess::ForMap()); Add(object, HCheckInstanceType::IS_JS_ARRAY); // Disallow pushing onto prototypes. It might be the JSArray prototype. // Disallow pushing onto non-extensible objects. { HValue* bit_field2 = Add(map, nullptr, HObjectAccess::ForMapBitField2()); HValue* mask = Add(static_cast(Map::IsPrototypeMapBits::kMask) | (1 << Map::kIsExtensible)); HValue* bits = AddUncasted(Token::BIT_AND, bit_field2, mask); IfBuilder check(this); check.If( bits, Add(1 << Map::kIsExtensible), Token::NE); check.ThenDeopt(DeoptimizeReason::kFastPathFailed); check.End(); } // Disallow pushing onto arrays in dictionary named property mode. We need to // figure out whether the length property is still writable. { HValue* bit_field3 = Add(map, nullptr, HObjectAccess::ForMapBitField3()); HValue* mask = Add(static_cast(Map::DictionaryMap::kMask)); HValue* bit = AddUncasted(Token::BIT_AND, bit_field3, mask); IfBuilder check(this); check.If(bit, mask, Token::EQ); check.ThenDeopt(DeoptimizeReason::kFastPathFailed); check.End(); } // Check whether the length property is writable. The length property is the // only default named property on arrays. It's nonconfigurable, hence is // guaranteed to stay the first property. { HValue* descriptors = Add(map, nullptr, HObjectAccess::ForMapDescriptors()); HValue* details = Add( descriptors, Add(DescriptorArray::ToDetailsIndex(0)), nullptr, nullptr, FAST_SMI_ELEMENTS); HValue* mask = Add(READ_ONLY << PropertyDetails::AttributesField::kShift); HValue* bit = AddUncasted(Token::BIT_AND, details, mask); IfBuilder readonly(this); readonly.If(bit, mask, Token::EQ); readonly.ThenDeopt(DeoptimizeReason::kFastPathFailed); readonly.End(); } HValue* null = Add(Heap::kNullValueRootIndex); HValue* empty = Add(Heap::kEmptyFixedArrayRootIndex); environment()->Push(map); LoopBuilder check_prototypes(this); check_prototypes.BeginBody(1); { HValue* parent_map = environment()->Pop(); HValue* prototype = Add(parent_map, nullptr, HObjectAccess::ForPrototype()); IfBuilder is_null(this); is_null.If(prototype, null); is_null.Then(); check_prototypes.Break(); is_null.End(); HValue* prototype_map = Add(prototype, nullptr, HObjectAccess::ForMap()); HValue* instance_type = Add( prototype_map, nullptr, HObjectAccess::ForMapInstanceType()); IfBuilder check_instance_type(this); check_instance_type.If( instance_type, Add(LAST_CUSTOM_ELEMENTS_RECEIVER), Token::LTE); check_instance_type.ThenDeopt(DeoptimizeReason::kFastPathFailed); check_instance_type.End(); HValue* elements = Add( prototype, nullptr, HObjectAccess::ForElementsPointer()); IfBuilder no_elements(this); no_elements.IfNot(elements, empty); no_elements.ThenDeopt(DeoptimizeReason::kFastPathFailed); no_elements.End(); environment()->Push(prototype_map); } check_prototypes.EndBody(); HValue* bit_field2 = Add(map, nullptr, HObjectAccess::ForMapBitField2()); HValue* kind = BuildDecodeField(bit_field2); // Below we only check the upper bound of the relevant ranges to include both // holey and non-holey versions. We check them in order smi, object, double // since smi < object < double. STATIC_ASSERT(FAST_SMI_ELEMENTS < FAST_HOLEY_SMI_ELEMENTS); STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS < FAST_HOLEY_ELEMENTS); STATIC_ASSERT(FAST_ELEMENTS < FAST_HOLEY_ELEMENTS); STATIC_ASSERT(FAST_HOLEY_ELEMENTS < FAST_HOLEY_DOUBLE_ELEMENTS); STATIC_ASSERT(FAST_DOUBLE_ELEMENTS < FAST_HOLEY_DOUBLE_ELEMENTS); IfBuilder has_smi_elements(this); has_smi_elements.If( kind, Add(FAST_HOLEY_SMI_ELEMENTS), Token::LTE); has_smi_elements.Then(); { HValue* new_length = BuildPushElement(object, argc, argument_elements, FAST_HOLEY_SMI_ELEMENTS); environment()->Push(new_length); } has_smi_elements.Else(); { IfBuilder has_object_elements(this); has_object_elements.If( kind, Add(FAST_HOLEY_ELEMENTS), Token::LTE); has_object_elements.Then(); { HValue* new_length = BuildPushElement(object, argc, argument_elements, FAST_HOLEY_ELEMENTS); environment()->Push(new_length); } has_object_elements.Else(); { IfBuilder