// Copyright 2009 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include #include #include #include "v8.h" #if defined(V8_TARGET_ARCH_X64) #include "disasm.h" namespace disasm { enum OperandType { UNSET_OP_ORDER = 0, // Operand size decides between 16, 32 and 64 bit operands. REG_OPER_OP_ORDER = 1, // Register destination, operand source. OPER_REG_OP_ORDER = 2, // Operand destination, register source. // Fixed 8-bit operands. BYTE_SIZE_OPERAND_FLAG = 4, BYTE_REG_OPER_OP_ORDER = REG_OPER_OP_ORDER | BYTE_SIZE_OPERAND_FLAG, BYTE_OPER_REG_OP_ORDER = OPER_REG_OP_ORDER | BYTE_SIZE_OPERAND_FLAG }; //------------------------------------------------------------------ // Tables //------------------------------------------------------------------ struct ByteMnemonic { int b; // -1 terminates, otherwise must be in range (0..255) OperandType op_order_; const char* mnem; }; static ByteMnemonic two_operands_instr[] = { { 0x00, BYTE_OPER_REG_OP_ORDER, "add" }, { 0x01, OPER_REG_OP_ORDER, "add" }, { 0x02, BYTE_REG_OPER_OP_ORDER, "add" }, { 0x03, REG_OPER_OP_ORDER, "add" }, { 0x08, BYTE_OPER_REG_OP_ORDER, "or" }, { 0x09, OPER_REG_OP_ORDER, "or" }, { 0x0A, BYTE_REG_OPER_OP_ORDER, "or" }, { 0x0B, REG_OPER_OP_ORDER, "or" }, { 0x10, BYTE_OPER_REG_OP_ORDER, "adc" }, { 0x11, OPER_REG_OP_ORDER, "adc" }, { 0x12, BYTE_REG_OPER_OP_ORDER, "adc" }, { 0x13, REG_OPER_OP_ORDER, "adc" }, { 0x18, BYTE_OPER_REG_OP_ORDER, "sbb" }, { 0x19, OPER_REG_OP_ORDER, "sbb" }, { 0x1A, BYTE_REG_OPER_OP_ORDER, "sbb" }, { 0x1B, REG_OPER_OP_ORDER, "sbb" }, { 0x20, BYTE_OPER_REG_OP_ORDER, "and" }, { 0x21, OPER_REG_OP_ORDER, "and" }, { 0x22, BYTE_REG_OPER_OP_ORDER, "and" }, { 0x23, REG_OPER_OP_ORDER, "and" }, { 0x28, BYTE_OPER_REG_OP_ORDER, "sub" }, { 0x29, OPER_REG_OP_ORDER, "sub" }, { 0x2A, BYTE_REG_OPER_OP_ORDER, "sub" }, { 0x2B, REG_OPER_OP_ORDER, "sub" }, { 0x30, BYTE_OPER_REG_OP_ORDER, "xor" }, { 0x31, OPER_REG_OP_ORDER, "xor" }, { 0x32, BYTE_REG_OPER_OP_ORDER, "xor" }, { 0x33, REG_OPER_OP_ORDER, "xor" }, { 0x38, BYTE_OPER_REG_OP_ORDER, "cmp" }, { 0x39, OPER_REG_OP_ORDER, "cmp" }, { 0x3A, BYTE_REG_OPER_OP_ORDER, "cmp" }, { 0x3B, REG_OPER_OP_ORDER, "cmp" }, { 0x63, REG_OPER_OP_ORDER, "movsxlq" }, { 0x84, BYTE_REG_OPER_OP_ORDER, "test" }, { 0x85, REG_OPER_OP_ORDER, "test" }, { 0x86, BYTE_REG_OPER_OP_ORDER, "xchg" }, { 0x87, REG_OPER_OP_ORDER, "xchg" }, { 0x88, BYTE_OPER_REG_OP_ORDER, "mov" }, { 0x89, OPER_REG_OP_ORDER, "mov" }, { 0x8A, BYTE_REG_OPER_OP_ORDER, "mov" }, { 0x8B, REG_OPER_OP_ORDER, "mov" }, { 0x8D, REG_OPER_OP_ORDER, "lea" }, { -1, UNSET_OP_ORDER, "" } }; static ByteMnemonic zero_operands_instr[] = { { 0xC3, UNSET_OP_ORDER, "ret" }, { 0xC9, UNSET_OP_ORDER, "leave" }, { 0xF4, UNSET_OP_ORDER, "hlt" }, { 0xCC, UNSET_OP_ORDER, "int3" }, { 0x60, UNSET_OP_ORDER, "pushad" }, { 0x61, UNSET_OP_ORDER, "popad" }, { 0x9C, UNSET_OP_ORDER, "pushfd" }, { 0x9D, UNSET_OP_ORDER, "popfd" }, { 0x9E, UNSET_OP_ORDER, "sahf" }, { 0x99, UNSET_OP_ORDER, "cdq" }, { 0x9B, UNSET_OP_ORDER, "fwait" }, { 0xA4, UNSET_OP_ORDER, "movs" }, { 0xA5, UNSET_OP_ORDER, "movs" }, { 0xA6, UNSET_OP_ORDER, "cmps" }, { 0xA7, UNSET_OP_ORDER, "cmps" }, { -1, UNSET_OP_ORDER, "" } }; static ByteMnemonic call_jump_instr[] = { { 0xE8, UNSET_OP_ORDER, "call" }, { 0xE9, UNSET_OP_ORDER, "jmp" }, { -1, UNSET_OP_ORDER, "" } }; static ByteMnemonic short_immediate_instr[] = { { 0x05, UNSET_OP_ORDER, "add" }, { 0x0D, UNSET_OP_ORDER, "or" }, { 0x15, UNSET_OP_ORDER, "adc" }, { 0x1D, UNSET_OP_ORDER, "sbb" }, { 0x25, UNSET_OP_ORDER, "and" }, { 0x2D, UNSET_OP_ORDER, "sub" }, { 0x35, UNSET_OP_ORDER, "xor" }, { 0x3D, UNSET_OP_ORDER, "cmp" }, { -1, UNSET_OP_ORDER, "" } }; static const char* conditional_code_suffix[] = { "o", "no", "c", "nc", "z", "nz", "na", "a", "s", "ns", "pe", "po", "l", "ge", "le", "g" }; enum InstructionType { NO_INSTR, ZERO_OPERANDS_INSTR, TWO_OPERANDS_INSTR, JUMP_CONDITIONAL_SHORT_INSTR, REGISTER_INSTR, PUSHPOP_INSTR, // Has implicit 64-bit operand size. MOVE_REG_INSTR, CALL_JUMP_INSTR, SHORT_IMMEDIATE_INSTR }; enum Prefixes { ESCAPE_PREFIX = 0x0F, OPERAND_SIZE_OVERRIDE_PREFIX = 0x66, ADDRESS_SIZE_OVERRIDE_PREFIX = 0x67, REPNE_PREFIX = 0xF2, REP_PREFIX = 0xF3, REPEQ_PREFIX = REP_PREFIX }; struct InstructionDesc { const char* mnem; InstructionType type; OperandType op_order_; bool byte_size_operation; // Fixed 8-bit operation. }; class InstructionTable { public: InstructionTable(); const InstructionDesc& Get(byte x) const { return instructions_[x]; } private: InstructionDesc instructions_[256]; void Clear(); void Init(); void CopyTable(ByteMnemonic bm[], InstructionType type); void SetTableRange(InstructionType type, byte start, byte end, bool byte_size, const char* mnem); void AddJumpConditionalShort(); }; InstructionTable::InstructionTable() { Clear(); Init(); } void InstructionTable::Clear() { for (int i = 0; i < 256; i++) { instructions_[i].mnem = "(bad)"; instructions_[i].type = NO_INSTR; instructions_[i].op_order_ = UNSET_OP_ORDER; instructions_[i].byte_size_operation = false; } } void