v8/include/v8-fast-api-calls.h
Aapo Alasuutari 744570e583 [fastcall] Support external pointers in fast api calls
Bug: chromium:1052746

Change-Id: I3de37ca453b640b7f714e585848ccd068dd9ddbc
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/3957815
Commit-Queue: Maya Lekova <mslekova@chromium.org>
Reviewed-by: Toon Verwaest <verwaest@chromium.org>
Reviewed-by: Samuel Groß <saelo@chromium.org>
Reviewed-by: Maya Lekova <mslekova@chromium.org>
Cr-Commit-Position: refs/heads/main@{#84597}
2022-12-01 14:19:33 +00:00

958 lines
36 KiB
C++
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2020 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
/**
* This file provides additional API on top of the default one for making
* API calls, which come from embedder C++ functions. The functions are being
* called directly from optimized code, doing all the necessary typechecks
* in the compiler itself, instead of on the embedder side. Hence the "fast"
* in the name. Example usage might look like:
*
* \code
* void FastMethod(int param, bool another_param);
*
* v8::FunctionTemplate::New(isolate, SlowCallback, data,
* signature, length, constructor_behavior
* side_effect_type,
* &v8::CFunction::Make(FastMethod));
* \endcode
*
* By design, fast calls are limited by the following requirements, which
* the embedder should enforce themselves:
* - they should not allocate on the JS heap;
* - they should not trigger JS execution.
* To enforce them, the embedder could use the existing
* v8::Isolate::DisallowJavascriptExecutionScope and a utility similar to
* Blink's NoAllocationScope:
* https://source.chromium.org/chromium/chromium/src/+/master:third_party/blink/renderer/platform/heap/thread_state_scopes.h;l=16
*
* Due to these limitations, it's not directly possible to report errors by
* throwing a JS exception or to otherwise do an allocation. There is an
* alternative way of creating fast calls that supports falling back to the
* slow call and then performing the necessary allocation. When one creates
* the fast method by using CFunction::MakeWithFallbackSupport instead of
* CFunction::Make, the fast callback gets as last parameter an output variable,
* through which it can request falling back to the slow call. So one might
* declare their method like:
*
* \code
* void FastMethodWithFallback(int param, FastApiCallbackOptions& options);
* \endcode
*
* If the callback wants to signal an error condition or to perform an
* allocation, it must set options.fallback to true and do an early return from
* the fast method. Then V8 checks the value of options.fallback and if it's
* true, falls back to executing the SlowCallback, which is capable of reporting
* the error (either by throwing a JS exception or logging to the console) or
* doing the allocation. It's the embedder's responsibility to ensure that the
* fast callback is idempotent up to the point where error and fallback
* conditions are checked, because otherwise executing the slow callback might
* produce visible side-effects twice.
*
* An example for custom embedder type support might employ a way to wrap/
* unwrap various C++ types in JSObject instances, e.g:
*
* \code
*
* // Helper method with a check for field count.
* template <typename T, int offset>
* inline T* GetInternalField(v8::Local<v8::Object> wrapper) {
* assert(offset < wrapper->InternalFieldCount());
* return reinterpret_cast<T*>(
* wrapper->GetAlignedPointerFromInternalField(offset));
* }
*
* class CustomEmbedderType {
* public:
* // Returns the raw C object from a wrapper JS object.
* static CustomEmbedderType* Unwrap(v8::Local<v8::Object> wrapper) {
* return GetInternalField<CustomEmbedderType,
* kV8EmbedderWrapperObjectIndex>(wrapper);
* }
* static void FastMethod(v8::Local<v8::Object> receiver_obj, int param) {
* CustomEmbedderType* receiver = static_cast<CustomEmbedderType*>(
* receiver_obj->GetAlignedPointerFromInternalField(
* kV8EmbedderWrapperObjectIndex));
*
* // Type checks are already done by the optimized code.
* // Then call some performance-critical method like:
* // receiver->Method(param);
* }
*
* static void SlowMethod(
* const v8::FunctionCallbackInfo<v8::Value>& info) {
* v8::Local<v8::Object> instance =
* v8::Local<v8::Object>::Cast(info.Holder());
* CustomEmbedderType* receiver = Unwrap(instance);
* // TODO: Do type checks and extract {param}.
* receiver->Method(param);
* }
* };
*
* // TODO(mslekova): Clean-up these constants
* // The constants kV8EmbedderWrapperTypeIndex and
* // kV8EmbedderWrapperObjectIndex describe the offsets for the type info
* // struct and the native object, when expressed as internal field indices
* // within a JSObject. The existance of this helper function assumes that
* // all embedder objects have their JSObject-side type info at the same
* // offset, but this is not a limitation of the API itself. For a detailed
* // use case, see the third example.
