v8/test/unittests/wasm/function-body-decoder-unittest.cc
Andy Wingo 7d8b8b4f2f [stringref] Add support for parsing stringref instructions
Bug: v8:12868

This wires up the parser and the decoder interface for stringref.  All
of the interfaces throw UNIMPLEMENTED, however.

Change-Id: If8cb131032e425a5672f793c6e4c24ddd188aebc
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/3645115
Reviewed-by: Jakob Kummerow <jkummerow@chromium.org>
Commit-Queue: Andy Wingo <wingo@igalia.com>
Cr-Commit-Position: refs/heads/main@{#80545}
2022-05-16 10:10:06 +00:00

5247 lines
198 KiB
C++

// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/wasm/function-body-decoder.h"
#include "src/init/v8.h"
#include "src/objects/objects-inl.h"
#include "src/objects/objects.h"
#include "src/utils/ostreams.h"
#include "src/wasm/canonical-types.h"
#include "src/wasm/function-body-decoder-impl.h"
#include "src/wasm/leb-helper.h"
#include "src/wasm/local-decl-encoder.h"
#include "src/wasm/signature-map.h"
#include "src/wasm/wasm-limits.h"
#include "src/wasm/wasm-module.h"
#include "src/wasm/wasm-opcodes-inl.h"
#include "src/zone/zone.h"
#include "test/common/wasm/flag-utils.h"
#include "test/common/wasm/test-signatures.h"
#include "test/common/wasm/wasm-macro-gen.h"
#include "test/unittests/test-utils.h"
#include "testing/gmock-support.h"
namespace v8 {
namespace internal {
namespace wasm {
namespace function_body_decoder_unittest {
#define B1(a) WASM_BLOCK(a)
#define B2(a, b) WASM_BLOCK(a, b)
#define B3(a, b, c) WASM_BLOCK(a, b, c)
#define WASM_IF_OP kExprIf, kVoidCode
#define WASM_LOOP_OP kExprLoop, kVoidCode
#define EXPECT_OK(result) \
do { \
if (!result.ok()) { \
GTEST_NONFATAL_FAILURE_(result.error().message().c_str()); \
return; \
} \
} while (false)
static const byte kCodeGetLocal0[] = {kExprLocalGet, 0};
static const byte kCodeGetLocal1[] = {kExprLocalGet, 1};
static const byte kCodeSetLocal0[] = {WASM_LOCAL_SET(0, WASM_ZERO)};
static const byte kCodeTeeLocal0[] = {WASM_LOCAL_TEE(0, WASM_ZERO)};
static const ValueType kValueTypes[] = {kWasmI32, kWasmI64, kWasmF32, kWasmF64,
kWasmAnyRef};
static const MachineType machineTypes[] = {
MachineType::Int8(), MachineType::Uint8(), MachineType::Int16(),
MachineType::Uint16(), MachineType::Int32(), MachineType::Uint32(),
MachineType::Int64(), MachineType::Uint64(), MachineType::Float32(),
MachineType::Float64()};
static const WasmOpcode kInt32BinopOpcodes[] = {
kExprI32Add, kExprI32Sub, kExprI32Mul, kExprI32DivS, kExprI32DivU,
kExprI32RemS, kExprI32RemU, kExprI32And, kExprI32Ior, kExprI32Xor,
kExprI32Shl, kExprI32ShrU, kExprI32ShrS, kExprI32Eq, kExprI32LtS,
kExprI32LeS, kExprI32LtU, kExprI32LeU};
#define WASM_BRV_IF_ZERO(depth, val) \
val, WASM_ZERO, kExprBrIf, static_cast<byte>(depth)
constexpr size_t kMaxByteSizedLeb128 = 127;
using F = std::pair<ValueType, bool>;
// Used to construct fixed-size signatures: MakeSig::Returns(...).Params(...);
using MakeSig = FixedSizeSignature<ValueType>;
enum MemoryType { kMemory32, kMemory64 };
// A helper for tests that require a module environment for functions,
// globals, or memories.
class TestModuleBuilder {
public:
explicit TestModuleBuilder(ModuleOrigin origin = kWasmOrigin)
: allocator(), mod(std::make_unique<Zone>(&allocator, ZONE_NAME)) {
mod.origin = origin;
}
byte AddGlobal(ValueType type, bool mutability = true) {
mod.globals.push_back({type, mutability, {}, {0}, false, false});
CHECK_LE(mod.globals.size(), kMaxByteSizedLeb128);
return static_cast<byte>(mod.globals.size() - 1);
}
byte AddSignature(const FunctionSig* sig, uint32_t supertype = kNoSuperType) {
mod.add_signature(sig, supertype);
CHECK_LE(mod.types.size(), kMaxByteSizedLeb128);
GetTypeCanonicalizer()->AddRecursiveGroup(module(), 1);
return static_cast<byte>(mod.types.size() - 1);
}
byte AddFunction(const FunctionSig* sig, bool declared = true) {
byte sig_index = AddSignature(sig);
return AddFunctionImpl(sig, sig_index, declared);
}
byte AddFunction(uint32_t sig_index, bool declared = true) {
DCHECK(mod.has_signature(sig_index));
return AddFunctionImpl(mod.types[sig_index].function_sig, sig_index,
declared);
}
byte AddImport(const FunctionSig* sig) {
byte result = AddFunction(sig);
mod.functions[result].imported = true;
return result;
}
byte AddException(WasmTagSig* sig) {
mod.tags.emplace_back(sig);
CHECK_LE(mod.types.size(), kMaxByteSizedLeb128);
return static_cast<byte>(mod.tags.size() - 1);
}
byte AddTable(ValueType type, uint32_t initial_size, bool has_maximum_size,
uint32_t maximum_size) {
CHECK(WasmTable::IsValidTableType(type, &mod));
mod.tables.emplace_back();
WasmTable& table = mod.tables.back();
table.type = type;
table.initial_size = initial_size;
table.has_maximum_size = has_maximum_size;
table.maximum_size = maximum_size;
return static_cast<byte>(mod.tables.size() - 1);
}
byte AddStruct(std::initializer_list<F> fields,
uint32_t supertype = kNoSuperType) {
StructType::Builder type_builder(mod.signature_zone.get(),
static_cast<uint32_t>(fields.size()));
for (F field : fields) {
type_builder.AddField(field.first, field.second);
}
mod.add_struct_type(type_builder.Build(), supertype);
GetTypeCanonicalizer()->AddRecursiveGroup(module(), 1);
return static_cast<byte>(mod.types.size() - 1);
