// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if defined(V8_TARGET_ARCH_X64) #include "ic-inl.h" #include "codegen.h" #include "stub-cache.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) static void ProbeTable(Isolate* isolate, MacroAssembler* masm, Code::Flags flags, StubCache::Table table, Register receiver, Register name, // The offset is scaled by 4, based on // kHeapObjectTagSize, which is two bits Register offset) { // We need to scale up the pointer by 2 because the offset is scaled by less // than the pointer size. ASSERT(kPointerSizeLog2 == kHeapObjectTagSize + 1); ScaleFactor scale_factor = times_2; ASSERT_EQ(24, sizeof(StubCache::Entry)); // The offset register holds the entry offset times four (due to masking // and shifting optimizations). ExternalReference key_offset(isolate->stub_cache()->key_reference(table)); ExternalReference value_offset(isolate->stub_cache()->value_reference(table)); Label miss; // Multiply by 3 because there are 3 fields per entry (name, code, map). __ lea(offset, Operand(offset, offset, times_2, 0)); __ LoadAddress(kScratchRegister, key_offset); // Check that the key in the entry matches the name. // Multiply entry offset by 16 to get the entry address. Since the // offset register already holds the entry offset times four, multiply // by a further four. __ cmpl(name, Operand(kScratchRegister, offset, scale_factor, 0)); __ j(not_equal, &miss); // Get the map entry from the cache. // Use key_offset + kPointerSize * 2, rather than loading map_offset. __ movq(kScratchRegister, Operand(kScratchRegister, offset, scale_factor, kPointerSize * 2)); __ cmpq(kScratchRegister, FieldOperand(receiver, HeapObject::kMapOffset)); __ j(not_equal, &miss); // Get the code entry from the cache. __ LoadAddress(kScratchRegister, value_offset); __ movq(kScratchRegister, Operand(kScratchRegister, offset, scale_factor, 0)); // Check that the flags match what we're looking for. __ movl(offset, FieldOperand(kScratchRegister, Code::kFlagsOffset)); __ and_(offset, Immediate(~Code::kFlagsNotUsedInLookup)); __ cmpl(offset, Immediate(flags)); __ j(not_equal, &miss); #ifdef DEBUG if (FLAG_test_secondary_stub_cache && table == StubCache::kPrimary) { __ jmp(&miss); } else if (FLAG_test_primary_stub_cache && table == StubCache::kSecondary) { __ jmp(&miss); } #endif // Jump to the first instruction in the code stub. __ addq(kScratchRegister, Immediate(Code::kHeaderSize - kHeapObjectTag)); __ jmp(kScratchRegister); __ bind(&miss); } // Helper function used to check that the dictionary doesn't contain // the property. This function may return false negatives, so miss_label // must always call a backup property check that is complete. // This function is safe to call if the receiver has fast properties. // Name must be a symbol and receiver must be a heap object. static void GenerateDictionaryNegativeLookup(MacroAssembler* masm, Label* miss_label, Register receiver, Handle name, Register r0, Register r1) { ASSERT(name->IsSymbol()); Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->negative_lookups(), 1); __ IncrementCounter(counters->negative_lookups_miss(), 1); __ movq(r0, FieldOperand(receiver, HeapObject::kMapOffset)); const int kInterceptorOrAccessCheckNeededMask = (1 << Map::kHasNamedInterceptor) | (1 << Map::kIsAccessCheckNeeded); // Bail out if the receiver has a named interceptor or requires access checks. __ testb(FieldOperand(r0, Map::kBitFieldOffset), Immediate(kInterceptorOrAccessCheckNeededMask)); __ j(not_zero, miss_label); // Check that receiver is a JSObject. __ CmpInstanceType(r0, FIRST_SPEC_OBJECT_TYPE); __ j(below, miss_label); // Load properties array. Register properties = r0; __ movq(properties, FieldOperand(receiver, JSObject::kPropertiesOffset)); // Check that the properties array is a dictionary. __ CompareRoot(FieldOperand(properties, HeapObject::kMapOffset), Heap::kHashTableMapRootIndex); __ j(not_equal, miss_label); Label done; StringDictionaryLookupStub::GenerateNegativeLookup(masm, miss_label, &done, properties, name, r1); __ bind(&done); __ DecrementCounter(counters->negative_lookups_miss(), 1); } void StubCache::GenerateProbe(MacroAssembler* masm, Code::Flags flags, Register receiver, Register name, Register scratch, Register extra, Register extra2, Register extra3) { Isolate* isolate = masm->isolate(); Label miss; USE(extra); // The register extra is not used on the X64 platform. USE(extra2); // The register extra2 is not used on the X64 platform. USE(extra3); // The register extra2 is not used on the X64 platform. // Make sure that code is valid. The multiplying code relies on the // entry size being 24. ASSERT(sizeof(Entry) == 24); // Make sure the flags do not name a specific type. ASSERT(Code::ExtractTypeFromFlags(flags) == 0); // Make sure that there are no register conflicts. ASSERT(!scratch.is(receiver)); ASSERT(!scratch.is(name)); // Check scratch register is valid, extra and extra2 are unused. ASSERT(!scratch.is(no_reg)); ASSERT(extra2.is(no_reg)); ASSERT(extra3.is(no_reg)); Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->megamorphic_stub_cache_probes(), 1); // Check that the receiver isn't a smi. __ JumpIfSmi(receiver, &miss); // Get the map of the receiver and compute the hash. __ movl(scratch, FieldOperand(name, String::kHashFieldOffset)); // Use only the low 32 bits of the map pointer. __ addl(scratch, FieldOperand(receiver, HeapObject::kMapOffset)); __ xor_(scratch, Immediate(flags)); // We mask out the last two bits because they are not part of the hash and // they are always 01 for maps. Also in the two 'and' instructions below. __ and_(scratch, Immediate((kPrimaryTableSize - 1) << kHeapObjectTagSize)); // Probe the primary table. ProbeTable(isolate, masm, flags, kPrimary, receiver, name, scratch); // Primary miss: Compute hash for secondary probe. __ movl(scratch, FieldOperand(name, String::kHashFieldOffset)); __ addl(scratch, FieldOperand(receiver, HeapObject::kMapOffset)); __ xor_(scratch, Immediate(flags)); __ and_(scratch, Immediate((kPrimaryTableSize - 1) << kHeapObjectTagSize)); __ subl(scratch, name); __ addl(scratch, Immediate(flags)); __ and_(scratch, Immediate((kSecondaryTableSize - 1) << kHeapObjectTagSize)); // Probe the secondary table. ProbeTable(isolate, masm, flags, kSecondary, receiver, name, scratch); // Cache miss: Fall-through and let caller handle the miss by // entering the runtime system. __ bind(&miss); __ IncrementCounter(counters->megamorphic_stub_cache_misses(), 1); } void StubCompiler::GenerateLoadGlobalFunctionPrototype(MacroAssembler* masm, int index, Register prototype) { // Load the global or builtins object from the current context. __ movq(prototype, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX))); // Load the global context from the global or builtins object. __ movq(prototype, FieldOperand(prototype, GlobalObject::kGlobalContextOffset)); // Load the function from the global context. __ movq(prototype, Operand(prototype, Context::SlotOffset(index))); // Load the initial map. The global functions all have initial maps. __ movq(prototype, FieldOperand(prototype, JSFunction::kPrototypeOrInitialMapOffset)); // Load the prototype from the initial map. __ movq(prototype, FieldOperand(prototype, Map::kPrototypeOffset)); } void StubCompiler::GenerateDirectLoadGlobalFunctionPrototype( MacroAssembler* masm, int index, Register prototype, Label* miss) { Isolate* isolate = masm->isolate(); // Check we're still in the same context. __ Move(prototype, isolate->global()); __ cmpq(Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)), prototype); __ j(not_equal, miss); // Get the global function with the given index. Handle function( JSFunction::cast(isolate->global_context()->get(index))); // Load its initial map. The global functions all have initial maps. __ Move(prototype, Handle(function->initial_map())); // Load the prototype from the initial map. __ movq(prototype, FieldOperand(prototype, Map::kPrototypeOffset)); } void StubCompiler::GenerateLoadArrayLength(MacroAssembler* masm, Register receiver, Register scratch, Label* miss_label) { // Check that the receiver isn't a smi. __ JumpIfSmi(receiver, miss_label); // Check that the object is a JS array. __ CmpObjectType(receiver, JS_ARRAY_TYPE, scratch); __ j(not_equal, miss_label); // Load length directly from the JS array. __ movq(rax, FieldOperand(receiver, JSArray::kLengthOffset)); __ ret(0); } // Generate code to check if an object is a string. If the object is // a string, the map's instance type is left in the scratch register. static void GenerateStringCheck(MacroAssembler* masm, Register receiver, Register scratch, Label* smi, Label* non_string_object) { // Check that the object isn't a smi. __ JumpIfSmi(receiver, smi); // Check that the object is a string. __ movq(scratch, FieldOperand(receiver, HeapObject::kMapOffset)); __ movzxbq(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset)); STATIC_ASSERT(kNotStringTag != 0); __ testl(scratch, Immediate(kNotStringTag)); __ j(not_zero, non_string_object); } void StubCompiler::GenerateLoadStringLength(MacroAssembler* masm, Register receiver, Register scratch1, Register scratch2, Label* miss, bool support_wrappers) { Label check_wrapper; // Check if the object is a string leaving the instance type in the // scratch register. GenerateStringCheck(masm, receiver, scratch1, miss, support_wrappers ? &check_wrapper : miss); // Load length directly from the string. __ movq(rax, FieldOperand(receiver, String::kLengthOffset)); __ ret(0); if (support_wrappers) { // Check if the object is a JSValue wrapper. __ bind(&check_wrapper); __ cmpl(scratch1, Immediate(JS_VALUE_TYPE)); __ j(not_equal, miss); // Check if the wrapped value is a string and load the length // directly if it is. __ movq(scratch2, FieldOperand(receiver, JSValue::kValueOffset)); GenerateStringCheck(masm, scratch2, scratch1, miss, miss); __ movq(rax, FieldOperand(scratch2, String::kLengthOffset)); __ ret(0); } } void StubCompiler::GenerateLoadFunctionPrototype(MacroAssembler* masm, Register receiver, Register result, Register scratch, Label* miss_label) { __ TryGetFunctionPrototype(receiver, result, miss_label); if (!result.is(rax)) __ movq(rax, result); __ ret(0); } // Load a fast property out of a holder object (src). In-object properties // are loaded directly otherwise the property is loaded from the properties // fixed array. void StubCompiler::GenerateFastPropertyLoad(MacroAssembler* masm, Register dst, Register src, Handle holder, int index) { // Adjust for the number of properties stored in the holder. index -= holder->map()->inobject_properties(); if (index < 0) { // Get the property straight out of the holder. int offset = holder->map()->instance_size() + (index * kPointerSize); __ movq(dst, FieldOperand(src, offset)); } else { // Calculate the offset into the properties array. int offset = index * kPointerSize + FixedArray::kHeaderSize; __ movq(dst, FieldOperand(src, JSObject::kPropertiesOffset)); __ movq(dst, FieldOperand(dst, offset)); } } static void PushInterceptorArguments(MacroAssembler* masm, Register receiver, Register holder, Register name, Handle holder_obj) { __ push(name); Handle interceptor(holder_obj->GetNamedInterceptor()); ASSERT(!masm->isolate()->heap()->InNewSpace(*interceptor)); __ Move(kScratchRegister, interceptor); __ push(kScratchRegister); __ push(receiver); __ push(holder); __ push(FieldOperand(kScratchRegister, InterceptorInfo::kDataOffset)); } static void CompileCallLoadPropertyWithInterceptor( MacroAssembler* masm, Register receiver, Register holder, Register name, Handle holder_obj) { PushInterceptorArguments(masm, receiver, holder, name, holder_obj); ExternalReference ref = ExternalReference(IC_Utility(IC::kLoadPropertyWithInterceptorOnly), masm->isolate()); __ Set(rax, 5); __ LoadAddress(rbx, ref); CEntryStub stub(1); __ CallStub(&stub); } // Number of pointers to be reserved on stack for fast API call. static const int kFastApiCallArguments = 3; // Reserves space for the extra arguments to API function in the // caller's frame. // // These arguments are set by CheckPrototypes and GenerateFastApiCall. static void ReserveSpaceForFastApiCall(MacroAssembler* masm, Register scratch) { // ----------- S t a t e ------------- // -- rsp[0] : return address // -- rsp[8] : last argument in the internal frame of the caller // ----------------------------------- __ movq(scratch, Operand(rsp, 0)); __ subq(rsp, Immediate(kFastApiCallArguments * kPointerSize)); __ movq(Operand(rsp, 0), scratch); __ Move(scratch, Smi::FromInt(0)); for (int i = 1; i <= kFastApiCallArguments; i++) { __ movq(Operand(rsp, i * kPointerSize), scratch); } } // Undoes the effects of ReserveSpaceForFastApiCall. static void FreeSpaceForFastApiCall(MacroAssembler* masm, Register scratch) { // ----------- S t a t e ------------- // -- rsp[0] : return address. // -- rsp[8] : last fast api call extra argument. // -- ... // -- rsp[kFastApiCallArguments * 8] : first fast api call extra argument. // -- rsp[kFastApiCallArguments * 8 + 8] : last argument in the internal // frame. // ----------------------------------- __ movq(scratch, Operand(rsp, 0)); __ movq(Operand(rsp, kFastApiCallArguments * kPointerSize), scratch); __ addq(rsp, Immediate(kPointerSize * kFastApiCallArguments)); } // Generates call to API function. static void GenerateFastApiCall(MacroAssembler* masm, const CallOptimization& optimization, int argc) { // ----------- S t a t e ------------- // -- rsp[0] : return address // -- rsp[8] : object passing the type check // (last fast api call extra argument, // set by CheckPrototypes) // -- rsp[16] : api function // (first fast api call extra argument) // -- rsp[24] : api call data // -- rsp[32] : last argument // -- ... // -- rsp[(argc + 3) * 8] : first argument // -- rsp[(argc + 4) * 8] : receiver // ----------------------------------- // Get the function and setup the context. Handle function = optimization.constant_function(); __ LoadHeapObject(rdi, function); __ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); // Pass the additional arguments. __ movq(Operand(rsp, 2 * kPointerSize), rdi); Handle api_call_info = optimization.api_call_info(); Handle call_data(api_call_info->data()); if (masm->isolate()->heap()->InNewSpace(*call_data)) { __ Move(rcx, api_call_info); __ movq(rbx, FieldOperand(rcx, CallHandlerInfo::kDataOffset)); __ movq(Operand(rsp, 3 * kPointerSize), rbx); } else { __ Move(Operand(rsp, 3 * kPointerSize), call_data); } // Prepare arguments. __ lea(rbx, Operand(rsp, 3 * kPointerSize)); #ifdef _WIN64 // Win64 uses first register--rcx--for returned value. Register arguments_arg = rdx; #else Register arguments_arg = rdi; #endif // Allocate the v8::Arguments structure in the arguments' space since // it's not controlled by GC. const int kApiStackSpace = 4; __ PrepareCallApiFunction(kApiStackSpace); __ movq(StackSpaceOperand(0), rbx); // v8::Arguments::implicit_args_. __ addq(rbx, Immediate(argc * kPointerSize)); __ movq(StackSpaceOperand(1), rbx); // v8::Arguments::values_. __ Set(StackSpaceOperand(2), argc); // v8::Arguments::length_. // v8::Arguments::is_construct_call_. __ Set(StackSpaceOperand(3), 0); // v8::InvocationCallback's argument. __ lea(arguments_arg, StackSpaceOperand(0)); // Function address is a foreign pointer outside V8's heap. Address function_address = v8::ToCData