* static constexpr int kV8EmbedderWrapperTypeIndex = 0;
* static constexpr int kV8EmbedderWrapperObjectIndex = 1;
*
* // The following setup function can be templatized based on
* // the {embedder_object} argument.
* void SetupCustomEmbedderObject(v8::Isolate* isolate,
* v8::Local<v8::Context> context,
* CustomEmbedderType* embedder_object) {
* isolate->set_embedder_wrapper_type_index(
* kV8EmbedderWrapperTypeIndex);
* isolate->set_embedder_wrapper_object_index(
* kV8EmbedderWrapperObjectIndex);
*
* v8::CFunction c_func =
* MakeV8CFunction(CustomEmbedderType::FastMethod);
*
* Local<v8::FunctionTemplate> method_template =
* v8::FunctionTemplate::New(
* isolate, CustomEmbedderType::SlowMethod, v8::Local<v8::Value>(),
* v8::Local<v8::Signature>(), 1, v8::ConstructorBehavior::kAllow,
* v8::SideEffectType::kHasSideEffect, &c_func);
*
* v8::Local<v8::ObjectTemplate> object_template =
* v8::ObjectTemplate::New(isolate);
* object_template->SetInternalFieldCount(
* kV8EmbedderWrapperObjectIndex + 1);
* object_template->Set(isolate, "method", method_template);
*
* // Instantiate the wrapper JS object.
* v8::Local<v8::Object> object =
* object_template->NewInstance(context).ToLocalChecked();
* object->SetAlignedPointerInInternalField(
* kV8EmbedderWrapperObjectIndex,
* reinterpret_cast<void*>(embedder_object));
*
* // TODO: Expose {object} where it's necessary.
* }
* \endcode
*
* For instance if {object} is exposed via a global "obj" variable,
* one could write in JS:
* function hot_func() {
* obj.method(42);
* }
* and once {hot_func} gets optimized, CustomEmbedderType::FastMethod
* will be called instead of the slow version, with the following arguments:
* receiver := the {embedder_object} from above
* param := 42
*
* Currently supported return types:
* - void
* - bool
* - int32_t
* - uint32_t
* - float32_t
* - float64_t
* Currently supported argument types:
* - pointer to an embedder type
* - JavaScript array of primitive types
* - bool
* - int32_t
* - uint32_t
* - int64_t
* - uint64_t
* - float32_t
* - float64_t
*
* The 64-bit integer types currently have the IDL (unsigned) long long
* semantics: https://heycam.github.io/webidl/#abstract-opdef-converttoint
* In the future we'll extend the API to also provide conversions from/to
* BigInt to preserve full precision.
* The floating point types currently have the IDL (unrestricted) semantics,
* which is the only one used by WebGL. We plan to add support also for
* restricted floats/doubles, similarly to the BigInt conversion policies.
* We also differ from the specific NaN bit pattern that WebIDL prescribes
* (https://heycam.github.io/webidl/#es-unrestricted-float) in that Blink
* passes NaN values as-is, i.e. doesn't normalize them.
*
* To be supported types:
* - TypedArrays and ArrayBuffers
* - arrays of embedder types
*
*
* The API offers a limited support for function overloads:
*
* \code
* void FastMethod_2Args(int param, bool another_param);
* void FastMethod_3Args(int param, bool another_param, int third_param);
*
* v8::CFunction fast_method_2args_c_func =
* MakeV8CFunction(FastMethod_2Args);
* v8::CFunction fast_method_3args_c_func =
* MakeV8CFunction(FastMethod_3Args);
* const v8::CFunction fast_method_overloads[] = {fast_method_2args_c_func,
* fast_method_3args_c_func};
* Local<v8::FunctionTemplate> method_template =
* v8::FunctionTemplate::NewWithCFunctionOverloads(
* isolate, SlowCallback, data, signature, length,
* constructor_behavior, side_effect_type,
* {fast_method_overloads, 2});
* \endcode
*
* In this example a single FunctionTemplate is associated to multiple C++
* functions. The overload resolution is currently only based on the number of
* arguments passed in a call. For example, if this method_template is
* registered with a wrapper JS object as described above, a call with two
* arguments:
* obj.method(42, true);
* will result in a fast call to FastMethod_2Args, while a call with three or
* more arguments:
* obj.method(42, true, 11);
* will result in a fast call to FastMethod_3Args. Instead a call with less than
* two arguments, like:
* obj.method(42);
* would not result in a fast call but would fall back to executing the
* associated SlowCallback.