}
byte AddArray(ValueType type, bool mutability) {
ArrayType* array = mod.signature_zone->New<ArrayType>(type, mutability);
mod.add_array_type(array, kNoSuperType);
GetTypeCanonicalizer()->AddRecursiveGroup(module(), 1);
return static_cast<byte>(mod.types.size() - 1);
}
void InitializeMemory(MemoryType mem_type = kMemory32) {
mod.has_memory = true;
mod.is_memory64 = mem_type == kMemory64;
mod.initial_pages = 1;
mod.maximum_pages = 100;
}
byte InitializeTable(wasm::ValueType type) {
mod.tables.emplace_back();
mod.tables.back().type = type;
return static_cast<byte>(mod.tables.size() - 1);
}
byte AddPassiveElementSegment(wasm::ValueType type) {
mod.elem_segments.emplace_back(type, WasmElemSegment::kStatusPassive,
WasmElemSegment::kExpressionElements);
return static_cast<byte>(mod.elem_segments.size() - 1);
}
byte AddDeclarativeElementSegment() {
mod.elem_segments.emplace_back(kWasmFuncRef,
WasmElemSegment::kStatusDeclarative,
WasmElemSegment::kExpressionElements);
return static_cast<byte>(mod.elem_segments.size() - 1);
}
// Set the number of data segments as declared by the DataCount section.
void SetDataSegmentCount(uint32_t data_segment_count) {
// The Data section occurs after the Code section, so we don't need to
// update mod.data_segments, as it is always empty.
mod.num_declared_data_segments = data_segment_count;
}
WasmModule* module() { return &mod; }
private:
byte AddFunctionImpl(const FunctionSig* sig, uint32_t sig_index,
bool declared) {
mod.functions.push_back(
{sig, // sig
static_cast<uint32_t>(mod.functions.size()), // func_index
sig_index, // sig_index
{0, 0}, // code
0, // feedback slots
false, // import
false, // export
declared}); // declared
CHECK_LE(mod.functions.size(), kMaxByteSizedLeb128);
return static_cast<byte>(mod.functions.size() - 1);
}
AccountingAllocator allocator;
WasmModule mod;
};
template <class BaseTest>
class FunctionBodyDecoderTestBase : public WithZoneMixin<BaseTest> {
public:
using LocalsDecl = std::pair<uint32_t, ValueType>;
// All features are disabled by default and must be activated with
// a WASM_FEATURE_SCOPE in individual tests.
WasmFeatures enabled_features_ = WasmFeatures::None();
TestSignatures sigs;
TestModuleBuilder builder;
WasmModule* module = builder.module();
LocalDeclEncoder local_decls{this->zone()};
void AddLocals(ValueType type, uint32_t count) {
local_decls.AddLocals(count, type);
}
enum AppendEnd : bool { kAppendEnd, kOmitEnd };
base::Vector<const byte> PrepareBytecode(base::Vector<const byte> code,
AppendEnd append_end) {
size_t locals_size = local_decls.Size();
size_t total_size =
code.size() + locals_size + (append_end == kAppendEnd ? 1 : 0);
byte* buffer = this->zone()->template NewArray<byte>(total_size);
// Prepend the local decls to the code.
local_decls.Emit(buffer);
// Emit the code.
if (code.size() > 0) {
memcpy(buffer + locals_size, code.begin(), code.size());
}
if (append_end == kAppendEnd) {
// Append an extra end opcode.
buffer[total_size - 1] = kExprEnd;
}
return {buffer, total_size};
}
template <size_t N>
base::Vector<const byte> CodeToVector(const byte (&code)[N]) {
return base::ArrayVector(code);
}
base::Vector<const byte> CodeToVector(
const std::initializer_list<const byte>& code) {
return base::VectorOf(&*code.begin(), code.size());
}
base::Vector<const byte> CodeToVector(base::Vector<const byte> vec) {
return vec;
}
// Prepends local variable declarations and renders nice error messages for
// verification failures.
template <typename Code = std::initializer_list<const byte>>
void Validate(bool expected_success, const FunctionSig* sig, Code&& raw_code,
AppendEnd append_end = kAppendEnd,
const char* message = nullptr) {
base::Vector<const byte> code =
PrepareBytecode(CodeToVector(std::forward<Code>(raw_code)), append_end);
// Validate the code.
FunctionBody body(sig, 0, code.begin(), code.end());
WasmFeatures unused_detected_features = WasmFeatures::None();
DecodeResult result =
VerifyWasmCode(this->zone()->allocator(), enabled_features_, module,
&unused_detected_features, body);
std::ostringstream str;
if (result.failed()) {
str << "Verification failed: pc = +" << result.error().offset()
<< ", msg = " << result.error().message();
} else {
str << "Verification succeeded, expected failure";
}
EXPECT_EQ(result.ok(), expected_success) << str.str();
if (result.failed() && message) {
EXPECT_THAT(result.error().message(), ::testing::HasSubstr(message));
}
}
template <typename Code = std::initializer_list<const byte>>
void ExpectValidates(const FunctionSig* sig, Code&& raw_code,
AppendEnd append_end = kAppendEnd,
const char* message = nullptr) {
Validate(true, sig, std::forward<Code>(raw_code), append_end, message);
}
template <typename Code = std::initializer_list<const byte>>
void ExpectFailure(const FunctionSig* sig, Code&& raw_code,
AppendEnd append_end = kAppendEnd,
const char* message = nullptr) {
Validate(false, sig, std::forward<Code>(raw_code), append_end, message);
}
void TestBinop(WasmOpcode opcode, const FunctionSig* success) {
// op(local[0], local[1])
byte code[] = {WASM_BINOP(opcode, WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))};
ExpectValidates(success, code);
// Try all combinations of return and parameter types.