InstructionTable::Init() { CopyTable(two_operands_instr, TWO_OPERANDS_INSTR); CopyTable(zero_operands_instr, ZERO_OPERANDS_INSTR); CopyTable(call_jump_instr, CALL_JUMP_INSTR); CopyTable(short_immediate_instr, SHORT_IMMEDIATE_INSTR); AddJumpConditionalShort(); SetTableRange(PUSHPOP_INSTR, 0x50, 0x57, false, "push"); SetTableRange(PUSHPOP_INSTR, 0x58, 0x5F, false, "pop"); SetTableRange(MOVE_REG_INSTR, 0xB8, 0xBF, false, "mov"); } void InstructionTable::CopyTable(ByteMnemonic bm[], InstructionType type) { for (int i = 0; bm[i].b >= 0; i++) { InstructionDesc* id = &instructions_[bm[i].b]; id->mnem = bm[i].mnem; OperandType op_order = bm[i].op_order_; id->op_order_ = static_cast(op_order & ~BYTE_SIZE_OPERAND_FLAG); ASSERT_EQ(NO_INSTR, id->type); // Information not already entered id->type = type; id->byte_size_operation = ((op_order & BYTE_SIZE_OPERAND_FLAG) != 0); } } void InstructionTable::SetTableRange(InstructionType type, byte start, byte end, bool byte_size, const char* mnem) { for (byte b = start; b <= end; b++) { InstructionDesc* id = &instructions_[b]; ASSERT_EQ(NO_INSTR, id->type); // Information not already entered id->mnem = mnem; id->type = type; id->byte_size_operation = byte_size; } } void InstructionTable::AddJumpConditionalShort() { for (byte b = 0x70; b <= 0x7F; b++) { InstructionDesc* id = &instructions_[b]; ASSERT_EQ(NO_INSTR, id->type); // Information not already entered id->mnem = NULL; // Computed depending on condition code. id->type = JUMP_CONDITIONAL_SHORT_INSTR; } } static InstructionTable instruction_table; static InstructionDesc cmov_instructions[16] = { {"cmovo", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, {"cmovno", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, {"cmovc", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, {"cmovnc", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, {"cmovz", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, {"cmovnz", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, {"cmovna", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, {"cmova", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, {"cmovs", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, {"cmovns", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, {"cmovpe", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, {"cmovpo", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, {"cmovl", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, {"cmovge", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, {"cmovle", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, {"cmovg", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false} }; //------------------------------------------------------------------------------ // DisassemblerX64 implementation. enum UnimplementedOpcodeAction { CONTINUE_ON_UNIMPLEMENTED_OPCODE, ABORT_ON_UNIMPLEMENTED_OPCODE }; // A new DisassemblerX64 object is created to disassemble each instruction. // The object can only disassemble a single instruction. class DisassemblerX64 { public: DisassemblerX64(const NameConverter& converter, UnimplementedOpcodeAction unimplemented_action = ABORT_ON_UNIMPLEMENTED_OPCODE) : converter_(converter), tmp_buffer_pos_(0), abort_on_unimplemented_( unimplemented_action == ABORT_ON_UNIMPLEMENTED_OPCODE), rex_(0), operand_size_(0), group_1_prefix_(0), byte_size_operand_(false) { tmp_buffer_[0] = '\0'; } virtual ~DisassemblerX64() { } // Writes one disassembled instruction into 'buffer' (0-terminated). // Returns the length of the disassembled machine instruction in bytes. int InstructionDecode(v8::internal::Vector buffer, byte* instruction); private: enum OperandSize { BYTE_SIZE = 0, WORD_SIZE = 1, DOUBLEWORD_SIZE = 2, QUADWORD_SIZE = 3 }; const NameConverter& converter_; v8::internal::EmbeddedVector tmp_buffer_; unsigned int tmp_buffer_pos_; bool abort_on_unimplemented_; // Prefixes parsed byte rex_; byte operand_size_; // 0x66 or (if no group 3 prefix is present) 0x0. byte group_1_prefix_; // 0xF2, 0xF3, or (if no group 1 prefix is present) 0. // Byte size operand override. bool byte_size_operand_; void setRex(byte rex) { ASSERT_EQ(0x40, rex & 0xF0); rex_ = rex; } bool rex() { return rex_ != 0; } bool rex_b() { return (rex_ & 0x01) != 0; } // Actual number of base register given the low bits and the rex.b state. int base_reg(int low_bits) { return low_bits | ((rex_ & 0x01) << 3); } bool rex_x() { return (rex_ & 0x02) != 0; } bool rex_r() { return (rex_ & 0x04) != 0; } bool rex_w() { return (rex_ & 0x08) != 0; } OperandSize operand_size() { if (byte_size_operand_) return BYTE_SIZE; if (rex_w()) return QUADWORD_SIZE; if (operand_size_ != 0) return WORD_SIZE; return DOUBLEWORD_SIZE; } char operand_size_code() { return "bwlq"[operand_size()]; } const char* NameOfCPURegister(int reg) const { return converter_.NameOfCPURegister(reg); } const char* NameOfByteCPURegister(int reg) const { return converter_.NameOfByteCPURegister(reg); } const char* NameOfXMMRegister(int reg) const { return converter_.NameOfXMMRegister(reg); } const char* NameOfAddress(byte* addr) const { return converter_.NameOfAddress(addr); } // Disassembler helper functions. void get_modrm(byte data, int* mod, int* regop, int* rm) { *mod = (data >> 6) & 3; *regop = ((data & 0x38) >> 3) | (rex_r() ? 