// Copyright 2009 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "codegen-inl.h" #include "compiler.h" #include "debug.h" #include "fast-codegen.h" #include "parser.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm_) // Generate code for a JS function. On entry to the function the receiver // and arguments have been pushed on the stack left to right. The actual // argument count matches the formal parameter count expected by the // function. // // The live registers are: // o r1: the JS function object being called (ie, ourselves) // o cp: our context // o fp: our caller's frame pointer // o sp: stack pointer // o lr: return address // // The function builds a JS frame. Please see JavaScriptFrameConstants in // frames-arm.h for its layout. void FastCodeGenerator::Generate(FunctionLiteral* fun) { function_ = fun; SetFunctionPosition(fun); int locals_count = fun->scope()->num_stack_slots(); __ stm(db_w, sp, r1.bit() | cp.bit() | fp.bit() | lr.bit()); if (locals_count > 0) { // Load undefined value here, so the value is ready for the loop below. __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); } // Adjust fp to point to caller's fp. __ add(fp, sp, Operand(2 * kPointerSize)); { Comment cmnt(masm_, "[ Allocate locals"); for (int i = 0; i < locals_count; i++) { __ push(ip); } } bool function_in_register = true; Variable* arguments = fun->scope()->arguments()->AsVariable(); if (arguments != NULL) { // Function uses arguments object. Comment cmnt(masm_, "[ Allocate arguments object"); __ mov(r3, r1); // Receiver is just before the parameters on the caller's stack. __ add(r2, fp, Operand(StandardFrameConstants::kCallerSPOffset + fun->num_parameters() * kPointerSize)); __ mov(r1, Operand(Smi::FromInt(fun->num_parameters()))); __ stm(db_w, sp, r1.bit() | r2.bit() | r3.bit()); // Arguments to ArgumentsAccessStub: // function, receiver address, parameter count. // The stub will rewrite receiever and parameter count if the previous // stack frame was an arguments adapter frame. ArgumentsAccessStub stub(ArgumentsAccessStub::NEW_OBJECT); __ CallStub(&stub); __ str(r0, MemOperand(fp, SlotOffset(arguments->slot()))); Slot* dot_arguments_slot = fun->scope()->arguments_shadow()->AsVariable()->slot(); __ str(r0, MemOperand(fp, SlotOffset(dot_arguments_slot))); function_in_register = false; } // Possibly allocate a local context. if (fun->scope()->num_heap_slots() > 0) { Comment cmnt(masm_, "[ Allocate local context"); if (!function_in_register) { // Load this again, if it's used by the local context below. __ ldr(r1, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); } // Argument to NewContext is the function, which is in r1. __ push(r1); __ CallRuntime(Runtime::kNewContext, 1); // Context is returned in both r0 and cp. It replaces the context // passed to us. It's saved in the stack and kept live in cp. __ str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); #ifdef DEBUG // Assert we do not have to copy any parameters into the context. for (int i = 0, len = fun->scope()->num_parameters(); i < len; i++) { Slot* slot = fun->scope()->parameter(i)->slot(); ASSERT(slot != NULL && slot->type() != Slot::CONTEXT); } #endif } // Check the stack for overflow or break request. // Put the lr setup instruction in the delay slot. The kInstrSize is // added to the implicit 8 byte offset that always applies to operations // with pc and gives a return address 12 bytes down. Comment cmnt(masm_, "[ Stack check"); __ LoadRoot(r2, Heap::kStackLimitRootIndex); __ add(lr, pc, Operand(Assembler::kInstrSize)); __ cmp(sp, Operand(r2)); StackCheckStub stub; __ mov(pc, Operand(reinterpret_cast(stub.GetCode().location()), RelocInfo::CODE_TARGET), LeaveCC, lo); { Comment cmnt(masm_, "[ Declarations"); VisitDeclarations(fun->scope()->declarations()); } if (FLAG_trace) { __ CallRuntime(Runtime::kTraceEnter, 0); } { Comment cmnt(masm_, "[ Body"); ASSERT(loop_depth() == 0); VisitStatements(fun->body()); ASSERT(loop_depth() == 0); } { Comment cmnt(masm_, "[ return ;"); // Emit a 'return undefined' in case control fell off the end of the // body. __ LoadRoot(r0, Heap::kUndefinedValueRootIndex); } EmitReturnSequence(function_->end_position()); } void FastCodeGenerator::EmitReturnSequence(int position) { Comment cmnt(masm_, "[ Return sequence"); if (return_label_.is_bound()) { __ b(&return_label_); } else { __ bind(&return_label_); if (FLAG_trace) { // Push the return value on the stack as the parameter. // Runtime::TraceExit returns its parameter in r0. __ push(r0); __ CallRuntime(Runtime::kTraceExit, 1); } // Add a label for checking the size of the code used for returning. Label check_exit_codesize; masm_->bind(&check_exit_codesize); // Calculate the exact length of the return sequence and make sure that // the constant pool is not emitted inside of the return sequence. int num_parameters = function_->scope()->num_parameters(); int32_t sp_delta = (num_parameters + 1) * kPointerSize; int return_sequence_length = Debug::kARMJSReturnSequenceLength; if (!masm_->ImmediateFitsAddrMode1Instruction(sp_delta)) { // Additional mov instruction generated. return_sequence_length++; } masm_->BlockConstPoolFor(return_sequence_length); CodeGenerator::RecordPositions(masm_, position); __ RecordJSReturn(); __ mov(sp, fp); __ ldm(ia_w, sp, fp.bit() | lr.bit()); __ add(sp, sp, Operand(sp_delta)); __ Jump(lr); // Check that the size of the code used for returning matches what is // expected by the debugger. The add instruction above is an addressing // mode 1 instruction where there are restrictions on which immediate values // can be encoded in the instruction and which immediate values requires // use of an additional instruction for moving the immediate to a temporary // register. ASSERT_EQ(return_sequence_length, masm_->InstructionsGeneratedSince(&check_exit_codesize)); } } void FastCodeGenerator::Move(Expression::Context context, Register source) { switch (context) { case Expression::kUninitialized: UNREACHABLE(); case Expression::kEffect: break; case Expression::kValue: __ push(source); break; case Expression::kTest: TestAndBranch(source, true_label_, false_label_); break; case Expression::kValueTest: { Label discard; __ push(source); TestAndBranch(source, true_label_, &discard); __ bind(&discard); __ pop(); __ jmp(false_label_); break; } case Expression::kTestValue: { Label discard; __ push(source); TestAndBranch(source, &discard, false_label_); __ bind(&discard); __ pop(); __ jmp(true_label_); } } } void FastCodeGenerator::Move(Expression::Context context, Slot* source) { switch (context) { case Expression::kUninitialized: UNREACHABLE(); case Expression::kEffect: break; case Expression::kValue: // Fall through. case Expression::kTest: // Fall through. case Expression::kValueTest: // Fall through. case Expression::kTestValue: __ ldr(ip, MemOperand(fp, SlotOffset(source))); Move(context, ip); break; } } void FastCodeGenerator::Move(Expression::Context context, Literal* expr) { switch (context) { case Expression::kUninitialized: UNREACHABLE(); case Expression::kEffect: break; case Expression::kValue: // Fall through. case Expression::kTest: // Fall through. case Expression::kValueTest: // Fall through. case Expression::kTestValue: __ mov(ip, Operand(expr->handle())); Move(context, ip); break; } } void FastCodeGenerator::DropAndMove(Expression::Context context, Register source) { switch (context) { case Expression::kUninitialized: UNREACHABLE(); case Expression::kEffect: __ pop(); break; case Expression::kValue: __ str(source, MemOperand(sp)); break; case Expression::kTest: ASSERT(!source.is(sp)); __ pop(); TestAndBranch(source, true_label_, false_label_); break; case Expression::kValueTest: { Label discard; __ str(source, MemOperand(sp)); TestAndBranch(source, true_label_, &discard); __ bind(&discard); __ pop(); __ jmp(false_label_); break; } case Expression::kTestValue: { Label discard; __ str(source, MemOperand(sp)); TestAndBranch(source, &discard, false_label_); __ bind(&discard); __ pop(); __ jmp(true_label_); break; } } } void FastCodeGenerator::TestAndBranch(Register source, Label* true_label, Label* false_label) { ASSERT_NE(NULL, true_label); ASSERT_NE(NULL, false_label); // Call the runtime to find the boolean value of the source and then // translate it into control flow to the pair of labels. __ push(source); __ CallRuntime(Runtime::kToBool, 1); __ LoadRoot(ip, Heap::kTrueValueRootIndex); __ cmp(r0, ip); __ b(eq, true_label); __ jmp(false_label); } void FastCodeGenerator::VisitDeclaration(Declaration* decl) { Variable* var = decl->proxy()->var(); ASSERT(var != NULL); // Must have been resolved. Slot* slot = var->slot(); ASSERT(slot != NULL); // No global declarations here. // We have 3 cases for slots: LOOKUP, LOCAL, CONTEXT. switch (slot->type()) { case Slot::LOOKUP: { __ mov(r2, Operand(var->name())); // Declaration nodes are always introduced in one of two modes. ASSERT(decl->mode() == Variable::VAR || decl->mode() == Variable::CONST); PropertyAttributes attr = decl->mode() == Variable::VAR ? NONE : READ_ONLY; __ mov(r1, Operand(Smi::FromInt(attr))); // Push initial value, if any. // Note: For variables we must not push an initial value (such as // 'undefined') because we may have a (legal) redeclaration and we // must not destroy the current value. if (decl->mode() == Variable::CONST) { __ mov(r0, Operand(Factory::the_hole_value())); __ stm(db_w, sp, cp.bit() | r2.bit() | r1.bit() | r0.bit()); } else if (decl->fun() != NULL) { __ stm(db_w, sp, cp.bit() | r2.bit() | r1.bit()); Visit(decl->fun()); // Initial value for function decl. } else { __ mov(r0, Operand(Smi::FromInt(0))); // No initial value! __ stm(db_w, sp, cp.bit() | r2.bit() | r1.bit() | r0.bit()); } __ CallRuntime(Runtime::kDeclareContextSlot, 4); break; } case Slot::LOCAL: if (decl->mode() == Variable::CONST) { __ mov(r0, Operand(Factory::the_hole_value())); __ str(r0, MemOperand(fp, SlotOffset(var->slot()))); } else if (decl->fun() != NULL) { Visit(decl->fun()); __ pop(r0); __ str(r0, MemOperand(fp, SlotOffset(var->slot()))); } break; case Slot::CONTEXT: // The variable in the decl always resides in the current context. ASSERT(function_->scope()->ContextChainLength(slot->var()->scope()) == 0); if (decl->mode() == Variable::CONST) { __ mov(r0, Operand(Factory::the_hole_value())); if (FLAG_debug_code) { // Check if we have the correct context pointer. __ ldr(r1, CodeGenerator::ContextOperand( cp, Context::FCONTEXT_INDEX)); __ cmp(r1, cp); __ Check(eq, "Unexpected declaration in current context."); } __ str(r0, CodeGenerator::ContextOperand(cp, slot->index())); // No write barrier since the_hole_value is in old