// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_STRING_BUILDER_INL_H_ #define V8_STRING_BUILDER_INL_H_ #include "src/assert-scope.h" #include "src/handles-inl.h" #include "src/heap/factory.h" #include "src/isolate.h" #include "src/objects.h" #include "src/objects/fixed-array.h" #include "src/objects/string-inl.h" #include "src/utils.h" namespace v8 { namespace internal { const int kStringBuilderConcatHelperLengthBits = 11; const int kStringBuilderConcatHelperPositionBits = 19; typedef BitField StringBuilderSubstringLength; typedef BitField StringBuilderSubstringPosition; template void StringBuilderConcatHelper(String* special, sinkchar* sink, FixedArray fixed_array, int array_length); // Returns the result length of the concatenation. // On illegal argument, -1 is returned. int StringBuilderConcatLength(int special_length, FixedArray fixed_array, int array_length, bool* one_byte); class FixedArrayBuilder { public: explicit FixedArrayBuilder(Isolate* isolate, int initial_capacity); explicit FixedArrayBuilder(Handle backing_store); bool HasCapacity(int elements); void EnsureCapacity(Isolate* isolate, int elements); void Add(Object* value); void Add(Smi value); Handle array() { return array_; } int length() { return length_; } int capacity(); Handle ToJSArray(Handle target_array); private: Handle array_; int length_; bool has_non_smi_elements_; }; class ReplacementStringBuilder { public: ReplacementStringBuilder(Heap* heap, Handle subject, int estimated_part_count); static inline void AddSubjectSlice(FixedArrayBuilder* builder, int from, int to) { DCHECK_GE(from, 0); int length = to - from; DCHECK_GT(length, 0); if (StringBuilderSubstringLength::is_valid(length) && StringBuilderSubstringPosition::is_valid(from)) { int encoded_slice = StringBuilderSubstringLength::encode(length) | StringBuilderSubstringPosition::encode(from); builder->Add(Smi::FromInt(encoded_slice)); } else { // Otherwise encode as two smis. builder->Add(Smi::FromInt(-length)); builder->Add(Smi::FromInt(from)); } } void EnsureCapacity(int elements); void AddSubjectSlice(int from, int to) { AddSubjectSlice(&array_builder_, from, to); IncrementCharacterCount(to - from); } void AddString(Handle string); MaybeHandle ToString(); void IncrementCharacterCount(int by) { if (character_count_ > String::kMaxLength - by) { STATIC_ASSERT(String::kMaxLength < kMaxInt); character_count_ = kMaxInt; } else { character_count_ += by; } } private: void AddElement(Object* element); Heap* heap_; FixedArrayBuilder array_builder_; Handle subject_; int character_count_; bool is_one_byte_; }; class IncrementalStringBuilder { public: explicit IncrementalStringBuilder(Isolate* isolate); V8_INLINE String::Encoding CurrentEncoding() { return encoding_; } template V8_INLINE void Append(SrcChar c); V8_INLINE void AppendCharacter(uint8_t c) { if (encoding_ == String::ONE_BYTE_ENCODING) { Append(c); } else { Append(c); } } V8_INLINE void AppendCString(const char* s) { const uint8_t* u = reinterpret_cast(s); if (encoding_ == String::ONE_BYTE_ENCODING) { while (*u != '\0') Append(*(u++)); } else { while (*u != '\0') Append(*(u++)); } } V8_INLINE void AppendCString(const uc16* s) { if (encoding_ == String::ONE_BYTE_ENCODING) { while (*s != '\0') Append(*(s++)); } else { while (*s != '\0') Append(*(s++)); } } V8_INLINE bool CurrentPartCanFit(int length) { return part_length_ - current_index_ > length; } // We make a rough estimate to find out if the current string can be // serialized without allocating a new string part. The worst case length of // an escaped character is 6. Shifting the remaining string length right by 3 // is a more pessimistic estimate, but faster to calculate. V8_INLINE