// Copyright 2013 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "hydrogen-check-elimination.h" #include "hydrogen-alias-analysis.h" #include "hydrogen-flow-engine.h" #define GLOBAL 1 // Only collect stats in debug mode. #if DEBUG #define INC_STAT(x) phase_->x++ #else #define INC_STAT(x) #endif // For code de-uglification. #define TRACE(x) if (FLAG_trace_check_elimination) PrintF x namespace v8 { namespace internal { typedef UniqueSet* MapSet; struct HCheckTableEntry { HValue* object_; // The object being approximated. NULL => invalid entry. HInstruction* check_; // The last check instruction. MapSet maps_; // The set of known maps for the object. }; // The main data structure used during check elimination, which stores a // set of known maps for each object. class HCheckTable : public ZoneObject { public: static const int kMaxTrackedObjects = 10; explicit HCheckTable(HCheckEliminationPhase* phase) : phase_(phase), cursor_(0), size_(0) { } // The main processing of instructions. HCheckTable* Process(HInstruction* instr, Zone* zone) { switch (instr->opcode()) { case HValue::kCheckMaps: { ReduceCheckMaps(HCheckMaps::cast(instr)); break; } case HValue::kLoadNamedField: { ReduceLoadNamedField(HLoadNamedField::cast(instr)); break; } case HValue::kStoreNamedField: { ReduceStoreNamedField(HStoreNamedField::cast(instr)); break; } case HValue::kCompareMap: { ReduceCompareMap(HCompareMap::cast(instr)); break; } case HValue::kCompareObjectEqAndBranch: { ReduceCompareObjectEqAndBranch(HCompareObjectEqAndBranch::cast(instr)); break; } case HValue::kTransitionElementsKind: { ReduceTransitionElementsKind( HTransitionElementsKind::cast(instr)); break; } case HValue::kCheckMapValue: { ReduceCheckMapValue(HCheckMapValue::cast(instr)); break; } case HValue::kCheckHeapObject: { ReduceCheckHeapObject(HCheckHeapObject::cast(instr)); break; } default: { // If the instruction changes maps uncontrollably, drop everything. if (instr->CheckChangesFlag(kMaps) || instr->CheckChangesFlag(kOsrEntries)) { Kill(); } } // Improvements possible: // - eliminate redundant HCheckSmi, HCheckInstanceType instructions // - track which values have been HCheckHeapObject'd } return this; } // Support for global analysis with HFlowEngine: Merge given state with // the other incoming state. static HCheckTable* Merge(HCheckTable* succ_state, HBasicBlock* succ_block, HCheckTable* pred_state, HBasicBlock* pred_block, Zone* zone) { if (pred_state == NULL || pred_block->IsUnreachable()) { return succ_state; } if (succ_state == NULL) { return pred_state->Copy(succ_block, pred_block, zone); } else { return succ_state->Merge(succ_block, pred_state, pred_block, zone); } } // Support for global analysis with HFlowEngine: Given state merged with all // the other incoming states, prepare it for use. static HCheckTable* Finish(HCheckTable* state, HBasicBlock* block, Zone* zone) { if (state == NULL) { block->MarkUnreachable(); } else if (block->IsUnreachable()) { state = NULL; } if (FLAG_trace_check_elimination) { PrintF("Processing B%d, checkmaps-table:\n", block->block_id()); Print(state); } return state; } private: // Copy state to successor block. HCheckTable* Copy(HBasicBlock* succ, HBasicBlock* from_block, Zone* zone) { HCheckTable* copy = new(phase_->zone()) HCheckTable(phase_); for (int i = 0; i < size_; i++) { HCheckTableEntry* old_entry = &entries_[i]; ASSERT(old_entry->maps_->size() > 0); HCheckTableEntry* new_entry = ©->entries_[i]; new_entry->object_ = old_entry->object_; new_entry->maps_ = old_entry->maps_->Copy(phase_->zone()); // Keep the check if the existing check's block dominates the successor. if (old_entry->check_ != NULL && old_entry->check_->block()->Dominates(succ)) { new_entry->check_ = old_entry->check_; } else { // Leave it NULL till we meet a new check instruction for this object // in the control flow. new_entry->check_ = NULL; } } copy->cursor_ = cursor_; copy->size_ = size_; // Create entries for succ block's phis. if (!succ->IsLoopHeader() && succ->phis()->length() > 0) { int pred_index = succ->PredecessorIndexOf(from_block); for (int phi_index = 0; phi_index < succ->phis()->length(); ++phi_index) { HPhi* phi = succ->phis()->at(phi_index); HValue* phi_operand = phi->OperandAt(pred_index); HCheckTableEntry* pred_entry = copy->Find(phi_operand); if (pred_entry != NULL) { // Create an entry for a phi in the table. copy->Insert(phi, NULL, pred_entry->maps_->Copy(phase_->zone())); } } } // Branch-sensitive analysis for certain comparisons may add more facts // to the state for the successor on the true branch. bool learned = false; if (succ->predecessors()->length() == 1) { HControlInstruction* end = succ->predecessors()->at(0)->end(); bool is_true_branch = end->SuccessorAt(0) == succ; if (end->IsCompareMap()) { HCompareMap* cmp = HCompareMap::cast(end); HValue* object = cmp->value()->ActualValue(); HCheckTableEntry* entry = copy->Find(object); if (is_true_branch) { // Learn on the true branch of if(CompareMap(x)). if (entry == NULL) { copy->Insert(object, cmp, cmp->map()); } else { MapSet list = new(phase_->zone()) UniqueSet(); list->Add(cmp->map(), phase_->zone()); entry->maps_ = list; entry->check_ = cmp; } } else { // Learn on the false branch of if(CompareMap(x)). if (entry != NULL) { entry->maps_->Remove(cmp->map()); } } learned = true; } else if (is_true_branch && end->IsCompareObjectEqAndBranch()) { // Learn on the true branch of if(CmpObjectEq(x, y)). HCompareObjectEqAndBranch* cmp = HCompareObjectEqAndBranch::cast(end); HValue* left = cmp->left()->ActualValue(); HValue* right = cmp->right()->ActualValue(); HCheckTableEntry* le = copy->Find(left); HCheckTableEntry* re = copy->Find(right); if (le == NULL) { if (re != NULL) { copy->Insert(left, NULL, re->maps_->Copy(zone)); } } else if (re == NULL) { copy->Insert(right, NULL, le->maps_->Copy(zone)); } else { MapSet intersect = le->maps_->Intersect(re->maps_, zone); le->maps_ = intersect; re->maps_ = intersect->Copy(zone); } learned = true; } // Learning on false branches requires storing negative facts. } if (FLAG_trace_check_elimination) { PrintF("B%d checkmaps-table %s from B%d:\n", succ->block_id(), learned ? "learned" : "copied", from_block->block_id()); Print(copy); } return copy; } // Merge this state with the other incoming state. HCheckTable* Merge(HBasicBlock* succ, HCheckTable* that, HBasicBlock* pred_block, Zone* zone) { if (that->size_ == 0) { // If the other state is empty, simply reset. size_ = 0; cursor_ = 0; } else { int pred_index = succ->PredecessorIndexOf(pred_block); bool compact = false; for (int i = 0; i < size_; i++) { HCheckTableEntry* this_entry = &entries_[i]; HCheckTableEntry* that_entry; if (this_entry->object_->IsPhi() && this_entry->object_->block() == succ) { HPhi* phi = HPhi::cast(this_entry->object_); HValue* phi_operand = phi->OperandAt(pred_index); that_entry = that->Find(phi_operand); } else { that_entry = that->Find(this_entry->object_); } if (that_entry == NULL) { this_entry->object_ = NULL; compact = true; } else { this_entry->maps_ = this_entry->maps_->Union(that_entry->maps_, phase_->zone()); if (this_entry->check_ != that_entry->check_) { this_entry->check_ = NULL; } ASSERT(this_entry->maps_->size() > 0); } } if (compact) Compact(); } if (FLAG_trace_check_elimination) { PrintF("B%d checkmaps-table merged with B%d table:\n", succ->block_id(), pred_block->block_id()); Print(this); } return this; } void ReduceCheckMaps(HCheckMaps* instr) { HValue* object = instr->value()->ActualValue(); HCheckTableEntry* entry = Find(object); if (entry != NULL) { // entry found; MapSet a = entry->maps_; const UniqueSet* i = instr->map_set(); if (a->IsSubset(i)) { // The first check is more strict; the second is redundant. if (entry->check_ != NULL) { TRACE(("Replacing redundant CheckMaps #%d at B%d with #%d\n", instr->id(), instr->block()->block_id(), entry->check_->id())); instr->DeleteAndReplaceWith(entry->check_); INC_STAT(redundant_); } else { TRACE(("Marking redundant CheckMaps #%d at B%d as dead\n", instr->id(), instr->block()->block_id())); // Mark check as dead but leave it in the graph as a checkpoint for // subsequent checks. instr->SetFlag(HValue::kIsDead); entry->check_ = instr; INC_STAT(removed_); } return; } MapSet intersection = i->Intersect(a, phase_->zone()); if (intersection->size() == 0) { // Intersection is empty; probably megamorphic, which is likely to // deopt anyway, so just leave things as they are. INC_STAT(empty_); } else { // Update set of maps in the entry. entry->maps_ = intersection; if (intersection->size() != i->size()) { // Narrow set of maps in the second check maps instruction. HGraph* graph = instr->block()->graph(); if (entry->check_ != NULL && entry->check_->block() == instr->block() && entry->check_->IsCheckMaps()) { // There is a check in the same block so replace it with a more // strict check and eliminate the second check entirely. HCheckMaps* check = HCheckMaps::cast(entry->check_); TRACE(("CheckMaps #%d at B%d narrowed\n", check->id(), check->block()->block_id())); // Update map set and ensure that the check is alive. check->set_map_set(intersection, graph->zone()); check->ClearFlag(HValue::kIsDead); TRACE(("Replacing redundant CheckMaps #%d at B%d with #%d\n", instr->id(), instr->block()->block_id(), entry->check_->id())); instr->DeleteAndReplaceWith(entry->check_); } else { TRACE(("CheckMaps #%d at B%d narrowed\n", instr->id(), instr->block()->block_id())); instr->set_map_set(intersection, graph->zone()); entry->check_ = instr; } if (FLAG_trace_check_elimination) { Print(this); } INC_STAT(narrowed_); } } } else { // No entry; insert a new one. Insert(object, instr, instr->map_set()->Copy(phase_->zone())); } } void ReduceLoadNamedField(HLoadNamedField* instr) { // Reduce a load of the map field when it is known to be a constant. if (!IsMapAccess(instr->access())) { // Check if we introduce field maps here. if (instr->map_set()->size() != 0) { Insert(instr, instr, instr->map_set()->Copy(phase_->zone())); } return; } HValue* object = instr->object()->ActualValue(); MapSet maps = FindMaps(object); if (maps == NULL || maps->size() != 1) return; // Not a constant. Unique map = maps->at(0); HConstant* constant = HConstant::CreateAndInsertBefore( instr->block()->graph()->zone(), map, true, instr); instr->DeleteAndReplaceWith(constant); INC_STAT(loads_); } void ReduceCheckMapValue(HCheckMapValue* instr) { if (!instr->map()->IsConstant()) return; // Nothing to learn. HValue* object = instr->value()->ActualValue(); // Match a HCheckMapValue(object, HConstant(map)) Unique map = MapConstant(instr->map()); HCheckTableEntry* entry = Find(object); if (entry != NULL) { MapSet maps = entry->maps_; if (maps->Contains(map)) { if (maps->size() == 1) { // Object is known to have exactly this map. if (entry->check_ != NULL) { instr->DeleteAndReplaceWith(entry->check_); } else { // Mark check as dead but leave it in the graph as a checkpoint for // subsequent checks. instr->SetFlag(HValue::kIsDead); entry->check_ = instr; } INC_STAT(removed_); } else { // Only one map survives the check. maps->Clear(); maps->Add(map, phase_->zone()); entry->check_ = instr; } } } else { // No prior information. Insert(object, instr, map); } } void ReduceCheckHeapObject(HCheckHeapObject* instr) { if (FindMaps(instr->value()->ActualValue()) != NULL) { // If the object has known maps, it's definitely a heap object. instr->DeleteAndReplaceWith(instr->value()); INC_STAT(removed_cho_); } } void ReduceStoreNamedField(HStoreNamedField* instr) { HValue* object = instr->object()->ActualValue(); if (instr->has_transition()) { // This store transitions the object to a new map. Kill(object); Insert(object, NULL, MapConstant(instr->transition())); } else if (IsMapAccess(instr->access())) { // This is a store directly to the map field of the object. Kill(object); if (!instr->value()->IsConstant()) return; Insert(object, NULL, MapConstant(instr->value())); } else { // If the instruction changes maps, it should be handled above. CHECK(!instr->CheckChangesFlag(kMaps)); } } void ReduceCompareMap(HCompareMap* instr) { MapSet maps = FindMaps(instr->value()->ActualValue()); if (maps == NULL) return; int succ; if (maps->Contains(instr->map())) { if (maps->size() != 1) { TRACE(("CompareMap #%d for #%d at B%d can't be eliminated: " "ambiguous set of maps\n", instr->id(), instr->value()->id(), instr->block()->block_id())); return; } succ = 0; INC_STAT(compares_true_); } else { succ = 1; INC_STAT(compares_false_); } TRACE(("Marking redundant CompareMap #%d for #%d at B%d as %s\n", instr->id(), instr->value()->id(), instr->block()->block_id(), succ == 0 ? "true" : "false")); instr->set_known_successor_index(succ); int unreachable_succ = 1 - succ; instr->block()->MarkSuccEdgeUnreachable(unreachable_succ); } void ReduceCompareObjectEqAndBranch(HCompareObjectEqAndBranch* instr) { MapSet maps_left = FindMaps(instr->left()->ActualValue()); if (maps_left == NULL) return; MapSet maps_right = FindMaps(instr->right()->ActualValue()); if (maps_right == NULL) return; MapSet intersection = maps_left->Intersect(maps_right, phase_->zone()); if (intersection->size() > 0) return; TRACE(("Marking redundant CompareObjectEqAndBranch #%d at B%d as false\n", instr->id(), instr->block()->block_id())); int succ = 1; instr->set_known_successor_index(succ); int unreachable_succ = 1 - succ; instr->block()->MarkSuccEdgeUnreachable(unreachable_succ); } void ReduceTransitionElementsKind(HTransitionElementsKind* instr) { MapSet maps = FindMaps(instr->object()->ActualValue()); // Can only learn more about an object that already has a known set of maps. if (maps == NULL) return; if (maps->Contains(instr->original_map())) { // If the object has the original map, it will be transitioned. maps->Remove(instr->original_map()); maps->Add(instr->transitioned_map(), phase_->zone()); } else { // Object does not have the given map, thus the transition is redundant. instr->DeleteAndReplaceWith(instr->object()); INC_STAT(transitions_); } } // Kill everything in the table. void Kill() { size_ = 0; cursor_ = 0; } // Kill everything in the table that may alias {object}. void Kill(HValue* object) { bool compact = false; for (int i = 0; i < size_; i++) { HCheckTableEntry* entry = &entries_[i]; ASSERT(entry->object_ != NULL); if (phase_->aliasing_->MayAlias(entry->object_, object)) { entry->object_ = NULL; compact = true; } } if (compact) Compact(); ASSERT(Find(object) == NULL); } void Compact() { // First, compact the array in place. int max = size_, dest = 0, old_cursor = cursor_; for (int i = 0; i < max; i++) { if (entries_[i].object_ != NULL) { if (dest != i) entries_[dest] = entries_[i]; dest++; } else { if (i < old_cursor) cursor_--; size_--; } } ASSERT(size_ == dest); ASSERT(cursor_ <= size_); // Preserve the age of the entries by moving the older entries to the end. if (cursor_ == size_) return; // Cursor already points at end. if (cursor_ != 0) { // | L = oldest | R = newest | | // ^ cursor ^ size ^ MAX HCheckTableEntry tmp_entries[kMaxTrackedObjects]; int L = cursor_; int R = size_ - cursor_; OS::MemMove(&tmp_entries[0], &entries_[0], L * sizeof(HCheckTableEntry)); OS::MemMove(&entries_[0], &entries_[L], R * sizeof(HCheckTableEntry)); OS::MemMove(&entries_[R], &tmp_entries[0], L * sizeof(HCheckTableEntry)); } cursor_ = size_; // Move cursor to end. } static void Print(HCheckTable* table) { if (table == NULL) { PrintF(" unreachable\n"); return; } for (int i = 0; i < table->size_; i++) { HCheckTableEntry* entry = &table->entries_[i]; ASSERT(entry->object_ != NULL); PrintF(" checkmaps-table @%d: %s #%d ", i, entry->object_->IsPhi() ? "phi" : "object", entry->object_->id()); if (entry->check_ != NULL) { PrintF("check #%d ", entry->check_->id()); } MapSet list = entry->maps_; PrintF("%d maps { ", list->size()); for (int j = 0; j < list->size(); j++) { if (j > 