v8/src/arm/simulator-arm.h
sgjesse@chromium.org 00bc2db28f ARM: Support hardfloat in SCons build and make it a build time setting
Add option armeabi to the SCons build for selecting the floating point variant to use. Also add externally defined CCFLAGS environment for all targets. Run test.py with option -S armeabi=hardfloat to test with hardfloat enabled.

Make selecting hardfloat EABI variant a build-time option instead of a runtime option.

Add a simple check of the EABI variant during V8 initialization to exit if the compilation was not configured correctly. The reason for this is that GCC does not provide a compile time symbol defining the EABI variant. This check is not fool-proof as it cannot check the compilation configuration used for the snapshot if any.

R=karlklose@chromium.org, erik.corry@gmail.com

BUG=none
TEST=none

Review URL: http://codereview.chromium.org//6905098

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@7715 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2011-04-29 08:50:38 +00:00

429 lines
15 KiB
C++

// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Declares a Simulator for ARM instructions if we are not generating a native
// ARM binary. This Simulator allows us to run and debug ARM code generation on
// regular desktop machines.
// V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro,
// which will start execution in the Simulator or forwards to the real entry
// on a ARM HW platform.
#ifndef V8_ARM_SIMULATOR_ARM_H_
#define V8_ARM_SIMULATOR_ARM_H_
#include "allocation.h"
#if !defined(USE_SIMULATOR)
// Running without a simulator on a native arm platform.
namespace v8 {
namespace internal {
// When running without a simulator we call the entry directly.
#define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
(entry(p0, p1, p2, p3, p4))
typedef int (*arm_regexp_matcher)(String*, int, const byte*, const byte*,
void*, int*, Address, int, Isolate*);
// Call the generated regexp code directly. The code at the entry address
// should act as a function matching the type arm_regexp_matcher.
// The fifth argument is a dummy that reserves the space used for
// the return address added by the ExitFrame in native calls.
#define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7) \
(FUNCTION_CAST<arm_regexp_matcher>(entry)( \
p0, p1, p2, p3, NULL, p4, p5, p6, p7))
#define TRY_CATCH_FROM_ADDRESS(try_catch_address) \
reinterpret_cast<TryCatch*>(try_catch_address)
// The stack limit beyond which we will throw stack overflow errors in
// generated code. Because generated code on arm uses the C stack, we
// just use the C stack limit.
class SimulatorStack : public v8::internal::AllStatic {
public:
static inline uintptr_t JsLimitFromCLimit(uintptr_t c_limit) {
return c_limit;
}
static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
return try_catch_address;
}
static inline void UnregisterCTryCatch() { }
};
} } // namespace v8::internal
#else // !defined(USE_SIMULATOR)
// Running with a simulator.
#include "constants-arm.h"
#include "hashmap.h"
#include "assembler.h"
namespace v8 {
namespace internal {
class CachePage {
public:
static const int LINE_VALID = 0;
static const int LINE_INVALID = 1;
static const int kPageShift = 12;
static const int kPageSize = 1 << kPageShift;
static const int kPageMask = kPageSize - 1;
static const int kLineShift = 2; // The cache line is only 4 bytes right now.
static const int kLineLength = 1 << kLineShift;
static const int kLineMask = kLineLength - 1;
CachePage() {
memset(&validity_map_, LINE_INVALID, sizeof(validity_map_));
}
char* ValidityByte(int offset) {
return &validity_map_[offset >> kLineShift];
}
char* CachedData(int offset) {
return &data_[offset];
}
private:
char data_[kPageSize]; // The cached data.
static const int kValidityMapSize = kPageSize >> kLineShift;
char validity_map_[kValidityMapSize]; // One byte per line.
};
class Simulator {
public:
friend class ArmDebugger;
enum Register {
no_reg = -1,
r0 = 0, r1, r2, r3, r4, r5, r6, r7,
r8, r9, r10, r11, r12, r13, r14, r15,
num_registers,
sp = 13,
lr = 14,
pc = 15,
s0 = 0, s1, s2, s3, s4, s5, s6, s7,
s8, s9, s10, s11, s12, s13, s14, s15,
s16, s17, s18, s19, s20, s21, s22, s23,
s24, s25, s26, s27, s28, s29, s30, s31,
num_s_registers = 32,
d0 = 0, d1, d2, d3, d4, d5, d6, d7,
d8, d9, d10, d11, d12, d13, d14, d15,
num_d_registers = 16
};
Simulator();
~Simulator();
// The currently executing Simulator instance. Potentially there can be one
// for each native thread.