8 : 0); *rm = (data & 7) | (rex_b() ? 8 : 0); } void get_sib(byte data, int* scale, int* index, int* base) { *scale = (data >> 6) & 3; *index = ((data >> 3) & 7) | (rex_x() ? 8 : 0); *base = (data & 7) | (rex_b() ? 8 : 0); } typedef const char* (DisassemblerX64::*RegisterNameMapping)(int reg) const; int PrintRightOperandHelper(byte* modrmp, RegisterNameMapping register_name); int PrintRightOperand(byte* modrmp); int PrintRightByteOperand(byte* modrmp); int PrintRightXMMOperand(byte* modrmp); int PrintOperands(const char* mnem, OperandType op_order, byte* data); int PrintImmediate(byte* data, OperandSize size); int PrintImmediateOp(byte* data); const char* TwoByteMnemonic(byte opcode); int TwoByteOpcodeInstruction(byte* data); int F6F7Instruction(byte* data); int ShiftInstruction(byte* data); int JumpShort(byte* data); int JumpConditional(byte* data); int JumpConditionalShort(byte* data); int SetCC(byte* data); int FPUInstruction(byte* data); int MemoryFPUInstruction(int escape_opcode, int regop, byte* modrm_start); int RegisterFPUInstruction(int escape_opcode, byte modrm_byte); void AppendToBuffer(const char* format, ...); void UnimplementedInstruction() { if (abort_on_unimplemented_) { CHECK(false); } else { AppendToBuffer("'Unimplemented Instruction'"); } } }; void DisassemblerX64::AppendToBuffer(const char* format, ...) { v8::internal::Vector buf = tmp_buffer_ + tmp_buffer_pos_; va_list args; va_start(args, format); int result = v8::internal::OS::VSNPrintF(buf, format, args); va_end(args); tmp_buffer_pos_ += result; } int DisassemblerX64::PrintRightOperandHelper( byte* modrmp, RegisterNameMapping register_name) { int mod, regop, rm; get_modrm(*modrmp, &mod, ®op, &rm); switch (mod) { case 0: if ((rm & 7) == 5) { int32_t disp = *reinterpret_cast(modrmp + 1); AppendToBuffer("[0x%x]", disp); return 5; } else if ((rm & 7) == 4) { // Codes for SIB byte. byte sib = *(modrmp + 1); int scale, index, base; get_sib(sib, &scale, &index, &base); if (index == 4 && (base & 7) == 4 && scale == 0 /*times_1*/) { // index == rsp means no index. Only use sib byte with no index for // rsp and r12 base. AppendToBuffer("[%s]", NameOfCPURegister(base)); return 2; } else if (base == 5) { // base == rbp means no base register (when mod == 0). int32_t disp = *reinterpret_cast(modrmp + 2); AppendToBuffer("[%s*%d+0x%x]", NameOfCPURegister(index), 1 << scale, disp); return 6; } else if (index != 4 && base != 5) { // [base+index*scale] AppendToBuffer("[%s+%s*%d]", NameOfCPURegister(base), NameOfCPURegister(index), 1 << scale); return 2; } else { UnimplementedInstruction(); return 1; } } else { AppendToBuffer("[%s]", NameOfCPURegister(rm)); return 1; } break; case 1: // fall through case 2: if ((rm & 7) == 4) { byte sib = *(modrmp + 1); int scale, index, base; get_sib(sib, &scale, &index, &base); int disp = (mod == 2) ? *reinterpret_cast(modrmp + 2) : *reinterpret_cast(modrmp + 2); if (index == 4 && (base & 7) == 4 && scale == 0 /*times_1*/) { if (-disp > 0) { AppendToBuffer("[%s-0x%x]", NameOfCPURegister(base), -disp); } else { AppendToBuffer("[%s+0x%x]", NameOfCPURegister(base), disp); } } else { if (-disp > 0) { AppendToBuffer("[%s+%s*%d-0x%x]", NameOfCPURegister(base), NameOfCPURegister(index), 1 << scale, -disp); } else { AppendToBuffer("[%s+%s*%d+0x%x]", NameOfCPURegister(base), NameOfCPURegister(index), 1 << scale, disp); } } return mod == 2 ? 6 : 3; } else { // No sib. int disp = (mod == 2) ? *reinterpret_cast(modrmp + 1) : *reinterpret_cast(modrmp + 1); if (-disp > 0) { AppendToBuffer("[%s-0x%x]", NameOfCPURegister(rm), -disp); } else { AppendToBuffer("[%s+0x%x]", NameOfCPURegister(rm), disp); } return (mod == 2) ? 5 : 2; } break; case 3: AppendToBuffer("%s", (this->*register_name)(rm)); return 1; default: UnimplementedInstruction(); return 1; } UNREACHABLE(); } int DisassemblerX64::PrintImmediate(byte* data, OperandSize size) { int64_t value; int count; switch (size) { case BYTE_SIZE: value = *data; count = 1; break; case WORD_SIZE: value = *reinterpret_cast(data); count = 2; break; case DOUBLEWORD_SIZE: value = *reinterpret_cast(data); count = 4; break; case QUADWORD_SIZE: value = *reinterpret_cast(data); count = 4; break; default: UNREACHABLE(); value = 0; // Initialize variables on all paths to satisfy the compiler. count = 0; } AppendToBuffer("%" V8_PTR_PREFIX "x", value); return count; } int DisassemblerX64::PrintRightOperand(byte* modrmp) { return PrintRightOperandHelper(modrmp, &DisassemblerX64::NameOfCPURegister); } int DisassemblerX64::PrintRightByteOperand(byte* modrmp) { return PrintRightOperandHelper(modrmp, &DisassemblerX64::NameOfByteCPURegister); } int DisassemblerX64::PrintRightXMMOperand(byte* modrmp) { return PrintRightOperandHelper(modrmp, &DisassemblerX64::NameOfXMMRegister); } // Returns number of bytes used including the current *data. // Writes instruction's mnemonic, left and right