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
for (size_t j = 0; j < arraysize(kValueTypes); j++) {
for (size_t k = 0; k < arraysize(kValueTypes); k++) {
ValueType types[] = {kValueTypes[i], kValueTypes[j], kValueTypes[k]};
if (types[0] != success->GetReturn(0) ||
types[1] != success->GetParam(0) ||
types[2] != success->GetParam(1)) {
// Test signature mismatch.
FunctionSig sig(1, 2, types);
ExpectFailure(&sig, code);
}
}
}
}
}
void TestUnop(WasmOpcode opcode, const FunctionSig* success) {
TestUnop(opcode, success->GetReturn(), success->GetParam(0));
}
void TestUnop(WasmOpcode opcode, ValueType ret_type, ValueType param_type) {
// Return(op(local[0]))
byte code[] = {WASM_UNOP(opcode, WASM_LOCAL_GET(0))};
{
ValueType types[] = {ret_type, param_type};
FunctionSig sig(1, 1, types);
ExpectValidates(&sig, code);
}
// Try all combinations of return and parameter types.
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
for (size_t j = 0; j < arraysize(kValueTypes); j++) {
ValueType types[] = {kValueTypes[i], kValueTypes[j]};
if (types[0] != ret_type || types[1] != param_type) {
// Test signature mismatch.
FunctionSig sig(1, 1, types);
ExpectFailure(&sig, code);
}
}
}
}
};
using FunctionBodyDecoderTest = FunctionBodyDecoderTestBase<TestWithPlatform>;
TEST_F(FunctionBodyDecoderTest, Int32Const1) {
byte code[] = {kExprI32Const, 0};
for (int i = -64; i <= 63; i++) {
code[1] = static_cast<byte>(i & 0x7F);
ExpectValidates(sigs.i_i(), code);
}
}
TEST_F(FunctionBodyDecoderTest, RefFunc) {
builder.AddFunction(sigs.v_ii());
builder.AddFunction(sigs.ii_v());
ExpectValidates(sigs.c_v(), {kExprRefFunc, 1});
}
TEST_F(FunctionBodyDecoderTest, EmptyFunction) {
ExpectValidates(sigs.v_v(), {});
ExpectFailure(sigs.i_i(), {});
}
TEST_F(FunctionBodyDecoderTest, IncompleteIf1) {
byte code[] = {kExprIf};
ExpectFailure(sigs.v_v(), code);
ExpectFailure(sigs.i_i(), code);
}
TEST_F(FunctionBodyDecoderTest, Int32Const_fallthru) {
ExpectValidates(sigs.i_i(), {WASM_I32V_1(0)});
}
TEST_F(FunctionBodyDecoderTest, Int32Const_fallthru2) {
ExpectFailure(sigs.i_i(), {WASM_I32V_1(0), WASM_I32V_1(1)});
}
TEST_F(FunctionBodyDecoderTest, Int32Const) {
const int kInc = 4498211;
for (int32_t i = kMinInt; i < kMaxInt - kInc; i = i + kInc) {
// TODO(binji): expand test for other sized int32s; 1 through 5 bytes.
ExpectValidates(sigs.i_i(), {WASM_I32V(i)});
}
}
TEST_F(FunctionBodyDecoderTest, Int64Const) {
const int kInc = 4498211;
for (int32_t i = kMinInt; i < kMaxInt - kInc; i = i + kInc) {
ExpectValidates(sigs.l_l(),
{WASM_I64V((static_cast<uint64_t>(i) << 32) | i)});
}
}
TEST_F(FunctionBodyDecoderTest, Float32Const) {
byte code[] = {kExprF32Const, 0, 0, 0, 0};
Address ptr = reinterpret_cast<Address>(code + 1);
for (int i = 0; i < 30; i++) {
base::WriteLittleEndianValue<float>(ptr, i * -7.75f);
ExpectValidates(sigs.f_ff(), code);
}
}
TEST_F(FunctionBodyDecoderTest, Float64Const) {
byte code[] = {kExprF64Const, 0, 0, 0, 0, 0, 0, 0, 0};
Address ptr = reinterpret_cast<Address>(code + 1);
for (int i = 0; i < 30; i++) {
base::WriteLittleEndianValue<double>(ptr, i * 33.45);
ExpectValidates(sigs.d_dd(), code);
}
}
TEST_F(FunctionBodyDecoderTest, Int32Const_off_end) {
byte code[] = {kExprI32Const, 0xAA, 0xBB, 0xCC, 0x44};
for (size_t size = 1; size <= 4; ++size) {
ExpectFailure(sigs.i_i(), base::VectorOf(code, size), kAppendEnd);
// Should also fail without the trailing 'end' opcode.