0) PrintF(", "); PrintF("%" V8PRIxPTR, list->at(j).Hashcode()); } PrintF(" }\n"); } } HCheckTableEntry* Find(HValue* object) { for (int i = size_ - 1; i >= 0; i--) { // Search from most-recently-inserted to least-recently-inserted. HCheckTableEntry* entry = &entries_[i]; ASSERT(entry->object_ != NULL); if (phase_->aliasing_->MustAlias(entry->object_, object)) return entry; } return NULL; } MapSet FindMaps(HValue* object) { HCheckTableEntry* entry = Find(object); return entry == NULL ? NULL : entry->maps_; } void Insert(HValue* object, HInstruction* check, Unique map) { MapSet list = new(phase_->zone()) UniqueSet(); list->Add(map, phase_->zone()); Insert(object, check, list); } void Insert(HValue* object, HInstruction* check, MapSet maps) { HCheckTableEntry* entry = &entries_[cursor_++]; entry->object_ = object; entry->check_ = check; entry->maps_ = maps; // If the table becomes full, wrap around and overwrite older entries. if (cursor_ == kMaxTrackedObjects) cursor_ = 0; if (size_ < kMaxTrackedObjects) size_++; } bool IsMapAccess(HObjectAccess access) { return access.IsInobject() && access.offset() == JSObject::kMapOffset; } Unique MapConstant(HValue* value) { return Unique::cast(HConstant::cast(value)->GetUnique()); } friend class HCheckMapsEffects; friend class HCheckEliminationPhase; HCheckEliminationPhase* phase_; HCheckTableEntry entries_[kMaxTrackedObjects]; int16_t cursor_; // Must be <= kMaxTrackedObjects int16_t size_; // Must be <= kMaxTrackedObjects // TODO(titzer): STATIC_ASSERT kMaxTrackedObjects < max(cursor_) }; // Collects instructions that can cause effects that invalidate information // needed for check elimination. class HCheckMapsEffects : public ZoneObject { public: explicit HCheckMapsEffects(Zone* zone) : maps_stored_(false), stores_(5, zone) { } inline bool Disabled() { return false; // Effects are _not_ disabled. } // Process a possibly side-effecting instruction. void Process(HInstruction* instr, Zone* zone) { switch (instr->opcode()) { case HValue::kStoreNamedField: { stores_.Add(HStoreNamedField::cast(instr), zone); break; } case HValue::kOsrEntry: { // Kill everything. Loads must not be hoisted past the OSR entry. maps_stored_ = true; } default: { maps_stored_ |= (instr->CheckChangesFlag(kMaps) | instr->CheckChangesFlag(kElementsKind)); } } } // Apply these effects to the given check elimination table. void Apply(HCheckTable* table) { if (maps_stored_) { // Uncontrollable map modifications; kill everything. table->Kill(); return; } // Kill maps for each store contained in these effects. for (int i = 0; i < stores_.length(); i++) { HStoreNamedField* s = stores_[i]; if (table->IsMapAccess(s->access()) || s->has_transition()) { table->Kill(s->object()->ActualValue()); } } } // Union these effects with the other effects. void Union(HCheckMapsEffects* that, Zone* zone) { maps_stored_ |= that->maps_stored_; for (int i = 0; i < that->stores_.length(); i++) { stores_.Add(that->stores_[i], zone); } } private: bool maps_stored_ : 1; ZoneList stores_; }; // The main routine of the analysis phase. Use the HFlowEngine for either a // local or a global analysis. void HCheckEliminationPhase::Run() { HFlowEngine engine(graph(), zone()); HCheckTable* table = new(zone()) HCheckTable(this); if (GLOBAL) { // Perform a global analysis. engine.AnalyzeDominatedBlocks(graph()->blocks()->at(0), table); } else { // Perform only local analysis. for (int i = 0; i < graph()->blocks()->length(); i++) { table->Kill(); engine.AnalyzeOneBlock(graph()->blocks()->at(i), table); } } if (FLAG_trace_check_elimination) PrintStats(); } // Are we eliminated yet? void HCheckEliminationPhase::PrintStats() { #if DEBUG #define PRINT_STAT(x) if (x##_ > 0) PrintF(" %-16s = %2d\n", #x, x##_) #else #define PRINT_STAT(x) #endif PRINT_STAT(redundant); PRINT_STAT(removed); PRINT_STAT(removed_cho); PRINT_STAT(narrowed); PRINT_STAT(loads); PRINT_STAT(empty); PRINT_STAT(compares_true); PRINT_STAT(compares_false); PRINT_STAT(transitions); } } } // namespace v8::internal