*/
#ifndef INCLUDE_V8_FAST_API_CALLS_H_
#define INCLUDE_V8_FAST_API_CALLS_H_
#include <stddef.h>
#include <stdint.h>
#include <tuple>
#include <type_traits>
#include "v8-internal.h" // NOLINT(build/include_directory)
#include "v8-local-handle.h" // NOLINT(build/include_directory)
#include "v8-typed-array.h" // NOLINT(build/include_directory)
#include "v8-value.h" // NOLINT(build/include_directory)
#include "v8config.h" // NOLINT(build/include_directory)
namespace v8 {
class Isolate;
class CTypeInfo {
public:
enum class Type : uint8_t {
kVoid,
kBool,
kUint8,
kInt32,
kUint32,
kInt64,
kUint64,
kFloat32,
kFloat64,
kPointer,
kV8Value,
kSeqOneByteString,
kApiObject, // This will be deprecated once all users have
// migrated from v8::ApiObject to v8::Local<v8::Value>.
kAny, // This is added to enable untyped representation of fast
// call arguments for test purposes. It can represent any of
// the other types stored in the same memory as a union (see
// the AnyCType struct declared below). This allows for
// uniform passing of arguments w.r.t. their location
// (in a register or on the stack), independent of their
// actual type. It's currently used by the arm64 simulator
// and can be added to the other simulators as well when fast
// calls having both GP and FP params need to be supported.
};
// kCallbackOptionsType is not part of the Type enum
// because it is only used internally. Use value 255 that is larger
// than any valid Type enum.
static constexpr Type kCallbackOptionsType = Type(255);
enum class SequenceType : uint8_t {
kScalar,
kIsSequence, // sequence<T>
kIsTypedArray, // TypedArray of T or any ArrayBufferView if T
// is void
kIsArrayBuffer // ArrayBuffer
};
enum class Flags : uint8_t {
kNone = 0,
kAllowSharedBit = 1 << 0, // Must be an ArrayBuffer or TypedArray
kEnforceRangeBit = 1 << 1, // T must be integral
kClampBit = 1 << 2, // T must be integral
kIsRestrictedBit = 1 << 3, // T must be float or double
};
explicit constexpr CTypeInfo(
Type type, SequenceType sequence_type = SequenceType::kScalar,
Flags flags = Flags::kNone)
: type_(type), sequence_type_(sequence_type), flags_(flags) {}
typedef uint32_t Identifier;
explicit constexpr CTypeInfo(Identifier identifier)
: CTypeInfo(static_cast<Type>(identifier >> 16),
static_cast<SequenceType>((identifier >> 8) & 255),
static_cast<Flags>(identifier & 255)) {}
constexpr Identifier GetId() const {
return static_cast<uint8_t>(type_) << 16 |
static_cast<uint8_t>(sequence_type_) << 8 |
static_cast<uint8_t>(flags_);
}
constexpr Type GetType() const { return type_; }
constexpr SequenceType GetSequenceType() const { return sequence_type_; }
constexpr Flags GetFlags() const { return flags_; }
static constexpr bool IsIntegralType(Type type) {
return type == Type::kUint8 || type == Type::kInt32 ||
type == Type::kUint32 || type == Type::kInt64 ||
type == Type::kUint64;
}
static constexpr bool IsFloatingPointType(Type type) {
return type == Type::kFloat32 || type == Type::kFloat64;
}
static constexpr bool IsPrimitive(Type type) {
return IsIntegralType(type) || IsFloatingPointType(type) ||
type == Type::kBool;
}
private:
Type type_;
SequenceType sequence_type_;
Flags flags_;
};
struct FastApiTypedArrayBase {
public:
// Returns the length in number of elements.
size_t V8_EXPORT length() const { return length_; }
// Checks whether the given index is within the bounds of the collection.
void V8_EXPORT ValidateIndex(size_t index) const;
protected:
size_t length_ = 0;
};
template <typename T>
struct FastApiTypedArray : public FastApiTypedArrayBase {
public:
V8_INLINE T get(size_t index) const {
#ifdef DEBUG
ValidateIndex(index);
#endif // DEBUG
T tmp;
memcpy(&tmp, reinterpret_cast<T*>(data_) + index, sizeof(T));
return tmp;
}
bool getStorageIfAligned(T** elements) const {
if (reinterpret_cast<uintptr_t>(data_) % alignof(T) != 0) {
return false;
}
*elements = reinterpret_cast<T*>(data_);
return true;
}
private:
// This pointer should include the typed array offset applied.