operands to 'tmp_buffer_'. int DisassemblerX64::PrintOperands(const char* mnem, OperandType op_order, byte* data) { byte modrm = *data; int mod, regop, rm; get_modrm(modrm, &mod, ®op, &rm); int advance = 0; const char* register_name = byte_size_operand_ ? NameOfByteCPURegister(regop) : NameOfCPURegister(regop); switch (op_order) { case REG_OPER_OP_ORDER: { AppendToBuffer("%s%c %s,", mnem, operand_size_code(), register_name); advance = byte_size_operand_ ? PrintRightByteOperand(data) : PrintRightOperand(data); break; } case OPER_REG_OP_ORDER: { AppendToBuffer("%s%c ", mnem, operand_size_code()); advance = byte_size_operand_ ? PrintRightByteOperand(data) : PrintRightOperand(data); AppendToBuffer(",%s", register_name); break; } default: UNREACHABLE(); break; } return advance; } // Returns number of bytes used by machine instruction, including *data byte. // Writes immediate instructions to 'tmp_buffer_'. int DisassemblerX64::PrintImmediateOp(byte* data) { bool byte_size_immediate = (*data & 0x02) != 0; byte modrm = *(data + 1); int mod, regop, rm; get_modrm(modrm, &mod, ®op, &rm); const char* mnem = "Imm???"; switch (regop) { case 0: mnem = "add"; break; case 1: mnem = "or"; break; case 2: mnem = "adc"; break; case 4: mnem = "and"; break; case 5: mnem = "sub"; break; case 6: mnem = "xor"; break; case 7: mnem = "cmp"; break; default: UnimplementedInstruction(); } AppendToBuffer("%s%c ", mnem, operand_size_code()); int count = PrintRightOperand(data + 1); AppendToBuffer(",0x"); OperandSize immediate_size = byte_size_immediate ? BYTE_SIZE : operand_size(); count += PrintImmediate(data + 1 + count, immediate_size); return 1 + count; } // Returns number of bytes used, including *data. int DisassemblerX64::F6F7Instruction(byte* data) { ASSERT(*data == 0xF7 || *data == 0xF6); byte modrm = *(data + 1); int mod, regop, rm; get_modrm(modrm, &mod, ®op, &rm); if (mod == 3 && regop != 0) { const char* mnem = NULL; switch (regop) { case 2: mnem = "not"; break; case 3: mnem = "neg"; break; case 4: mnem = "mul"; break; case 7: mnem = "idiv"; break; default: UnimplementedInstruction(); } AppendToBuffer("%s%c %s", mnem, operand_size_code(), NameOfCPURegister(rm)); return 2; } else if (regop == 0) { AppendToBuffer("test%c ", operand_size_code()); int count = PrintRightOperand(data + 1); // Use name of 64-bit register. AppendToBuffer(",0x"); count += PrintImmediate(data + 1 + count, operand_size()); return 1 + count; } else { UnimplementedInstruction(); return 2; } } int DisassemblerX64::ShiftInstruction(byte* data) { byte op = *data & (~1); if (op != 0xD0 && op != 0xD2 && op != 0xC0) { UnimplementedInstruction(); return 1; } byte modrm = *(data + 1); int mod, regop, rm; get_modrm(modrm, &mod, ®op, &rm); regop &= 0x7; // The REX.R bit does not affect the operation. int imm8 = -1; int num_bytes = 2; if (mod != 3) { UnimplementedInstruction(); return num_bytes; } const char* mnem = NULL; switch (regop) { case 0: mnem = "rol"; break; case 1: mnem = "ror"; break; case 2: mnem = "rcl"; break; case 3: mnem = "rcr"; break; case 4: mnem = "shl"; break; case 5: mnem = "shr"; break; case 7: mnem = "sar"; break; default: UnimplementedInstruction(); return num_bytes; } ASSERT_NE(NULL, mnem); if (op == 0xD0) { imm8 = 1; } else if (op == 0xC0) { imm8 = *(data + 2); num_bytes = 3; } AppendToBuffer("%s%c %s,", mnem, operand_size_code(), byte_size_operand_ ? NameOfByteCPURegister(rm) : NameOfCPURegister(rm)); if (op == 0xD2) { AppendToBuffer("cl"); } else { AppendToBuffer("%d", imm8); } return num_bytes; } // Returns number of bytes used, including *data. int DisassemblerX64::JumpShort(byte* data) { ASSERT_EQ(0xEB, *data); byte b = *(data + 1); byte* dest = data + static_cast(b) + 2; AppendToBuffer("jmp %s", NameOfAddress(dest)); return 2; } // Returns number of bytes used, including *data. int DisassemblerX64::JumpConditional(byte* data) { ASSERT_EQ(0x0F, *data); byte cond = *(data + 1) & 0x0F; byte* dest = data + *reinterpret_cast(data + 2) + 6; const char* mnem = conditional_code_suffix[cond]; AppendToBuffer("j%s %s", mnem, NameOfAddress(dest)); return 6; // includes 0x0F } // Returns number of bytes used, including *data. int DisassemblerX64::JumpConditionalShort(byte* data) { byte cond = *data & 0x0F; byte b = *(data + 1); byte* dest = data + static_cast(b) + 2; const char* mnem = conditional_code_suffix[cond]; AppendToBuffer("j%s %s", mnem, NameOfAddress(dest)); return 2; } // Returns number of bytes used, including *data. int DisassemblerX64::SetCC(byte* data) { ASSERT_EQ(0x0F, *data); byte cond = *(data + 1) & 0x0F; const char* mnem = conditional_code_suffix[cond]; AppendToBuffer("set%s%c ", mnem, operand_size_code()); PrintRightByteOperand(data + 2); return 3; // includes 0x0F } // Returns number of bytes used, including *data. int DisassemblerX64::FPUInstruction(byte* data) { byte escape_opcode = *data; ASSERT_EQ(0xD8, escape_opcode & 0xF8); byte modrm_byte = *(data+1); if (modrm_byte >= 0xC0) { return RegisterFPUInstruction(escape_opcode, modrm_byte); } else { return