static Simulator* current(v8::internal::Isolate* isolate);
// Accessors for register state. Reading the pc value adheres to the ARM
// architecture specification and is off by a 8 from the currently executing
// instruction.
void set_register(int reg, int32_t value);
int32_t get_register(int reg) const;
double get_double_from_register_pair(int reg);
void set_dw_register(int dreg, const int* dbl);
// Support for VFP.
void set_s_register(int reg, unsigned int value);
unsigned int get_s_register(int reg) const;
void set_d_register_from_double(int dreg, const double& dbl);
double get_double_from_d_register(int dreg);
void set_s_register_from_float(int sreg, const float dbl);
float get_float_from_s_register(int sreg);
void set_s_register_from_sinteger(int reg, const int value);
int get_sinteger_from_s_register(int reg);
// Special case of set_register and get_register to access the raw PC value.
void set_pc(int32_t value);
int32_t get_pc() const;
// Accessor to the internal simulator stack area.
uintptr_t StackLimit() const;
// Executes ARM instructions until the PC reaches end_sim_pc.
void Execute();
// Call on program start.
static void Initialize();
// V8 generally calls into generated JS code with 5 parameters and into
// generated RegExp code with 7 parameters. This is a convenience function,
// which sets up the simulator state and grabs the result on return.
int32_t Call(byte* entry, int argument_count, ...);
// Push an address onto the JS stack.
uintptr_t PushAddress(uintptr_t address);
// Pop an address from the JS stack.
uintptr_t PopAddress();
// ICache checking.
static void FlushICache(v8::internal::HashMap* i_cache, void* start,
size_t size);
// Returns true if pc register contains one of the 'special_values' defined
// below (bad_lr, end_sim_pc).
bool has_bad_pc() const;
// EABI variant for double arguments in use.
bool use_eabi_hardfloat() {
#if USE_EABI_HARDFLOAT
return true;
#else
return false;
#endif
}
private:
enum special_values {
// Known bad pc value to ensure that the simulator does not execute
// without being properly setup.
bad_lr = -1,
// A pc value used to signal the simulator to stop execution. Generally
// the lr is set to this value on transition from native C code to
// simulated execution, so that the simulator can "return" to the native
// C code.
end_sim_pc = -2
};
// Unsupported instructions use Format to print an error and stop execution.
void Format(Instruction* instr, const char* format);
// Checks if the current instruction should be executed based on its
// condition bits.
bool ConditionallyExecute(Instruction* instr);
// Helper functions to set the conditional flags in the architecture state.
void SetNZFlags(int32_t val);
void SetCFlag(bool val);
void SetVFlag(bool val);
bool CarryFrom(int32_t left, int32_t right, int32_t carry = 0);
bool BorrowFrom(int32_t left, int32_t right);
bool OverflowFrom(int32_t alu_out,
int32_t left,
int32_t right,
bool addition);
inline int GetCarry() {
return c_flag_ ? 1 : 0;
};
// Support for VFP.
void Compute_FPSCR_Flags(double val1, double val2);
void Copy_FPSCR_to_APSR();
// Helper functions to decode common "addressing" modes
int32_t GetShiftRm(Instruction* instr, bool* carry_out);
int32_t GetImm(Instruction* instr, bool* carry_out);
void ProcessPUW(Instruction* instr,
int num_regs,
int operand_size,
intptr_t* start_address,
intptr_t* end_address);
void HandleRList(Instruction* instr, bool load);
void HandleVList(Instruction* inst);
void SoftwareInterrupt(Instruction* instr);
// Stop helper functions.
inline bool isStopInstruction(Instruction* instr);
inline bool isWatchedStop(uint32_t bkpt_code);
inline bool isEnabledStop(uint32_t bkpt_code);
inline void EnableStop(uint32_t bkpt_code);
inline void DisableStop(uint32_t bkpt_code);
inline void IncreaseStopCounter(uint32_t bkpt_code);
void PrintStopInfo(uint32_t code);
// Read and write memory.
inline uint8_t ReadBU(int32_t addr);
inline int8_t ReadB(int32_t addr);
inline void WriteB(int32_t addr, uint8_t value);
inline void WriteB(int32_t addr, int8_t value);
inline uint16_t ReadHU(int32_t addr, Instruction* instr);
inline int16_t ReadH(int32_t addr, Instruction* instr);
// Note: Overloaded on the sign of the value.
inline void WriteH(int32_t addr, uint16_t value, Instruction* instr);
inline void WriteH(int32_t addr, int16_t value, Instruction* instr);
inline int ReadW(int32_t addr, Instruction* instr);
inline void WriteW(int32_t addr, int value, Instruction* instr);
int32_t* ReadDW(int32_t addr);