// It's not guaranteed that it's aligned to sizeof(T), it's only
// guaranteed that it's 4-byte aligned, so for 8-byte types we need to
// provide a special implementation for reading from it, which hides
// the possibly unaligned read in the `get` method.
void* data_;
};
// Any TypedArray. It uses kTypedArrayBit with base type void
// Overloaded args of ArrayBufferView and TypedArray are not supported
// (for now) because the generic “any” ArrayBufferView doesnt have its
// own instance type. It could be supported if we specify that
// TypedArray<T> always has precedence over the generic ArrayBufferView,
// but this complicates overload resolution.
struct FastApiArrayBufferView {
void* data;
size_t byte_length;
};
struct FastApiArrayBuffer {
void* data;
size_t byte_length;
};
struct FastOneByteString {
const char* data;
uint32_t length;
};
class V8_EXPORT CFunctionInfo {
public:
// Construct a struct to hold a CFunction's type information.
// |return_info| describes the function's return type.
// |arg_info| is an array of |arg_count| CTypeInfos describing the
// arguments. Only the last argument may be of the special type
// CTypeInfo::kCallbackOptionsType.
CFunctionInfo(const CTypeInfo& return_info, unsigned int arg_count,
const CTypeInfo* arg_info);
const CTypeInfo& ReturnInfo() const { return return_info_; }
// The argument count, not including the v8::FastApiCallbackOptions
// if present.
unsigned int ArgumentCount() const {
return HasOptions() ? arg_count_ - 1 : arg_count_;
}
// |index| must be less than ArgumentCount().
// Note: if the last argument passed on construction of CFunctionInfo
// has type CTypeInfo::kCallbackOptionsType, it is not included in
// ArgumentCount().
const CTypeInfo& ArgumentInfo(unsigned int index) const;
bool HasOptions() const {
// The options arg is always the last one.
return arg_count_ > 0 && arg_info_[arg_count_ - 1].GetType() ==
CTypeInfo::kCallbackOptionsType;
}
private:
const CTypeInfo return_info_;
const unsigned int arg_count_;
const CTypeInfo* arg_info_;
};
struct FastApiCallbackOptions;
// Provided for testing.
struct AnyCType {
AnyCType() : int64_value(0) {}
union {
bool bool_value;
int32_t int32_value;
uint32_t uint32_value;
int64_t int64_value;
uint64_t uint64_value;
float float_value;
double double_value;
void* pointer_value;
Local<Object> object_value;
Local<Array> sequence_value;
const FastApiTypedArray<uint8_t>* uint8_ta_value;
const FastApiTypedArray<int32_t>* int32_ta_value;
const FastApiTypedArray<uint32_t>* uint32_ta_value;
const FastApiTypedArray<int64_t>* int64_ta_value;
const FastApiTypedArray<uint64_t>* uint64_ta_value;
const FastApiTypedArray<float>* float_ta_value;
const FastApiTypedArray<double>* double_ta_value;
const FastOneByteString* string_value;
FastApiCallbackOptions* options_value;
};
};
static_assert(
sizeof(AnyCType) == 8,
"The AnyCType struct should have size == 64 bits, as this is assumed "
"by EffectControlLinearizer.");
class V8_EXPORT CFunction {
public:
constexpr CFunction() : address_(nullptr), type_info_(nullptr) {}
const CTypeInfo& ReturnInfo() const { return type_info_->ReturnInfo(); }
const CTypeInfo& ArgumentInfo(unsigned int index) const {
return type_info_->ArgumentInfo(index);
}
unsigned int ArgumentCount() const { return type_info_->ArgumentCount(); }
const void* GetAddress() const { return address_; }
const CFunctionInfo* GetTypeInfo() const { return type_info_; }
enum class OverloadResolution { kImpossible, kAtRuntime, kAtCompileTime };
// Returns whether an overload between this and the given CFunction can
// be resolved at runtime by the RTTI available for the arguments or at
// compile time for functions with different number of arguments.