ExpectFailure(sigs.i_i(), base::VectorOf(code, size), kOmitEnd);
}
}
TEST_F(FunctionBodyDecoderTest, GetLocal0_param) {
ExpectValidates(sigs.i_i(), kCodeGetLocal0);
}
TEST_F(FunctionBodyDecoderTest, GetLocal0_local) {
AddLocals(kWasmI32, 1);
ExpectValidates(sigs.i_v(), kCodeGetLocal0);
}
TEST_F(FunctionBodyDecoderTest, TooManyLocals) {
AddLocals(kWasmI32, 4034986500);
ExpectFailure(sigs.i_v(), kCodeGetLocal0);
}
TEST_F(FunctionBodyDecoderTest, GetLocal0_param_n) {
for (const FunctionSig* sig : {sigs.i_i(), sigs.i_ii(), sigs.i_iii()}) {
ExpectValidates(sig, kCodeGetLocal0);
}
}
TEST_F(FunctionBodyDecoderTest, GetLocalN_local) {
for (byte i = 1; i < 8; i++) {
AddLocals(kWasmI32, 1);
for (byte j = 0; j < i; j++) {
ExpectValidates(sigs.i_v(), {kExprLocalGet, j});
}
}
}
TEST_F(FunctionBodyDecoderTest, GetLocal0_fail_no_params) {
ExpectFailure(sigs.i_v(), kCodeGetLocal0);
}
TEST_F(FunctionBodyDecoderTest, GetLocal1_fail_no_locals) {
ExpectFailure(sigs.i_i(), kCodeGetLocal1);
}
TEST_F(FunctionBodyDecoderTest, GetLocal_off_end) {
ExpectFailure(sigs.i_i(), {kExprLocalGet});
}
TEST_F(FunctionBodyDecoderTest, NumLocalBelowLimit) {
AddLocals(kWasmI32, kV8MaxWasmFunctionLocals - 1);
ExpectValidates(sigs.v_v(), {WASM_NOP});
}
TEST_F(FunctionBodyDecoderTest, NumLocalAtLimit) {
AddLocals(kWasmI32, kV8MaxWasmFunctionLocals);
ExpectValidates(sigs.v_v(), {WASM_NOP});
}
TEST_F(FunctionBodyDecoderTest, NumLocalAboveLimit) {
AddLocals(kWasmI32, kV8MaxWasmFunctionLocals + 1);
ExpectFailure(sigs.v_v(), {WASM_NOP});
}
TEST_F(FunctionBodyDecoderTest, GetLocal_varint) {
const int kMaxLocals = kV8MaxWasmFunctionLocals - 1;
AddLocals(kWasmI32, kMaxLocals);
ExpectValidates(sigs.i_i(), {kExprLocalGet, U32V_1(66)});
ExpectValidates(sigs.i_i(), {kExprLocalGet, U32V_2(7777)});
ExpectValidates(sigs.i_i(), {kExprLocalGet, U32V_3(8888)});
ExpectValidates(sigs.i_i(), {kExprLocalGet, U32V_4(9999)});
ExpectValidates(sigs.i_i(), {kExprLocalGet, U32V_5(kMaxLocals - 1)});
ExpectFailure(sigs.i_i(), {kExprLocalGet, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF});
ExpectValidates(sigs.i_i(), {kExprLocalGet, U32V_4(kMaxLocals - 1)});
ExpectValidates(sigs.i_i(), {kExprLocalGet, U32V_4(kMaxLocals)});
ExpectFailure(sigs.i_i(), {kExprLocalGet, U32V_4(kMaxLocals + 1)});
ExpectFailure(sigs.i_v(), {kExprLocalGet, U32V_4(kMaxLocals)});
ExpectFailure(sigs.i_v(), {kExprLocalGet, U32V_4(kMaxLocals + 1)});
}
TEST_F(FunctionBodyDecoderTest, GetLocal_toomany) {
AddLocals(kWasmI32, kV8MaxWasmFunctionLocals - 100);
AddLocals(kWasmI32, 100);
ExpectValidates(sigs.i_v(), {kExprLocalGet, U32V_1(66)});
ExpectFailure(sigs.i_i(), {kExprLocalGet, U32V_1(66)});
}
TEST_F(FunctionBodyDecoderTest, Binops_off_end) {
byte code1[] = {0}; // [opcode]
for (size_t i = 0; i < arraysize(kInt32BinopOpcodes); i++) {
code1[0] = kInt32BinopOpcodes[i];
ExpectFailure(sigs.i_i(), code1);
}
byte code3[] = {kExprLocalGet, 0, 0}; // [expr] [opcode]
for (size_t i = 0; i < arraysize(kInt32BinopOpcodes); i++) {
code3[2] = kInt32BinopOpcodes[i];
ExpectFailure(sigs.i_i(), code3);
}
byte code4[] = {kExprLocalGet, 0, 0, 0}; // [expr] [opcode] [opcode]
for (size_t i = 0; i < arraysize(kInt32BinopOpcodes); i++) {
code4[2] = kInt32BinopOpcodes[i];
code4[3] = kInt32BinopOpcodes[i];
ExpectFailure(sigs.i_i(), code4);
}
}
TEST_F(FunctionBodyDecoderTest, BinopsAcrossBlock1) {
ExpectFailure(sigs.i_i(), {WASM_ZERO, kExprBlock, kI32Code, WASM_ZERO,
kExprI32Add, kExprEnd});
}
TEST_F(FunctionBodyDecoderTest, BinopsAcrossBlock2) {
ExpectFailure(sigs.i_i(), {WASM_ZERO, WASM_ZERO, kExprBlock, kI32Code,
kExprI32Add, kExprEnd});
}
TEST_F(FunctionBodyDecoderTest, BinopsAcrossBlock3) {
ExpectFailure(sigs.i_i(), {WASM_ZERO, WASM_ZERO, kExprIf, kI32Code,
kExprI32Add, kExprElse, kExprI32Add, kExprEnd});
}
TEST_F(FunctionBodyDecoderTest, Nop) {
ExpectValidates(sigs.v_v(), {kExprNop});
}
TEST_F(FunctionBodyDecoderTest, SetLocal0_void) {
