// Copyright 2016 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "test/cctest/cctest.h" #include "src/base/utils/random-number-generator.h" #include "src/ic/accessor-assembler.h" #include "src/ic/stub-cache.h" #include "src/objects/objects-inl.h" #include "src/objects/smi.h" #include "test/cctest/compiler/code-assembler-tester.h" #include "test/cctest/compiler/function-tester.h" namespace v8 { namespace internal { using compiler::CodeAssemblerTester; using compiler::FunctionTester; using compiler::Node; namespace { void TestStubCacheOffsetCalculation(StubCache::Table table) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 2; CodeAssemblerTester data(isolate, kNumParams + 1); // Include receiver. AccessorAssembler m(data.state()); { auto name = m.Parameter(1); auto map = m.Parameter(2); TNode primary_offset = m.StubCachePrimaryOffsetForTesting(name, map); Node* result; if (table == StubCache::kPrimary) { result = primary_offset; } else { CHECK_EQ(StubCache::kSecondary, table); result = m.StubCacheSecondaryOffsetForTesting(name, primary_offset); } m.Return(m.SmiTag(result)); } Handle code = data.GenerateCode(); FunctionTester ft(code, kNumParams); Factory* factory = isolate->factory(); Handle names[] = { factory->NewSymbol(), factory->InternalizeUtf8String("a"), factory->InternalizeUtf8String("bb"), factory->InternalizeUtf8String("ccc"), factory->NewPrivateSymbol(), factory->InternalizeUtf8String("dddd"), factory->InternalizeUtf8String("eeeee"), factory->InternalizeUtf8String("name"), factory->NewSymbol(), factory->NewPrivateSymbol(), }; Handle maps[] = { factory->cell_map(), Map::Create(isolate, 0), factory->meta_map(), factory->code_map(), Map::Create(isolate, 0), factory->hash_table_map(), factory->symbol_map(), factory->string_map(), Map::Create(isolate, 0), factory->sloppy_arguments_elements_map(), }; for (size_t name_index = 0; name_index < arraysize(names); name_index++) { Handle name = names[name_index]; for (size_t map_index = 0; map_index < arraysize(maps); map_index++) { Handle map = maps[map_index]; int expected_result; { int primary_offset = StubCache::PrimaryOffsetForTesting(*name, *map); if (table == StubCache::kPrimary) { expected_result = primary_offset; } else { expected_result = StubCache::SecondaryOffsetForTesting(*name, primary_offset); } } Handle result = ft.Call(name, map).ToHandleChecked(); Smi expected = Smi::FromInt(expected_result & Smi::kMaxValue); CHECK_EQ(expected, Smi::cast(*result)); } } } } // namespace TEST(StubCachePrimaryOffset) { TestStubCacheOffsetCalculation(StubCache::kPrimary); } TEST(StubCacheSecondaryOffset) { TestStubCacheOffsetCalculation(StubCache::kSecondary); } namespace { Handle CreateCodeOfKind(CodeKind kind) { Isolate* isolate(CcTest::InitIsolateOnce()); CodeAssemblerTester data(isolate, kind); CodeStubAssembler m(data.state()); m.Return(m.UndefinedConstant()); return data.GenerateCodeCloseAndEscape(); } } // namespace TEST(TryProbeStubCache) { using Label = CodeStubAssembler::Label; Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 3; CodeAssemblerTester data(isolate, kNumParams + 1); // Include receiver. AccessorAssembler m(data.state()); StubCache stub_cache(isolate); stub_cache.Clear(); { auto receiver = m.Parameter(1); auto name = m.Parameter(2); TNode expected_handler = m.UncheckedParameter(3); Label passed(&m), failed(&m); CodeStubAssembler::TVariable var_handler(&m); Label if_handler(&m), if_miss(&m); m.TryProbeStubCache(&stub_cache, receiver, name, &if_handler, &var_handler, &if_miss); m.BIND(&if_handler); m.Branch(m.TaggedEqual(expected_handler, var_handler.value()), &passed, &failed); m.BIND(&if_miss); m.Branch(m.TaggedEqual(expected_handler, m.SmiConstant(0)), &passed, &failed); m.BIND(&passed); m.Return(m.BooleanConstant(true)); m.BIND(&failed); m.Return(m.BooleanConstant(false)); } Handle code = data.GenerateCode(); FunctionTester ft(code, kNumParams); std::vector> names; std::vector> receivers; std::vector> handlers; base::RandomNumberGenerator rand_gen(FLAG_random_seed); Factory* factory = isolate->factory(); // Generate some number of names. for (int i = 0; i < StubCache::kPrimaryTableSize / 7; i++) { Handle name; switch (rand_gen.NextInt(3)) { case 0: { // Generate string. std::stringstream ss; ss << "s" << std::hex << (rand_gen.NextInt(Smi::kMaxValue) % StubCache::kPrimaryTableSize); name = factory->InternalizeUtf8String(ss.str().c_str()); break; } case 1: { // Generate number string. std::stringstream ss; ss << (rand_gen.NextInt(Smi::kMaxValue) % StubCache::kPrimaryTableSize); name = factory->InternalizeUtf8String(ss.str().c_str()); break; } case 2: { // Generate symbol. name = factory->NewSymbol(); break; } default: UNREACHABLE(); } names.push_back(name); } // Generate some number of receiver maps and receivers. for (int i = 0; i < StubCache::kSecondaryTableSize / 2; i++) { Handle map = Map::Create(isolate, 0); receivers.push_back(factory->NewJSObjectFromMap(map)); } // Generate some number of handlers. for (int i = 0; i < 30; i++) { handlers.push_back( CreateCodeOfKind(CodeKind::DEOPT_ENTRIES_OR_FOR_TESTING)); } // Ensure that GC does happen because from now on we are going to fill our // own stub cache instance with raw values. DisallowHeapAllocation no_gc; // Populate {stub_cache}. const int N = StubCache::kPrimaryTableSize + StubCache::kSecondaryTableSize; for (int i = 0; i < N; i++) { int index = rand_gen.NextInt(); Handle name = names[index % names.size()]; Handle receiver = receivers[index % receivers.size()]; Handle handler = handlers[index % handlers.size()]; stub_cache.Set(*name, receiver->map(), MaybeObject::FromObject(*handler)); } // Perform some queries. bool queried_existing = false; bool queried_non_existing = false; for (int i = 0; i < N; i++) { int index = rand_gen.NextInt(); Handle name = names[index % names.size()]; Handle receiver = receivers[index % receivers.size()]; MaybeObject handler = stub_cache.Get(*name, receiver->map()); if (handler.ptr() == kNullAddress) { queried_non_existing = true; } else { queried_existing = true; } Handle expected_handler(handler->GetHeapObjectOrSmi(), isolate); ft.CheckTrue(receiver, name, expected_handler); } for (int i = 0; i < N; i++) { int index1 = rand_gen.NextInt(); int index2 = rand_gen.NextInt(); Handle name = names[index1 % names.size()]; Handle receiver = receivers[index2 % receivers.size()]; MaybeObject handler = stub_cache.Get(*name, receiver->map()); if (handler.ptr() == kNullAddress) { queried_non_existing = true; } else { queried_existing = true; } Handle expected_handler(handler->GetHeapObjectOrSmi(), isolate); ft.CheckTrue(receiver, name, expected_handler); } // Ensure we performed both kind of queries. CHECK(queried_existing && queried_non_existing); } } // namespace internal } // namespace v8