OverloadResolution GetOverloadResolution(const CFunction* other) {
// Runtime overload resolution can only deal with functions with the
// same number of arguments. Functions with different arity are handled
// by compile time overload resolution though.
if (ArgumentCount() != other->ArgumentCount()) {
return OverloadResolution::kAtCompileTime;
}
// The functions can only differ by a single argument position.
int diff_index = -1;
for (unsigned int i = 0; i < ArgumentCount(); ++i) {
if (ArgumentInfo(i).GetSequenceType() !=
other->ArgumentInfo(i).GetSequenceType()) {
if (diff_index >= 0) {
return OverloadResolution::kImpossible;
}
diff_index = i;
// We only support overload resolution between sequence types.
if (ArgumentInfo(i).GetSequenceType() ==
CTypeInfo::SequenceType::kScalar ||
other->ArgumentInfo(i).GetSequenceType() ==
CTypeInfo::SequenceType::kScalar) {
return OverloadResolution::kImpossible;
}
}
}
return OverloadResolution::kAtRuntime;
}
template <typename F>
static CFunction Make(F* func) {
return ArgUnwrap<F*>::Make(func);
}
// Provided for testing purposes.
template <typename R, typename... Args, typename R_Patch,
typename... Args_Patch>
static CFunction Make(R (*func)(Args...),
R_Patch (*patching_func)(Args_Patch...)) {
CFunction c_func = ArgUnwrap<R (*)(Args...)>::Make(func);
static_assert(
sizeof...(Args_Patch) == sizeof...(Args),
"The patching function must have the same number of arguments.");
c_func.address_ = reinterpret_cast<void*>(patching_func);
return c_func;
}
CFunction(const void* address, const CFunctionInfo* type_info);
private:
const void* address_;
const CFunctionInfo* type_info_;
template <typename F>
class ArgUnwrap {
static_assert(sizeof(F) != sizeof(F),
"CFunction must be created from a function pointer.");
};
template <typename R, typename... Args>
class ArgUnwrap<R (*)(Args...)> {
public:
static CFunction Make(R (*func)(Args...));
};
};
/**
* A struct which may be passed to a fast call callback, like so:
* \code
* void FastMethodWithOptions(int param, FastApiCallbackOptions& options);
* \endcode
*/
struct FastApiCallbackOptions {
/**
* Creates a new instance of FastApiCallbackOptions for testing purpose. The
* returned instance may be filled with mock data.
*/
static FastApiCallbackOptions CreateForTesting(Isolate* isolate) {
return {false, {0}, nullptr};
}
/**
* If the callback wants to signal an error condition or to perform an
* allocation, it must set options.fallback to true and do an early return
* from the fast method. Then V8 checks the value of options.fallback and if
* it's true, falls back to executing the SlowCallback, which is capable of
* reporting the error (either by throwing a JS exception or logging to the
* console) or doing the allocation. It's the embedder's responsibility to
* ensure that the fast callback is idempotent up to the point where error and
* fallback conditions are checked, because otherwise executing the slow
* callback might produce visible side-effects twice.
*/
bool fallback;
/**
* The `data` passed to the FunctionTemplate constructor, or `undefined`.
* `data_ptr` allows for default constructing FastApiCallbackOptions.
*/
union {
uintptr_t data_ptr;
v8::Local<v8::Value> data;
};
/**
* When called from WebAssembly, a view of the calling module's memory.
*/
FastApiTypedArray<uint8_t>* const wasm_memory;
};
namespace internal {
// Helper to count the number of occurances of `T` in `List`
template <typename T, typename... List>
struct count : std::integral_constant<int, 0> {};
template <typename T, typename... Args>
struct count<T, T, Args...>
: std::integral_constant<std::size_t, 1 + count<T, Args...>::value> {};
template <typename T, typename U, typename... Args>
struct count<T, U, Args...> : count<T, Args...> {};
template <typename RetBuilder, typename... ArgBuilders>
class CFunctionInfoImpl : public CFunctionInfo {
static constexpr int kOptionsArgCount =
count<FastApiCallbackOptions&, ArgBuilders...>();