ExpectFailure(sigs.i_i(), {WASM_LOCAL_SET(0, WASM_ZERO)});
}
TEST_F(FunctionBodyDecoderTest, SetLocal0_param) {
ExpectFailure(sigs.i_i(), kCodeSetLocal0);
ExpectFailure(sigs.f_ff(), kCodeSetLocal0);
ExpectFailure(sigs.d_dd(), kCodeSetLocal0);
}
TEST_F(FunctionBodyDecoderTest, TeeLocal0_param) {
ExpectValidates(sigs.i_i(), kCodeTeeLocal0);
ExpectFailure(sigs.f_ff(), kCodeTeeLocal0);
ExpectFailure(sigs.d_dd(), kCodeTeeLocal0);
}
TEST_F(FunctionBodyDecoderTest, SetLocal0_local) {
ExpectFailure(sigs.i_v(), kCodeSetLocal0);
ExpectFailure(sigs.v_v(), kCodeSetLocal0);
AddLocals(kWasmI32, 1);
ExpectFailure(sigs.i_v(), kCodeSetLocal0);
ExpectValidates(sigs.v_v(), kCodeSetLocal0);
}
TEST_F(FunctionBodyDecoderTest, TeeLocal0_local) {
ExpectFailure(sigs.i_v(), kCodeTeeLocal0);
AddLocals(kWasmI32, 1);
ExpectValidates(sigs.i_v(), kCodeTeeLocal0);
}
TEST_F(FunctionBodyDecoderTest, TeeLocalN_local) {
for (byte i = 1; i < 8; i++) {
AddLocals(kWasmI32, 1);
for (byte j = 0; j < i; j++) {
ExpectFailure(sigs.v_v(), {WASM_LOCAL_TEE(j, WASM_I32V_1(i))});
ExpectValidates(sigs.i_i(), {WASM_LOCAL_TEE(j, WASM_I32V_1(i))});
}
}
}
TEST_F(FunctionBodyDecoderTest, BlockN) {
constexpr size_t kMaxSize = 200;
byte buffer[kMaxSize + 3];
for (size_t i = 0; i <= kMaxSize; i++) {
memset(buffer, kExprNop, sizeof(buffer));
buffer[0] = kExprBlock;
buffer[1] = kVoidCode;
buffer[i + 2] = kExprEnd;
ExpectValidates(sigs.v_i(), base::VectorOf(buffer, i + 3), kAppendEnd);
}
}
#define WASM_EMPTY_BLOCK kExprBlock, kVoidCode, kExprEnd
TEST_F(FunctionBodyDecoderTest, Block0) {
ExpectValidates(sigs.v_v(), {WASM_EMPTY_BLOCK});
ExpectFailure(sigs.i_i(), {WASM_EMPTY_BLOCK});
}
TEST_F(FunctionBodyDecoderTest, Block0_fallthru1) {
ExpectValidates(sigs.v_v(), {WASM_BLOCK(WASM_EMPTY_BLOCK)});
ExpectFailure(sigs.i_i(), {WASM_BLOCK(WASM_EMPTY_BLOCK)});
}
TEST_F(FunctionBodyDecoderTest, Block0Block0) {
ExpectValidates(sigs.v_v(), {WASM_EMPTY_BLOCK, WASM_EMPTY_BLOCK});
ExpectFailure(sigs.i_i(), {WASM_EMPTY_BLOCK, WASM_EMPTY_BLOCK});
}
TEST_F(FunctionBodyDecoderTest, Block0_end) {
ExpectFailure(sigs.v_v(), {WASM_EMPTY_BLOCK, kExprEnd});
}
#undef WASM_EMPTY_BLOCK
TEST_F(FunctionBodyDecoderTest, Block1) {
byte code[] = {WASM_BLOCK_I(WASM_LOCAL_GET(0))};
ExpectValidates(sigs.i_i(), code);
ExpectFailure(sigs.v_i(), code);
ExpectFailure(sigs.d_dd(), code);
ExpectFailure(sigs.i_f(), code);
ExpectFailure(sigs.i_d(), code);
}
TEST_F(FunctionBodyDecoderTest, Block1_i) {
byte code[] = {WASM_BLOCK_I(WASM_ZERO)};
ExpectValidates(sigs.i_i(), code);
ExpectFailure(sigs.f_ff(), code);
ExpectFailure(sigs.d_dd(), code);
ExpectFailure(sigs.l_ll(), code);
}
TEST_F(FunctionBodyDecoderTest, Block1_f) {
byte code[] = {WASM_BLOCK_F(WASM_F32(0))};
ExpectFailure(sigs.i_i(), code);
ExpectValidates(sigs.f_ff(), code);
ExpectFailure(sigs.d_dd(), code);
ExpectFailure(sigs.l_ll(), code);
}
TEST_F(FunctionBodyDecoderTest, Block1_continue) {
ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_BR(0))});
}
TEST_F(FunctionBodyDecoderTest, Block1_br) {
ExpectValidates(sigs.v_v(), {B1(WASM_BR(0))});
ExpectValidates(sigs.v_v(), {B1(WASM_BR(1))});
ExpectFailure(sigs.v_v(), {B1(WASM_BR(2))});
}
TEST_F(FunctionBodyDecoderTest, Block2_br) {
ExpectValidates(sigs.v_v(), {B2(WASM_NOP, WASM_BR(0))});
ExpectValidates(sigs.v_v(), {B2(WASM_BR(0), WASM_NOP)});
ExpectValidates(sigs.v_v(), {B2(WASM_BR(0), WASM_BR(0))});
}
TEST_F(FunctionBodyDecoderTest, Block2) {
ExpectFailure(sigs.i_i(), {WASM_BLOCK(WASM_NOP, WASM_NOP)});
ExpectFailure(sigs.i_i(), {WASM_BLOCK_I(WASM_NOP, WASM_NOP)});
ExpectValidates(sigs.i_i(), {WASM_BLOCK_I(WASM_NOP, WASM_ZERO)});
ExpectValidates(sigs.i_i(), {WASM_BLOCK_I(WASM_ZERO, WASM_NOP)});
ExpectFailure(sigs.i_i(), {WASM_BLOCK_I(WASM_ZERO, WASM_ZERO)});
}
TEST_F(FunctionBodyDecoderTest, Block2b) {
byte code[] = {WASM_BLOCK_I(WASM_LOCAL_SET(0, WASM_ZERO), WASM_ZERO)};
ExpectValidates(sigs.i_i(), code);