space. ASSERT(Heap::InNewSpace(*Factory::the_hole_value())); } else if (decl->fun() != NULL) { Visit(decl->fun()); __ pop(r0); if (FLAG_debug_code) { // Check if we have the correct context pointer. __ ldr(r1, CodeGenerator::ContextOperand( cp, Context::FCONTEXT_INDEX)); __ cmp(r1, cp); __ Check(eq, "Unexpected declaration in current context."); } __ str(r0, CodeGenerator::ContextOperand(cp, slot->index())); int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize; __ mov(r2, Operand(offset)); // We know that we have written a function, which is not a smi. __ RecordWrite(cp, r2, r0); } break; default: UNREACHABLE(); } } void FastCodeGenerator::DeclareGlobals(Handle pairs) { // Call the runtime to declare the globals. // The context is the first argument. __ mov(r1, Operand(pairs)); __ mov(r0, Operand(Smi::FromInt(is_eval_ ? 1 : 0))); __ stm(db_w, sp, cp.bit() | r1.bit() | r0.bit()); __ CallRuntime(Runtime::kDeclareGlobals, 3); // Return value is ignored. } void FastCodeGenerator::VisitReturnStatement(ReturnStatement* stmt) { Comment cmnt(masm_, "[ ReturnStatement"); Expression* expr = stmt->expression(); // Complete the statement based on the type of the subexpression. if (expr->AsLiteral() != NULL) { __ mov(r0, Operand(expr->AsLiteral()->handle())); } else { ASSERT_EQ(Expression::kValue, expr->context()); Visit(expr); __ pop(r0); } EmitReturnSequence(stmt->statement_pos()); } void FastCodeGenerator::VisitFunctionLiteral(FunctionLiteral* expr) { Comment cmnt(masm_, "[ FunctionLiteral"); // Build the function boilerplate and instantiate it. Handle boilerplate = Compiler::BuildBoilerplate(expr, script_, this); if (HasStackOverflow()) return; ASSERT(boilerplate->IsBoilerplate()); // Create a new closure. __ mov(r0, Operand(boilerplate)); __ stm(db_w, sp, cp.bit() | r0.bit()); __ CallRuntime(Runtime::kNewClosure, 2); Move(expr->context(), r0); } void FastCodeGenerator::VisitVariableProxy(VariableProxy* expr) { Comment cmnt(masm_, "[ VariableProxy"); Expression* rewrite = expr->var()->rewrite(); if (rewrite == NULL) { ASSERT(expr->var()->is_global()); Comment cmnt(masm_, "Global variable"); // Use inline caching. Variable name is passed in r2 and the global // object on the stack. __ ldr(ip, CodeGenerator::GlobalObject()); __ push(ip); __ mov(r2, Operand(expr->name())); Handle ic(Builtins::builtin(Builtins::LoadIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET_CONTEXT); DropAndMove(expr->context(), r0); } else if (rewrite->AsSlot() != NULL) { Slot* slot = rewrite->AsSlot(); ASSERT_NE(NULL, slot); switch (slot->type()) { case Slot::LOCAL: case Slot::PARAMETER: { Comment cmnt(masm_, "Stack slot"); Move(expr->context(), rewrite->AsSlot()); break; } case Slot::CONTEXT: { Comment cmnt(masm_, "Context slot"); int chain_length = function_->scope()->ContextChainLength(slot->var()->scope()); if (chain_length > 0) { // Move up the chain of contexts to the context containing the slot. __ ldr(r0, CodeGenerator::ContextOperand(cp, Context::CLOSURE_INDEX)); // Load the function context (which is the incoming, outer context). __ ldr(r0, FieldMemOperand(r0, JSFunction::kContextOffset)); for (int i = 1; i < chain_length; i++) { __ ldr(r0, CodeGenerator::ContextOperand(r0, Context::CLOSURE_INDEX)); // Load the function context (which is the incoming, outer context). __ ldr(r0, FieldMemOperand(r0, JSFunction::kContextOffset)); } // The context may be an intermediate context, not a function context. __ ldr(r0, CodeGenerator::ContextOperand(r0, Context::FCONTEXT_INDEX)); } else { // Slot is in the current context. __ ldr(r0, CodeGenerator::ContextOperand(cp, Context::FCONTEXT_INDEX)); } __ ldr(r0, CodeGenerator::ContextOperand(r0, slot->index())); Move(expr->context(), r0); break; } case Slot::LOOKUP: UNREACHABLE(); break; } } else { // The parameter variable has been rewritten into an explict access to // the arguments object. Property* property = rewrite->AsProperty(); ASSERT_NOT_NULL(property); ASSERT_EQ(expr->context(), property->context()); Visit(property); } } void FastCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) { Comment cmnt(masm_, "[ RegExpLiteral"); Label done; // Registers will be used as follows: // r4 = JS function, literals array // r3 = literal index // r2 = RegExp pattern // r1 = RegExp flags // r0 = temp + return value (RegExp literal) __ ldr(r0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ ldr(r4, FieldMemOperand(r0, JSFunction::kLiteralsOffset)); int literal_offset = FixedArray::kHeaderSize + expr->literal_index() * kPointerSize; __ ldr(r0, FieldMemOperand(r4, literal_offset)); __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); __ cmp(r0, ip); __ b(ne, &done); __ mov(r3, Operand(Smi::FromInt(expr->literal_index()))); __ mov(r2, Operand(expr->pattern())); __ mov(r1, Operand(expr->flags())); __ stm(db_w, sp, r4.bit() | r3.bit() | r2.bit() | r1.bit()); __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4); __ bind(&done); Move(expr->context(), r0); } void FastCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) { Comment cmnt(masm_, "[ ObjectLiteral"); Label boilerplate_exists; __ ldr(r2, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); // r2 = literal array (0). __ ldr(r2, FieldMemOperand(r2, JSFunction::kLiteralsOffset)); int literal_offset = FixedArray::kHeaderSize + expr->literal_index() * kPointerSize; __ ldr(r0, FieldMemOperand(r2, literal_offset)); // Check whether we need to materialize the object literal boilerplate. __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); __ cmp(r0, Operand(ip)); __ b(ne, &boilerplate_exists); // Create boilerplate if it does not exist. // r1 = literal index (1). __ mov(r1, Operand(Smi::FromInt(expr->literal_index()))); // r0 = constant properties (2). __ mov(r0, Operand(expr->constant_properties())); __ stm(db_w, sp, r2.bit() | r1.bit() | r0.bit()); __ CallRuntime(Runtime::kCreateObjectLiteralBoilerplate, 3); __ bind(&boilerplate_exists); // r0 contains boilerplate. // Clone boilerplate. __ push(r0); if (expr->depth() > 1) { __ CallRuntime(Runtime::kCloneLiteralBoilerplate, 1); } else { __ CallRuntime(Runtime::kCloneShallowLiteralBoilerplate, 1); } // If result_saved == true: the result is saved on top of the stack. // If result_saved == false: the result is in r0. bool result_saved = false; for (int i = 0; i < expr->properties()->length(); i++) { ObjectLiteral::Property* property = expr->properties()->at(i); if (property->IsCompileTimeValue()) continue; Literal* key = property->key(); Expression* value = property->value(); if (!result_saved) { __ push(r0); // Save result on stack result_saved = true; } switch (property->kind()) { case ObjectLiteral::Property::CONSTANT: UNREACHABLE(); case ObjectLiteral::Property::MATERIALIZED_LITERAL: // Fall through. ASSERT(!CompileTimeValue::IsCompileTimeValue(property->value())); case ObjectLiteral::Property::COMPUTED: if (key->handle()->IsSymbol()) { Visit(value); ASSERT_EQ(Expression::kValue, value->context()); __ pop(r0); __ mov(r2, Operand(key->handle())); Handle ic(Builtins::builtin(Builtins::StoreIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); // StoreIC leaves the receiver on the stack. break; } // Fall through. case ObjectLiteral::Property::PROTOTYPE: __ push(r0); Visit(key); ASSERT_EQ(Expression::kValue, key->context()); Visit(value); ASSERT_EQ(Expression::kValue, value->context()); __ CallRuntime(Runtime::kSetProperty, 3); __ ldr(r0, MemOperand(sp)); // Restore result into r0 break; case ObjectLiteral::Property::GETTER: // Fall through. case ObjectLiteral::Property::SETTER: __ push(r0); Visit(key); ASSERT_EQ(Expression::kValue, key->context()); __ mov(r1, Operand(property->kind() == ObjectLiteral::Property::SETTER ? Smi::FromInt(1) : Smi::FromInt(0))); __ push(r1); Visit(value); ASSERT_EQ(Expression::kValue, value->context()); __ CallRuntime(Runtime::kDefineAccessor, 4); __ ldr(r0, MemOperand(sp)); // Restore result into r0 break; } } switch (expr->context()) { case Expression::kUninitialized: UNREACHABLE(); case Expression::kEffect: if (result_saved) __ pop(); break; case Expression::kValue: if (!result_saved) __ push(r0); break; case Expression::kTest: if (result_saved) __ pop(r0); TestAndBranch(r0, true_label_, false_label_); break; case Expression::kValueTest: { Label discard; if (!result_saved) __ push(r0); TestAndBranch(r0, true_label_, &discard); __ bind(&discard); __ pop(); __ jmp(false_label_); break; } case Expression::kTestValue: { Label discard; if (!result_saved) __ push(r0); TestAndBranch(r0, &discard, false_label_); __ bind(&discard); __ pop(); __ jmp(true_label_); break; } } } void FastCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) { Comment cmnt(masm_, "[ ArrayLiteral"); Label make_clone; // Fetch the function's literals array. __ ldr(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ ldr(r3, FieldMemOperand(r3, JSFunction::kLiteralsOffset)); // Check if the literal's boilerplate has been instantiated. int offset = FixedArray::kHeaderSize + (expr->literal_index() * kPointerSize); __ ldr(r0, FieldMemOperand(r3, offset)); __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); __ cmp(r0, ip); __ b(&make_clone, ne); // Instantiate the boilerplate. __ mov(r2, Operand(Smi::FromInt(expr->literal_index()))); __ mov(r1, Operand(expr->literals())); __ stm(db_w, sp, r3.bit() | r2.bit() | r1.bit()); __ CallRuntime(Runtime::kCreateArrayLiteralBoilerplate, 3); __ bind(&make_clone); // Clone the boilerplate. __ push(r0); if (expr->depth() > 1) { __ CallRuntime(Runtime::kCloneLiteralBoilerplate, 1); } else { __ CallRuntime(Runtime::kCloneShallowLiteralBoilerplate, 1); } bool result_saved = false; // Is the result saved to the stack? // Emit code to evaluate all the non-constant subexpressions and to store // them into the newly cloned array. ZoneList* subexprs = expr->values(); for (int i = 0, len = subexprs->length(); i < len; i++) { Expression* subexpr = subexprs->at(i); // If the subexpression is a literal or a simple materialized literal it // is already set in the cloned array. if (subexpr->AsLiteral() != NULL || CompileTimeValue::IsCompileTimeValue(subexpr)) { continue; } if (!result_saved) { __ push(r0); result_saved = true; } Visit(subexpr); ASSERT_EQ(Expression::kValue, subexpr->context()); // Store the subexpression value in the array's elements. __ pop(r0); // Subexpression value. __ ldr(r1, MemOperand(sp)); // Copy of array literal. __ ldr(r1, FieldMemOperand(r1, JSObject::kElementsOffset)); int offset = FixedArray::kHeaderSize + (i * kPointerSize); __ str(r0, FieldMemOperand(r1, offset)); // Update the write barrier for the array store with r0 as the scratch // register. __ mov(r2, Operand(offset)); __ RecordWrite(r1, r2, r0); } switch (expr->context()) { case Expression::kUninitialized: UNREACHABLE(); case Expression::kEffect: if (result_saved) __ pop(); break; case Expression::kValue: if (!result_saved) __ push(r0); break; case Expression::kTest: if (result_saved) __ pop(r0); TestAndBranch(r0, true_label_, false_label_); break; case Expression::kValueTest: { Label discard; if (!result_saved) __ push(r0); TestAndBranch(r0, true_label_, &discard); __ bind(&discard); __ pop(); __ jmp(false_label_); break; } case Expression::kTestValue: { Label discard; if (!result_saved) __ push(r0); TestAndBranch(r0, &discard, false_label_); __ bind(&discard); __ pop(); __ jmp(true_label_); break; } } } void FastCodeGenerator::EmitVariableAssignment(Assignment* expr) { Variable* var = expr->target()->AsVariableProxy()->AsVariable(); ASSERT(var != NULL); if (var->is_global()) { // Assignment to a global variable. Use inline caching for the // assignment. Right-hand-side value is passed in r0, variable name in // r2, and the global object on the stack. __ pop(r0); __ mov(r2, Operand(var->name())); __ ldr(ip, CodeGenerator::GlobalObject()); __ push(ip); Handle ic(Builtins::builtin(Builtins::StoreIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); // Overwrite the global object on the stack with the result if needed. DropAndMove(expr->context(), r0); } else { Slot* slot = var->slot(); ASSERT_NOT_NULL(slot); // Variables rewritten as properties not handled. switch (slot->type()) { case Slot::LOCAL: case Slot::PARAMETER: { switch (expr->context()) { case Expression::kUninitialized: UNREACHABLE(); case Expression::kEffect: // Perform assignment and discard value. __ pop(r0); __ str(r0, MemOperand(fp, SlotOffset(var->slot()))); break; case Expression::kValue: // Perform assignment and preserve value. __ ldr(r0, MemOperand(sp)); __ str(r0, MemOperand(fp, SlotOffset(var->slot()))); break; case Expression::kTest: // Perform assignment and test (and discard) value. __ pop(r0); __ str(r0, MemOperand(fp, SlotOffset(var->slot()))); TestAndBranch(r0, true_label_, false_label_); break; case Expression::kValueTest: { Label discard; __ ldr(r0, MemOperand(sp)); __ str(r0, MemOperand(fp, SlotOffset(var->slot()))); TestAndBranch(r0, true_label_, &discard); __ bind(&discard); __ pop(); __ jmp(false_label_); break; } case Expression::kTestValue: { Label discard; __ ldr(r0, MemOperand(sp)); __ str(r0, MemOperand(fp, SlotOffset(var->slot()))); TestAndBranch(r0, &discard, false_label_); __ bind(&discard); __ pop(); __ jmp(true_label_); break; } } break; } case Slot::CONTEXT: { int chain_length = function_->scope()->ContextChainLength(slot->var()->scope()); if (chain_length > 0) { // Move up the chain of contexts to the context containing the slot. __ ldr(r0, CodeGenerator::ContextOperand(cp, Context::CLOSURE_INDEX)); // Load the function context (which is the incoming, outer context). __ ldr(r0, FieldMemOperand(r0, JSFunction::kContextOffset)); for (int i = 1; i < chain_length; i++) { __ ldr(r0, CodeGenerator::ContextOperand(r0, Context::CLOSURE_INDEX)); __ ldr(r0, FieldMemOperand(r0, JSFunction::kContextOffset)); } } else { // Slot is in the current context. Generate optimized code. __ mov(r0, cp); } // The context may be an intermediate context, not a function context. __ ldr(r0, CodeGenerator::ContextOperand(r0, Context::FCONTEXT_INDEX)); __ pop(r1); __ str(r1, CodeGenerator::ContextOperand(r0, slot->index())); // RecordWrite may destroy all its register arguments. if (expr->context() == Expression::kValue) { __ push(r1); } else if (expr->context() != Expression::kEffect) { __ mov(r3, r1); } int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize; // Update the write barrier for the array store with r0 as the scratch // register. Skip the write barrier if r0 is a smi. // The smi test is part of RecordWrite on other platforms, not on arm. Label exit; __ tst(r0, Operand(kSmiTagMask)); __ b(eq, &exit); __ mov(r2, Operand(offset)); __ RecordWrite(r0, r2, r1); __ bind(&exit); if (expr->context() != Expression::kEffect && expr->context() != Expression::kValue) { Move(expr->context(), r3); } break; } case Slot::LOOKUP: UNREACHABLE(); break; } } } void FastCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) { // Assignment to a property, using a named store IC. Property* prop = expr->target()->AsProperty(); ASSERT(prop != NULL); ASSERT(prop->key()->AsLiteral() != NULL); // If the assignment starts a block of assignments to the same object, // change to slow case to avoid the quadratic behavior of repeatedly // adding fast properties. if (expr->starts_initialization_block()) { __ ldr(ip, MemOperand(sp, kPointerSize)); // Receiver is under value. __ push(ip); __ CallRuntime(Runtime::kToSlowProperties, 1); } __ pop(r0); __ mov(r2, Operand(prop->key()->AsLiteral()->handle())); Handle ic(Builtins::builtin(Builtins::StoreIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); // If the assignment ends an initialization block, revert to fast case. if (expr->ends_initialization_block()) { __ push(r0); // Result of assignment, saved even if not needed. __ ldr(ip, MemOperand(sp, kPointerSize)); // Receiver is under value. __ push(ip); __ CallRuntime(Runtime::kToFastProperties, 1); __ pop(r0); } DropAndMove(expr->context(), r0); } void FastCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) { // Assignment to a