has_double_elements(this); has_double_elements.If( kind, Add(FAST_HOLEY_DOUBLE_ELEMENTS), Token::LTE); has_double_elements.Then(); { HValue* new_length = BuildPushElement(object, argc, argument_elements, FAST_HOLEY_DOUBLE_ELEMENTS); environment()->Push(new_length); } has_double_elements.ElseDeopt(DeoptimizeReason::kFastPathFailed); has_double_elements.End(); } has_object_elements.End(); } has_smi_elements.End(); return environment()->Pop(); } Handle FastArrayPushStub::GenerateCode() { return DoGenerateCode(this); } template <> HValue* CodeStubGraphBuilder::BuildCodeStub() { // TODO(verwaest): Fix deoptimizer messages. HValue* argc = GetArgumentsLength(); HInstruction* argument_elements = Add(false, false); HInstruction* object = Add(argument_elements, argc, graph()->GetConstantMinus1()); BuildCheckHeapObject(object); HValue* map = Add(object, nullptr, HObjectAccess::ForMap()); Add(object, HCheckInstanceType::IS_JS_FUNCTION); // Disallow binding of slow-mode functions. We need to figure out whether the // length and name property are in the original state. { HValue* bit_field3 = Add(map, nullptr, HObjectAccess::ForMapBitField3()); HValue* mask = Add(static_cast(Map::DictionaryMap::kMask)); HValue* bit = AddUncasted(Token::BIT_AND, bit_field3, mask); IfBuilder check(this); check.If(bit, mask, Token::EQ); check.ThenDeopt(DeoptimizeReason::kFastPathFailed); check.End(); } // Check whether the length and name properties are still present as // AccessorInfo objects. In that case, their value can be recomputed even if // the actual value on the object changes. { HValue* descriptors = Add(map, nullptr, HObjectAccess::ForMapDescriptors()); HValue* descriptors_length = Add( descriptors, nullptr, HObjectAccess::ForFixedArrayLength()); IfBuilder range(this); range.If(descriptors_length, graph()->GetConstant1(), Token::LTE); range.ThenDeopt(DeoptimizeReason::kFastPathFailed); range.End(); // Verify .length. const int length_index = JSFunction::kLengthDescriptorIndex; HValue* maybe_length = Add( descriptors, Add(DescriptorArray::ToKeyIndex(length_index)), nullptr, nullptr, FAST_ELEMENTS); Unique length_string = Unique::CreateUninitialized( isolate()->factory()->length_string()); Add(maybe_length, length_string, false); HValue* maybe_length_accessor = Add( descriptors, Add(DescriptorArray::ToValueIndex(length_index)), nullptr, nullptr, FAST_ELEMENTS); BuildCheckHeapObject(maybe_length_accessor); Add(maybe_length_accessor, isolate()->factory()->accessor_info_map()); // Verify .name. const int name_index = JSFunction::kNameDescriptorIndex; HValue* maybe_name = Add( descriptors, Add(DescriptorArray::ToKeyIndex(name_index)), nullptr, nullptr, FAST_ELEMENTS); Unique name_string = Unique::CreateUninitialized(isolate()->factory()->name_string()); Add(maybe_name, name_string, false); HValue* maybe_name_accessor = Add( descriptors, Add(DescriptorArray::ToValueIndex(name_index)), nullptr, nullptr, FAST_ELEMENTS); BuildCheckHeapObject(maybe_name_accessor); Add(maybe_name_accessor, isolate()->factory()->accessor_info_map()); } // Choose the right bound function map based on whether the target is // constructable. { HValue* bit_field = Add(map, nullptr, HObjectAccess::ForMapBitField()); HValue* mask = Add(static_cast(1 << Map::kIsConstructor)); HValue* bits = AddUncasted(Token::BIT_AND, bit_field, mask); HValue* native_context = BuildGetNativeContext(); IfBuilder is_constructor(this); is_constructor.If(bits, mask, Token::EQ); is_constructor.Then(); { HValue* map = Add( native_context, nullptr, HObjectAccess::ForContextSlot( Context::BOUND_FUNCTION_WITH_CONSTRUCTOR_MAP_INDEX)); environment()->Push(map); } is_constructor.Else(); { HValue* map = Add( native_context, nullptr, HObjectAccess::ForContextSlot( Context::BOUND_FUNCTION_WITHOUT_CONSTRUCTOR_MAP_INDEX)); environment()->Push(map); } is_constructor.End(); } HValue* bound_function_map = environment()->Pop(); // Verify that __proto__ matches that of a the target bound function. { HValue* prototype = Add(map, nullptr, HObjectAccess::ForPrototype()); HValue* expected_prototype = Add( bound_function_map, nullptr, HObjectAccess::ForPrototype()); IfBuilder equal_prototype(this); equal_prototype.IfNot(prototype, expected_prototype); equal_prototype.ThenDeopt(DeoptimizeReason::kFastPathFailed); equal_prototype.End(); } // Allocate the arguments array. IfBuilder empty_args(this); empty_args.If(argc, graph()->GetConstant1(), Token::LTE); empty_args.Then(); { environment()->Push(Add(Heap::kEmptyFixedArrayRootIndex)); } empty_args.Else(); { HValue* elements_length = AddUncasted(argc, graph()->GetConstant1()); HValue* elements = BuildAllocateAndInitializeArray(FAST_ELEMENTS, elements_length); LoopBuilder builder(this, context(), LoopBuilder::kPostIncrement); HValue* start = graph()->GetConstant1(); HValue* key = builder.BeginBody(start, argc, Token::LT); { HValue* argument = Add(argument_elements, argc, key); HValue* index = AddUncasted(key, graph()->GetConstant1()); AddElementAccess(elements, index, argument, elements, nullptr, FAST_ELEMENTS, STORE); } builder.EndBody(); environment()->Push(elements); } empty_args.End(); HValue* elements = environment()->Pop(); // Find the 'this' to bind. IfBuilder no_receiver(this); no_receiver.If(argc, graph()->GetConstant0(), Token::EQ); no_receiver.Then(); { environment()->Push(Add(Heap::kUndefinedValueRootIndex)); } no_receiver.Else(); { environment()->Push(Add(argument_elements, argc, graph()->GetConstant0())); } no_receiver.End(); HValue* receiver = environment()->Pop(); // Allocate the resulting bound function. HValue* size = Add(JSBoundFunction::kSize); HValue* bound_function = Add(size, HType::JSObject(), NOT_TENURED, JS_BOUND_FUNCTION_TYPE, graph()->GetConstant0()); Add(bound_function, HObjectAccess::ForMap(), bound_function_map); HValue* empty_fixed_array = Add(Heap::kEmptyFixedArrayRootIndex); Add(bound_function, HObjectAccess::ForPropertiesPointer(), empty_fixed_array); Add(bound_function, HObjectAccess::ForElementsPointer(), empty_fixed_array); Add(bound_function, HObjectAccess::ForBoundTargetFunction(), object); Add(bound_function, HObjectAccess::ForBoundThis(), receiver); Add(bound_function, HObjectAccess::ForBoundArguments(), elements); return bound_function; } Handle FastFunctionBindStub::GenerateCode() { return DoGenerateCode(this); } template <> HValue* CodeStubGraphBuilder::BuildCodeStub() { LoadKeyedHoleMode hole_mode = casted_stub()->convert_hole_to_undefined() ? CONVERT_HOLE_TO_UNDEFINED : NEVER_RETURN_HOLE; HInstruction* load = BuildUncheckedMonomorphicElementAccess( GetParameter(Descriptor::kReceiver), GetParameter(Descriptor::kName), NULL, casted_stub()->is_js_array(), casted_stub()->elements_kind(), LOAD, hole_mode, STANDARD_STORE); return load; } Handle LoadFastElementStub::GenerateCode() { return DoGenerateCode(this); } HLoadNamedField* CodeStubGraphBuilderBase::BuildLoadNamedField( HValue* object, FieldIndex index) { Representation representation = index.is_double() ? Representation::Double() : Representation::Tagged(); int offset = index.offset(); HObjectAccess access = index.is_inobject() ? HObjectAccess::ForObservableJSObjectOffset(offset, representation) : HObjectAccess::ForBackingStoreOffset(offset, representation); if (index.is_double() && (!FLAG_unbox_double_fields || !index.is_inobject())) { // Load the heap number. object = Add( object, nullptr, access.WithRepresentation(Representation::Tagged())); // Load the double value from it. access = HObjectAccess::ForHeapNumberValue(); } return Add(object, nullptr, access); } template<> HValue* CodeStubGraphBuilder::BuildCodeStub() { return BuildLoadNamedField(GetParameter(Descriptor::kReceiver), casted_stub()->index()); } Handle LoadFieldStub::GenerateCode() { return DoGenerateCode(this); } template <> HValue* CodeStubGraphBuilder::BuildCodeStub() { HValue* map = AddLoadMap(GetParameter(Descriptor::kReceiver), NULL); HObjectAccess descriptors_access = HObjectAccess::ForObservableJSObjectOffset( Map::kDescriptorsOffset, Representation::Tagged()); HValue* descriptors = Add(map, nullptr, descriptors_access); HObjectAccess value_access = HObjectAccess::ForObservableJSObjectOffset( DescriptorArray::GetValueOffset(casted_stub()->constant_index())); return Add(descriptors, nullptr, value_access); } Handle LoadConstantStub::GenerateCode() { return DoGenerateCode(this); } void CodeStubGraphBuilderBase::BuildStoreNamedField( HValue* object, HValue* value, FieldIndex index, Representation representation, bool transition_to_field) { DCHECK(!index.is_double() || representation.IsDouble()); int offset = index.offset(); HObjectAccess access = index.is_inobject() ? HObjectAccess::ForObservableJSObjectOffset(offset, representation) : HObjectAccess::ForBackingStoreOffset(offset, representation); if (representation.IsDouble()) { if (!FLAG_unbox_double_fields || !index.is_inobject()) { HObjectAccess heap_number_access = access.WithRepresentation(Representation::Tagged()); if (transition_to_field) { // The store requires a mutable HeapNumber to be allocated. NoObservableSideEffectsScope no_side_effects(this); HInstruction* heap_number_size = Add(HeapNumber::kSize); // TODO(hpayer): Allocation site pretenuring support. HInstruction* heap_number = Add(heap_number_size, HType::HeapObject(), NOT_TENURED, MUTABLE_HEAP_NUMBER_TYPE, graph()->GetConstant0()); AddStoreMapConstant(heap_number, isolate()->factory()->mutable_heap_number_map()); Add(heap_number, HObjectAccess::ForHeapNumberValue(), value); // Store the new mutable heap number into the object. access = heap_number_access; value = heap_number; } else { // Load the heap number. object = Add(object, nullptr, heap_number_access); // Store the double value into it. access = HObjectAccess::ForHeapNumberValue(); } } } else if (representation.IsHeapObject()) { BuildCheckHeapObject(value); } Add(object, access, value, INITIALIZING_STORE); } template <> HValue* CodeStubGraphBuilder::BuildCodeStub() { ElementsKind const from_kind = casted_stub()->from_kind(); ElementsKind const to_kind = casted_stub()->to_kind(); HValue* const object = GetParameter(Descriptor::kObject); HValue* const map = GetParameter(Descriptor::kMap); // The {object} is known to be a JSObject (otherwise it wouldn't have elements // anyways). object->set_type(HType::JSObject()); info()->MarkAsSavesCallerDoubles(); DCHECK_IMPLIES(IsFastHoleyElementsKind(from_kind), IsFastHoleyElementsKind(to_kind)); if (AllocationSite::GetMode(from_kind, to_kind) == TRACK_ALLOCATION_SITE) { Add(object); } if (!IsSimpleMapChangeTransition(from_kind, to_kind)) { HInstruction* elements = AddLoadElements(object); IfBuilder if_objecthaselements(this); if_objecthaselements.IfNot( elements, Add(isolate()->factory()->empty_fixed_array())); if_objecthaselements.Then(); { // Determine the elements capacity. HInstruction* elements_length = AddLoadFixedArrayLength(elements); // Determine the effective (array) length. IfBuilder if_objectisarray(this); if_objectisarray.If(object, JS_ARRAY_TYPE); if_objectisarray.Then(); { // The {object} is a JSArray, load the special "length" property. Push(Add(object, nullptr, HObjectAccess::ForArrayLength(from_kind))); } if_objectisarray.Else(); { // The {object} is some other JSObject. Push(elements_length); } if_objectisarray.End(); HValue* length = Pop(); BuildGrowElementsCapacity(object, elements, from_kind, to_kind, length, elements_length); } if_objecthaselements.End(); } Add(object, HObjectAccess::ForMap(), map); return object; } Handle TransitionElementsKindStub::GenerateCode() { return DoGenerateCode(this); } template <> HValue* CodeStubGraphBuilder::BuildCodeInitializedStub() { BinaryOpICState state = casted_stub()->state(); HValue* left = GetParameter(Descriptor::kLeft); HValue* right = GetParameter(Descriptor::kRight); AstType* left_type = state.GetLeftType(); AstType* right_type = state.GetRightType(); AstType* result_type = state.GetResultType(); DCHECK(!left_type->Is(AstType::None()) && !right_type->Is(AstType::None()) && (state.HasSideEffects() || !result_type->Is(AstType::None()))); HValue* result = NULL; HAllocationMode allocation_mode(NOT_TENURED); if (state.op() == Token::ADD && (left_type->Maybe(AstType::String()) || right_type->Maybe(AstType::String())) && !left_type->Is(AstType::String()) && !right_type->Is(AstType::String())) { // For the generic add stub a fast case for string addition is performance // critical. if (left_type->Maybe(AstType::String())) { IfBuilder if_leftisstring(this); if_leftisstring.If(left); if_leftisstring.Then(); { Push(BuildBinaryOperation(state.op(), left, right, AstType::String(), right_type, result_type, state.fixed_right_arg(), allocation_mode)); } if_leftisstring.Else(); { Push(BuildBinaryOperation(state.op(), left, right, left_type, right_type, result_type, state.fixed_right_arg(), allocation_mode)); } if_leftisstring.End(); result = Pop(); } else { IfBuilder if_rightisstring(this); if_rightisstring.If(right); if_rightisstring.Then(); { Push(BuildBinaryOperation(state.op(), left, right, left_type, AstType::String(), result_type, state.fixed_right_arg(), allocation_mode)); } if_rightisstring.Else(); { Push(BuildBinaryOperation(state.op(), left, right, left_type, right_type, result_type, state.fixed_right_arg(), allocation_mode)); } if_rightisstring.End(); result = Pop(); } } else { result = BuildBinaryOperation(state.op(), left, right, left_type, right_type, result_type, state.fixed_right_arg(), allocation_mode); } // If we encounter a generic argument, the number conversion is // observable, thus we cannot afford to bail out after the fact. if (!state.HasSideEffects()) { result = EnforceNumberType(result, result_type); } return result; } Handle BinaryOpICStub::GenerateCode() { return DoGenerateCode(this); } template <> HValue* CodeStubGraphBuilder::BuildCodeStub() { BinaryOpICState state = casted_stub()->state(); HValue* allocation_site = GetParameter(Descriptor::kAllocationSite); HValue* left = GetParameter(Descriptor::kLeft); HValue* right = GetParameter(Descriptor::kRight); AstType* left_type = state.GetLeftType(); AstType* right_type = state.GetRightType(); AstType* result_type = state.GetResultType(); HAllocationMode allocation_mode(allocation_site); return BuildBinaryOperation(state.op(), left, right, left_type, right_type, result_type, state.fixed_right_arg(), allocation_mode); } Handle BinaryOpWithAllocationSiteStub::GenerateCode() { return DoGenerateCode(this); } HValue* CodeStubGraphBuilderBase::BuildToString(HValue* input, bool convert) { if (!convert) return BuildCheckString(input); IfBuilder if_inputissmi(this); HValue* inputissmi = if_inputissmi.If(input); if_inputissmi.Then(); { // Convert the input smi to a string. Push(BuildNumberToString(input, AstType::SignedSmall())); } if_inputissmi.Else(); { HValue* input_map = Add(input, inputissmi, HObjectAccess::ForMap()); HValue* input_instance_type = Add( input_map, inputissmi, HObjectAccess::ForMapInstanceType()); IfBuilder if_inputisstring(this); if_inputisstring.If( input_instance_type, Add(FIRST_NONSTRING_TYPE), Token::LT); if_inputisstring.Then(); { // The input is already a string. Push(input); } if_inputisstring.Else(); { // Convert to primitive first (if necessary), see // ES6 section 12.7.3 The Addition operator. IfBuilder if_inputisprimitive(this); STATIC_ASSERT(FIRST_PRIMITIVE_TYPE == FIRST_TYPE); if_inputisprimitive.If( input_instance_type, Add(LAST_PRIMITIVE_TYPE), Token::LTE); if_inputisprimitive.Then(); { // The input is already a primitive. Push(input); } if_inputisprimitive.Else(); { // Convert the input to a primitive. Push(BuildToPrimitive(input, input_map)); } if_inputisprimitive.End(); // Convert the primitive to a string value. ToStringStub stub(isolate()); HValue* values[] = {context(), Pop()}; Push(AddUncasted(Add(stub.GetCode()), 0, stub.GetCallInterfaceDescriptor(), ArrayVector(values))); } if_inputisstring.End(); } if_inputissmi.End(); return Pop(); } HValue* CodeStubGraphBuilderBase::BuildToPrimitive(HValue* input, HValue* input_map) { // Get the native context of the caller. HValue* native_context = BuildGetNativeContext(); // Determine the initial map of the %ObjectPrototype%. HValue* object_function_prototype_map = Add(native_context, nullptr, HObjectAccess::ForContextSlot( Context::OBJECT_FUNCTION_PROTOTYPE_MAP_INDEX)); // Determine the initial map of the %StringPrototype%. HValue* string_function_prototype_map = Add(native_context, nullptr, HObjectAccess::ForContextSlot( Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX)); // Determine the initial map of the String function. HValue* string_function = Add( native_context, nullptr, HObjectAccess::ForContextSlot(Context::STRING_FUNCTION_INDEX)); HValue* string_function_initial_map = Add( string_function, nullptr, HObjectAccess::ForPrototypeOrInitialMap()); // Determine the map of the [[Prototype]] of {input}. HValue* input_prototype = Add(input_map, nullptr, HObjectAccess::ForPrototype()); HValue* input_prototype_map = Add(input_prototype, nullptr, HObjectAccess::ForMap()); // For string wrappers (JSValue instances with [[StringData]] internal // fields), we can shortcirciut the ToPrimitive if // // (a) the {input} map matches the initial map of the String function, // (b) the {input} [[Prototype]] is the unmodified %StringPrototype% (i.e. // no one monkey-patched toString, @@toPrimitive or valueOf), and // (c) the %ObjectPrototype% (i.e. the [[Prototype]] of the // %StringPrototype%) is also unmodified, that is no one sneaked a // @@toPrimitive into the %ObjectPrototype%. // // If all these assumptions hold, we can just take the [[StringData]] value // and return it. // TODO(bmeurer): This just repairs a regression introduced by removing the // weird (and broken) intrinsic %_IsStringWrapperSafeForDefaultValue, which // was intendend to something similar to this, although less efficient and // wrong in the presence of @@toPrimitive. Long-term we might want to move // into the direction of having a ToPrimitiveStub that can do common cases // while staying in JavaScript land (i.e. not going to C++). IfBuilder if_inputisstringwrapper(this); if_inputisstringwrapper.If( input_map, string_function_initial_map); if_inputisstringwrapper.And(); if_inputisstringwrapper.If( input_prototype_map, string_function_prototype_map); if_inputisstringwrapper.And(); if_inputisstringwrapper.If( Add(Add(input_prototype_map, nullptr, HObjectAccess::ForPrototype()), nullptr, HObjectAccess::ForMap()), object_function_prototype_map); if_inputisstringwrapper.Then(); { Push(BuildLoadNamedField( input, FieldIndex::ForInObjectOffset(JSValue::kValueOffset))); } if_inputisstringwrapper.Else(); { // TODO(bmeurer): Add support for fast ToPrimitive conversion using // a dedicated ToPrimitiveStub. Add(input); Push(Add(Runtime::FunctionForId(Runtime::kToPrimitive), 1)); } if_inputisstringwrapper.End(); return Pop(); } template <> HValue* CodeStubGraphBuilder::BuildCodeInitializedStub() { StringAddStub* stub = casted_stub(); StringAddFlags flags = stub->flags(); PretenureFlag pretenure_flag = stub->pretenure_flag(); HValue* left = GetParameter(Descriptor::kLeft); HValue* right = GetParameter(Descriptor::kRight); // Make sure that both arguments are strings if not known in advance. if ((flags & STRING_ADD_CHECK_LEFT) == STRING_ADD_CHECK_LEFT) { left = BuildToString(left, (flags & STRING_ADD_CONVERT) == STRING_ADD_CONVERT); } if ((flags & STRING_ADD_CHECK_RIGHT) == STRING_ADD_CHECK_RIGHT) { right = BuildToString(right, (flags & STRING_ADD_CONVERT) == STRING_ADD_CONVERT); } return BuildStringAdd(left, right, HAllocationMode(pretenure_flag)); } Handle StringAddStub::GenerateCode() { return DoGenerateCode(this); } template <> HValue* CodeStubGraphBuilder::BuildCodeInitializedStub() { ToBooleanICStub* stub = casted_stub(); IfBuilder if_true(this); if_true.If(GetParameter(Descriptor::kArgument), stub->types()); if_true.Then(); if_true.Return(graph()->GetConstantTrue()); if_true.Else(); if_true.End(); return graph()->GetConstantFalse(); } Handle ToBooleanICStub::GenerateCode() { return DoGenerateCode(this); } template <> HValue* CodeStubGraphBuilder::BuildCodeStub() { HValue* receiver = GetParameter(Descriptor::kReceiver); HValue* key = GetParameter(Descriptor::kName); Add(key); HValue* elements = AddLoadElements(receiver); HValue* hash = BuildElementIndexHash(key); return BuildUncheckedDictionaryElementLoad(receiver, elements, key, hash); } Handle LoadDictionaryElementStub::GenerateCode() { return DoGenerateCode(this); } template<> HValue* CodeStubGraphBuilder::BuildCodeStub() { // Determine the parameters. HValue* length = GetParameter(Descriptor::kLength); HValue* index = GetParameter(Descriptor::kIndex); HValue* input = GetParameter(Descriptor::kInput); // TODO(turbofan): This codestub has regressed to need a frame on ia32 at some // point and wasn't caught since it wasn't built in the snapshot. We should // probably just replace with a TurboFan stub rather than fixing it. #if !(V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87) info()->MarkMustNotHaveEagerFrame(); #endif return BuildRegExpConstructResult(length, index, input); } Handle RegExpConstructResultStub::GenerateCode() { return DoGenerateCode(this); } template <> class CodeStubGraphBuilder : public CodeStubGraphBuilderBase { public: explicit CodeStubGraphBuilder(CompilationInfo* info, CodeStub* stub) : CodeStubGraphBuilderBase(info, stub) {} typedef KeyedLoadGenericStub::Descriptor Descriptor; protected: virtual HValue* BuildCodeStub(); void BuildElementsKindLimitCheck(HGraphBuilder::IfBuilder* if_builder, HValue* bit_field2, ElementsKind kind); void BuildFastElementLoad(HGraphBuilder::IfBuilder* if_builder, HValue* receiver, HValue* key, HValue* instance_type, HValue* bit_field2, ElementsKind kind); KeyedLoadGenericStub* casted_stub() { return static_cast(stub()); } }; void CodeStubGraphBuilder::BuildElementsKindLimitCheck( HGraphBuilder::IfBuilder* if_builder, HValue* bit_field2, ElementsKind kind) { ElementsKind next_kind = static_cast(kind + 1); HValue* kind_limit = Add( static_cast(Map::ElementsKindBits::encode(next_kind))); if_builder->If(bit_field2, kind_limit, Token::LT); if_builder->Then(); } void CodeStubGraphBuilder::BuildFastElementLoad( HGraphBuilder::IfBuilder* if_builder, HValue* receiver, HValue* key, HValue* instance_type, HValue* bit_field2, ElementsKind kind) { BuildElementsKindLimitCheck(if_builder, bit_field2, kind); IfBuilder js_array_check(this); js_array_check.If( instance_type, Add(JS_ARRAY_TYPE), Token::EQ); js_array_check.Then(); Push(BuildUncheckedMonomorphicElementAccess(receiver, key, NULL, true, kind, LOAD, NEVER_RETURN_HOLE, STANDARD_STORE)); js_array_check.Else(); Push(BuildUncheckedMonomorphicElementAccess(receiver, key, NULL, false, kind, LOAD, NEVER_RETURN_HOLE, STANDARD_STORE)); js_array_check.End(); } HValue* CodeStubGraphBuilder::BuildCodeStub() { HValue* receiver = GetParameter(Descriptor::kReceiver); HValue* key = GetParameter(Descriptor::kName); // Split into a smi/integer case and unique string case. HIfContinuation index_name_split_continuation(graph()->CreateBasicBlock(), graph()->CreateBasicBlock()); BuildKeyedIndexCheck(key, &index_name_split_continuation); IfBuilder index_name_split(this, &index_name_split_continuation); index_name_split.Then(); { // Key is an index (number) key = Pop(); int bit_field_mask = (1 << Map::kIsAccessCheckNeeded) | (1 << Map::kHasIndexedInterceptor); BuildJSObjectCheck(receiver, bit_field_mask); HValue* map = Add(receiver, nullptr, HObjectAccess::ForMap()); HValue* instance_type = Add(map, nullptr, HObjectAccess::ForMapInstanceType()); HValue* bit_field2 = Add(map, nullptr, HObjectAccess::ForMapBitField2()); IfBuilder kind_if(this); BuildFastElementLoad(&kind_if, receiver, key, instance_type, bit_field2, FAST_HOLEY_ELEMENTS); kind_if.Else(); { BuildFastElementLoad(&kind_if, receiver, key, instance_type, bit_field2, FAST_HOLEY_DOUBLE_ELEMENTS); } kind_if.Else(); // The DICTIONARY_ELEMENTS check generates a "kind_if.Then" BuildElementsKindLimitCheck(&kind_if, bit_field2, DICTIONARY_ELEMENTS); { HValue* elements = AddLoadElements(receiver); HValue* hash = BuildElementIndexHash(key); Push(BuildUncheckedDictionaryElementLoad(receiver, elements, key, hash)); } kind_if.Else(); // The SLOW_SLOPPY_ARGUMENTS_ELEMENTS check generates a "kind_if.Then" STATIC_ASSERT(FAST_SLOPPY_ARGUMENTS_ELEMENTS < SLOW_SLOPPY_ARGUMENTS_ELEMENTS); BuildElementsKindLimitCheck(&kind_if, bit_field2, SLOW_SLOPPY_ARGUMENTS_ELEMENTS); // Non-strict elements are not handled. Add(DeoptimizeReason::kNonStrictElementsInKeyedLoadGenericStub, Deoptimizer::EAGER); Push(graph()->GetConstant0()); kind_if.ElseDeopt( DeoptimizeReason::kElementsKindUnhandledInKeyedLoadGenericStub); kind_if.End(); } index_name_split.Else(); { // Key is a unique string. key = Pop(); int bit_field_mask = (1 << Map::kIsAccessCheckNeeded) | (1 << Map::kHasNamedInterceptor); BuildJSObjectCheck(receiver, bit_field_mask); HIfContinuation continuation; BuildTestForDictionaryProperties(receiver, &continuation); IfBuilder if_dict_properties(this, &continuation); if_dict_properties.Then(); { // Key is string, properties are dictionary mode BuildNonGlobalObjectCheck(receiver); HValue* properties = Add( receiver, nullptr, HObjectAccess::ForPropertiesPointer()); HValue* hash = Add(key, nullptr, HObjectAccess::ForNameHashField()); hash = AddUncasted(hash, Add(Name::kHashShift)); HValue* value = BuildUncheckedDictionaryElementLoad(receiver, properties, key, hash); Push(value); } if_dict_properties.Else(); { // TODO(dcarney): don't use keyed lookup cache, but convert to use // megamorphic stub cache. UNREACHABLE(); // Key is string, properties are fast mode HValue* hash = BuildKeyedLookupCacheHash(receiver, key); ExternalReference cache_keys_ref = ExternalReference::keyed_lookup_cache_keys(isolate()); HValue* cache_keys = Add(cache_keys_ref); HValue* map = Add(receiver, nullptr, HObjectAccess::ForMap()); HValue* base_index = AddUncasted(hash, Add(2)); base_index->ClearFlag(HValue::kCanOverflow); HIfContinuation inline_or_runtime_continuation( graph()->CreateBasicBlock(), graph()->CreateBasicBlock()); { IfBuilder lookup_ifs[KeyedLookupCache::kEntriesPerBucket]; for (int probe = 0; probe < KeyedLookupCache::kEntriesPerBucket; ++probe) { IfBuilder* lookup_if = &lookup_ifs[probe]; lookup_if->Initialize(this); int probe_base = probe * KeyedLookupCache::kEntryLength; HValue* map_index = AddUncasted( base_index, Add(probe_base + KeyedLookupCache::kMapIndex)); map_index->ClearFlag(HValue::kCanOverflow); HValue* key_index = AddUncasted( base_index, Add(probe_base + KeyedLookupCache::kKeyIndex)); key_index->ClearFlag(HValue::kCanOverflow); HValue* map_to_check = Add(cache_keys, map_index, nullptr, nullptr, FAST_ELEMENTS, NEVER_RETURN_HOLE, 0); lookup_if->If(map_to_check, map); lookup_if->And(); HValue* key_to_check = Add(cache_keys, key_index, nullptr, nullptr, FAST_ELEMENTS, NEVER_RETURN_HOLE, 0); lookup_if->If(key_to_check, key); lookup_if->Then(); { ExternalReference cache_field_offsets_ref = ExternalReference::keyed_lookup_cache_field_offsets(isolate()); HValue* cache_field_offsets = Add(cache_field_offsets_ref); HValue* index = AddUncasted(hash, Add(probe)); index->ClearFlag(HValue::kCanOverflow); HValue* property_index = Add(cache_field_offsets, index, nullptr, cache_keys, INT32_ELEMENTS, NEVER_RETURN_HOLE, 0); Push(property_index); } lookup_if->Else(); } for (int i = 0; i < KeyedLookupCache::kEntriesPerBucket; ++i) { lookup_ifs[i].JoinContinuation(&inline_or_runtime_continuation); } } IfBuilder inline_or_runtime(this, &inline_or_runtime_continuation); inline_or_runtime.Then(); { // Found a cached index, load property inline. Push(Add(receiver, Pop())); } inline_or_runtime.Else(); { // KeyedLookupCache miss; call runtime. Add(receiver, key); Push(Add( Runtime::FunctionForId(Runtime::kKeyedGetProperty), 2)); } inline_or_runtime.End(); } if_dict_properties.End(); } index_name_split.End(); return Pop(); } Handle KeyedLoadGenericStub::GenerateCode() { return DoGenerateCode(this); } } // namespace internal } // namespace v8