ExpectFailure(sigs.v_v(), code);
ExpectFailure(sigs.f_ff(), code);
}
TEST_F(FunctionBodyDecoderTest, Block2_fallthru) {
ExpectValidates(sigs.i_i(), {B2(WASM_LOCAL_SET(0, WASM_ZERO),
WASM_LOCAL_SET(0, WASM_ZERO)),
WASM_I32V_1(23)});
}
TEST_F(FunctionBodyDecoderTest, Block3) {
ExpectValidates(sigs.i_i(), {WASM_BLOCK_I(WASM_LOCAL_SET(0, WASM_ZERO),
WASM_LOCAL_SET(0, WASM_ZERO),
WASM_I32V_1(11))});
}
TEST_F(FunctionBodyDecoderTest, Block5) {
ExpectFailure(sigs.v_i(), {WASM_BLOCK(WASM_ZERO)});
ExpectFailure(sigs.v_i(), {WASM_BLOCK(WASM_ZERO, WASM_ZERO)});
ExpectFailure(sigs.v_i(), {WASM_BLOCK(WASM_ZERO, WASM_ZERO, WASM_ZERO)});
ExpectFailure(sigs.v_i(),
{WASM_BLOCK(WASM_ZERO, WASM_ZERO, WASM_ZERO, WASM_ZERO)});
ExpectFailure(sigs.v_i(), {WASM_BLOCK(WASM_ZERO, WASM_ZERO, WASM_ZERO,
WASM_ZERO, WASM_ZERO)});
}
TEST_F(FunctionBodyDecoderTest, BlockType) {
ExpectValidates(sigs.i_i(), {WASM_BLOCK_I(WASM_LOCAL_GET(0))});
ExpectValidates(sigs.l_l(), {WASM_BLOCK_L(WASM_LOCAL_GET(0))});
ExpectValidates(sigs.f_f(), {WASM_BLOCK_F(WASM_LOCAL_GET(0))});
ExpectValidates(sigs.d_d(), {WASM_BLOCK_D(WASM_LOCAL_GET(0))});
}
TEST_F(FunctionBodyDecoderTest, BlockType_fail) {
ExpectFailure(sigs.i_i(), {WASM_BLOCK_L(WASM_I64V_1(0))}, kAppendEnd,
"type error in fallthru[0]");
ExpectFailure(sigs.i_i(), {WASM_BLOCK_F(WASM_F32(0.0))}, kAppendEnd,
"type error in fallthru[0]");
ExpectFailure(sigs.i_i(), {WASM_BLOCK_D(WASM_F64(1.1))}, kAppendEnd,
"type error in fallthru[0]");
ExpectFailure(sigs.l_l(), {WASM_BLOCK_I(WASM_ZERO)}, kAppendEnd,
"type error in fallthru[0]");
ExpectFailure(sigs.l_l(), {WASM_BLOCK_F(WASM_F32(0.0))}, kAppendEnd,
"type error in fallthru[0]");
ExpectFailure(sigs.l_l(), {WASM_BLOCK_D(WASM_F64(1.1))}, kAppendEnd,
"type error in fallthru[0]");
ExpectFailure(sigs.f_ff(), {WASM_BLOCK_I(WASM_ZERO)}, kAppendEnd,
"type error in fallthru[0]");
ExpectFailure(sigs.f_ff(), {WASM_BLOCK_L(WASM_I64V_1(0))}, kAppendEnd,
"type error in fallthru[0]");
ExpectFailure(sigs.f_ff(), {WASM_BLOCK_D(WASM_F64(1.1))}, kAppendEnd,
"type error in fallthru[0]");
ExpectFailure(sigs.d_dd(), {WASM_BLOCK_I(WASM_ZERO)}, kAppendEnd,
"type error in fallthru[0]");
ExpectFailure(sigs.d_dd(), {WASM_BLOCK_L(WASM_I64V_1(0))}, kAppendEnd,
"type error in fallthru[0]");
ExpectFailure(sigs.d_dd(), {WASM_BLOCK_F(WASM_F32(0.0))}, kAppendEnd,
"type error in fallthru[0]");
}
TEST_F(FunctionBodyDecoderTest, BlockF32) {
static const byte code[] = {WASM_BLOCK_F(kExprF32Const, 0, 0, 0, 0)};
ExpectValidates(sigs.f_ff(), code);
ExpectFailure(sigs.i_i(), code);
ExpectFailure(sigs.d_dd(), code);
}
TEST_F(FunctionBodyDecoderTest, BlockN_off_end) {
byte code[] = {WASM_BLOCK(kExprNop, kExprNop, kExprNop, kExprNop)};
ExpectValidates(sigs.v_v(), code);
for (size_t i = 1; i < arraysize(code); i++) {
ExpectFailure(sigs.v_v(), base::VectorOf(code, i), kAppendEnd);
ExpectFailure(sigs.v_v(), base::VectorOf(code, i), kOmitEnd);
}
}
TEST_F(FunctionBodyDecoderTest, Block2_continue) {
ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_NOP, WASM_BR(0))});
ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_NOP, WASM_BR(1))});
ExpectFailure(sigs.v_v(), {WASM_LOOP(WASM_NOP, WASM_BR(2))});
}
TEST_F(FunctionBodyDecoderTest, Block3_continue) {
ExpectValidates(sigs.v_v(), {B1(WASM_LOOP(WASM_NOP, WASM_BR(0)))});
ExpectValidates(sigs.v_v(), {B1(WASM_LOOP(WASM_NOP, WASM_BR(1)))});
ExpectValidates(sigs.v_v(), {B1(WASM_LOOP(WASM_NOP, WASM_BR(2)))});
ExpectFailure(sigs.v_v(), {B1(WASM_LOOP(WASM_NOP, WASM_BR(3)))});
}
TEST_F(FunctionBodyDecoderTest, NestedBlock_return) {
ExpectValidates(sigs.i_i(), {B1(B1(WASM_RETURN(WASM_ZERO))), WASM_ZERO});
}
TEST_F(FunctionBodyDecoderTest, BlockBrBinop) {
ExpectValidates(sigs.i_i(),
{WASM_I32_AND(WASM_BLOCK_I(WASM_BRV(0, WASM_I32V_1(1))),
WASM_I32V_1(2))});
}
TEST_F(FunctionBodyDecoderTest, VoidBlockTypeVariants) {
// Valid kVoidCode encoded in 2 bytes.