MemoryFPUInstruction(escape_opcode, modrm_byte, data+1); } } int DisassemblerX64::MemoryFPUInstruction(int escape_opcode, int modrm_byte, byte* modrm_start) { const char* mnem = "?"; int regop = (modrm_byte >> 3) & 0x7; // reg/op field of modrm byte. switch (escape_opcode) { case 0xD9: switch (regop) { case 0: mnem = "fld_s"; break; case 3: mnem = "fstp_s"; break; case 7: mnem = "fstcw"; break; default: UnimplementedInstruction(); } break; case 0xDB: switch (regop) { case 0: mnem = "fild_s"; break; case 1: mnem = "fisttp_s"; break; case 2: mnem = "fist_s"; break; case 3: mnem = "fistp_s"; break; default: UnimplementedInstruction(); } break; case 0xDD: switch (regop) { case 0: mnem = "fld_d"; break; case 3: mnem = "fstp_d"; break; default: UnimplementedInstruction(); } break; case 0xDF: switch (regop) { case 5: mnem = "fild_d"; break; case 7: mnem = "fistp_d"; break; default: UnimplementedInstruction(); } break; default: UnimplementedInstruction(); } AppendToBuffer("%s ", mnem); int count = PrintRightOperand(modrm_start); return count + 1; } int DisassemblerX64::RegisterFPUInstruction(int escape_opcode, byte modrm_byte) { bool has_register = false; // Is the FPU register encoded in modrm_byte? const char* mnem = "?"; switch (escape_opcode) { case 0xD8: UnimplementedInstruction(); break; case 0xD9: switch (modrm_byte & 0xF8) { case 0xC0: mnem = "fld"; has_register = true; break; case 0xC8: mnem = "fxch"; has_register = true; break; default: switch (modrm_byte) { case 0xE0: mnem = "fchs"; break; case 0xE1: mnem = "fabs"; break; case 0xE4: mnem = "ftst"; break; case 0xE8: mnem = "fld1"; break; case 0xEB: mnem = "fldpi"; break; case 0xED: mnem = "fldln2"; break; case 0xEE: mnem = "fldz"; break; case 0xF1: mnem = "fyl2x"; break; case 0xF5: mnem = "fprem1"; break; case 0xF7: mnem = "fincstp"; break; case 0xF8: mnem = "fprem"; break; case 0xFE: mnem = "fsin"; break; case 0xFF: mnem = "fcos"; break; default: UnimplementedInstruction(); } } break; case 0xDA: if (modrm_byte == 0xE9) { mnem = "fucompp"; } else { UnimplementedInstruction(); } break; case 0xDB: if ((modrm_byte & 0xF8) == 0xE8) { mnem = "fucomi"; has_register = true; } else if (modrm_byte == 0xE2) { mnem = "fclex"; } else { UnimplementedInstruction(); } break; case 0xDC: has_register = true; switch (modrm_byte & 0xF8) { case 0xC0: mnem = "fadd"; break; case 0xE8: mnem = "fsub"; break; case 0xC8: mnem = "fmul"; break; case 0xF8: mnem = "fdiv"; break; default: UnimplementedInstruction(); } break; case 0xDD: has_register = true; switch (modrm_byte & 0xF8) { case 0xC0: mnem = "ffree"; break; case 0xD8: mnem = "fstp"; break; default: UnimplementedInstruction(); } break; case 0xDE: if (modrm_byte == 0xD9) { mnem = "fcompp"; } else { has_register = true; switch (modrm_byte & 0xF8) { case 0xC0: mnem = "faddp"; break; case 0xE8: mnem = "fsubp"; break; case 0xC8: mnem = "fmulp"; break; case 0xF8: mnem = "fdivp"; break; default: UnimplementedInstruction(); } } break; case 0xDF: if (modrm_byte == 0xE0) { mnem = "fnstsw_ax"; } else if ((modrm_byte & 0xF8) == 0xE8) { mnem = "fucomip"; has_register = true; } break; default: UnimplementedInstruction(); } if (has_register) { AppendToBuffer("%s st%d", mnem, modrm_byte & 0x7); } else { AppendToBuffer("%s", mnem); } return 2; } // Handle all two-byte opcodes, which start with 0x0F. // These instructions may be affected by an 0x66, 0xF2, or 0xF3 prefix. // We do not use any three-byte opcodes, which start with 0x0F38 or 0x0F3A. int DisassemblerX64::TwoByteOpcodeInstruction(byte* data) { byte opcode = *(data + 1); byte* current = data + 2; // At return, "current" points to the start of the next instruction. const char* mnemonic = TwoByteMnemonic(opcode); if (operand_size_ == 0x66) { // 0x66 0x0F prefix. int mod, regop, rm; if (opcode == 0x3A) { byte third_byte = *current; current = data + 3; if (third_byte == 0x17) { get_modrm(*current, &mod, ®op, &rm); AppendToBuffer("extractps "); // reg/m32, xmm, imm8 current += PrintRightOperand(current); AppendToBuffer(", %s, %d", NameOfCPURegister(regop), (*current) & 3); current += 1; } else { UnimplementedInstruction(); } } else { get_modrm(*current, &mod, ®op, &rm); if (opcode == 0x6E) { AppendToBuffer("mov%c %s,", rex_w() ? 'q' : 'd', NameOfXMMRegister(regop)); current += PrintRightOperand(current); } else if (opcode == 0x7E) { AppendToBuffer("mov%c ", rex_w() ? 