property, using a keyed store IC. // If the assignment starts a block of assignments to the same object, // change to slow case to avoid the quadratic behavior of repeatedly // adding fast properties. if (expr->starts_initialization_block()) { // Reciever is under the key and value. __ ldr(ip, MemOperand(sp, 2 * kPointerSize)); __ push(ip); __ CallRuntime(Runtime::kToSlowProperties, 1); } __ pop(r0); Handle ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); // If the assignment ends an initialization block, revert to fast case. if (expr->ends_initialization_block()) { __ push(r0); // Result of assignment, saved even if not needed. // Reciever is under the key and value. __ ldr(ip, MemOperand(sp, 2 * kPointerSize)); __ push(ip); __ CallRuntime(Runtime::kToFastProperties, 1); __ pop(r0); } // Receiver and key are still on stack. __ add(sp, sp, Operand(2 * kPointerSize)); Move(expr->context(), r0); } void FastCodeGenerator::VisitProperty(Property* expr) { Comment cmnt(masm_, "[ Property"); Expression* key = expr->key(); uint32_t dummy; // Record the source position for the property load. SetSourcePosition(expr->position()); // Evaluate receiver. Visit(expr->obj()); if (key->AsLiteral() != NULL && key->AsLiteral()->handle()->IsSymbol() && !String::cast(*(key->AsLiteral()->handle()))->AsArrayIndex(&dummy)) { // Do a NAMED property load. // The IC expects the property name in r2 and the receiver on the stack. __ mov(r2, Operand(key->AsLiteral()->handle())); Handle ic(Builtins::builtin(Builtins::LoadIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); } else { // Do a KEYED property load. Visit(expr->key()); Handle ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); // Drop key and receiver left on the stack by IC. __ pop(); } DropAndMove(expr->context(), r0); } void FastCodeGenerator::EmitCallWithIC(Call* expr, RelocInfo::Mode reloc_info) { // Code common for calls using the IC. ZoneList* args = expr->arguments(); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { Visit(args->at(i)); ASSERT_EQ(Expression::kValue, args->at(i)->context()); } // Record source position for debugger. SetSourcePosition(expr->position()); // Call the IC initialization code. Handle ic = CodeGenerator::ComputeCallInitialize(arg_count, NOT_IN_LOOP); __ Call(ic, reloc_info); // Restore context register. __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); // Discard the function left on TOS. DropAndMove(expr->context(), r0); } void FastCodeGenerator::EmitCallWithStub(Call* expr) { // Code common for calls using the call stub. ZoneList* args = expr->arguments(); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { Visit(args->at(i)); } // Record source position for debugger. SetSourcePosition(expr->position()); CallFunctionStub stub(arg_count, NOT_IN_LOOP); __ CallStub(&stub); // Restore context register. __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); // Discard the function left on TOS. DropAndMove(expr->context(), r0); } void FastCodeGenerator::VisitCall(Call* expr) { Comment cmnt(masm_, "[ Call"); Expression* fun = expr->expression(); Variable* var = fun->AsVariableProxy()->AsVariable(); if (var != NULL && var->is_possibly_eval()) { // Call to the identifier 'eval'. UNREACHABLE(); } else if (var != NULL && !var->is_this() && var->is_global()) { // Call to a global variable. __ mov(r1, Operand(var->name())); // Push global object as receiver for the call IC lookup. __ ldr(r0, CodeGenerator::GlobalObject()); __ stm(db_w, sp, r1.bit() | r0.bit()); EmitCallWithIC(expr, RelocInfo::CODE_TARGET_CONTEXT); } else if (var != NULL && var->slot() != NULL && var->slot()->type() == Slot::LOOKUP) { // Call to a lookup slot. UNREACHABLE(); } else if (fun->AsProperty() != NULL) { // Call to an object property. Property* prop = fun->AsProperty(); Literal* key = prop->key()->AsLiteral(); if (key != NULL && key->handle()->IsSymbol()) { // Call to a named property, use call IC. __ mov(r0, Operand(key->handle())); __ push(r0); Visit(prop->obj()); EmitCallWithIC(expr, RelocInfo::CODE_TARGET); } else { // Call to a keyed property, use keyed load IC followed by function // call. Visit(prop->obj()); Visit(prop->key()); // Record source code position for IC call. SetSourcePosition(prop->position()); Handle ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); // Load receiver object into r1. if (prop->is_synthetic()) { __ ldr(r1, CodeGenerator::GlobalObject()); } else { __ ldr(r1, MemOperand(sp, kPointerSize)); } // Overwrite (object, key) with (function, receiver). __ str(r0, MemOperand(sp, kPointerSize)); __ str(r1, MemOperand(sp)); EmitCallWithStub(expr); } } else { // Call to some other expression. If the expression is an anonymous // function literal not called in a loop, mark it as one that should // also use the fast code generator. FunctionLiteral* lit = fun->AsFunctionLiteral(); if (lit != NULL && lit->name()->Equals(Heap::empty_string()) && loop_depth() == 0) { lit->set_try_fast_codegen(true); } Visit(fun); // Load global receiver object. __ ldr(r1, CodeGenerator::GlobalObject()); __ ldr(r1, FieldMemOperand(r1, GlobalObject::kGlobalReceiverOffset)); __ push(r1); // Emit function call. EmitCallWithStub(expr); } } void FastCodeGenerator::VisitCallNew(CallNew* expr) { Comment cmnt(masm_, "[ CallNew"); // According to ECMA-262, section 11.2.2, page 44, the function // expression in new calls must be evaluated before the // arguments. // Push function on the stack. Visit(expr->expression()); ASSERT_EQ(Expression::kValue, expr->expression()->context()); // Push global object (receiver). __ ldr(r0, CodeGenerator::GlobalObject()); __ push(r0); // Push the arguments ("left-to-right") on the stack. ZoneList* args = expr->arguments(); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { Visit(args->at(i)); ASSERT_EQ(Expression::kValue, args->at(i)->context()); // If location is value, it is already on the stack, // so nothing to do here. } // Call the construct call builtin that handles allocation and // constructor invocation. SetSourcePosition(expr->position()); // Load function, arg_count into r1 and r0. __ mov(r0, Operand(arg_count)); // Function is in esp[arg_count + 1]. __ ldr(r1, MemOperand(sp, (arg_count + 1) * kPointerSize)); Handle construct_builtin(Builtins::builtin(Builtins::JSConstructCall)); __ Call(construct_builtin, RelocInfo::CONSTRUCT_CALL); // Replace function on TOS with result in r0, or pop it. DropAndMove(expr->context(), r0); } void FastCodeGenerator::VisitCallRuntime(CallRuntime* expr) { Comment cmnt(masm_, "[ CallRuntime"); ZoneList* args = expr->arguments(); Runtime::Function* function = expr->function(); ASSERT(function != NULL); // Push the arguments ("left-to-right"). int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { Visit(args->at(i)); ASSERT_EQ(Expression::kValue, args->at(i)->context()); } __ CallRuntime(function, arg_count); Move(expr->context(), r0); } void FastCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) { switch (expr->op()) { case Token::VOID: { Comment cmnt(masm_, "[ UnaryOperation (VOID)"); Visit(expr->expression()); ASSERT_EQ(Expression::kEffect, expr->expression()->context()); switch (expr->context()) { case Expression::kUninitialized: UNREACHABLE(); break; case Expression::kEffect: break; case Expression::kValue: __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); __ push(ip); break; case Expression::kTestValue: // Value is false so it's needed. __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); __ push(ip); case Expression::kTest: // Fall through. case Expression::kValueTest: __ jmp(false_label_); break; } break; } case Token::NOT: { Comment cmnt(masm_, "[ UnaryOperation (NOT)"); ASSERT_EQ(Expression::kTest, expr->expression()->context()); Label push_true; Label push_false; Label done; Label* saved_true = true_label_; Label* saved_false = false_label_; switch (expr->context()) { case Expression::kUninitialized: UNREACHABLE(); break; case Expression::kValue: true_label_ = &push_false; false_label_ = &push_true; Visit(expr->expression()); __ bind(&push_true); __ LoadRoot(ip, Heap::kTrueValueRootIndex); __ push(ip); __ jmp(&done); __ bind(&push_false); __ LoadRoot(ip, Heap::kFalseValueRootIndex); __ push(ip); __ bind(&done); break; case Expression::kEffect: true_label_ = &done; false_label_ = &done; Visit(expr->expression()); __ bind(&done); break; case Expression::kTest: true_label_ = saved_false; false_label_ = saved_true; Visit(expr->expression()); break; case Expression::kValueTest: true_label_ = saved_false; false_label_ = &push_true; Visit(expr->expression()); __ bind(&push_true); __ LoadRoot(ip, Heap::kTrueValueRootIndex); __ push(ip); __ jmp(saved_true); break; case Expression::kTestValue: true_label_ = &push_false; false_label_ = saved_true; Visit(expr->expression()); __ bind(&push_false); __ LoadRoot(ip, Heap::kFalseValueRootIndex); __ push(ip); __ jmp(saved_false); break; } true_label_ = saved_true; false_label_ = saved_false; break; } case Token::TYPEOF: { Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)"); ASSERT_EQ(Expression::kValue, expr->expression()->context()); VariableProxy* proxy = expr->expression()->AsVariableProxy(); if (proxy != NULL && !proxy->var()->is_this() && proxy->var()->is_global()) { Comment cmnt(masm_, "Global variable"); __ ldr(r0, CodeGenerator::GlobalObject()); __ push(r0); __ mov(r2, Operand(proxy->name())); Handle ic(Builtins::builtin(Builtins::LoadIC_Initialize)); // Use a regular load, not a contextual load, to avoid a reference // error. __ Call(ic, RelocInfo::CODE_TARGET); __ str(r0, MemOperand(sp)); } else if (proxy != NULL && proxy->var()->slot() != NULL && proxy->var()->slot()->type() == Slot::LOOKUP) { __ mov(r0, Operand(proxy->name())); __ stm(db_w, sp, cp.bit() | r0.bit()); __ CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2); __ push(r0); } else { // This expression cannot throw a reference error at the top level. Visit(expr->expression()); } __ CallRuntime(Runtime::kTypeof, 1); Move(expr->context(), r0); break; } default: UNREACHABLE(); } } void FastCodeGenerator::VisitCountOperation(CountOperation* expr) { Comment cmnt(masm_, "[ CountOperation"); VariableProxy* proxy = expr->expression()->AsVariableProxy(); ASSERT(proxy->AsVariable() != NULL); ASSERT(proxy->AsVariable()->is_global()); Visit(proxy); __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_JS); switch (expr->context()) { case Expression::kUninitialized: UNREACHABLE(); case Expression::kValue: // Fall through case Expression::kTest: // Fall through case Expression::kTestValue: // Fall through case Expression::kValueTest: // Duplicate the result on the stack. __ push(r0); break; case Expression::kEffect: // Do not save result. break; } // Call runtime for +1/-1. __ push(r0); __ mov(ip, Operand(Smi::FromInt(1))); __ push(ip); if (expr->op() == Token::INC) { __ CallRuntime(Runtime::kNumberAdd, 2); } else { __ CallRuntime(Runtime::kNumberSub, 2); } // Call Store IC. __ mov(r2, Operand(proxy->AsVariable()->name())); __ ldr(ip, CodeGenerator::GlobalObject()); __ push(ip); Handle ic(Builtins::builtin(Builtins::StoreIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); // Restore up stack after store IC. __ add(sp, sp, Operand(kPointerSize)); switch (expr->context()) { case Expression::kUninitialized: UNREACHABLE(); case Expression::kEffect: // Fall through case Expression::kValue: // Do nothing. Result in either on the stack for value context // or discarded for effect context. break; case Expression::kTest: __ pop(r0); TestAndBranch(r0, true_label_, false_label_); break; case Expression::kValueTest: { Label discard; __ ldr(r0, MemOperand(sp)); TestAndBranch(r0, true_label_, &discard); __ bind(&discard); __ add(sp, sp, Operand(kPointerSize)); __ b(false_label_); break; } case Expression::kTestValue: { Label discard; __ ldr(r0, MemOperand(sp)); TestAndBranch(r0, &discard, false_label_); __ bind(&discard); __ add(sp, sp, Operand(kPointerSize)); __ b(true_label_); break; } } } void FastCodeGenerator::VisitBinaryOperation(BinaryOperation* expr) { Comment cmnt(masm_, "[ BinaryOperation"); switch (expr->op()) { case Token::COMMA: ASSERT_EQ(Expression::kEffect, expr->left()->context()); ASSERT_EQ(expr->context(), expr->right()->context()); Visit(expr->left()); Visit(expr->right()); break; case Token::OR: case Token::AND: EmitLogicalOperation(expr); break; case Token::ADD: case Token::SUB: case Token::DIV: case Token::MOD: case Token::MUL: case Token::BIT_OR: case Token::BIT_AND: case Token::BIT_XOR: case Token::SHL: case Token::SHR: case Token::SAR: { ASSERT_EQ(Expression::kValue, expr->left()->context()); ASSERT_EQ(Expression::kValue, expr->right()->context()); Visit(expr->left()); Visit(expr->right()); __ pop(r0); __ pop(r1); GenericBinaryOpStub stub(expr->op(), NO_OVERWRITE); __ CallStub(&stub); Move(expr->context(), r0); break; } default: UNREACHABLE(); } } void FastCodeGenerator::VisitCompareOperation(CompareOperation* expr) { Comment cmnt(masm_, "[ CompareOperation"); ASSERT_EQ(Expression::kValue, expr->left()->context()); ASSERT_EQ(Expression::kValue, expr->right()->context()); Visit(expr->left()); Visit(expr->right()); // Convert current context to test context: Pre-test code. Label push_true; Label push_false; Label done; Label* saved_true = true_label_; Label* saved_false = false_label_; switch (expr->context()) { case Expression::kUninitialized: UNREACHABLE(); break; case Expression::kValue: true_label_ = &push_true; false_label_ = &push_false; break; case Expression::kEffect: true_label_ = &done; false_label_ = &done; break; case Expression::kTest: break; case Expression::kValueTest: true_label_ = &push_true; break; case Expression::kTestValue: false_label_ = &push_false; break; } // Convert current context to test context: End pre-test code. switch (expr->op()) { case Token::IN: { __ InvokeBuiltin(Builtins::IN, CALL_JS); __ LoadRoot(ip, Heap::kTrueValueRootIndex); __ cmp(r0, ip); __ b(eq, true_label_); __ jmp(false_label_); break; } case Token::INSTANCEOF: { InstanceofStub stub; __ CallStub(&stub); __ tst(r0, r0); __ b(eq, true_label_); // The stub returns 0 for true. __ jmp(false_label_); break; } default: { Condition cc = eq; bool strict = false; switch (expr->op()) { case Token::EQ_STRICT: strict = true; // Fall through case Token::EQ: cc = eq; __ pop(r0); __ pop(r1); break; case Token::LT: cc = lt; __ pop(r0); __ pop(r1); break; case Token::GT: // Reverse left and right sizes to obtain ECMA-262 conversion order. cc = lt; __ pop(r1); __ pop(r0); break; case Token::LTE: // Reverse left and right sizes to obtain ECMA-262 conversion order. cc = ge; __ pop(r1); __ pop(r0); break; case Token::GTE: cc = ge; __ pop(r0); __ pop(r1); break; case Token::IN: case Token::INSTANCEOF: default: UNREACHABLE(); } // The comparison stub expects the smi vs. smi case to be handled // before it is called. Label slow_case; __ orr(r2, r0, Operand(r1)); __ tst(r2, Operand(kSmiTagMask)); __ b(ne, &slow_case); __ cmp(r1, r0); __ b(cc, true_label_); __ jmp(false_label_); __ bind(&slow_case); CompareStub stub(cc, strict); __ CallStub(&stub); __ tst(r0, r0); __ b(cc, true_label_); __ jmp(false_label_); } } // Convert current context to test context: Post-test code. switch (expr->context()) { case Expression::kUninitialized: UNREACHABLE(); break; case Expression::kValue: __ bind(&push_true); __ LoadRoot(ip, Heap::kTrueValueRootIndex); __ push(ip); __ jmp(&done); __ bind(&push_false); __ LoadRoot(ip, Heap::kFalseValueRootIndex); __ push(ip); __ bind(&done); break; case Expression::kEffect: __ bind(&done); break; case Expression::kTest: break; case Expression::kValueTest: __ bind(&push_true); __ LoadRoot(ip, Heap::kTrueValueRootIndex); __ push(ip); __ jmp(saved_true); break; case Expression::kTestValue: __ bind(&push_false); __ LoadRoot(ip, Heap::kFalseValueRootIndex); __ push(ip); __ jmp(saved_false); break; } true_label_ = saved_true; false_label_ = saved_false; // Convert current context to test context: End post-test code. } #undef __ } } // namespace v8::internal