ExpectValidates(sigs.v_v(), {kExprBlock, kVoidCode | 0x80, 0x7F, kExprEnd});
// Invalid code, whose last 7 bits coincide with kVoidCode.
ExpectFailure(sigs.v_v(), {kExprBlock, kVoidCode | 0x80, 0x45, kExprEnd},
kAppendEnd, "invalid block type");
}
TEST_F(FunctionBodyDecoderTest, If_empty1) {
ExpectValidates(sigs.v_v(), {WASM_ZERO, WASM_IF_OP, kExprEnd});
}
TEST_F(FunctionBodyDecoderTest, If_empty2) {
ExpectValidates(sigs.v_v(), {WASM_ZERO, WASM_IF_OP, kExprElse, kExprEnd});
}
TEST_F(FunctionBodyDecoderTest, If_empty3) {
ExpectValidates(sigs.v_v(),
{WASM_ZERO, WASM_IF_OP, WASM_NOP, kExprElse, kExprEnd});
ExpectFailure(sigs.v_v(),
{WASM_ZERO, WASM_IF_OP, WASM_ZERO, kExprElse, kExprEnd});
}
TEST_F(FunctionBodyDecoderTest, If_empty4) {
ExpectValidates(sigs.v_v(),
{WASM_ZERO, WASM_IF_OP, kExprElse, WASM_NOP, kExprEnd});
ExpectFailure(sigs.v_v(),
{WASM_ZERO, WASM_IF_OP, kExprElse, WASM_ZERO, kExprEnd});
}
TEST_F(FunctionBodyDecoderTest, If_empty_stack) {
byte code[] = {kExprIf};
ExpectFailure(sigs.v_v(), code);
ExpectFailure(sigs.i_i(), code);
}
TEST_F(FunctionBodyDecoderTest, If_incomplete1) {
byte code[] = {kExprI32Const, 0, kExprIf};
ExpectFailure(sigs.v_v(), code);
ExpectFailure(sigs.i_i(), code);
}
TEST_F(FunctionBodyDecoderTest, If_incomplete2) {
byte code[] = {kExprI32Const, 0, kExprIf, kExprNop};
ExpectFailure(sigs.v_v(), code);
ExpectFailure(sigs.i_i(), code);
}
TEST_F(FunctionBodyDecoderTest, If_else_else) {
byte code[] = {kExprI32Const, 0, WASM_IF_OP, kExprElse, kExprElse, kExprEnd};
ExpectFailure(sigs.v_v(), code);
ExpectFailure(sigs.i_i(), code);
}
TEST_F(FunctionBodyDecoderTest, IfEmpty) {
ExpectValidates(sigs.v_i(), {kExprLocalGet, 0, WASM_IF_OP, kExprEnd});
}
TEST_F(FunctionBodyDecoderTest, IfSet) {
ExpectValidates(sigs.v_i(),
{WASM_IF(WASM_LOCAL_GET(0), WASM_LOCAL_SET(0, WASM_ZERO))});
ExpectValidates(sigs.v_i(),
{WASM_IF_ELSE(WASM_LOCAL_GET(0), WASM_LOCAL_SET(0, WASM_ZERO),
WASM_NOP)});
}
TEST_F(FunctionBodyDecoderTest, IfElseEmpty) {
ExpectValidates(sigs.v_i(),
{WASM_LOCAL_GET(0), WASM_IF_OP, kExprElse, kExprEnd});
ExpectValidates(sigs.v_i(),
{WASM_IF_ELSE(WASM_LOCAL_GET(0), WASM_NOP, WASM_NOP)});
}
TEST_F(FunctionBodyDecoderTest, IfElseUnreachable1) {
ExpectValidates(
sigs.i_i(),
{WASM_IF_ELSE_I(WASM_LOCAL_GET(0), WASM_UNREACHABLE, WASM_LOCAL_GET(0))});
ExpectValidates(
sigs.i_i(),
{WASM_IF_ELSE_I(WASM_LOCAL_GET(0), WASM_LOCAL_GET(0), WASM_UNREACHABLE)});
}
TEST_F(FunctionBodyDecoderTest, IfElseUnreachable2) {
static const byte code[] = {
WASM_IF_ELSE_I(WASM_LOCAL_GET(0), WASM_UNREACHABLE, WASM_LOCAL_GET(0))};
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
ValueType types[] = {kWasmI32, kValueTypes[i]};
FunctionSig sig(1, 1, types);
Validate(kValueTypes[i] == kWasmI32, &sig, code);
}
}
TEST_F(FunctionBodyDecoderTest, OneArmedIfWithArity) {
static const byte code[] = {WASM_ZERO, kExprIf, kI32Code, WASM_ONE, kExprEnd};
ExpectFailure(sigs.i_v(), code, kAppendEnd,
"start-arity and end-arity of one-armed if must match");
}
TEST_F(FunctionBodyDecoderTest, IfBreak) {
ExpectValidates(sigs.v_i(), {WASM_IF(WASM_LOCAL_GET(0), WASM_BR(0))});
ExpectValidates(sigs.v_i(), {WASM_IF(WASM_LOCAL_GET(0), WASM_BR(1))});
ExpectFailure(sigs.v_i(), {WASM_IF(WASM_LOCAL_GET(0), WASM_BR(2))});
}
TEST_F(FunctionBodyDecoderTest, IfElseBreak) {
ExpectValidates(sigs.v_i(),
{WASM_IF_ELSE(WASM_LOCAL_GET(0), WASM_NOP, WASM_BR(0))});
ExpectValidates(sigs.v_i(),