'q' : 'd'); current += PrintRightOperand(current); AppendToBuffer(", %s", NameOfXMMRegister(regop)); } else { const char* mnemonic = "?"; if (opcode == 0x57) { mnemonic = "xorpd"; } else if (opcode == 0x2E) { mnemonic = "ucomisd"; } else if (opcode == 0x2F) { mnemonic = "comisd"; } else { UnimplementedInstruction(); } AppendToBuffer("%s %s,", mnemonic, NameOfXMMRegister(regop)); current += PrintRightXMMOperand(current); } } } else if (group_1_prefix_ == 0xF2) { // Beginning of instructions with prefix 0xF2. if (opcode == 0x11 || opcode == 0x10) { // MOVSD: Move scalar double-precision fp to/from/between XMM registers. AppendToBuffer("movsd "); int mod, regop, rm; get_modrm(*current, &mod, ®op, &rm); if (opcode == 0x11) { current += PrintRightOperand(current); AppendToBuffer(",%s", NameOfXMMRegister(regop)); } else { AppendToBuffer("%s,", NameOfXMMRegister(regop)); current += PrintRightOperand(current); } } else if (opcode == 0x2A) { // CVTSI2SD: integer to XMM double conversion. int mod, regop, rm; get_modrm(*current, &mod, ®op, &rm); AppendToBuffer("%sd %s,", mnemonic, NameOfXMMRegister(regop)); current += PrintRightOperand(current); } else if (opcode == 0x2C) { // CVTTSD2SI: // Convert with truncation scalar double-precision FP to integer. int mod, regop, rm; get_modrm(*current, &mod, ®op, &rm); AppendToBuffer("cvttsd2si%c %s,", operand_size_code(), NameOfCPURegister(regop)); current += PrintRightXMMOperand(current); } else if (opcode == 0x2D) { // CVTSD2SI: Convert scalar double-precision FP to integer. int mod, regop, rm; get_modrm(*current, &mod, ®op, &rm); AppendToBuffer("cvtsd2si%c %s,", operand_size_code(), NameOfCPURegister(regop)); current += PrintRightXMMOperand(current); } else if ((opcode & 0xF8) == 0x58 || opcode == 0x51) { // XMM arithmetic. Mnemonic was retrieved at the start of this function. int mod, regop, rm; get_modrm(*current, &mod, ®op, &rm); AppendToBuffer("%s %s,", mnemonic, NameOfXMMRegister(regop)); current += PrintRightXMMOperand(current); } else { UnimplementedInstruction(); } } else if (group_1_prefix_ == 0xF3) { // Instructions with prefix 0xF3. if (opcode == 0x11 || opcode == 0x10) { // MOVSS: Move scalar double-precision fp to/from/between XMM registers. AppendToBuffer("movss "); int mod, regop, rm; get_modrm(*current, &mod, ®op, &rm); if (opcode == 0x11) { current += PrintRightOperand(current); AppendToBuffer(",%s", NameOfXMMRegister(regop)); } else { AppendToBuffer("%s,", NameOfXMMRegister(regop)); current += PrintRightOperand(current); } } else if (opcode == 0x2A) { // CVTSI2SS: integer to XMM single conversion. int mod, regop, rm; get_modrm(*current, &mod, ®op, &rm); AppendToBuffer("%ss %s,", mnemonic, NameOfXMMRegister(regop)); current += PrintRightOperand(current); } else if (opcode == 0x2C) { // CVTTSS2SI: // Convert with truncation scalar single-precision FP to dword integer. // Assert that mod is not 3, so source is memory, not an XMM register. ASSERT_NE(0xC0, *current & 0xC0); current += PrintOperands("cvttss2si", REG_OPER_OP_ORDER, current); } else if (opcode == 0x5A) { // CVTSS2SD: // Convert scalar single-precision FP to scalar double-precision FP. int mod, regop, rm; get_modrm(*current, &mod, ®op, &rm); AppendToBuffer("cvtss2sd %s,", NameOfXMMRegister(regop)); current += PrintRightXMMOperand(current); } else { UnimplementedInstruction(); } } else if (opcode == 0x1F) { // NOP int mod, regop, rm; get_modrm(*current, &mod, ®op, &rm); current++; if (regop == 4) { // SIB byte present. current++; } if (mod == 1) { // Byte displacement. current += 1; } else if (mod == 2) { // 32-bit displacement. current += 4; } // else no immediate displacement. AppendToBuffer("nop"); } else if (opcode == 0xA2 || opcode == 0x31) { // RDTSC or CPUID AppendToBuffer("%s", mnemonic); } else if ((opcode & 0xF0) == 0x40) { // CMOVcc: conditional move. int condition = opcode & 0x0F; const InstructionDesc& idesc = cmov_instructions[condition]; byte_size_operand_ = idesc.byte_size_operation; current += PrintOperands(idesc.mnem, idesc.op_order_, current); } else if ((opcode & 0xF0) == 0x80) { // Jcc: Conditional jump (branch). current = data + JumpConditional(data); } else if (opcode == 0xBE || opcode == 0xBF || opcode == 0xB6 || opcode == 0xB7 || opcode == 0xAF) { // Size-extending moves, IMUL. current += PrintOperands(mnemonic, REG_OPER_OP_ORDER, current); } else if ((opcode & 0xF0) == 0x90) { // SETcc: Set byte on condition. Needs pointer to beginning of instruction. current = data + SetCC(data); } else if (opcode == 0xAB || opcode == 0xA5 || opcode == 0xAD) { // SHLD, SHRD (double-precision shift), BTS (bit set). AppendToBuffer("%s ", mnemonic); int mod, regop, rm; get_modrm(*current, &mod, ®op, &rm); current += PrintRightOperand(current); if (opcode == 0xAB) { AppendToBuffer(",%s", NameOfCPURegister(regop)); } else { AppendToBuffer(",%s,cl", NameOfCPURegister(regop)); } } else { UnimplementedInstruction(); } return static_cast(current - data); } // Mnemonics for two-byte opcode instructions starting with 0x0F. // The argument is the second byte of the two-byte opcode. // Returns NULL if the instruction is not handled here. const char* DisassemblerX64::TwoByteMnemonic(byte opcode) { switch (opcode) { case 0x1F: return "nop"; case 0x2A: // F2/F3 prefix. return "cvtsi2s"; case 0x31: return "rdtsc"; case 0x51: // F2 prefix. return "sqrtsd"; case 0x58: // F2 prefix. return "addsd"; case 0x59: // F2 prefix. return "mulsd"; case 0x5C: // F2 prefix. return "subsd"; case 0x5E: // F2 prefix. return "divsd"; case 0xA2: return "cpuid"; case 0xA5: return "shld"; case 0xAB: return "bts"; case 0xAD: return "shrd"; case 0xAF: return "imul"; case 0xB6: return "movzxb"; case 0xB7: return "movzxw"; case 0xBE: return "movsxb"; case 0xBF: return "movsxw"; default: return NULL; } } // Disassembles the instruction at instr, and writes it into out_buffer. int DisassemblerX64::InstructionDecode(v8::internal::Vector out_buffer, byte* instr) { tmp_buffer_pos_ = 0; // starting to write as position 0 byte* data = instr; bool processed = true; // Will be set to false if the current instruction // is not in 'instructions' table. byte current; // Scan for prefixes. while (true) { current = *data; if (current == OPERAND_SIZE_OVERRIDE_PREFIX) { // Group 3 prefix. operand_size_ = current; } else if ((current & 0xF0) == 0x40) { // REX prefix. setRex(current); if (rex_w()) AppendToBuffer("REX.W "); } else if ((current & 0xFE) == 0xF2) { // Group 1 prefix (0xF2 or 0xF3). group_1_prefix_ = current; } else { // Not a prefix - an opcode. break; } data++; } const InstructionDesc& idesc = instruction_table.Get(current); byte_size_operand_ = idesc.byte_size_operation; switch (idesc.type) { case ZERO_OPERANDS_INSTR: if (current >= 0xA4 && current <= 0xA7) { // String move or compare operations. if (group_1_prefix_ == REP_PREFIX) { // REP. AppendToBuffer("rep "); } if (rex_w()) AppendToBuffer("REX.W "); AppendToBuffer("%s%c", idesc.mnem, operand_size_code()); } else { AppendToBuffer("%s", idesc.mnem, operand_size_code()); } data++; break; case TWO_OPERANDS_INSTR: data++; data += PrintOperands(idesc.mnem, idesc.op_order_, data); break; case JUMP_CONDITIONAL_SHORT_INSTR: data += JumpConditionalShort(data); break; case REGISTER_INSTR: AppendToBuffer("%s%c %s", idesc.mnem, operand_size_code(), NameOfCPURegister(base_reg(current & 0x07))); data++; break; case PUSHPOP_INSTR: AppendToBuffer("%s %s", idesc.mnem, NameOfCPURegister(base_reg(current & 0x07))); data++; break; case MOVE_REG_INSTR: { byte* addr = NULL; switch (operand_size()) { case WORD_SIZE: addr = reinterpret_cast(*reinterpret_cast(data + 1)); data += 3; break; case DOUBLEWORD_SIZE: addr = reinterpret_cast(*reinterpret_cast(data + 1)); data += 5; break; case QUADWORD_SIZE: addr = reinterpret_cast(*reinterpret_cast(data + 1)); data += 9; break; default: UNREACHABLE(); } AppendToBuffer("mov%c %s,%s", operand_size_code(), NameOfCPURegister(base_reg(current & 0x07)), NameOfAddress(addr)); break; } case CALL_JUMP_INSTR: { byte* addr = data + *reinterpret_cast(data + 1) + 5; AppendToBuffer("%s %s", idesc.mnem, NameOfAddress(addr)); data += 5; break; } case SHORT_IMMEDIATE_INSTR: { byte* addr = reinterpret_cast(*reinterpret_cast(data + 1)); AppendToBuffer("%s rax, %s", idesc.mnem, NameOfAddress(addr)); data += 5; break; } case NO_INSTR: processed = false; break; default: UNIMPLEMENTED(); // This type is not implemented. } // The first byte didn't match any of the simple opcodes, so we // need to do special processing on it. if (!processed) { switch (*data) { case 0xC2: AppendToBuffer("ret 0x%x", *reinterpret_cast(data + 1)); data += 3; break; case 0x69: // fall through case 0x6B: { int mod, regop, rm; get_modrm(*(data + 1), &mod, ®op, &rm); int32_t imm = *data == 0x6B ? *(data + 2) : *reinterpret_cast(data + 2); AppendToBuffer("imul%c %s,%s,0x%x", operand_size_code(), NameOfCPURegister(regop), NameOfCPURegister(rm), imm); data += 2 + (*data == 0x6B ? 1 : 4); break; } case 0x81: // fall through case 0x83: // 0x81 with sign extension bit set data += PrintImmediateOp(data); break; case 0x0F: data += TwoByteOpcodeInstruction(data); break; case 0x8F: { data++; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); if (regop == 0) { AppendToBuffer("pop "); data += PrintRightOperand(data); } } break; case 0xFF: { data++; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); const char* mnem = NULL; switch (regop) { case 0: mnem = "inc"; break; case 1: mnem = "dec"; break; case 2: mnem = "call"; break; case 4: mnem = "jmp"; break; case 6: mnem = "push"; break; default: mnem = "???"; } AppendToBuffer(((regop <= 1) ? "%s%c " : "%s "), mnem, operand_size_code()); data += PrintRightOperand(data); } break; case 0xC7: // imm32, fall through case 0xC6: // imm8 { bool is_byte = *data == 0xC6; data++; AppendToBuffer("mov%c ", is_byte ? 'b' : operand_size_code()); data += PrintRightOperand(data); int32_t imm = is_byte ? *data : *reinterpret_cast(data); AppendToBuffer(",0x%x", imm); data += is_byte ? 1 : 4; } break; case 0x80: { data++; AppendToBuffer("cmpb "); data += PrintRightOperand(data); int32_t imm = *data; AppendToBuffer(",0x%x", imm); data++; } break; case 0x88: // 8bit, fall through case 0x89: // 32bit { bool is_byte = *data == 0x88; int mod, regop, rm; data++; get_modrm(*data, &mod, ®op, &rm); AppendToBuffer("mov%c ", is_byte ? 'b' : operand_size_code()); data += PrintRightOperand(data); AppendToBuffer(",%s", NameOfCPURegister(regop)); } break; case 0x90: case 0x91: case 0x92: case 0x93: case 0x94: case 0x95: case 0x96: case 0x97: { int reg = (*data & 0x7) | (rex_b() ? 