static constexpr int kReceiverCount = 1;
static_assert(kOptionsArgCount == 0 || kOptionsArgCount == 1,
"Only one options parameter is supported.");
static_assert(sizeof...(ArgBuilders) >= kOptionsArgCount + kReceiverCount,
"The receiver or the options argument is missing.");
public:
constexpr CFunctionInfoImpl()
: CFunctionInfo(RetBuilder::Build(), sizeof...(ArgBuilders),
arg_info_storage_),
arg_info_storage_{ArgBuilders::Build()...} {
constexpr CTypeInfo::Type kReturnType = RetBuilder::Build().GetType();
static_assert(kReturnType == CTypeInfo::Type::kVoid ||
kReturnType == CTypeInfo::Type::kBool ||
kReturnType == CTypeInfo::Type::kInt32 ||
kReturnType == CTypeInfo::Type::kUint32 ||
kReturnType == CTypeInfo::Type::kFloat32 ||
kReturnType == CTypeInfo::Type::kFloat64 ||
kReturnType == CTypeInfo::Type::kPointer ||
kReturnType == CTypeInfo::Type::kAny,
"64-bit int, string and api object values are not currently "
"supported return types.");
}
private:
const CTypeInfo arg_info_storage_[sizeof...(ArgBuilders)];
};
template <typename T>
struct TypeInfoHelper {
static_assert(sizeof(T) != sizeof(T), "This type is not supported");
};
#define SPECIALIZE_GET_TYPE_INFO_HELPER_FOR(T, Enum) \
template <> \
struct TypeInfoHelper<T> { \
static constexpr CTypeInfo::Flags Flags() { \
return CTypeInfo::Flags::kNone; \
} \
\
static constexpr CTypeInfo::Type Type() { return CTypeInfo::Type::Enum; } \
static constexpr CTypeInfo::SequenceType SequenceType() { \
return CTypeInfo::SequenceType::kScalar; \
} \
};
template <CTypeInfo::Type type>
struct CTypeInfoTraits {};
#define DEFINE_TYPE_INFO_TRAITS(CType, Enum) \
template <> \
struct CTypeInfoTraits<CTypeInfo::Type::Enum> { \
using ctype = CType; \
};
#define PRIMITIVE_C_TYPES(V) \
V(bool, kBool) \
V(uint8_t, kUint8) \
V(int32_t, kInt32) \
V(uint32_t, kUint32) \
V(int64_t, kInt64) \
V(uint64_t, kUint64) \
V(float, kFloat32) \
V(double, kFloat64) \
V(void*, kPointer)
// Same as above, but includes deprecated types for compatibility.
#define ALL_C_TYPES(V) \
PRIMITIVE_C_TYPES(V) \
V(void, kVoid) \
V(v8::Local<v8::Value>, kV8Value) \
V(v8::Local<v8::Object>, kV8Value) \
V(AnyCType, kAny)
// ApiObject was a temporary solution to wrap the pointer to the v8::Value.
// Please use v8::Local<v8::Value> in new code for the arguments and
// v8::Local<v8::Object> for the receiver, as ApiObject will be deprecated.
ALL_C_TYPES(SPECIALIZE_GET_TYPE_INFO_HELPER_FOR)
PRIMITIVE_C_TYPES(DEFINE_TYPE_INFO_TRAITS)
#undef PRIMITIVE_C_TYPES
#undef ALL_C_TYPES
#define SPECIALIZE_GET_TYPE_INFO_HELPER_FOR_TA(T, Enum) \
template <> \
struct TypeInfoHelper<const FastApiTypedArray<T>&> { \
static constexpr CTypeInfo::Flags Flags() { \
return CTypeInfo::Flags::kNone; \
} \
\
static constexpr CTypeInfo::Type Type() { return CTypeInfo::Type::Enum; } \
static constexpr CTypeInfo::SequenceType SequenceType() { \
return CTypeInfo::SequenceType::kIsTypedArray; \
} \
};
#define TYPED_ARRAY_C_TYPES(V) \
V(uint8_t, kUint8) \
V(int32_t, kInt32) \
V(uint32_t, kUint32) \
V(int64_t, kInt64) \
V(uint64_t, kUint64) \
V(float, kFloat32) \
V(double, kFloat64)
TYPED_ARRAY_C_TYPES(SPECIALIZE_GET_TYPE_INFO_HELPER_FOR_TA)
#undef TYPED_ARRAY_C_TYPES
template <>
struct TypeInfoHelper<v8::Local<v8::Array>> {
static constexpr CTypeInfo::Flags Flags() { return CTypeInfo::Flags::kNone; }
static constexpr CTypeInfo::Type Type() { return CTypeInfo::Type::kVoid; }
static constexpr CTypeInfo::SequenceType SequenceType() {
return CTypeInfo::SequenceType::kIsSequence;
}
};
template <>
struct TypeInfoHelper<v8::Local<v8::Uint32Array>> {
static constexpr CTypeInfo::Flags Flags() { return CTypeInfo::Flags::kNone; }
static constexpr CTypeInfo::Type Type() { return CTypeInfo::Type::kUint32; }
static constexpr CTypeInfo::SequenceType SequenceType() {
return CTypeInfo::SequenceType::kIsTypedArray;
}
};
template <>
struct TypeInfoHelper<FastApiCallbackOptions&> {