void WriteDW(int32_t addr, int32_t value1, int32_t value2);
// Executing is handled based on the instruction type.
// Both type 0 and type 1 rolled into one.
void DecodeType01(Instruction* instr);
void DecodeType2(Instruction* instr);
void DecodeType3(Instruction* instr);
void DecodeType4(Instruction* instr);
void DecodeType5(Instruction* instr);
void DecodeType6(Instruction* instr);
void DecodeType7(Instruction* instr);
// Support for VFP.
void DecodeTypeVFP(Instruction* instr);
void DecodeType6CoprocessorIns(Instruction* instr);
void DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instruction* instr);
void DecodeVCMP(Instruction* instr);
void DecodeVCVTBetweenDoubleAndSingle(Instruction* instr);
void DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr);
// Executes one instruction.
void InstructionDecode(Instruction* instr);
// ICache.
static void CheckICache(v8::internal::HashMap* i_cache, Instruction* instr);
static void FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start,
int size);
static CachePage* GetCachePage(v8::internal::HashMap* i_cache, void* page);
// Runtime call support.
static void* RedirectExternalReference(
void* external_function,
v8::internal::ExternalReference::Type type);
// For use in calls that take double value arguments.
void GetFpArgs(double* x, double* y);
void GetFpArgs(double* x);
void GetFpArgs(double* x, int32_t* y);
void SetFpResult(const double& result);
void TrashCallerSaveRegisters();
// Architecture state.
// Saturating instructions require a Q flag to indicate saturation.
// There is currently no way to read the CPSR directly, and thus read the Q
// flag, so this is left unimplemented.
int32_t registers_[16];
bool n_flag_;
bool z_flag_;
bool c_flag_;
bool v_flag_;
// VFP architecture state.
unsigned int vfp_register[num_s_registers];
bool n_flag_FPSCR_;
bool z_flag_FPSCR_;
bool c_flag_FPSCR_;
bool v_flag_FPSCR_;
// VFP rounding mode. See ARM DDI 0406B Page A2-29.
VFPRoundingMode FPSCR_rounding_mode_;
// VFP FP exception flags architecture state.
bool inv_op_vfp_flag_;
bool div_zero_vfp_flag_;
bool overflow_vfp_flag_;
bool underflow_vfp_flag_;
bool inexact_vfp_flag_;
// Simulator support.
char* stack_;
bool pc_modified_;
int icount_;
// Icache simulation
v8::internal::HashMap* i_cache_;
// Registered breakpoints.
Instruction* break_pc_;
Instr break_instr_;
v8::internal::Isolate* isolate_;
// A stop is watched if its code is less than kNumOfWatchedStops.
// Only watched stops support enabling/disabling and the counter feature.
static const uint32_t kNumOfWatchedStops = 256;
// Breakpoint is disabled if bit 31 is set.
static const uint32_t kStopDisabledBit = 1 << 31;
// A stop is enabled, meaning the simulator will stop when meeting the
// instruction, if bit 31 of watched_stops[code].count is unset.
// The value watched_stops[code].count & ~(1 << 31) indicates how many times
// the breakpoint was hit or gone through.
struct StopCountAndDesc {
uint32_t count;
char* desc;
};
StopCountAndDesc watched_stops[kNumOfWatchedStops];
};
// When running with the simulator transition into simulated execution at this
// point.
#define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
reinterpret_cast<Object*>(Simulator::current(Isolate::Current())->Call( \
FUNCTION_ADDR(entry), 5, p0, p1, p2, p3, p4))
#define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7) \
Simulator::current(Isolate::Current())->Call( \
entry, 9, p0, p1, p2, p3, NULL, p4, p5, p6, p7)
#define TRY_CATCH_FROM_ADDRESS(try_catch_address) \
try_catch_address == NULL ? \
NULL : *(reinterpret_cast<TryCatch**>(try_catch_address))
// The simulator has its own stack. Thus it has a different stack limit from
// the C-based native code. Setting the c_limit to indicate a very small
// stack cause stack overflow errors, since the simulator ignores the input.
// This is unlikely to be an issue in practice, though it might cause testing
// trouble down the line.
class SimulatorStack : public v8::internal::AllStatic {
public:
static inline uintptr_t JsLimitFromCLimit(uintptr_t c_limit) {
return Simulator::current(Isolate::Current())->StackLimit();
}
static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
Simulator* sim = Simulator::current(Isolate::Current());
return sim->PushAddress(try_catch_address);
}
static inline void UnregisterCTryCatch() {
Simulator::current(Isolate::Current())->PopAddress();
}
};
} } // namespace v8::internal
#endif // !defined(USE_SIMULATOR)
#endif // V8_ARM_SIMULATOR_ARM_H_