8 : 0); if (reg == 0) { AppendToBuffer("nop"); // Common name for xchg rax,rax. } else { AppendToBuffer("xchg%c rax, %s", operand_size_code(), NameOfCPURegister(reg)); } data++; } break; case 0xFE: { data++; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); if (regop == 1) { AppendToBuffer("decb "); data += PrintRightOperand(data); } else { UnimplementedInstruction(); } } break; case 0x68: AppendToBuffer("push 0x%x", *reinterpret_cast(data + 1)); data += 5; break; case 0x6A: AppendToBuffer("push 0x%x", *reinterpret_cast(data + 1)); data += 2; break; case 0xA1: // Fall through. case 0xA3: switch (operand_size()) { case DOUBLEWORD_SIZE: { const char* memory_location = NameOfAddress( reinterpret_cast( *reinterpret_cast(data + 1))); if (*data == 0xA1) { // Opcode 0xA1 AppendToBuffer("movzxlq rax,(%s)", memory_location); } else { // Opcode 0xA3 AppendToBuffer("movzxlq (%s),rax", memory_location); } data += 5; break; } case QUADWORD_SIZE: { // New x64 instruction mov rax,(imm_64). const char* memory_location = NameOfAddress( *reinterpret_cast(data + 1)); if (*data == 0xA1) { // Opcode 0xA1 AppendToBuffer("movq rax,(%s)", memory_location); } else { // Opcode 0xA3 AppendToBuffer("movq (%s),rax", memory_location); } data += 9; break; } default: UnimplementedInstruction(); data += 2; } break; case 0xA8: AppendToBuffer("test al,0x%x", *reinterpret_cast(data + 1)); data += 2; break; case 0xA9: { int64_t value = 0; switch (operand_size()) { case WORD_SIZE: value = *reinterpret_cast(data + 1); data += 3; break; case DOUBLEWORD_SIZE: value = *reinterpret_cast(data + 1); data += 5; break; case QUADWORD_SIZE: value = *reinterpret_cast(data + 1); data += 5; break; default: UNREACHABLE(); } AppendToBuffer("test%c rax,0x%"V8_PTR_PREFIX"x", operand_size_code(), value); break; } case 0xD1: // fall through case 0xD3: // fall through case 0xC1: data += ShiftInstruction(data); break; case 0xD0: // fall through case 0xD2: // fall through case 0xC0: byte_size_operand_ = true; data += ShiftInstruction(data); break; case 0xD9: // fall through case 0xDA: // fall through case 0xDB: // fall through case 0xDC: // fall through case 0xDD: // fall through case 0xDE: // fall through case 0xDF: data += FPUInstruction(data); break; case 0xEB: data += JumpShort(data); break; case 0xF6: byte_size_operand_ = true; // fall through case 0xF7: data += F6F7Instruction(data); break; default: UnimplementedInstruction(); data += 1; } } // !processed if (tmp_buffer_pos_ < sizeof tmp_buffer_) { tmp_buffer_[tmp_buffer_pos_] = '\0'; } int instr_len = static_cast(data - instr); ASSERT(instr_len > 0); // Ensure progress. int outp = 0; // Instruction bytes. for (byte* bp = instr; bp < data; bp++) { outp += v8::internal::OS::SNPrintF(out_buffer + outp, "%02x", *bp); } for (int i = 6 - instr_len; i >= 0; i--) { outp += v8::internal::OS::SNPrintF(out_buffer + outp, " "); } outp += v8::internal::OS::SNPrintF(out_buffer + outp, " %s", tmp_buffer_.start()); return instr_len; } //------------------------------------------------------------------------------ static const char* cpu_regs[16] = { "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15" }; static const char* byte_cpu_regs[16] = { "al", "cl", "dl", "bl", "spl", "bpl", "sil", "dil", "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l" }; static const char* xmm_regs[16] = { "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15" }; const char* NameConverter::NameOfAddress(byte* addr) const { static v8::internal::EmbeddedVector tmp_buffer; v8::internal::OS::SNPrintF(tmp_buffer, "%p", addr); return tmp_buffer.start(); } const char* NameConverter::NameOfConstant(byte* addr) const { return NameOfAddress(addr); } const char* NameConverter::NameOfCPURegister(int reg) const { if (0 <= reg && reg < 16) return cpu_regs[reg]; return "noreg"; } const char* NameConverter::NameOfByteCPURegister(int reg) const { if (0 <= reg && reg < 16) return byte_cpu_regs[reg]; return "noreg"; } const char* NameConverter::NameOfXMMRegister(int reg) const { if (0 <= reg && reg < 16) return xmm_regs[reg]; return "noxmmreg"; } const char* NameConverter::NameInCode(byte* addr) const { // X64 does not embed debug strings at the moment. UNREACHABLE(); return ""; } //------------------------------------------------------------------------------ Disassembler::Disassembler(const NameConverter& converter) : converter_(converter) { } Disassembler::~Disassembler() { } int Disassembler::InstructionDecode(v8::internal::Vector buffer, byte* instruction) { DisassemblerX64 d(converter_, CONTINUE_ON_UNIMPLEMENTED_OPCODE); return d.InstructionDecode(buffer, instruction); } // The X64 assembler does not use constant pools. int Disassembler::ConstantPoolSizeAt(byte* instruction) { return -1; } void Disassembler::Disassemble(FILE* f, byte* begin, byte* end) { NameConverter converter; Disassembler d(converter); for (byte* pc = begin; pc < end;) { v8::internal::EmbeddedVector buffer; buffer[0] = '\0'; byte* prev_pc = pc; pc += d.InstructionDecode(buffer, pc); fprintf(f, "%p", prev_pc); fprintf(f, " "); for (byte* bp = prev_pc; bp < pc; bp++) { fprintf(f, "%02x", *bp); } for (int i = 6 - static_cast(pc - prev_pc); i >= 0; i--) { fprintf(f, " "); } fprintf(f, " %s\n", buffer.start()); } } } // namespace disasm #endif // V8_TARGET_ARCH_X64