(api_call_info->callback()); __ CallApiFunctionAndReturn(function_address, argc + kFastApiCallArguments + 1); } class CallInterceptorCompiler BASE_EMBEDDED { public: CallInterceptorCompiler(StubCompiler* stub_compiler, const ParameterCount& arguments, Register name, Code::ExtraICState extra_ic_state) : stub_compiler_(stub_compiler), arguments_(arguments), name_(name), extra_ic_state_(extra_ic_state) {} void Compile(MacroAssembler* masm, Handle object, Handle holder, Handle name, LookupResult* lookup, Register receiver, Register scratch1, Register scratch2, Register scratch3, Label* miss) { ASSERT(holder->HasNamedInterceptor()); ASSERT(!holder->GetNamedInterceptor()->getter()->IsUndefined()); // Check that the receiver isn't a smi. __ JumpIfSmi(receiver, miss); CallOptimization optimization(lookup); if (optimization.is_constant_call()) { CompileCacheable(masm, object, receiver, scratch1, scratch2, scratch3, holder, lookup, name, optimization, miss); } else { CompileRegular(masm, object, receiver, scratch1, scratch2, scratch3, name, holder, miss); } } private: void CompileCacheable(MacroAssembler* masm, Handle object, Register receiver, Register scratch1, Register scratch2, Register scratch3, Handle interceptor_holder, LookupResult* lookup, Handle name, const CallOptimization& optimization, Label* miss_label) { ASSERT(optimization.is_constant_call()); ASSERT(!lookup->holder()->IsGlobalObject()); int depth1 = kInvalidProtoDepth; int depth2 = kInvalidProtoDepth; bool can_do_fast_api_call = false; if (optimization.is_simple_api_call() && !lookup->holder()->IsGlobalObject()) { depth1 = optimization.GetPrototypeDepthOfExpectedType( object, interceptor_holder); if (depth1 == kInvalidProtoDepth) { depth2 = optimization.GetPrototypeDepthOfExpectedType( interceptor_holder, Handle(lookup->holder())); } can_do_fast_api_call = depth1 != kInvalidProtoDepth || depth2 != kInvalidProtoDepth; } Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->call_const_interceptor(), 1); if (can_do_fast_api_call) { __ IncrementCounter(counters->call_const_interceptor_fast_api(), 1); ReserveSpaceForFastApiCall(masm, scratch1); } // Check that the maps from receiver to interceptor's holder // haven't changed and thus we can invoke interceptor. Label miss_cleanup; Label* miss = can_do_fast_api_call ? &miss_cleanup : miss_label; Register holder = stub_compiler_->CheckPrototypes(object, receiver, interceptor_holder, scratch1, scratch2, scratch3, name, depth1, miss); // Invoke an interceptor and if it provides a value, // branch to |regular_invoke|. Label regular_invoke; LoadWithInterceptor(masm, receiver, holder, interceptor_holder, ®ular_invoke); // Interceptor returned nothing for this property. Try to use cached // constant function. // Check that the maps from interceptor's holder to constant function's // holder haven't changed and thus we can use cached constant function. if (*interceptor_holder != lookup->holder()) { stub_compiler_->CheckPrototypes(interceptor_holder, receiver, Handle(lookup->holder()), scratch1, scratch2, scratch3, name, depth2, miss); } else { // CheckPrototypes has a side effect of fetching a 'holder' // for API (object which is instanceof for the signature). It's // safe to omit it here, as if present, it should be fetched // by the previous CheckPrototypes. ASSERT(depth2 == kInvalidProtoDepth); } // Invoke function. if (can_do_fast_api_call) { GenerateFastApiCall(masm, optimization, arguments_.immediate()); } else { CallKind call_kind = CallICBase::Contextual::decode(extra_ic_state_) ? CALL_AS_FUNCTION : CALL_AS_METHOD; __ InvokeFunction(optimization.constant_function(), arguments_, JUMP_FUNCTION, NullCallWrapper(), call_kind); } // Deferred code for fast API call case---clean preallocated space. if (can_do_fast_api_call) { __ bind(&miss_cleanup); FreeSpaceForFastApiCall(masm, scratch1); __ jmp(miss_label); } // Invoke a regular function. __ bind(®ular_invoke); if (can_do_fast_api_call) { FreeSpaceForFastApiCall(masm, scratch1); } } void CompileRegular(MacroAssembler* masm, Handle object, Register receiver, Register scratch1, Register scratch2, Register scratch3, Handle name, Handle interceptor_holder, Label* miss_label) { Register holder = stub_compiler_->CheckPrototypes(object, receiver, interceptor_holder, scratch1, scratch2, scratch3, name, miss_label); FrameScope scope(masm, StackFrame::INTERNAL); // Save the name_ register across the call. __ push(name_); PushInterceptorArguments(masm, receiver, holder, name_, interceptor_holder); __ CallExternalReference( ExternalReference(IC_Utility(IC::kLoadPropertyWithInterceptorForCall), masm->isolate()), 5); // Restore the name_ register. __ pop(name_); // Leave the internal frame. } void LoadWithInterceptor(MacroAssembler* masm, Register receiver, Register holder, Handle holder_obj, Label* interceptor_succeeded) { { FrameScope scope(masm, StackFrame::INTERNAL); __ push(holder); // Save the holder. __ push(name_); // Save the name. CompileCallLoadPropertyWithInterceptor(masm, receiver, holder, name_, holder_obj); __ pop(name_); // Restore the name. __ pop(receiver); // Restore the holder. // Leave the internal frame. } __ CompareRoot(rax, Heap::kNoInterceptorResultSentinelRootIndex); __ j(not_equal, interceptor_succeeded); } StubCompiler* stub_compiler_; const ParameterCount& arguments_; Register name_; Code::ExtraICState extra_ic_state_; }; void StubCompiler::GenerateLoadMiss(MacroAssembler* masm, Code::Kind kind) { ASSERT(kind == Code::LOAD_IC || kind == Code::KEYED_LOAD_IC); Handle code = (kind == Code::LOAD_IC) ? masm->isolate()->builtins()->LoadIC_Miss() : masm->isolate()->builtins()->KeyedLoadIC_Miss(); __ Jump(code, RelocInfo::CODE_TARGET); } void StubCompiler::GenerateKeyedLoadMissForceGeneric(MacroAssembler* masm) { Handle code = masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric(); __ Jump(code, RelocInfo::CODE_TARGET); } // Both name_reg and receiver_reg are preserved on jumps to miss_label, // but may be destroyed if store is successful. void StubCompiler::GenerateStoreField(MacroAssembler* masm, Handle object, int index, Handle transition, Register receiver_reg, Register name_reg, Register scratch, Label* miss_label) { // Check that the map of the object hasn't changed. __ CheckMap(receiver_reg, Handle(object->map()), miss_label, DO_SMI_CHECK, ALLOW_ELEMENT_TRANSITION_MAPS); // Perform global security token check if needed. if (object->IsJSGlobalProxy()) { __ CheckAccessGlobalProxy(receiver_reg, scratch, miss_label); } // Stub never generated for non-global objects that require access // checks. ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded()); // Perform map transition for the receiver if necessary. if (!transition.is_null() && (object->map()->unused_property_fields() == 0)) { // The properties must be extended before we can store the value. // We jump to a runtime call that extends the properties array. __ pop(scratch); // Return address. __ push(receiver_reg); __ Push(transition); __ push(rax); __ push(scratch); __ TailCallExternalReference( ExternalReference(IC_Utility(IC::kSharedStoreIC_ExtendStorage), masm->isolate()), 3, 1); return; } if (!transition.is_null()) { // Update the map of the object; no write barrier updating is // needed because the map is never in new space. __ Move(FieldOperand(receiver_reg, HeapObject::kMapOffset), transition); } // Adjust for the number of properties stored in the object. Even in the // face of a transition we can use the old map here because the size of the // object and the number of in-object properties is not going to change. index -= object->map()->inobject_properties(); if (index < 0) { // Set the property straight into the object. int offset = object->map()->instance_size() + (index * kPointerSize); __ movq(FieldOperand(receiver_reg, offset), rax); // Update the write barrier for the array address. // Pass the value being stored in the now unused name_reg. __ movq(name_reg, rax); __ RecordWriteField( receiver_reg, offset, name_reg, scratch, kDontSaveFPRegs); } else { // Write to the properties array. int offset = index * kPointerSize + FixedArray::kHeaderSize; // Get the properties array (optimistically). __ movq(scratch, FieldOperand(receiver_reg, JSObject::kPropertiesOffset)); __ movq(FieldOperand(scratch, offset), rax); // Update the write barrier for the array address. // Pass the value being stored in the now unused name_reg. __ movq(name_reg, rax); __ RecordWriteField( scratch, offset, name_reg, receiver_reg, kDontSaveFPRegs); } // Return the value (register rax). __ ret(0); } // Generate code to check that a global property cell is empty. Create // the property cell at compilation time if no cell exists for the // property. static void GenerateCheckPropertyCell(MacroAssembler* masm, Handle global, Handle name, Register scratch, Label* miss) { Handle cell = GlobalObject::EnsurePropertyCell(global, name); ASSERT(cell->value()->IsTheHole()); __ Move(scratch, cell); __ Cmp(FieldOperand(scratch, JSGlobalPropertyCell::kValueOffset), masm->isolate()->factory()->the_hole_value()); __ j(not_equal, miss); } // Calls GenerateCheckPropertyCell for each global object in the prototype chain // from object to (but not including) holder. static void GenerateCheckPropertyCells(MacroAssembler* masm, Handle object, Handle holder, Handle name, Register scratch, Label* miss) { Handle current = object; while (!current.is_identical_to(holder)) { if (current->IsGlobalObject()) { GenerateCheckPropertyCell(masm, Handle::cast(current), name, scratch, miss); } current = Handle(JSObject::cast(current->GetPrototype())); } } #undef __ #define __ ACCESS_MASM((masm())) Register StubCompiler::CheckPrototypes(Handle object, Register object_reg, Handle holder, Register holder_reg, Register scratch1, Register scratch2, Handle name, int save_at_depth, Label* miss) { // Make sure there's no overlap between holder and object registers. ASSERT(!scratch1.is(object_reg) && !scratch1.is(holder_reg)); ASSERT(!scratch2.is(object_reg) && !scratch2.is(holder_reg) && !scratch2.is(scratch1)); // Keep track of the current object in register reg. On the first // iteration, reg is an alias for object_reg, on later iterations, // it is an alias for holder_reg. Register reg = object_reg; int depth = 0; if (save_at_depth == depth) { __ movq(Operand(rsp, kPointerSize), object_reg); } // Check the maps in the prototype chain. // Traverse the prototype chain from the object and do map checks. Handle current = object; while (!current.is_identical_to(holder)) { ++depth; // Only global objects and objects that do not require access // checks are allowed in stubs. ASSERT(current->IsJSGlobalProxy() || !current->IsAccessCheckNeeded()); Handle prototype(JSObject::cast(current->GetPrototype())); if (!current->HasFastProperties() && !current->IsJSGlobalObject() && !current->IsJSGlobalProxy()) { if (!name->IsSymbol()) { name = factory()->LookupSymbol(name); } ASSERT(current->property_dictionary()->FindEntry(*name) == StringDictionary::kNotFound); GenerateDictionaryNegativeLookup(masm(), miss, reg, name, scratch1, scratch2); __ movq(scratch1, FieldOperand(reg, HeapObject::kMapOffset)); reg = holder_reg; // From now on the object will be in holder_reg. __ movq(reg, FieldOperand(scratch1, Map::kPrototypeOffset)); } else { bool in_new_space = heap()->InNewSpace(*prototype); Handle current_map(current->map()); if (in_new_space) { // Save the map in scratch1 for later. __ movq(scratch1, FieldOperand(reg, HeapObject::kMapOffset)); } __ CheckMap(reg, Handle(current_map), miss, DONT_DO_SMI_CHECK, ALLOW_ELEMENT_TRANSITION_MAPS); // Check access rights to the global object. This has to happen after // the map check so that we know that the object is actually a global // object. if (current->IsJSGlobalProxy()) { __ CheckAccessGlobalProxy(reg, scratch2, miss); } reg = holder_reg; // From now on the object will be in holder_reg. if (in_new_space) { // The prototype is in new space; we cannot store a reference to it // in the code. Load it from the map. __ movq(reg, FieldOperand(scratch1, Map::kPrototypeOffset)); } else { // The prototype is in old space; load it directly. __ Move(reg, prototype); } } if (save_at_depth == depth) { __ movq(Operand(rsp, kPointerSize), reg); } // Go to the next object in the prototype chain. current = prototype; } ASSERT(current.is_identical_to(holder)); // Log the check depth. LOG(isolate(), IntEvent("check-maps-depth", depth + 1)); // Check the holder map. __ CheckMap(reg, Handle(holder->map()), miss, DONT_DO_SMI_CHECK, ALLOW_ELEMENT_TRANSITION_MAPS); // Perform security check for access to the global object. ASSERT(current->IsJSGlobalProxy() || !current->IsAccessCheckNeeded()); if (current->IsJSGlobalProxy()) { __ CheckAccessGlobalProxy(reg, scratch1, miss); } // If we've skipped any global objects, it's not enough to verify that // their maps haven't changed. We also need to check that the property // cell for the property is still empty. GenerateCheckPropertyCells(masm(), object, holder, name, scratch1, miss); // Return the register containing the holder. return reg; } void StubCompiler::GenerateLoadField(Handle object, Handle holder, Register receiver, Register scratch1, Register scratch2, Register scratch3, int index, Handle name, Label* miss) { // Check that the receiver isn't a smi. __ JumpIfSmi(receiver, miss); // Check the prototype chain. Register reg = CheckPrototypes( object, receiver, holder, scratch1, scratch2, scratch3, name, miss); // Get the value from the properties. GenerateFastPropertyLoad(masm(), rax, reg, holder, index); __ ret(0); } void StubCompiler::GenerateLoadCallback(Handle object, Handle holder, Register receiver, Register name_reg, Register scratch1, Register scratch2, Register scratch3, Handle callback, Handle name, Label* miss) { // Check that the receiver isn't a smi. __ JumpIfSmi(receiver, miss); // Check that the maps haven't changed. Register reg = CheckPrototypes(object, receiver, holder, scratch1, scratch2, scratch3, name, miss); // Insert additional parameters into the stack frame above return address. ASSERT(!scratch2.is(reg)); __ pop(scratch2); // Get return address to place it below. __ push(receiver); // receiver __ push(reg); // holder if (heap()->InNewSpace(callback->data())) { __ Move(scratch1, callback); __ push(FieldOperand(scratch1, AccessorInfo::kDataOffset)); // data } else { __ Push(Handle(callback->data())); } __ push(name_reg); // name // Save a pointer to where we pushed the arguments pointer. // This will be passed as the const AccessorInfo& to the C++ callback. #ifdef _WIN64 // Win64 uses first register--rcx--for returned value. Register accessor_info_arg = r8; Register name_arg = rdx; #else Register accessor_info_arg = rsi; Register name_arg = rdi; #endif ASSERT(!name_arg.is(scratch2)); __ movq(name_arg, rsp); __ push(scratch2); // Restore return address. // 3 elements array for v8::Arguments::values_ and handler for name. const int kStackSpace = 4; // Allocate v8::AccessorInfo in non-GCed stack space. const int kArgStackSpace = 1; __ PrepareCallApiFunction(kArgStackSpace); __ lea(rax, Operand(name_arg, 3 * kPointerSize)); // v8::AccessorInfo::args_. __ movq(StackSpaceOperand(0), rax); // The context register (rsi) has been saved in PrepareCallApiFunction and // could be used to pass arguments. __ lea(accessor_info_arg, StackSpaceOperand(0)); Address getter_address = v8::ToCData
(callback->getter()); __ CallApiFunctionAndReturn(getter_address, kStackSpace); } void StubCompiler::GenerateLoadConstant(Handle object, Handle holder, Register receiver, Register scratch1, Register scratch2, Register scratch3, Handle value, Handle name, Label* miss) { // Check that the receiver isn't a smi. __ JumpIfSmi(receiver, miss); // Check that the maps haven't changed. CheckPrototypes( object, receiver, holder, scratch1, scratch2, scratch3, name, miss); // Return the constant value. __ LoadHeapObject(rax, value); __ ret(0); } void StubCompiler::GenerateLoadInterceptor(Handle object, Handle interceptor_holder, LookupResult* lookup, Register receiver, Register name_reg, Register scratch1, Register scratch2, Register scratch3, Handle name, Label* miss) { ASSERT(interceptor_holder->HasNamedInterceptor()); ASSERT(!interceptor_holder->GetNamedInterceptor()->getter()->IsUndefined()); // Check that the receiver isn't a smi. __ JumpIfSmi(receiver, miss); // So far the most popular follow ups for interceptor loads are FIELD // and CALLBACKS, so inline only them, other cases may be added // later. bool compile_followup_inline = false; if (lookup->IsFound() && lookup->IsCacheable()) { if (lookup->type() == FIELD) { compile_followup_inline = true; } else if (lookup->type() == CALLBACKS && lookup->GetCallbackObject()->IsAccessorInfo()) { compile_followup_inline = AccessorInfo::cast(lookup->GetCallbackObject())->getter() != NULL; } } if (compile_followup_inline) { // Compile the interceptor call, followed by inline code to load the // property from further up the prototype chain if the call fails. // Check that the maps haven't changed. Register holder_reg = CheckPrototypes(object, receiver, interceptor_holder, scratch1, scratch2, scratch3, name, miss); ASSERT(holder_reg.is(receiver) || holder_reg.is(scratch1)); // Save necessary data before invoking an interceptor. // Requires a frame to make GC aware of pushed pointers. { FrameScope frame_scope(masm(), StackFrame::INTERNAL); if (lookup->type() == CALLBACKS && !receiver.is(holder_reg)) { // CALLBACKS case needs a receiver to be passed into C++ callback. __ push(receiver); } __ push(holder_reg); __ push(name_reg); // Invoke an interceptor. Note: map checks from receiver to // interceptor's holder has been compiled before (see a caller // of this method.) CompileCallLoadPropertyWithInterceptor(masm(), receiver, holder_reg, name_reg, interceptor_holder); // Check if interceptor provided a value for property. If it's // the case, return immediately. Label interceptor_failed; __ CompareRoot(rax, Heap::kNoInterceptorResultSentinelRootIndex); __ j(equal, &interceptor_failed); frame_scope.GenerateLeaveFrame(); __ ret(0); __ bind(&interceptor_failed); __ pop(name_reg); __ pop(holder_reg); if (lookup->type() == CALLBACKS && !receiver.is(holder_reg)) { __ pop(receiver); } // Leave the internal frame. } // Check that the maps from interceptor's holder to lookup's holder // haven't changed. And load lookup's holder into |holder| register. if (*interceptor_holder != lookup->holder()) { holder_reg = CheckPrototypes(interceptor_holder, holder_reg, Handle(lookup->holder()), scratch1, scratch2, scratch3, name, miss); } if (lookup->type() == FIELD) { // We found FIELD property in prototype chain of interceptor's holder. // Retrieve a field from field's holder. GenerateFastPropertyLoad(masm(), rax, holder_reg, Handle(lookup->holder()), lookup->GetFieldIndex()); __ ret(0); } else { // We found CALLBACKS property in prototype chain of interceptor's // holder. ASSERT(lookup->type() == CALLBACKS); Handle callback( AccessorInfo::cast(lookup->GetCallbackObject())); ASSERT(callback->getter() != NULL); // Tail call to runtime. // Important invariant in CALLBACKS case: the code above must be // structured to never clobber |receiver| register. __ pop(scratch2); // return address __ push(receiver); __ push(holder_reg); __ Move(holder_reg, callback); __ push(FieldOperand(holder_reg, AccessorInfo::kDataOffset)); __ push(holder_reg); __ push(name_reg); __ push(scratch2); // restore return address ExternalReference ref = ExternalReference(IC_Utility(IC::kLoadCallbackProperty), isolate()); __ TailCallExternalReference(ref, 5, 1); } } else { // !compile_followup_inline // Call the runtime system to load the interceptor. // Check that the maps haven't changed. Register holder_reg = CheckPrototypes(object, receiver, interceptor_holder, scratch1, scratch2, scratch3, name, miss); __ pop(scratch2); // save old return address PushInterceptorArguments(masm(), receiver, holder_reg, name_reg, interceptor_holder); __ push(scratch2); // restore old return address ExternalReference ref = ExternalReference( IC_Utility(IC::kLoadPropertyWithInterceptorForLoad), isolate()); __ TailCallExternalReference(ref, 5, 1); } } void CallStubCompiler::GenerateNameCheck(Handle name, Label* miss) { if (kind_ == Code::KEYED_CALL_IC) { __ Cmp(rcx, name); __ j(not_equal, miss); } } void CallStubCompiler::GenerateGlobalReceiverCheck(Handle object, Handle holder, Handle name, Label* miss) { ASSERT(holder->IsGlobalObject()); // Get the number of arguments. const int argc = arguments().immediate(); // Get the receiver from the stack. __ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize)); // If the object is the holder then we know that it's a global // object which can only happen for contextual calls. In this case, // the receiver cannot be a smi. if (!object.is_identical_to(holder)) { __ JumpIfSmi(rdx, miss); } // Check that the maps haven't changed. CheckPrototypes(object, rdx, holder, rbx, rax, rdi, name, miss); } void CallStubCompiler::GenerateLoadFunctionFromCell( Handle cell, Handle function, Label* miss) { // Get the value from the cell. __ Move(rdi, cell); __ movq(rdi, FieldOperand(rdi, JSGlobalPropertyCell::kValueOffset)); // Check that the cell contains the same function. if (heap()->InNewSpace(*function)) { // We can't embed a pointer to a function in new space so we have // to verify that the shared function info is unchanged. This has // the nice side effect that multiple closures based on the same // function can all use this call IC. Before we load through the // function, we have to verify that it still is a function. __ JumpIfSmi(rdi, miss); __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rax); __ j(not_equal, miss); // Check the shared function info. Make sure it hasn't changed. __ Move(rax, Handle(function->shared())); __ cmpq(FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset), rax); } else { __ Cmp(rdi, function); } __ j(not_equal, miss); } void CallStubCompiler::GenerateMissBranch() { Handle code = isolate()->stub_cache()->ComputeCallMiss(arguments().immediate(), kind_, extra_state_); __ Jump(code, RelocInfo::CODE_TARGET); } Handle CallStubCompiler::CompileCallField(Handle object, Handle holder, int index, Handle name) { // ----------- S t a t e ------------- // rcx : function name // rsp[0] : return address // rsp[8] : argument argc // rsp[16] : argument argc - 1 // ... // rsp[argc * 8] : argument 1 // rsp[(argc + 1) * 8] : argument 0 = receiver // ----------------------------------- Label miss; GenerateNameCheck(name, &miss); // Get the receiver from the stack. const int argc = arguments().immediate(); __ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize)); // Check that the receiver isn't a smi. __ JumpIfSmi(rdx, &miss); // Do the right check and compute the holder register. Register reg = CheckPrototypes(object, rdx, holder, rbx, rax, rdi, name, &miss); GenerateFastPropertyLoad(masm(), rdi, reg, holder, index); // Check that the function really is a function. __ JumpIfSmi(rdi, &miss); __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rbx); __ j(not_equal, &miss); // Patch the receiver on the stack with the global proxy if // necessary. if (object->IsGlobalObject()) { __ movq(rdx, FieldOperand(rdx, GlobalObject::kGlobalReceiverOffset)); __ movq(Operand(rsp, (argc + 1) * kPointerSize), rdx); } // Invoke the function. CallKind call_kind = CallICBase::Contextual::decode(extra_state_) ? CALL_AS_FUNCTION : CALL_AS_METHOD; __ InvokeFunction(rdi, arguments(), JUMP_FUNCTION, NullCallWrapper(), call_kind); // Handle call cache miss. __ bind(&miss); GenerateMissBranch(); // Return the generated code. return GetCode(FIELD, name); } Handle CallStubCompiler::CompileArrayPushCall( Handle object, Handle holder, Handle cell, Handle function, Handle name) { // ----------- S t a t e ------------- // -- rcx : name // -- rsp[0] : return address // -- rsp[(argc - n) * 8] : arg[n] (zero-based) // -- ... // -- rsp[(argc + 1) * 8] : receiver // ----------------------------------- // If object is not an array, bail out to regular call. if (!object->IsJSArray() || !cell.is_null()) return Handle::null(); Label miss; GenerateNameCheck(name, &miss); // Get the receiver from the stack. const int argc = arguments().immediate(); __ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize)); // Check that the receiver isn't a smi. __ JumpIfSmi(rdx, &miss); CheckPrototypes(Handle::cast(object), rdx, holder, rbx, rax, rdi, name, &miss); if (argc == 0) { // Noop, return the length. __ movq(rax, FieldOperand(rdx, JSArray::kLengthOffset)); __ ret((argc + 1) * kPointerSize); } else { Label call_builtin; if (argc == 1) { // Otherwise fall through to call builtin. Label attempt_to_grow_elements, with_write_barrier; // Get the elements array of the object. __ movq(rdi, FieldOperand(rdx, JSArray::kElementsOffset)); // Check that the elements are in fast mode and writable. __ Cmp(FieldOperand(rdi, HeapObject::kMapOffset), factory()->fixed_array_map()); __ j(not_equal, &call_builtin); // Get the array's length into rax and calculate new length. __ SmiToInteger32(rax, FieldOperand(rdx, JSArray::kLengthOffset)); STATIC_ASSERT(FixedArray::kMaxLength < Smi::kMaxValue); __ addl(rax, Immediate(argc)); // Get the elements' length into rcx. __ SmiToInteger32(rcx, FieldOperand(rdi, FixedArray::kLengthOffset)); // Check if we could survive without allocation. __ cmpl(rax, rcx); __ j(greater, &attempt_to_grow_elements); // Check if value is a smi. __ movq(rcx, Operand(rsp, argc * kPointerSize)); __ JumpIfNotSmi(rcx, &with_write_barrier); // Save new length. __ Integer32ToSmiField(FieldOperand(rdx, JSArray::kLengthOffset), rax); // Store the value. __ movq(FieldOperand(rdi, rax, times_pointer_size, FixedArray::kHeaderSize - argc * kPointerSize), rcx); __ Integer32ToSmi(rax, rax); // Return new length as smi. __ ret((argc + 1) * kPointerSize); __ bind(&with_write_barrier); __ movq(rbx, FieldOperand(rdx, HeapObject::kMapOffset)); if (FLAG_smi_only_arrays && !FLAG_trace_elements_transitions) { Label fast_object, not_fast_object; __ CheckFastObjectElements(rbx, ¬_fast_object, Label::kNear); __ jmp(&fast_object); // In case of fast smi-only, convert to fast object, otherwise bail out. __ bind(¬_fast_object); __ CheckFastSmiOnlyElements(rbx, &call_builtin); // rdx: receiver // rbx: map __ movq(r9, rdi); // Backup rdi as it is going to be trashed. __ LoadTransitionedArrayMapConditional(FAST_SMI_ONLY_ELEMENTS, FAST_ELEMENTS, rbx, rdi, &call_builtin); ElementsTransitionGenerator::GenerateSmiOnlyToObject(masm()); __ movq(rdi, r9); __ bind(&fast_object); } else { __ CheckFastObjectElements(rbx, &call_builtin); } // Save new length. __ Integer32ToSmiField(FieldOperand(rdx, JSArray::kLengthOffset), rax); // Store the value. __ lea(rdx, FieldOperand(rdi, rax, times_pointer_size, FixedArray::kHeaderSize - argc * kPointerSize)); __ movq(Operand(rdx, 0), rcx); __ RecordWrite(rdi, rdx, rcx, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); __ Integer32ToSmi(rax, rax); // Return new length as smi. __ ret((argc + 1) * kPointerSize); __ bind(&attempt_to_grow_elements); if (!FLAG_inline_new) { __ jmp(&call_builtin); } __ movq(rbx, Operand(rsp, argc * kPointerSize)); // Growing elements that are SMI-only requires special handling in case // the new element is non-Smi. For now, delegate to the builtin. Label no_fast_elements_check; __ JumpIfSmi(rbx, &no_fast_elements_check); __ movq(rcx, FieldOperand(rdx, HeapObject::kMapOffset)); __ CheckFastObjectElements(rcx, &call_builtin, Label::kFar); __ bind(&no_fast_elements_check); ExternalReference new_space_allocation_top = ExternalReference::new_space_allocation_top_address(isolate()); ExternalReference new_space_allocation_limit = ExternalReference::new_space_allocation_limit_address(isolate()); const int kAllocationDelta = 4; // Load top. __ Load(rcx, new_space_allocation_top); // Check if it's the end of elements. __ lea(rdx, FieldOperand(rdi, rax, times_pointer_size, FixedArray::kHeaderSize - argc * kPointerSize)); __ cmpq(rdx, rcx); __ j(not_equal, &call_builtin); __ addq(rcx, Immediate(kAllocationDelta * kPointerSize)); Operand limit_operand = masm()->ExternalOperand(new_space_allocation_limit); __ cmpq(rcx, limit_operand); __ j(above, &call_builtin); // We fit and could grow elements. __ Store(new_space_allocation_top, rcx); // Push the argument... __ movq(Operand(rdx, 0), rbx); // ... and fill the rest with holes. __ LoadRoot(kScratchRegister, Heap::kTheHoleValueRootIndex); for (int i = 1; i < kAllocationDelta; i++) { __ movq(Operand(rdx, i * kPointerSize), kScratchRegister); } // We know the elements array is in new space so we don't need the // remembered set, but we just pushed a value onto it so we may have to // tell the incremental marker to rescan the object that we just grew. We // don't need to worry about the holes because they are in old space and // already marked black. __ RecordWrite(rdi, rdx, rbx, kDontSaveFPRegs, OMIT_REMEMBERED_SET); // Restore receiver to rdx as finish sequence assumes it's here. __ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize)); // Increment element's and array's sizes. __ SmiAddConstant(FieldOperand(rdi, FixedArray::kLengthOffset), Smi::FromInt(kAllocationDelta)); // Make new length a smi before returning it. __ Integer32ToSmi(rax, rax); __ movq(FieldOperand(rdx, JSArray::kLengthOffset), rax); __ ret((argc + 1) * kPointerSize); } __ bind(&call_builtin); __ TailCallExternalReference(ExternalReference(Builtins::c_ArrayPush, isolate()), argc + 1, 1); } __ bind(&miss); GenerateMissBranch(); // Return the generated code. return GetCode(function); } Handle CallStubCompiler::CompileArrayPopCall( Handle object, Handle holder, Handle cell, Handle function, Handle name) { // ----------- S t a t e ------------- // -- rcx : name // -- rsp[0] : return address // -- rsp[(argc - n) * 8] : arg[n] (zero-based) // -- ... // -- rsp[(argc + 1) * 8] : receiver // ----------------------------------- // If object is not an array, bail out to regular call. if (!object->IsJSArray() || !cell.is_null()) return Handle::null(); Label miss, return_undefined, call_builtin; GenerateNameCheck(name, &miss); // Get the receiver from the stack. const int argc = arguments().immediate(); __ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize)); // Check that the receiver isn't a smi. __ JumpIfSmi(rdx, &miss); CheckPrototypes(Handle::cast(object), rdx, holder, rbx, rax, rdi, name, &miss); // Get the elements array of the object. __ movq(rbx, FieldOperand(rdx, JSArray::kElementsOffset)); // Check that the elements are in fast mode and writable. __ CompareRoot(FieldOperand(rbx, HeapObject::kMapOffset), Heap::kFixedArrayMapRootIndex); __ j(not_equal, &call_builtin); // Get the array's length into rcx and calculate new length. __ SmiToInteger32(rcx, FieldOperand(rdx, JSArray::kLengthOffset)); __ subl(rcx, Immediate(1)); __ j(negative, &return_undefined); // Get the last element. __ LoadRoot(r9, Heap::kTheHoleValueRootIndex); __ movq(rax, FieldOperand(rbx, rcx, times_pointer_size, FixedArray::kHeaderSize)); // Check if element is already the hole. __ cmpq(rax, r9); // If so, call slow-case to also check prototypes for value. __ j(equal, &call_builtin); // Set the array's length. __ Integer32ToSmiField(FieldOperand(rdx, JSArray::kLengthOffset), rcx); // Fill with the hole and return original value. __ movq(FieldOperand(rbx, rcx, times_pointer_size, FixedArray::kHeaderSize), r9); __ ret((argc + 1) * kPointerSize); __ bind(&return_undefined); __ LoadRoot(rax, Heap::kUndefinedValueRootIndex); __ ret((argc + 1) * kPointerSize); __ bind(&call_builtin); __ TailCallExternalReference( ExternalReference(Builtins::c_ArrayPop, isolate()), argc + 1, 1); __ bind(&miss); GenerateMissBranch(); // Return the generated code. return GetCode(function); } Handle CallStubCompiler::CompileStringCharCodeAtCall( Handle object, Handle holder, Handle cell, Handle function, Handle name) { // ----------- S t a t e ------------- // -- rcx : function name // -- rsp[0] : return address // -- rsp[(argc - n) * 8] : arg[n] (zero-based) // -- ... // -- rsp[(argc + 1) * 8] : receiver // ----------------------------------- // If object is not a string, bail out to regular call. if (!object->IsString() || !cell.is_null()) return Handle::null(); const int argc = arguments().immediate(); Label miss; Label name_miss; Label index_out_of_range; Label* index_out_of_range_label = &index_out_of_range; if (kind_ == Code::CALL_IC && (CallICBase::StringStubState::decode(extra_state_) == DEFAULT_STRING_STUB)) { index_out_of_range_label = &miss; } GenerateNameCheck(name, &name_miss); // Check that the maps starting from the prototype haven't changed. GenerateDirectLoadGlobalFunctionPrototype(masm(), Context::STRING_FUNCTION_INDEX, rax, &miss); ASSERT(!object.is_identical_to(holder)); CheckPrototypes(Handle(JSObject::cast(object->GetPrototype())), rax, holder, rbx, rdx, rdi, name, &miss); Register receiver = rbx; Register index = rdi; Register result = rax; __ movq(receiver, Operand(rsp, (argc + 1) * kPointerSize)); if (argc > 0) { __ movq(index, Operand(rsp, (argc - 0) * kPointerSize)); } else { __ LoadRoot(index, Heap::kUndefinedValueRootIndex); } StringCharCodeAtGenerator generator(receiver, index, result, &miss, // When not a string. &miss, // When not a number. index_out_of_range_label, STRING_INDEX_IS_NUMBER); generator.GenerateFast(masm()); __ ret((argc + 1) * kPointerSize); StubRuntimeCallHelper call_helper; generator.GenerateSlow(masm(), call_helper); if (index_out_of_range.is_linked()) { __ bind(&index_out_of_range); __ LoadRoot(rax, Heap::kNanValueRootIndex); __ ret((argc + 1) * kPointerSize); } __ bind(&miss); // Restore function name in rcx. __ Move(rcx, name); __ bind(&name_miss); GenerateMissBranch(); // Return the generated code. return GetCode(function); } Handle CallStubCompiler::CompileStringCharAtCall( Handle object, Handle holder, Handle cell, Handle function, Handle name) { // ----------- S t a t e ------------- // -- rcx : function name // -- rsp[0] : return address // -- rsp[(argc - n) * 8] : arg[n] (zero-based) // -- ... // -- rsp[(argc + 1) * 8] : receiver // ----------------------------------- // If object is not a string, bail out to regular call. if (!object->IsString() || !cell.is_null()) return Handle::null(); const int argc = arguments().immediate(); Label miss; Label name_miss; Label index_out_of_range; Label* index_out_of_range_label = &index_out_of_range; if (kind_ == Code::CALL_IC && (CallICBase::StringStubState::decode(extra_state_) == DEFAULT_STRING_STUB)) { index_out_of_range_label = &miss; } GenerateNameCheck(name, &name_miss); // Check that the maps starting from the prototype haven't changed. GenerateDirectLoadGlobalFunctionPrototype(masm(), Context::STRING_FUNCTION_INDEX, rax, &miss); ASSERT(!object.is_identical_to(holder)); CheckPrototypes(Handle(JSObject::cast(object->GetPrototype())), rax, holder, rbx, rdx, rdi, name, &miss); Register receiver = rax; Register index = rdi; Register scratch = rdx; Register result = rax; __ movq(receiver, Operand(rsp, (argc + 1) * kPointerSize)); if (argc > 0) { __ movq(index, Operand(rsp, (argc - 0) * kPointerSize)); } else { __ LoadRoot(index, Heap::kUndefinedValueRootIndex); } StringCharAtGenerator generator(receiver, index, scratch, result, &miss, // When not a string. &miss, // When not a number. index_out_of_range_label, STRING_INDEX_IS_NUMBER); generator.GenerateFast(masm()); __ ret((argc + 1) * kPointerSize); StubRuntimeCallHelper call_helper; generator.GenerateSlow(masm(), call_helper); if (index_out_of_range.is_linked()) { __ bind(&index_out_of_range); __ LoadRoot(rax, Heap::kEmptyStringRootIndex); __ ret((argc + 1) * kPointerSize); } __ bind(&miss); // Restore function name in rcx. __ Move(rcx, name); __ bind(&name_miss); GenerateMissBranch(); // Return the generated code. return GetCode(function); } Handle CallStubCompiler::CompileStringFromCharCodeCall( Handle object, Handle holder, Handle cell, Handle function, Handle name) { // ----------- S t a t e ------------- // -- rcx : function name // -- rsp[0] : return address // -- rsp[(argc - n) * 8] : arg[n] (zero-based) // -- ... // -- rsp[(argc + 1) * 8] : receiver // ----------------------------------- // If the object is not a JSObject or we got an unexpected number of // arguments, bail out to the regular call. const int argc = arguments().immediate(); if (!object->IsJSObject() || argc != 1) return Handle::null(); Label miss; GenerateNameCheck(name, &miss); if (cell.is_null()) { __ movq(rdx, Operand(rsp, 2 * kPointerSize)); __ JumpIfSmi(rdx, &miss); CheckPrototypes(Handle::cast(object), rdx, holder, rbx, rax, rdi, name, &miss); } else { ASSERT(cell->value() == *function); GenerateGlobalReceiverCheck(Handle::cast(object), holder, name, &miss); GenerateLoadFunctionFromCell(cell, function, &miss); } // Load the char code argument. Register code = rbx; __ movq(code, Operand(rsp, 1 * kPointerSize)); // Check the code is a smi. Label slow; __ JumpIfNotSmi(code, &slow); // Convert the smi code to uint16. __ SmiAndConstant(code, code, Smi::FromInt(0xffff)); StringCharFromCodeGenerator generator(code, rax); generator.GenerateFast(masm()); __ ret(2 * kPointerSize); StubRuntimeCallHelper call_helper; generator.GenerateSlow(masm(), call_helper); // Tail call the full function. We do not have to patch the receiver // because the function makes no use of it. __ bind(&slow); CallKind call_kind = CallICBase::Contextual::decode(extra_state_) ? CALL_AS_FUNCTION : CALL_AS_METHOD; __ InvokeFunction(function, arguments(), JUMP_FUNCTION, NullCallWrapper(), call_kind); __ bind(&miss); // rcx: function name. GenerateMissBranch(); // Return the generated code. return cell.is_null() ? GetCode(function) : GetCode(NORMAL, name); } Handle CallStubCompiler::CompileMathFloorCall( Handle object, Handle holder, Handle cell, Handle function, Handle name) { // TODO(872): implement this. return Handle::null(); } Handle CallStubCompiler::CompileMathAbsCall( Handle object, Handle holder, Handle cell, Handle function, Handle name) { // ----------- S t a t e ------------- // -- rcx : function name // -- rsp[0] : return address // -- rsp[(argc - n) * 8] : arg[n] (zero-based) // -- ... // -- rsp[(argc + 1) * 8] : receiver // ----------------------------------- // If the object is not a JSObject or we got an unexpected number of // arguments, bail out to the regular call. const int argc = arguments().immediate(); if (!object->IsJSObject() || argc != 1) return Handle::null(); Label miss; GenerateNameCheck(name, &miss); if (cell.is_null()) { __ movq(rdx, Operand(rsp, 2 * kPointerSize)); __ JumpIfSmi(rdx, &miss); CheckPrototypes(Handle::cast(object), rdx, holder, rbx, rax, rdi, name, &miss); } else { ASSERT(cell->value() == *function); GenerateGlobalReceiverCheck(Handle::cast(object), holder, name, &miss); GenerateLoadFunctionFromCell(cell, function, &miss); } // Load the (only) argument into rax. __ movq(rax, Operand(rsp, 1 * kPointerSize)); // Check if the argument is a smi. Label not_smi; STATIC_ASSERT(kSmiTag == 0); __ JumpIfNotSmi(rax, ¬_smi); __ SmiToInteger32(rax, rax); // Set