static constexpr CTypeInfo::Flags Flags() { return CTypeInfo::Flags::kNone; }
static constexpr CTypeInfo::Type Type() {
return CTypeInfo::kCallbackOptionsType;
}
static constexpr CTypeInfo::SequenceType SequenceType() {
return CTypeInfo::SequenceType::kScalar;
}
};
template <>
struct TypeInfoHelper<const FastOneByteString&> {
static constexpr CTypeInfo::Flags Flags() { return CTypeInfo::Flags::kNone; }
static constexpr CTypeInfo::Type Type() {
return CTypeInfo::Type::kSeqOneByteString;
}
static constexpr CTypeInfo::SequenceType SequenceType() {
return CTypeInfo::SequenceType::kScalar;
}
};
#define STATIC_ASSERT_IMPLIES(COND, ASSERTION, MSG) \
static_assert(((COND) == 0) || (ASSERTION), MSG)
} // namespace internal
template <typename T, CTypeInfo::Flags... Flags>
class V8_EXPORT CTypeInfoBuilder {
public:
using BaseType = T;
static constexpr CTypeInfo Build() {
constexpr CTypeInfo::Flags kFlags =
MergeFlags(internal::TypeInfoHelper<T>::Flags(), Flags...);
constexpr CTypeInfo::Type kType = internal::TypeInfoHelper<T>::Type();
constexpr CTypeInfo::SequenceType kSequenceType =
internal::TypeInfoHelper<T>::SequenceType();
STATIC_ASSERT_IMPLIES(
uint8_t(kFlags) & uint8_t(CTypeInfo::Flags::kAllowSharedBit),
(kSequenceType == CTypeInfo::SequenceType::kIsTypedArray ||
kSequenceType == CTypeInfo::SequenceType::kIsArrayBuffer),
"kAllowSharedBit is only allowed for TypedArrays and ArrayBuffers.");
STATIC_ASSERT_IMPLIES(
uint8_t(kFlags) & uint8_t(CTypeInfo::Flags::kEnforceRangeBit),
CTypeInfo::IsIntegralType(kType),
"kEnforceRangeBit is only allowed for integral types.");
STATIC_ASSERT_IMPLIES(
uint8_t(kFlags) & uint8_t(CTypeInfo::Flags::kClampBit),
CTypeInfo::IsIntegralType(kType),
"kClampBit is only allowed for integral types.");
STATIC_ASSERT_IMPLIES(
uint8_t(kFlags) & uint8_t(CTypeInfo::Flags::kIsRestrictedBit),
CTypeInfo::IsFloatingPointType(kType),
"kIsRestrictedBit is only allowed for floating point types.");
STATIC_ASSERT_IMPLIES(kSequenceType == CTypeInfo::SequenceType::kIsSequence,
kType == CTypeInfo::Type::kVoid,
"Sequences are only supported from void type.");
STATIC_ASSERT_IMPLIES(
kSequenceType == CTypeInfo::SequenceType::kIsTypedArray,
CTypeInfo::IsPrimitive(kType) || kType == CTypeInfo::Type::kVoid,
"TypedArrays are only supported from primitive types or void.");
// Return the same type with the merged flags.
return CTypeInfo(internal::TypeInfoHelper<T>::Type(),
internal::TypeInfoHelper<T>::SequenceType(), kFlags);
}
private:
template <typename... Rest>
static constexpr CTypeInfo::Flags MergeFlags(CTypeInfo::Flags flags,
Rest... rest) {
return CTypeInfo::Flags(uint8_t(flags) | uint8_t(MergeFlags(rest...)));
}
static constexpr CTypeInfo::Flags MergeFlags() { return CTypeInfo::Flags(0); }
};
namespace internal {
template <typename RetBuilder, typename... ArgBuilders>
class CFunctionBuilderWithFunction {
public:
explicit constexpr CFunctionBuilderWithFunction(const void* fn) : fn_(fn) {}
template <CTypeInfo::Flags... Flags>
constexpr auto Ret() {
return CFunctionBuilderWithFunction<
CTypeInfoBuilder<typename RetBuilder::BaseType, Flags...>,
ArgBuilders...>(fn_);
}
template <unsigned int N, CTypeInfo::Flags... Flags>
constexpr auto Arg() {
// Return a copy of the builder with the Nth arg builder merged with
// template parameter pack Flags.
return ArgImpl<N, Flags...>(
std::make_index_sequence<sizeof...(ArgBuilders)>());
}
// Provided for testing purposes.
template <typename Ret, typename... Args>
auto Patch(Ret (*patching_func)(Args...)) {
static_assert(
sizeof...(Args) == sizeof...(ArgBuilders),
"The patching function must have the same number of arguments.");
fn_ = reinterpret_cast<void*>(patching_func);
return *this;
}
auto Build() {
static CFunctionInfoImpl<RetBuilder, ArgBuilders...> instance;
return CFunction(fn_, &instance);
}
private:
template <bool Merge, unsigned int N, CTypeInfo::Flags... Flags>
struct GetArgBuilder;
// Returns the same ArgBuilder as the one at index N, including its flags.