int EscapedLengthIfCurrentPartFits(int length) { if (length > kMaxPartLength) return 0; STATIC_ASSERT((kMaxPartLength << 3) <= String::kMaxLength); // This shift will not overflow because length is already less than the // maximum part length. int worst_case_length = length << 3; return CurrentPartCanFit(worst_case_length) ? worst_case_length : 0; } void AppendString(Handle string); MaybeHandle Finish(); V8_INLINE bool HasOverflowed() const { return overflowed_; } int Length() const; // Change encoding to two-byte. void ChangeEncoding() { DCHECK_EQ(String::ONE_BYTE_ENCODING, encoding_); ShrinkCurrentPart(); encoding_ = String::TWO_BYTE_ENCODING; Extend(); } template class NoExtend { public: explicit NoExtend(Handle string, int offset) { DCHECK(string->IsSeqOneByteString() || string->IsSeqTwoByteString()); if (sizeof(DestChar) == 1) { start_ = reinterpret_cast( Handle::cast(string)->GetChars() + offset); } else { start_ = reinterpret_cast( Handle::cast(string)->GetChars() + offset); } cursor_ = start_; } V8_INLINE void Append(DestChar c) { *(cursor_++) = c; } V8_INLINE void AppendCString(const char* s) { const uint8_t* u = reinterpret_cast(s); while (*u != '\0') Append(*(u++)); } int written() { return static_cast(cursor_ - start_); } private: DestChar* start_; DestChar* cursor_; DISALLOW_HEAP_ALLOCATION(no_gc_); }; template class NoExtendString : public NoExtend { public: NoExtendString(Handle string, int required_length) : NoExtend(string, 0), string_(string) { DCHECK(string->length() >= required_length); } Handle Finalize() { Handle string = Handle::cast(string_); int length = NoExtend::written(); Handle result = SeqString::Truncate(string, length); string_ = Handle(); return result; } private: Handle string_; }; template class NoExtendBuilder : public NoExtend { public: NoExtendBuilder(IncrementalStringBuilder* builder, int required_length) : NoExtend(builder->current_part(), builder->current_index_), builder_(builder) { DCHECK(builder->CurrentPartCanFit(required_length)); } ~NoExtendBuilder() { builder_->current_index_ += NoExtend::written(); } private: IncrementalStringBuilder* builder_; }; private: Factory* factory() { return isolate_->factory(); } V8_INLINE Handle accumulator() { return accumulator_; } V8_INLINE void set_accumulator(Handle string) { *accumulator_.location() = string->ptr(); } V8_INLINE Handle current_part() { return current_part_; } V8_INLINE void set_current_part(Handle string) { *current_part_.location() = string->ptr(); } // Add the current part to the accumulator. void Accumulate(Handle new_part); // Finish the current part and allocate a new part. void Extend(); // Shrink current part to the right size. void ShrinkCurrentPart() { DCHECK(current_index_ < part_length_); set_current_part(SeqString::Truncate( Handle::cast(current_part()), current_index_)); } static const int kInitialPartLength = 32; static const int kMaxPartLength = 16 * 1024; static const int kPartLengthGrowthFactor = 2; Isolate* isolate_; String::Encoding encoding_; bool overflowed_; int part_length_; int current_index_; Handle accumulator_; Handle current_part_; }; template void IncrementalStringBuilder::Append(SrcChar c) { DCHECK_EQ(encoding_ == String::ONE_BYTE_ENCODING, sizeof(DestChar) == 1); if (sizeof(DestChar) == 1) { DCHECK_EQ(String::ONE_BYTE_ENCODING, encoding_); SeqOneByteString::cast(*current_part_) ->SeqOneByteStringSet(current_index_++, c); } else { DCHECK_EQ(String::TWO_BYTE_ENCODING, encoding_); SeqTwoByteString::cast(*current_part_) ->SeqTwoByteStringSet(current_index_++, c); } if (current_index_ == part_length_) Extend(); } } // namespace internal } // namespace v8 #endif // V8_STRING_BUILDER_INL_H_