ebx to 1...1 (== -1) if the argument is negative, or to 0...0 // otherwise. __ movl(rbx, rax); __ sarl(rbx, Immediate(kBitsPerInt - 1)); // Do bitwise not or do nothing depending on ebx. __ xorl(rax, rbx); // Add 1 or do nothing depending on ebx. __ subl(rax, rbx); // If the result is still negative, go to the slow case. // This only happens for the most negative smi. Label slow; __ j(negative, &slow); // Smi case done. __ Integer32ToSmi(rax, rax); __ ret(2 * kPointerSize); // Check if the argument is a heap number and load its value. __ bind(¬_smi); __ CheckMap(rax, factory()->heap_number_map(), &slow, DONT_DO_SMI_CHECK); __ movq(rbx, FieldOperand(rax, HeapNumber::kValueOffset)); // Check the sign of the argument. If the argument is positive, // just return it. Label negative_sign; const int sign_mask_shift = (HeapNumber::kExponentOffset - HeapNumber::kValueOffset) * kBitsPerByte; __ movq(rdi, static_cast(HeapNumber::kSignMask) << sign_mask_shift, RelocInfo::NONE); __ testq(rbx, rdi); __ j(not_zero, &negative_sign); __ ret(2 * kPointerSize); // If the argument is negative, clear the sign, and return a new // number. We still have the sign mask in rdi. __ bind(&negative_sign); __ xor_(rbx, rdi); __ AllocateHeapNumber(rax, rdx, &slow); __ movq(FieldOperand(rax, HeapNumber::kValueOffset), rbx); __ ret(2 * kPointerSize); // Tail call the full function. We do not have to patch the receiver // because the function makes no use of it. __ bind(&slow); CallKind call_kind = CallICBase::Contextual::decode(extra_state_) ? CALL_AS_FUNCTION : CALL_AS_METHOD; __ InvokeFunction(function, arguments(), JUMP_FUNCTION, NullCallWrapper(), call_kind); __ bind(&miss); // rcx: function name. GenerateMissBranch(); // Return the generated code. return cell.is_null() ? GetCode(function) : GetCode(NORMAL, name); } Handle CallStubCompiler::CompileFastApiCall( const CallOptimization& optimization, Handle object, Handle holder, Handle cell, Handle function, Handle name) { ASSERT(optimization.is_simple_api_call()); // Bail out if object is a global object as we don't want to // repatch it to global receiver. if (object->IsGlobalObject()) return Handle::null(); if (!cell.is_null()) return Handle::null(); if (!object->IsJSObject()) return Handle::null(); int depth = optimization.GetPrototypeDepthOfExpectedType( Handle::cast(object), holder); if (depth == kInvalidProtoDepth) return Handle::null(); Label miss, miss_before_stack_reserved; GenerateNameCheck(name, &miss_before_stack_reserved); // Get the receiver from the stack. const int argc = arguments().immediate(); __ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize)); // Check that the receiver isn't a smi. __ JumpIfSmi(rdx, &miss_before_stack_reserved); Counters* counters = isolate()->counters(); __ IncrementCounter(counters->call_const(), 1); __ IncrementCounter(counters->call_const_fast_api(), 1); // Allocate space for v8::Arguments implicit values. Must be initialized // before calling any runtime function. __ subq(rsp, Immediate(kFastApiCallArguments * kPointerSize)); // Check that the maps haven't changed and find a Holder as a side effect. CheckPrototypes(Handle::cast(object), rdx, holder, rbx, rax, rdi, name, depth, &miss); // Move the return address on top of the stack. __ movq(rax, Operand(rsp, 3 * kPointerSize)); __ movq(Operand(rsp, 0 * kPointerSize), rax); GenerateFastApiCall(masm(), optimization, argc); __ bind(&miss); __ addq(rsp, Immediate(kFastApiCallArguments * kPointerSize)); __ bind(&miss_before_stack_reserved); GenerateMissBranch(); // Return the generated code. return GetCode(function); } Handle CallStubCompiler::CompileCallConstant(Handle object, Handle holder, Handle function, Handle name, CheckType check) { // ----------- S t a t e ------------- // rcx : function name // rsp[0] : return address // rsp[8] : argument argc // rsp[16] : argument argc - 1 // ... // rsp[argc * 8] : argument 1 // rsp[(argc + 1) * 8] : argument 0 = receiver // ----------------------------------- if (HasCustomCallGenerator(function)) { Handle code = CompileCustomCall(object, holder, Handle::null(), function, name); // A null handle means bail out to the regular compiler code below. if (!code.is_null()) return code; } Label miss; GenerateNameCheck(name, &miss); // Get the receiver from the stack. const int argc = arguments().immediate(); __ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize)); // Check that the receiver isn't a smi. if (check != NUMBER_CHECK) { __ JumpIfSmi(rdx, &miss); } // Make sure that it's okay not to patch the on stack receiver // unless we're doing a receiver map check. ASSERT(!object->IsGlobalObject() || check == RECEIVER_MAP_CHECK); Counters* counters = isolate()->counters(); switch (check) { case RECEIVER_MAP_CHECK: __ IncrementCounter(counters->call_const(), 1); // Check that the maps haven't changed. CheckPrototypes(Handle::cast(object), rdx, holder, rbx, rax, rdi, name, &miss); // Patch the receiver on the stack with the global proxy if // necessary. if (object->IsGlobalObject()) { __ movq(rdx, FieldOperand(rdx, GlobalObject::kGlobalReceiverOffset)); __ movq(Operand(rsp, (argc + 1) * kPointerSize), rdx); } break; case STRING_CHECK: if (function->IsBuiltin() || !function->shared()->is_classic_mode()) { // Check that the object is a two-byte string or a symbol. __ CmpObjectType(rdx, FIRST_NONSTRING_TYPE, rax); __ j(above_equal, &miss); // Check that the maps starting from the prototype haven't changed. GenerateDirectLoadGlobalFunctionPrototype( masm(), Context::STRING_FUNCTION_INDEX, rax, &miss); CheckPrototypes( Handle(JSObject::cast(object->GetPrototype())), rax, holder, rbx, rdx, rdi, name, &miss); } else { // Calling non-strict non-builtins with a value as the receiver // requires boxing. __ jmp(&miss); } break; case NUMBER_CHECK: if (function->IsBuiltin() || !function->shared()->is_classic_mode()) { Label fast; // Check that the object is a smi or a heap number. __ JumpIfSmi(rdx, &fast); __ CmpObjectType(rdx, HEAP_NUMBER_TYPE, rax); __ j(not_equal, &miss); __ bind(&fast); // Check that the maps starting from the prototype haven't changed. GenerateDirectLoadGlobalFunctionPrototype( masm(), Context::NUMBER_FUNCTION_INDEX, rax, &miss); CheckPrototypes( Handle(JSObject::cast(object->GetPrototype())), rax, holder, rbx, rdx, rdi, name, &miss); } else { // Calling non-strict non-builtins with a value as the receiver // requires boxing. __ jmp(&miss); } break; case BOOLEAN_CHECK: if (function->IsBuiltin() || !function->shared()->is_classic_mode()) { Label fast; // Check that the object is a boolean. __ CompareRoot(rdx, Heap::kTrueValueRootIndex); __ j(equal, &fast); __ CompareRoot(rdx, Heap::kFalseValueRootIndex); __ j(not_equal, &miss); __ bind(&fast); // Check that the maps starting from the prototype haven't changed. GenerateDirectLoadGlobalFunctionPrototype( masm(), Context::BOOLEAN_FUNCTION_INDEX, rax, &miss); CheckPrototypes( Handle(JSObject::cast(object->GetPrototype())), rax, holder, rbx, rdx, rdi, name, &miss); } else { // Calling non-strict non-builtins with a value as the receiver // requires boxing. __ jmp(&miss); } break; } CallKind call_kind = CallICBase::Contextual::decode(extra_state_) ? CALL_AS_FUNCTION : CALL_AS_METHOD; __ InvokeFunction(function, arguments(), JUMP_FUNCTION, NullCallWrapper(), call_kind); // Handle call cache miss. __ bind(&miss); GenerateMissBranch(); // Return the generated code. return GetCode(function); } Handle CallStubCompiler::CompileCallInterceptor(Handle object, Handle holder, Handle name) { // ----------- S t a t e ------------- // rcx : function name // rsp[0] : return address // rsp[8] : argument argc // rsp[16] : argument argc - 1 // ... // rsp[argc * 8] : argument 1 // rsp[(argc + 1) * 8] : argument 0 = receiver // ----------------------------------- Label miss; GenerateNameCheck(name, &miss); // Get the number of arguments. const int argc = arguments().immediate(); LookupResult lookup(isolate()); LookupPostInterceptor(holder, name, &lookup); // Get the receiver from the stack. __ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize)); CallInterceptorCompiler compiler(this, arguments(), rcx, extra_state_); compiler.Compile(masm(), object, holder, name, &lookup, rdx, rbx, rdi, rax, &miss); // Restore receiver. __ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize)); // Check that the function really is a function. __ JumpIfSmi(rax, &miss); __ CmpObjectType(rax, JS_FUNCTION_TYPE, rbx); __ j(not_equal, &miss); // Patch the receiver on the stack with the global proxy if // necessary. if (object->IsGlobalObject()) { __ movq(rdx, FieldOperand(rdx, GlobalObject::kGlobalReceiverOffset)); __ movq(Operand(rsp, (argc + 1) * kPointerSize), rdx); } // Invoke the function. __ movq(rdi, rax); CallKind call_kind = CallICBase::Contextual::decode(extra_state_) ? CALL_AS_FUNCTION : CALL_AS_METHOD; __ InvokeFunction(rdi, arguments(), JUMP_FUNCTION, NullCallWrapper(), call_kind); // Handle load cache miss. __ bind(&miss); GenerateMissBranch(); // Return the generated code. return GetCode(INTERCEPTOR, name); } Handle CallStubCompiler::CompileCallGlobal( Handle object, Handle holder, Handle cell, Handle function, Handle name) { // ----------- S t a t e ------------- // rcx : function name // rsp[0] : return address // rsp[8] : argument argc // rsp[16] : argument argc - 1 // ... // rsp[argc * 8] : argument 1 // rsp[(argc + 1) * 8] : argument 0 = receiver // ----------------------------------- if (HasCustomCallGenerator(function)) { Handle code = CompileCustomCall(object, holder, cell, function, name); // A null handle means bail out to the regular compiler code below. if (!code.is_null()) return code; } Label miss; GenerateNameCheck(name, &miss); // Get the number of arguments. const int argc = arguments().immediate(); GenerateGlobalReceiverCheck(object, holder, name, &miss); GenerateLoadFunctionFromCell(cell, function, &miss); // Patch the receiver on the stack with the global proxy. if (object->IsGlobalObject()) { __ movq(rdx, FieldOperand(rdx, GlobalObject::kGlobalReceiverOffset)); __ movq(Operand(rsp, (argc + 1) * kPointerSize), rdx); } // Set up the context (function already in rdi). __ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); // Jump to the cached code (tail call). Counters* counters = isolate()->counters(); __ IncrementCounter(counters->call_global_inline(), 1); ParameterCount expected(function->shared()->formal_parameter_count()); CallKind call_kind = CallICBase::Contextual::decode(extra_state_) ? CALL_AS_FUNCTION : CALL_AS_METHOD; // We call indirectly through the code field in the function to // allow recompilation to take effect without changing any of the // call sites. __ movq(rdx, FieldOperand(rdi, JSFunction::kCodeEntryOffset)); __ InvokeCode(rdx, expected, arguments(), JUMP_FUNCTION, NullCallWrapper(), call_kind); // Handle call cache miss. __ bind(&miss); __ IncrementCounter(counters->call_global_inline_miss(), 1); GenerateMissBranch(); // Return the generated code. return GetCode(NORMAL, name); } Handle StoreStubCompiler::CompileStoreField(Handle object, int index, Handle transition, Handle name) { // ----------- S t a t e ------------- // -- rax : value // -- rcx : name // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- Label miss; // Generate store field code. Preserves receiver and name on jump to miss. GenerateStoreField(masm(), object, index, transition, rdx, rcx, rbx, &miss); // Handle store cache miss. __ bind(&miss); Handle ic = isolate()->builtins()->StoreIC_Miss(); __ Jump(ic, RelocInfo::CODE_TARGET); // Return the generated code. return GetCode(transition.is_null() ? FIELD : MAP_TRANSITION, name); } Handle StoreStubCompiler::CompileStoreCallback( Handle object, Handle callback, Handle name) { // ----------- S t a t e ------------- // -- rax : value // -- rcx : name // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- Label miss; // Check that the map of the object hasn't changed. __ CheckMap(rdx, Handle(object->map()), &miss, DO_SMI_CHECK, ALLOW_ELEMENT_TRANSITION_MAPS); // Perform global security token check if needed. if (object->IsJSGlobalProxy()) { __ CheckAccessGlobalProxy(rdx, rbx, &miss); } // Stub never generated for non-global objects that require access // checks. ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded()); __ pop(rbx); // remove the return address __ push(rdx); // receiver __ Push(callback); // callback info __ push(rcx); // name __ push(rax); // value __ push(rbx); // restore return address // Do tail-call to the runtime system. ExternalReference store_callback_property = ExternalReference(IC_Utility(IC::kStoreCallbackProperty), isolate()); __ TailCallExternalReference(store_callback_property, 4, 1); // Handle store cache miss. __ bind(&miss); Handle ic = isolate()->builtins()->StoreIC_Miss(); __ Jump(ic, RelocInfo::CODE_TARGET); // Return the generated code. return GetCode(CALLBACKS, name); } Handle StoreStubCompiler::CompileStoreInterceptor( Handle receiver, Handle name) { // ----------- S t a t e ------------- // -- rax : value // -- rcx : name // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- Label miss; // Check that the map of the object hasn't changed. __ CheckMap(rdx, Handle(receiver->map()), &miss, DO_SMI_CHECK, ALLOW_ELEMENT_TRANSITION_MAPS); // Perform global security token check if needed. if (receiver->IsJSGlobalProxy()) { __ CheckAccessGlobalProxy(rdx, rbx, &miss); } // Stub never generated for non-global objects that require access // checks. ASSERT(receiver->IsJSGlobalProxy() || !receiver->IsAccessCheckNeeded()); __ pop(rbx); // remove the return address __ push(rdx); // receiver __ push(rcx); // name __ push(rax); // value __ Push(Smi::FromInt(strict_mode_)); __ push(rbx); // restore return address // Do tail-call to the runtime system. ExternalReference store_ic_property = ExternalReference(IC_Utility(IC::kStoreInterceptorProperty), isolate()); __ TailCallExternalReference(store_ic_property, 4, 1); // Handle store cache miss. __ bind(&miss); Handle ic = isolate()->builtins()->StoreIC_Miss(); __ Jump(ic, RelocInfo::CODE_TARGET); // Return the generated code. return GetCode(INTERCEPTOR, name); } Handle StoreStubCompiler::CompileStoreGlobal( Handle object, Handle cell, Handle name) { // ----------- S t a t e ------------- // -- rax : value // -- rcx : name // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- Label miss; // Check that the map of the global has not changed. __ Cmp(FieldOperand(rdx, HeapObject::kMapOffset), Handle(object->map())); __ j(not_equal, &miss); // Compute the cell operand to use. __ Move(rbx, cell); Operand cell_operand = FieldOperand(rbx, JSGlobalPropertyCell::kValueOffset); // Check that the value in the cell is not the hole. If it is, this // cell could have been deleted and reintroducing the global needs // to update the property details in the property dictionary of the // global object. We bail out to the runtime system to do that. __ CompareRoot(cell_operand, Heap::kTheHoleValueRootIndex); __ j(equal, &miss); // Store the value in the cell. __ movq(cell_operand, rax); // Cells are always rescanned, so no write barrier here. // Return the value (register rax). Counters* counters = isolate()->counters(); __ IncrementCounter(counters->named_store_global_inline(), 1); __ ret(0); // Handle store cache miss. __ bind(&miss); __ IncrementCounter(counters->named_store_global_inline_miss(), 1); Handle ic = isolate()->builtins()->StoreIC_Miss(); __ Jump(ic, RelocInfo::CODE_TARGET); // Return the generated code. return GetCode(NORMAL, name); } Handle KeyedStoreStubCompiler::CompileStoreField(Handle object, int index, Handle transition, Handle name) { // ----------- S t a t e ------------- // -- rax : value // -- rcx : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- Label miss; Counters* counters = isolate()->counters(); __ IncrementCounter(counters->keyed_store_field(), 1); // Check that the name has not changed. __ Cmp(rcx, name); __ j(not_equal, &miss); // Generate store field code. Preserves receiver and name on jump to miss. GenerateStoreField(masm(), object, index, transition, rdx, rcx, rbx, &miss); // Handle store cache miss. __ bind(&miss); __ DecrementCounter(counters->keyed_store_field(), 1); Handle ic = isolate()->builtins()->KeyedStoreIC_Miss(); __ Jump(ic, RelocInfo::CODE_TARGET); // Return the generated code. return GetCode(transition.is_null() ? FIELD : MAP_TRANSITION, name); } Handle KeyedStoreStubCompiler::CompileStoreElement( Handle receiver_map) { // ----------- S t a t e ------------- // -- rax : value // -- rcx : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- ElementsKind elements_kind = receiver_map->elements_kind(); bool is_js_array = receiver_map->instance_type() == JS_ARRAY_TYPE; Handle stub = KeyedStoreElementStub(is_js_array, elements_kind, grow_mode_).GetCode(); __ DispatchMap(rdx, receiver_map, stub, DO_SMI_CHECK); Handle ic = isolate()->builtins()->KeyedStoreIC_Miss(); __ jmp(ic, RelocInfo::CODE_TARGET); // Return the generated code. return GetCode(NORMAL, factory()->empty_string()); } Handle KeyedStoreStubCompiler::CompileStorePolymorphic( MapHandleList* receiver_maps, CodeHandleList* handler_stubs, MapHandleList* transitioned_maps) { // ----------- S t a t e ------------- // -- rax : value // -- rcx : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- Label miss; __ JumpIfSmi(rdx, &miss, Label::kNear); __ movq(rdi, FieldOperand(rdx, HeapObject::kMapOffset)); int receiver_count = receiver_maps->length(); for (int i = 0; i < receiver_count; ++i) { // Check map and tail call if there's a match __ Cmp(rdi, receiver_maps->at(i)); if (transitioned_maps->at(i).is_null()) { __ j(equal, handler_stubs->at(i), RelocInfo::CODE_TARGET); } else { Label next_map; __ j(not_equal, &next_map, Label::kNear); __ movq(rbx, transitioned_maps->at(i), RelocInfo::EMBEDDED_OBJECT); __ jmp(handler_stubs->at(i), RelocInfo::CODE_TARGET); __ bind(&next_map); } } __ bind(&miss); Handle ic = isolate()->builtins()->KeyedStoreIC_Miss(); __ jmp(ic, RelocInfo::CODE_TARGET); // Return the generated code. return GetCode(NORMAL, factory()->empty_string(), MEGAMORPHIC); } Handle LoadStubCompiler::CompileLoadNonexistent(Handle name, Handle object, Handle last) { // ----------- S t a t e ------------- // -- rax : receiver // -- rcx : name // -- rsp[0] : return address // ----------------------------------- Label miss; // Check that receiver is not a smi. __ JumpIfSmi(rax, &miss); // Check the maps of the full prototype chain. Also check that // global property cells up to (but not including) the last object // in the prototype chain are empty. CheckPrototypes(object, rax, last, rbx, rdx, rdi, name, &miss); // If the last object in the prototype chain is a global object, // check that the global property cell is empty. if (last->IsGlobalObject()) { GenerateCheckPropertyCell( masm(), Handle::cast(last), name, rdx, &miss); } // Return undefined if maps of the full prototype chain are still the // same and no global property with this name contains a value. __ LoadRoot(rax, Heap::kUndefinedValueRootIndex); __ ret(0); __ bind(&miss); GenerateLoadMiss(masm(), Code::LOAD_IC); // Return the generated code. return GetCode(NONEXISTENT, factory()->empty_string()); } Handle LoadStubCompiler::CompileLoadField(Handle object, Handle holder, int index, Handle name) { // ----------- S t a t e ------------- // -- rax : receiver // -- rcx : name // -- rsp[0] : return address // ----------------------------------- Label miss; GenerateLoadField(object, holder, rax, rbx, rdx, rdi, index, name, &miss); __ bind(&miss); GenerateLoadMiss(masm(), Code::LOAD_IC); // Return the generated code. return GetCode(FIELD, name); } Handle LoadStubCompiler::CompileLoadCallback( Handle name, Handle object, Handle holder, Handle callback) { // ----------- S t a t e ------------- // -- rax : receiver // -- rcx : name // -- rsp[0] : return address // ----------------------------------- Label miss; GenerateLoadCallback(object, holder, rax, rcx, rdx, rbx, rdi, callback, name, &miss); __ bind(&miss); GenerateLoadMiss(masm(), Code::LOAD_IC); // Return the generated code. return GetCode(CALLBACKS, name); } Handle LoadStubCompiler::CompileLoadConstant(Handle object, Handle holder, Handle value, Handle name) { // ----------- S t a t e ------------- // -- rax : receiver // -- rcx : name // -- rsp[0] : return address // ----------------------------------- Label miss; GenerateLoadConstant(object, holder, rax, rbx, rdx, rdi, value, name, &miss); __ bind(&miss); GenerateLoadMiss(masm(), Code::LOAD_IC); // Return the generated code. return GetCode(CONSTANT_FUNCTION, name); } Handle LoadStubCompiler::CompileLoadInterceptor(Handle receiver, Handle holder, Handle name) { // ----------- S t a t e ------------- // -- rax : receiver // -- rcx : name // -- rsp[0] : return address // ----------------------------------- Label miss; LookupResult lookup(isolate()); LookupPostInterceptor(holder, name, &lookup); // TODO(368): Compile in the whole chain: all the interceptors in // prototypes and ultimate answer. GenerateLoadInterceptor(receiver, holder, &lookup, rax, rcx, rdx, rbx, rdi, name, &miss); __ bind(&miss); GenerateLoadMiss(masm(), Code::LOAD_IC); // Return the generated code. return GetCode(INTERCEPTOR, name); } Handle LoadStubCompiler::CompileLoadGlobal( Handle object, Handle holder, Handle cell, Handle name, bool is_dont_delete) { // ----------- S t a t e ------------- // -- rax : receiver // -- rcx : name // -- rsp[0] : return address // ----------------------------------- Label miss; // If the object is the holder then we know that it's a global // object which can only happen for contextual loads. In this case, // the receiver cannot be a smi. if (!object.is_identical_to(holder)) { __ JumpIfSmi(rax, &miss); } // Check that the maps haven't changed. CheckPrototypes(object, rax, holder, rbx, rdx, rdi, name, &miss); // Get the value from the cell. __ Move(rbx, cell); __ movq(rbx, FieldOperand(rbx, JSGlobalPropertyCell::kValueOffset)); // Check for deleted property if property can actually be deleted. if (!is_dont_delete) { __ CompareRoot(rbx, Heap::kTheHoleValueRootIndex); __ j(equal, &miss); } else if (FLAG_debug_code) { __ CompareRoot(rbx, Heap::kTheHoleValueRootIndex); __ Check(not_equal, "DontDelete cells can't contain the hole"); } Counters* counters = isolate()->counters(); __ IncrementCounter(counters->named_load_global_stub(), 1); __ movq(rax, rbx); __ ret(0); __ bind(&miss); __ IncrementCounter(counters->named_load_global_stub_miss(), 1); GenerateLoadMiss(masm(), Code::LOAD_IC); // Return the generated code. return GetCode(NORMAL, name); } Handle KeyedLoadStubCompiler::CompileLoadField(Handle name, Handle receiver, Handle holder, int index) { // ----------- S t a t e ------------- // -- rax : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- Label miss; Counters* counters = isolate()->counters(); __ IncrementCounter(counters->keyed_load_field(), 1); // Check that the name has not changed. __ Cmp(rax, name); __ j(not_equal, &miss); GenerateLoadField(receiver, holder, rdx, rbx, rcx, rdi, index, name, &miss); __ bind(&miss); __ DecrementCounter(counters->keyed_load_field(), 1); GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC); // Return the generated code. return GetCode(FIELD, name); } Handle KeyedLoadStubCompiler::CompileLoadCallback( Handle name, Handle receiver, Handle holder, Handle callback) { // ----------- S t a t e ------------- // -- rax : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- Label miss; Counters* counters = isolate()->counters(); __ IncrementCounter(counters->keyed_load_callback(), 1); // Check that the name has not changed. __ Cmp(rax, name); __ j(not_equal, &miss); GenerateLoadCallback(receiver, holder, rdx, rax, rbx, rcx, rdi, callback, name, &miss); __ bind(&miss); __ DecrementCounter(counters->keyed_load_callback(), 1); GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC); // Return the generated code. return GetCode(CALLBACKS, name); } Handle KeyedLoadStubCompiler::CompileLoadConstant( Handle name, Handle receiver, Handle holder, Handle value) { // ----------- S t a t e ------------- // -- rax : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- Label miss; Counters* counters = isolate()->counters(); __ IncrementCounter(counters->keyed_load_constant_function(), 1); // Check that the name has not changed. __ Cmp(rax, name); __ j(not_equal, &miss); GenerateLoadConstant(receiver, holder, rdx, rbx, rcx, rdi, value, name, &miss); __ bind(&miss); __ DecrementCounter(counters->keyed_load_constant_function(), 1); GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC); // Return the generated code. return GetCode(CONSTANT_FUNCTION, name); } Handle KeyedLoadStubCompiler::CompileLoadInterceptor( Handle receiver, Handle holder, Handle name) { // ----------- S t a t e ------------- // -- rax : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- Label miss; Counters* counters = isolate()->counters(); __ IncrementCounter(counters->keyed_load_interceptor(), 1); // Check that the name has not changed. __ Cmp(rax, name); __ j(not_equal, &miss); LookupResult lookup(isolate()); LookupPostInterceptor(holder, name, &lookup); GenerateLoadInterceptor(receiver, holder, &lookup, rdx, rax, rcx, rbx, rdi, name, &miss); __ bind(&miss); __ DecrementCounter(counters->keyed_load_interceptor(), 1); GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC); // Return the generated code. return GetCode(INTERCEPTOR, name); } Handle KeyedLoadStubCompiler::CompileLoadArrayLength( Handle name) { // ----------- S t a t e ------------- // -- rax : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- Label miss; Counters* counters = isolate()->counters(); __ IncrementCounter(counters->keyed_load_array_length(), 1); // Check that the name has not changed. __ Cmp(rax, name); __ j(not_equal, &miss); GenerateLoadArrayLength(masm(), rdx, rcx, &miss); __ bind(&miss); __ DecrementCounter(counters->keyed_load_array_length(), 1); GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC); // Return the generated code. return GetCode(CALLBACKS, name); } Handle KeyedLoadStubCompiler::CompileLoadStringLength( Handle name) { // ----------- S t a t e ------------- // -- rax : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- Label miss; Counters* counters = isolate()->counters(); __ IncrementCounter(counters->keyed_load_string_length(), 1); // Check that the name has not changed. __ Cmp(rax, name); __ j(not_equal, &miss); GenerateLoadStringLength(masm(), rdx, rcx, rbx, &miss, true); __ bind(&miss); __ DecrementCounter(counters->keyed_load_string_length(), 1); GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC); // Return the generated code. return GetCode(CALLBACKS, name); } Handle KeyedLoadStubCompiler::CompileLoadFunctionPrototype( Handle name) { // ----------- S t a t e ------------- // -- rax : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- Label miss; Counters* counters = isolate()->counters(); __ IncrementCounter(counters->keyed_load_function_prototype(), 1); // Check that the name has not changed. __ Cmp(rax, name); __ j(not_equal, &miss); GenerateLoadFunctionPrototype(masm(), rdx, rcx, rbx, &miss); __ bind(&miss); __ DecrementCounter(counters->keyed_load_function_prototype(), 1); GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC); // Return the generated code. return GetCode(CALLBACKS, name); } Handle KeyedLoadStubCompiler::CompileLoadElement( Handle receiver_map) { // ----------- S t a t e ------------- // -- rax : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- ElementsKind elements_kind = receiver_map->elements_kind(); Handle stub = KeyedLoadElementStub(elements_kind).GetCode(); __ DispatchMap(rdx, receiver_map, stub, DO_SMI_CHECK); Handle ic = isolate()->builtins()->KeyedLoadIC_Miss(); __ jmp(ic, RelocInfo::CODE_TARGET); // Return the generated code. return GetCode(NORMAL, factory()->empty_string()); } Handle KeyedLoadStubCompiler::CompileLoadPolymorphic( MapHandleList* receiver_maps, CodeHandleList* handler_ics) { // ----------- S t a t e ------------- // -- rax : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- Label miss; __ JumpIfSmi(rdx, &miss); Register map_reg = rbx; __ movq(map_reg, FieldOperand(rdx, HeapObject::kMapOffset)); int receiver_count = receiver_maps->length(); for (int current = 0; current < receiver_count; ++current) { // Check map and tail call if there's a match __ Cmp(map_reg, receiver_maps->at(current)); __ j(equal, handler_ics->at(current), RelocInfo::CODE_TARGET); } __ bind(&miss); GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC); // Return the generated code. return GetCode(NORMAL, factory()->empty_string(), MEGAMORPHIC); } // Specialized stub for constructing objects from functions which only have only // simple assignments of the form this.x = ...; in their body. Handle ConstructStubCompiler::CompileConstructStub( Handle function) { // ----------- S t a t e ------------- // -- rax : argc // -- rdi : constructor // -- rsp[0] : return address // -- rsp[4] : last argument // ----------------------------------- Label generic_stub_call; // Use r8 for holding undefined which is used in several places below. __ Move(r8, factory()->undefined_value()); #ifdef ENABLE_DEBUGGER_SUPPORT // Check to see whether there are any break points in the function code. If // there are jump to the generic constructor stub which calls the actual // code for the function thereby hitting the break points. __ movq(rbx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ movq(rbx, FieldOperand(rbx, SharedFunctionInfo::kDebugInfoOffset)); __ cmpq(rbx, r8); __ j(not_equal, &generic_stub_call); #endif // Load the initial map and verify that it is in fact a map. __ movq(rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi. STATIC_ASSERT(kSmiTag == 0); __ JumpIfSmi(rbx, &generic_stub_call); __ CmpObjectType(rbx, MAP_TYPE, rcx); __ j(not_equal, &generic_stub_call); #ifdef DEBUG // Cannot construct functions this way. // rdi: constructor // rbx: initial map __ CmpInstanceType(rbx, JS_FUNCTION_TYPE); __ Assert(not_equal, "Function constructed by construct stub."); #endif // Now allocate the JSObject in new space. // rdi: constructor // rbx: initial map __ movzxbq(rcx, FieldOperand(rbx, Map::kInstanceSizeOffset)); __ shl(rcx, Immediate(kPointerSizeLog2)); __ AllocateInNewSpace(rcx, rdx, rcx, no_reg, &generic_stub_call, NO_ALLOCATION_FLAGS); // Allocated the JSObject, now initialize the fields and add the heap tag. // rbx: initial map // rdx: JSObject (untagged) __ movq(Operand(rdx, JSObject::kMapOffset), rbx); __ Move(rbx, factory()->empty_fixed_array()); __ movq(Operand(rdx, JSObject::kPropertiesOffset), rbx); __ movq(Operand(rdx, JSObject::kElementsOffset), rbx); // rax: argc // rdx: JSObject (untagged) // Load the address of the first in-object property into r9. __ lea(r9, Operand(rdx, JSObject::kHeaderSize)); // Calculate the location of the first argument. The stack contains only the // return address on top of the argc arguments. __ lea(rcx, Operand(rsp, rax, times_pointer_size, 0)); // rax: argc // rcx: first argument // rdx: JSObject (untagged) // r8: undefined // r9: first in-object property of the JSObject // Fill the initialized properties with a constant value or a passed argument // depending on the this.x = ...; assignment in the function. Handle shared(function->shared()); for (int i = 0; i < shared->this_property_assignments_count(); i++) { if (shared->IsThisPropertyAssignmentArgument(i)) { // Check if the argument assigned to the property is actually passed. // If argument is not passed the property is set to undefined, // otherwise find it on the stack. int arg_number = shared->GetThisPropertyAssignmentArgument(i); __ movq(rbx, r8); __ cmpq(rax, Immediate(arg_number)); __ cmovq(above, rbx, Operand(rcx, arg_number * -kPointerSize)); // Store value in the property. __ movq(Operand(r9, i * kPointerSize), rbx); } else { // Set the property to the constant value. Handle constant(shared->GetThisPropertyAssignmentConstant(i)); __ Move(Operand(r9, i * kPointerSize), constant); } } // Fill the unused in-object property fields with undefined. ASSERT(function->has_initial_map()); for (int i = shared->this_property_assignments_count(); i < function->initial_map()->inobject_properties(); i++) { __ movq(Operand(r9, i * kPointerSize), r8); } // rax: argc // rdx: JSObject (untagged) // Move argc to rbx and the JSObject to return to rax and tag it. __ movq(rbx, rax); __ movq(rax, rdx); __ or_(rax, Immediate(kHeapObjectTag)); // rax: JSObject // rbx: argc // Remove caller arguments and receiver from the stack and return. __ pop(rcx); __ lea(rsp, Operand(rsp, rbx, times_pointer_size, 1 * kPointerSize)); __ push(rcx); Counters* counters = isolate()->counters(); __ IncrementCounter(counters->constructed_objects(), 1); __ IncrementCounter(counters->constructed_objects_stub(), 1); __ ret(0); // Jump to the generic stub in case the specialized code cannot handle the // construction. __ bind(&generic_stub_call); Handle code = isolate()->builtins()->JSConstructStubGeneric(); __ Jump(code, RelocInfo::CODE_TARGET); // Return the generated code. return GetCode(); } #undef __ #define __ ACCESS_MASM(masm) void KeyedLoadStubCompiler::GenerateLoadDictionaryElement( MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- Label slow, miss_force_generic; // This stub is meant to be tail-jumped to, the receiver must already // have been verified by the caller to not be a smi. __ JumpIfNotSmi(rax, &miss_force_generic); __ SmiToInteger32(rbx, rax); __ movq(rcx, FieldOperand(rdx, JSObject::kElementsOffset)); // Check whether the elements is a number dictionary. // rdx: receiver // rax: key // rbx: key as untagged int32 // rcx: elements __ LoadFromNumberDictionary(&slow, rcx, rax, rbx, r9, rdi, rax); __ ret(0); __ bind(&slow); // ----------- S t a t e ------------- // -- rax : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- Handle slow_ic = masm->isolate()->builtins()->KeyedLoadIC_Slow(); __ jmp(slow_ic, RelocInfo::CODE_TARGET); __ bind(&miss_force_generic); // ----------- S t a t e ------------- // -- rax : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- Handle miss_ic = masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric(); __ jmp(miss_ic, RelocInfo::CODE_TARGET); } void KeyedLoadStubCompiler::GenerateLoadExternalArray( MacroAssembler* masm, ElementsKind elements_kind) { // ----------- S t a t e ------------- // -- rax : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- Label slow, miss_force_generic; // This stub is meant to be tail-jumped to, the receiver must already // have been verified by the caller to not be a smi. // Check that the key is a smi. __ JumpIfNotSmi(rax, &miss_force_generic); // Check that the index is in range. __ movq(rbx, FieldOperand(rdx, JSObject::kElementsOffset)); __ SmiToInteger32(rcx, rax); __ cmpq(rax, FieldOperand(rbx, ExternalArray::kLengthOffset)); // Unsigned comparison catches both negative and too-large values. __ j(above_equal, &miss_force_generic); // rax: index (as a smi) // rdx: receiver (JSObject) // rcx: untagged index // rbx: elements array __ movq(rbx, FieldOperand(rbx, ExternalArray::kExternalPointerOffset)); // rbx: base pointer of external storage switch (elements_kind) { case EXTERNAL_BYTE_ELEMENTS: __ movsxbq(rcx, Operand(rbx, rcx, times_1, 0)); break; case EXTERNAL_PIXEL_ELEMENTS: case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: __ movzxbq(rcx, Operand(rbx, rcx, times_1, 0)); break; case EXTERNAL_SHORT_ELEMENTS: __ movsxwq(rcx, Operand(rbx, rcx, times_2, 0)); break; case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: __ movzxwq(rcx, Operand(rbx, rcx, times_2, 0)); break; case EXTERNAL_INT_ELEMENTS: __ movsxlq(rcx, Operand(rbx, rcx, times_4, 0)); break; case EXTERNAL_UNSIGNED_INT_ELEMENTS: __ movl(rcx, Operand(rbx, rcx, times_4, 0)); break; case EXTERNAL_FLOAT_ELEMENTS: __ cvtss2sd(xmm0, Operand(rbx, rcx, times_4, 0)); break; case EXTERNAL_DOUBLE_ELEMENTS: __ movsd(xmm0, Operand(rbx, rcx, times_8, 0)); break; default: UNREACHABLE(); break; } // rax: index // rdx: receiver // For integer array types: // rcx: value // For floating-point array type: // xmm0: value as double. ASSERT(kSmiValueSize == 32); if (elements_kind == EXTERNAL_UNSIGNED_INT_ELEMENTS) { // For the UnsignedInt array type, we need to see whether // the value can be represented in a Smi. If not, we need to convert // it to a HeapNumber. Label box_int; __ JumpIfUIntNotValidSmiValue(rcx, &box_int, Label::kNear); __ Integer32ToSmi(rax, rcx); __ ret(0); __ bind(&box_int); // Allocate a HeapNumber for the int and perform int-to-double // conversion. // The value is zero-extended since we loaded the value from memory // with movl. __ cvtqsi2sd(xmm0, rcx); __ AllocateHeapNumber(rcx, rbx, &slow); // Set the value. __ movsd(FieldOperand(rcx, HeapNumber::kValueOffset), xmm0); __ movq(rax, rcx); __ ret(0); } else if (elements_kind == EXTERNAL_FLOAT_ELEMENTS || elements_kind == EXTERNAL_DOUBLE_ELEMENTS) { // For the floating-point array type, we need to always allocate a // HeapNumber. __ AllocateHeapNumber(rcx, rbx, &slow); // Set the value. __ movsd(FieldOperand(rcx, HeapNumber::kValueOffset), xmm0); __ movq(rax, rcx); __ ret(0); } else { __ Integer32ToSmi(rax, rcx); __ ret(0); } // Slow case: Jump to runtime. __ bind(&slow); Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->keyed_load_external_array_slow(), 1); // ----------- S t a t e ------------- // -- rax : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- Handle ic = masm->isolate()->builtins()->KeyedLoadIC_Slow(); __ jmp(ic, RelocInfo::CODE_TARGET); // Miss case: Jump to runtime. __ bind(&miss_force_generic); // ----------- S t a t e ------------- // -- rax : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- Handle miss_ic = masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric(); __ jmp(miss_ic, RelocInfo::CODE_TARGET); } void KeyedStoreStubCompiler::GenerateStoreExternalArray( MacroAssembler* masm, ElementsKind elements_kind) { // ----------- S t a t e ------------- // -- rax : value // -- rcx : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- Label slow, miss_force_generic; // This stub is meant to be tail-jumped to, the receiver must already // have been verified by the caller to not be a smi. // Check that the key is a smi. __ JumpIfNotSmi(rcx, &miss_force_generic); // Check that the index is in range. __ movq(rbx, FieldOperand(rdx, JSObject::kElementsOffset)); __ SmiToInteger32(rdi, rcx); // Untag the index. __ cmpq(rcx, FieldOperand(rbx, ExternalArray::kLengthOffset)); // Unsigned comparison catches both negative and too-large values. __ j(above_equal, &miss_force_generic); // Handle both smis and HeapNumbers in the fast path. Go to the // runtime for all other kinds of values. // rax: value // rcx: key (a smi) // rdx: receiver (a JSObject) // rbx: elements array // rdi: untagged key Label check_heap_number; if (elements_kind == EXTERNAL_PIXEL_ELEMENTS) { // Float to pixel conversion is only implemented in the runtime for now. __ JumpIfNotSmi(rax, &slow); } else { __ JumpIfNotSmi(rax, &check_heap_number, Label::kNear); } // No more branches to slow case on this path. Key and receiver not needed. __ SmiToInteger32(rdx, rax); __ movq(rbx, FieldOperand(rbx, ExternalArray::kExternalPointerOffset)); // rbx: base pointer of external storage switch (elements_kind) { case EXTERNAL_PIXEL_ELEMENTS: { // Clamp the value to [0..255]. Label done; __ testl(rdx, Immediate(0xFFFFFF00)); __ j(zero, &done, Label::kNear); __ setcc(negative, rdx); // 1 if negative, 0 if positive. __ decb(rdx); // 0 if negative, 255 if positive. __ bind(&done); } __ movb(Operand(rbx, rdi, times_1, 0), rdx); break; case EXTERNAL_BYTE_ELEMENTS: case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: __ movb(Operand(rbx, rdi, times_1, 0), rdx); break; case EXTERNAL_SHORT_ELEMENTS: case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: __ movw(Operand(rbx, rdi, times_2, 0), rdx); break; case EXTERNAL_INT_ELEMENTS: case EXTERNAL_UNSIGNED_INT_ELEMENTS: __ movl(Operand(rbx, rdi, times_4, 0), rdx); break; case EXTERNAL_FLOAT_ELEMENTS: // Need to perform int-to-float conversion. __ cvtlsi2ss(xmm0, rdx); __ movss(Operand(rbx, rdi, times_4, 0), xmm0); break; case EXTERNAL_DOUBLE_ELEMENTS: // Need to perform int-to-float conversion. __ cvtlsi2sd(xmm0, rdx); __ movsd(Operand(rbx, rdi, times_8, 0), xmm0); break; case FAST_ELEMENTS: case FAST_SMI_ONLY_ELEMENTS: case FAST_DOUBLE_ELEMENTS: case DICTIONARY_ELEMENTS: case NON_STRICT_ARGUMENTS_ELEMENTS: UNREACHABLE(); break; } __ ret(0); // TODO(danno): handle heap number -> pixel array conversion if (elements_kind != EXTERNAL_PIXEL_ELEMENTS) { __ bind(&check_heap_number); // rax: value // rcx: key (a smi) // rdx: receiver (a JSObject) // rbx: elements array // rdi: untagged key __ CmpObjectType(rax, HEAP_NUMBER_TYPE, kScratchRegister); __ j(not_equal, &slow); // No more branches to slow case on this path. // The WebGL specification leaves the behavior of storing NaN and // +/-Infinity into integer arrays basically undefined. For more // reproducible behavior, convert these to zero. __ movsd(xmm0, FieldOperand(rax, HeapNumber::kValueOffset)); __ movq(rbx, FieldOperand(rbx, ExternalArray::kExternalPointerOffset)); // rdi: untagged index // rbx: base pointer of external storage // top of FPU stack: value if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) { __ cvtsd2ss(xmm0, xmm0); __ movss(Operand(rbx, rdi, times_4, 0), xmm0); __ ret(0); } else if (elements_kind == EXTERNAL_DOUBLE_ELEMENTS) { __ movsd(Operand(rbx, rdi, times_8, 0), xmm0); __ ret(0); } else { // Perform float-to-int conversion with truncation (round-to-zero) // behavior. // Convert to int32 and store the low byte/word. // If the value is NaN or +/-infinity, the result is 0x80000000, // which is automatically zero when taken mod 2^n, n < 32. // rdx: value (converted to an untagged integer) // rdi: untagged index // rbx: base pointer of external storage switch (elements_kind) { case EXTERNAL_BYTE_ELEMENTS: case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: __ cvttsd2si(rdx, xmm0); __ movb(Operand(rbx, rdi, times_1, 0), rdx); break; case EXTERNAL_SHORT_ELEMENTS: case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: __ cvttsd2si(rdx, xmm0); __ movw(Operand(rbx, rdi, times_2, 0), rdx); break; case EXTERNAL_INT_ELEMENTS: case EXTERNAL_UNSIGNED_INT_ELEMENTS: // Convert to int64, so that NaN and infinities become // 0x8000000000000000, which is zero mod 2^32. __ cvttsd2siq(rdx, xmm0); __ movl(Operand(rbx, rdi, times_4, 0), rdx); break; case EXTERNAL_PIXEL_ELEMENTS: case EXTERNAL_FLOAT_ELEMENTS: case EXTERNAL_DOUBLE_ELEMENTS: case FAST_ELEMENTS: case FAST_SMI_ONLY_ELEMENTS: case FAST_DOUBLE_ELEMENTS: case DICTIONARY_ELEMENTS: case NON_STRICT_ARGUMENTS_ELEMENTS: UNREACHABLE(); break; } __ ret(0); } } // Slow case: call runtime. __ bind(&slow); // ----------- S t a t e ------------- // -- rax : value // -- rcx : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- Handle ic = masm->isolate()->builtins()->KeyedStoreIC_Slow(); __ jmp(ic, RelocInfo::CODE_TARGET); // Miss case: call runtime. __ bind(&miss_force_generic); // ----------- S t a t e ------------- // -- rax : value // -- rcx : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- Handle miss_ic = masm->isolate()->builtins()->KeyedStoreIC_MissForceGeneric(); __ jmp(miss_ic, RelocInfo::CODE_TARGET); } void KeyedLoadStubCompiler::GenerateLoadFastElement(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- Label miss_force_generic; // This stub is meant to be tail-jumped to, the receiver must already // have been verified by the caller to not be a smi. // Check that the key is a smi. __ JumpIfNotSmi(rax, &miss_force_generic); // Get the elements array. __ movq(rcx, FieldOperand(rdx, JSObject::kElementsOffset)); __ AssertFastElements(rcx); // Check that the key is within bounds. __ SmiCompare(rax, FieldOperand(rcx, FixedArray::kLengthOffset)); __ j(above_equal, &miss_force_generic); // Load the result and make sure it's not the hole. SmiIndex index = masm->SmiToIndex(rbx, rax, kPointerSizeLog2); __ movq(rbx, FieldOperand(rcx, index.reg, index.scale, FixedArray::kHeaderSize)); __ CompareRoot(rbx, Heap::kTheHoleValueRootIndex); __ j(equal, &miss_force_generic); __ movq(rax, rbx); __ ret(0); __ bind(&miss_force_generic); Code* code = masm->isolate()->builtins()->builtin( Builtins::kKeyedLoadIC_MissForceGeneric); Handle ic(code); __ jmp(ic, RelocInfo::CODE_TARGET); } void KeyedLoadStubCompiler::GenerateLoadFastDoubleElement( MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- Label miss_force_generic, slow_allocate_heapnumber; // This stub is meant to be tail-jumped to, the receiver must already // have been verified by the caller to not be a smi. // Check that the key is a smi. __ JumpIfNotSmi(rax, &miss_force_generic); // Get the elements array. __ movq(rcx, FieldOperand(rdx, JSObject::kElementsOffset)); __ AssertFastElements(rcx); // Check that the key is within bounds. __ SmiCompare(rax, FieldOperand(rcx, FixedArray::kLengthOffset)); __ j(above_equal, &miss_force_generic); // Check for the hole __ SmiToInteger32(kScratchRegister, rax); uint32_t offset = FixedDoubleArray::kHeaderSize + sizeof(kHoleNanLower32); __ cmpl(FieldOperand(rcx, kScratchRegister, times_8, offset), Immediate(kHoleNanUpper32)); __ j(equal, &miss_force_generic); // Always allocate a heap number for the result. __ movsd(xmm0, FieldOperand(rcx, kScratchRegister, times_8, FixedDoubleArray::kHeaderSize)); __ AllocateHeapNumber(rcx, rbx, &slow_allocate_heapnumber); // Set the value. __ movq(rax, rcx); __ movsd(FieldOperand(rcx, HeapNumber::kValueOffset), xmm0); __ ret(0); __ bind(&slow_allocate_heapnumber); Handle slow_ic = masm->isolate()->builtins()->KeyedLoadIC_Slow(); __ jmp(slow_ic, RelocInfo::CODE_TARGET); __ bind(&miss_force_generic); Handle miss_ic = masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric(); __ jmp(miss_ic, RelocInfo::CODE_TARGET); } void KeyedStoreStubCompiler::GenerateStoreFastElement( MacroAssembler* masm, bool is_js_array, ElementsKind elements_kind, KeyedAccessGrowMode grow_mode) { // ----------- S t a t e ------------- // -- rax : value // -- rcx : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- Label miss_force_generic, transition_elements_kind, finish_store, grow; Label check_capacity, slow; // This stub is meant to be tail-jumped to, the receiver must already // have been verified by the caller to not be a smi. // Check that the key is a smi. __ JumpIfNotSmi(rcx, &miss_force_generic); if (elements_kind == FAST_SMI_ONLY_ELEMENTS) { __ JumpIfNotSmi(rax, &transition_elements_kind); } // Get the elements array and make sure it is a fast element array, not 'cow'. __ movq(rdi, FieldOperand(rdx, JSObject::kElementsOffset)); // Check that the key is within bounds. if (is_js_array) { __ SmiCompare(rcx, FieldOperand(rdx, JSArray::kLengthOffset)); if (grow_mode == ALLOW_JSARRAY_GROWTH) { __ j(above_equal, &grow); } else { __ j(above_equal, &miss_force_generic); } } else { __ SmiCompare(rcx, FieldOperand(rdi, FixedArray::kLengthOffset)); __ j(above_equal, &miss_force_generic); } __ CompareRoot(FieldOperand(rdi, HeapObject::kMapOffset), Heap::kFixedArrayMapRootIndex); __ j(not_equal, &miss_force_generic); __ bind(&finish_store); if (elements_kind == FAST_SMI_ONLY_ELEMENTS) { __ SmiToInteger32(rcx, rcx); __ movq(FieldOperand(rdi, rcx, times_pointer_size, FixedArray::kHeaderSize), rax); } else { // Do the store and update the write barrier. ASSERT(elements_kind == FAST_ELEMENTS); __ SmiToInteger32(rcx, rcx); __ lea(rcx, FieldOperand(rdi, rcx, times_pointer_size, FixedArray::kHeaderSize)); __ movq(Operand(rcx, 0), rax); // Make sure to preserve the value in register rax. __ movq(rbx, rax); __ RecordWrite(rdi, rcx, rbx, kDontSaveFPRegs); } // Done. __ ret(0); // Handle store cache miss. __ bind(&miss_force_generic); Handle ic_force_generic = masm->isolate()->builtins()->KeyedStoreIC_MissForceGeneric(); __ jmp(ic_force_generic, RelocInfo::CODE_TARGET); __ bind(&transition_elements_kind); Handle ic_miss = masm->isolate()->builtins()->KeyedStoreIC_Miss(); __ jmp(ic_miss, RelocInfo::CODE_TARGET); if (is_js_array && grow_mode == ALLOW_JSARRAY_GROWTH) { // Grow the array by a single element if possible. __ bind(&grow); // Make sure the array is only growing by a single element, anything else // must be handled by the runtime. Flags are already set by previous // compare. __ j(not_equal, &miss_force_generic); // Check for the empty array, and preallocate a small backing store if // possible. __ movq(rdi, FieldOperand(rdx, JSObject::kElementsOffset)); __ CompareRoot(rdi, Heap::kEmptyFixedArrayRootIndex); __ j(not_equal, &check_capacity); int size = FixedArray::SizeFor(JSArray::kPreallocatedArrayElements); __ AllocateInNewSpace(size, rdi, rbx, r8, &slow, TAG_OBJECT); // rax: value // rcx: key // rdx: receiver // rdi: elements // Make sure that the backing store can hold additional elements. __ Move(FieldOperand(rdi, JSObject::kMapOffset), masm->isolate()->factory()->fixed_array_map()); __ Move(FieldOperand(rdi, FixedArray::kLengthOffset), Smi::FromInt(JSArray::kPreallocatedArrayElements)); __ LoadRoot(rbx, Heap::kTheHoleValueRootIndex); for (int i = 1; i < JSArray::kPreallocatedArrayElements; ++i) { __ movq(FieldOperand(rdi, FixedArray::SizeFor(i)), rbx); } // Store the element at index zero. __ movq(FieldOperand(rdi, FixedArray::SizeFor(0)), rax); // Install the new backing store in the JSArray. __ movq(FieldOperand(rdx, JSObject::kElementsOffset), rdi); __ RecordWriteField(rdx, JSObject::kElementsOffset, rdi, rbx, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); // Increment the length of the array. __ Move(FieldOperand(rdx, JSArray::kLengthOffset), Smi::FromInt(1)); __ ret(0); __ bind(&check_capacity); // Check for cow elements, in general they are not handled by this stub. __ CompareRoot(FieldOperand(rdi, HeapObject::kMapOffset), Heap::kFixedCOWArrayMapRootIndex); __ j(equal, &miss_force_generic); // rax: value // rcx: key // rdx: receiver // rdi: elements // Make sure that the backing store can hold additional elements. __ cmpq(rcx, FieldOperand(rdi, FixedArray::kLengthOffset)); __ j(above_equal, &slow); // Grow the array and finish the store. __ SmiAddConstant(FieldOperand(rdx, JSArray::kLengthOffset), Smi::FromInt(1)); __ jmp(&finish_store); __ bind(&slow); Handle ic_slow = masm->isolate()->builtins()->KeyedStoreIC_Slow(); __ jmp(ic_slow, RelocInfo::CODE_TARGET); } } void KeyedStoreStubCompiler::GenerateStoreFastDoubleElement( MacroAssembler* masm, bool is_js_array, KeyedAccessGrowMode grow_mode) { // ----------- S t a t e ------------- // -- rax : value // -- rcx : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- Label miss_force_generic, transition_elements_kind, finish_store; Label grow, slow, check_capacity; // This stub is meant to be tail-jumped to, the receiver must already // have been verified by the caller to not be a smi. // Check that the key is a smi. __ JumpIfNotSmi(rcx, &miss_force_generic); // Get the elements array. __ movq(rdi, FieldOperand(rdx, JSObject::kElementsOffset)); __ AssertFastElements(rdi); // Check that the key is within bounds. if (is_js_array) { __ SmiCompare(rcx, FieldOperand(rdx, JSArray::kLengthOffset)); if (grow_mode == ALLOW_JSARRAY_GROWTH) { __ j(above_equal, &grow); } else { __ j(above_equal, &miss_force_generic); } } else { __ SmiCompare(rcx, FieldOperand(rdi, FixedDoubleArray::kLengthOffset)); __ j(above_equal, &miss_force_generic); } // Handle smi values specially __ bind(&finish_store); __ SmiToInteger32(rcx, rcx); __ StoreNumberToDoubleElements(rax, rdi, rcx, xmm0, &transition_elements_kind); __ ret(0); // Handle store cache miss, replacing the ic with the generic stub. __ bind(&miss_force_generic); Handle ic_force_generic = masm->isolate()->builtins()->KeyedStoreIC_MissForceGeneric(); __ jmp(ic_force_generic, RelocInfo::CODE_TARGET); __ bind(&transition_elements_kind); // Restore smi-tagging of rcx. __ Integer32ToSmi(rcx, rcx); Handle ic_miss = masm->isolate()->builtins()->KeyedStoreIC_Miss(); __ jmp(ic_miss, RelocInfo::CODE_TARGET); if (is_js_array && grow_mode == ALLOW_JSARRAY_GROWTH) { // Grow the array by a single element if possible. __ bind(&grow); // Make sure the array is only growing by a single element, anything else // must be handled by the runtime. Flags are already set by previous // compare. __ j(not_equal, &miss_force_generic); // Transition on values that can't be stored in a FixedDoubleArray. Label value_is_smi; __ JumpIfSmi(rax, &value_is_smi); __ CompareRoot(FieldOperand(rax, HeapObject::kMapOffset), Heap::kHeapNumberMapRootIndex); __ j(not_equal, &transition_elements_kind); __ bind(&value_is_smi); // Check for the empty array, and preallocate a small backing store if // possible. __ movq(rdi, FieldOperand(rdx, JSObject::kElementsOffset)); __ CompareRoot(rdi, Heap::kEmptyFixedArrayRootIndex); __ j(not_equal, &check_capacity); int size = FixedDoubleArray::SizeFor(JSArray::kPreallocatedArrayElements); __ AllocateInNewSpace(size, rdi, rbx, r8, &slow, TAG_OBJECT); // rax: value // rcx: key // rdx: receiver // rdi: elements // Initialize the new FixedDoubleArray. Leave elements unitialized for // efficiency, they are guaranteed to be initialized before use. __ Move(FieldOperand(rdi, JSObject::kMapOffset), masm->isolate()->factory()->fixed_double_array_map()); __ Move(FieldOperand(rdi, FixedDoubleArray::kLengthOffset), Smi::FromInt(JSArray::kPreallocatedArrayElements)); // Install the new backing store in the JSArray. __ movq(FieldOperand(rdx, JSObject::kElementsOffset), rdi); __ RecordWriteField(rdx, JSObject::kElementsOffset, rdi, rbx, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); // Increment the length of the array. __ Move(FieldOperand(rdx, JSArray::kLengthOffset), Smi::FromInt(1)); __ jmp(&finish_store); __ bind(&check_capacity); // rax: value // rcx: key // rdx: receiver // rdi: elements // Make sure that the backing store can hold additional elements. __ cmpq(rcx, FieldOperand(rdi, FixedDoubleArray::kLengthOffset)); __ j(above_equal, &slow); // Grow the array and finish the store. __ SmiAddConstant(FieldOperand(rdx, JSArray::kLengthOffset), Smi::FromInt(1)); __ jmp(&finish_store); __ bind(&slow); Handle ic_slow = masm->isolate()->builtins()->KeyedStoreIC_Slow(); __ jmp(ic_slow, RelocInfo::CODE_TARGET); } } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_X64