// Flags in the template parameter pack are ignored.
template <unsigned int N, CTypeInfo::Flags... Flags>
struct GetArgBuilder<false, N, Flags...> {
using type =
typename std::tuple_element<N, std::tuple<ArgBuilders...>>::type;
};
// Returns an ArgBuilder with the same base type as the one at index N,
// but merges the flags with the flags in the template parameter pack.
template <unsigned int N, CTypeInfo::Flags... Flags>
struct GetArgBuilder<true, N, Flags...> {
using type = CTypeInfoBuilder<
typename std::tuple_element<N,
std::tuple<ArgBuilders...>>::type::BaseType,
std::tuple_element<N, std::tuple<ArgBuilders...>>::type::Build()
.GetFlags(),
Flags...>;
};
// Return a copy of the CFunctionBuilder, but merges the Flags on
// ArgBuilder index N with the new Flags passed in the template parameter
// pack.
template <unsigned int N, CTypeInfo::Flags... Flags, size_t... I>
constexpr auto ArgImpl(std::index_sequence<I...>) {
return CFunctionBuilderWithFunction<
RetBuilder, typename GetArgBuilder<N == I, I, Flags...>::type...>(fn_);
}
const void* fn_;
};
class CFunctionBuilder {
public:
constexpr CFunctionBuilder() {}
template <typename R, typename... Args>
constexpr auto Fn(R (*fn)(Args...)) {
return CFunctionBuilderWithFunction<CTypeInfoBuilder<R>,
CTypeInfoBuilder<Args>...>(
reinterpret_cast<const void*>(fn));
}
};
} // namespace internal
// static
template <typename R, typename... Args>
CFunction CFunction::ArgUnwrap<R (*)(Args...)>::Make(R (*func)(Args...)) {
return internal::CFunctionBuilder().Fn(func).Build();
}
using CFunctionBuilder = internal::CFunctionBuilder;
static constexpr CTypeInfo kTypeInfoInt32 = CTypeInfo(CTypeInfo::Type::kInt32);
static constexpr CTypeInfo kTypeInfoFloat64 =
CTypeInfo(CTypeInfo::Type::kFloat64);
/**
* Copies the contents of this JavaScript array to a C++ buffer with
* a given max_length. A CTypeInfo is passed as an argument,
* instructing different rules for conversion (e.g. restricted float/double).
* The element type T of the destination array must match the C type
* corresponding to the CTypeInfo (specified by CTypeInfoTraits).
* If the array length is larger than max_length or the array is of
* unsupported type, the operation will fail, returning false. Generally, an
* array which contains objects, undefined, null or anything not convertible
* to the requested destination type, is considered unsupported. The operation
* returns true on success. `type_info` will be used for conversions.
*/
template <CTypeInfo::Identifier type_info_id, typename T>
bool V8_EXPORT V8_WARN_UNUSED_RESULT TryToCopyAndConvertArrayToCppBuffer(
Local<Array> src, T* dst, uint32_t max_length);
template <>
bool V8_EXPORT V8_WARN_UNUSED_RESULT
TryToCopyAndConvertArrayToCppBuffer<CTypeInfoBuilder<int32_t>::Build().GetId(),
int32_t>(Local<Array> src, int32_t* dst,
uint32_t max_length);
template <>
bool V8_EXPORT V8_WARN_UNUSED_RESULT
TryToCopyAndConvertArrayToCppBuffer<CTypeInfoBuilder<uint32_t>::Build().GetId(),
uint32_t>(Local<Array> src, uint32_t* dst,
uint32_t max_length);
template <>
bool V8_EXPORT V8_WARN_UNUSED_RESULT
TryToCopyAndConvertArrayToCppBuffer<CTypeInfoBuilder<float>::Build().GetId(),
float>(Local<Array> src, float* dst,
uint32_t max_length);
template <>
bool V8_EXPORT V8_WARN_UNUSED_RESULT
TryToCopyAndConvertArrayToCppBuffer<CTypeInfoBuilder<double>::Build().GetId(),
double>(Local<Array> src, double* dst,
uint32_t max_length);
} // namespace v8
#endif // INCLUDE_V8_FAST_API_CALLS_H_