{WASM_IF_ELSE(WASM_LOCAL_GET(0), WASM_NOP, WASM_BR(1))});
ExpectFailure(sigs.v_i(),
{WASM_IF_ELSE(WASM_LOCAL_GET(0), WASM_NOP, WASM_BR(2))});
}
TEST_F(FunctionBodyDecoderTest, Block_else) {
byte code[] = {kExprI32Const, 0, kExprBlock, kExprElse, kExprEnd};
ExpectFailure(sigs.v_v(), code);
ExpectFailure(sigs.i_i(), code);
}
TEST_F(FunctionBodyDecoderTest, IfNop) {
ExpectValidates(sigs.v_i(), {WASM_IF(WASM_LOCAL_GET(0), WASM_NOP)});
ExpectValidates(sigs.v_i(),
{WASM_IF_ELSE(WASM_LOCAL_GET(0), WASM_NOP, WASM_NOP)});
}
TEST_F(FunctionBodyDecoderTest, If_end) {
ExpectValidates(sigs.v_i(), {kExprLocalGet, 0, WASM_IF_OP, kExprEnd});
ExpectFailure(sigs.v_i(), {kExprLocalGet, 0, WASM_IF_OP, kExprEnd, kExprEnd});
}
TEST_F(FunctionBodyDecoderTest, If_falloff1) {
ExpectFailure(sigs.v_i(), {kExprLocalGet, 0, kExprIf});
ExpectFailure(sigs.v_i(), {kExprLocalGet, 0, WASM_IF_OP});
ExpectFailure(sigs.v_i(),
{kExprLocalGet, 0, WASM_IF_OP, kExprNop, kExprElse});
}
TEST_F(FunctionBodyDecoderTest, IfElseNop) {
ExpectValidates(sigs.v_i(),
{WASM_IF_ELSE(WASM_LOCAL_GET(0), WASM_LOCAL_SET(0, WASM_ZERO),
WASM_NOP)});
}
TEST_F(FunctionBodyDecoderTest, IfBlock1) {
ExpectValidates(sigs.v_i(),
{WASM_IF_ELSE(WASM_LOCAL_GET(0),
B1(WASM_LOCAL_SET(0, WASM_ZERO)), WASM_NOP)});
}
TEST_F(FunctionBodyDecoderTest, IfBlock1b) {
ExpectValidates(sigs.v_i(), {WASM_IF(WASM_LOCAL_GET(0),
B1(WASM_LOCAL_SET(0, WASM_ZERO)))});
}
TEST_F(FunctionBodyDecoderTest, IfBlock2a) {
ExpectValidates(sigs.v_i(), {WASM_IF(WASM_LOCAL_GET(0),
B2(WASM_LOCAL_SET(0, WASM_ZERO),
WASM_LOCAL_SET(0, WASM_ZERO)))});
}
TEST_F(FunctionBodyDecoderTest, IfBlock2b) {
ExpectValidates(sigs.v_i(), {WASM_IF_ELSE(WASM_LOCAL_GET(0),
B2(WASM_LOCAL_SET(0, WASM_ZERO),
WASM_LOCAL_SET(0, WASM_ZERO)),
WASM_NOP)});
}
TEST_F(FunctionBodyDecoderTest, IfElseSet) {
ExpectValidates(sigs.v_i(),
{WASM_IF_ELSE(WASM_LOCAL_GET(0), WASM_LOCAL_SET(0, WASM_ZERO),
WASM_LOCAL_SET(0, WASM_I32V_1(1)))});
}
TEST_F(FunctionBodyDecoderTest, Loop0) {
ExpectValidates(sigs.v_v(), {WASM_LOOP_OP, kExprEnd});
}
TEST_F(FunctionBodyDecoderTest, Loop1) {
static const byte code[] = {WASM_LOOP(WASM_LOCAL_SET(0, WASM_ZERO))};
ExpectValidates(sigs.v_i(), code);
ExpectFailure(sigs.v_v(), code);
ExpectFailure(sigs.f_ff(), code);
}
TEST_F(FunctionBodyDecoderTest, Loop2) {
ExpectValidates(sigs.v_i(), {WASM_LOOP(WASM_LOCAL_SET(0, WASM_ZERO),
WASM_LOCAL_SET(0, WASM_ZERO))});
}
TEST_F(FunctionBodyDecoderTest, Loop1_continue) {
ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_BR(0))});
}
TEST_F(FunctionBodyDecoderTest, Loop1_break) {
ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_BR(1))});
}
TEST_F(FunctionBodyDecoderTest, Loop2_continue) {
ExpectValidates(sigs.v_i(),
{WASM_LOOP(WASM_LOCAL_SET(0, WASM_ZERO), WASM_BR(0))});
}
TEST_F(FunctionBodyDecoderTest, Loop2_break) {
ExpectValidates(sigs.v_i(),
{WASM_LOOP(WASM_LOCAL_SET(0, WASM_ZERO), WASM_BR(1))});
}
TEST_F(FunctionBodyDecoderTest, InfiniteLoop1) {
ExpectValidates(sigs.i_i(), {WASM_LOOP(WASM_BR(0)), WASM_ZERO});
ExpectValidates(sigs.i_i(), {WASM_LOOP(WASM_BR(0)), WASM_ZERO});
ExpectValidates(sigs.i_i(), {WASM_LOOP_I(WASM_BRV(1, WASM_ZERO))});
}
TEST_F(FunctionBodyDecoderTest, InfiniteLoop2) {
ExpectFailure(sigs.i_i(), {WASM_LOOP(WASM_BR(0), WASM_ZERO), WASM_ZERO});
}
TEST_F(FunctionBodyDecoderTest, Loop2_unreachable) {
ExpectValidates(sigs.i_i(), {WASM_LOOP_I(WASM_BR(0), WASM_NOP)});
}
TEST_F(FunctionBodyDecoderTest, LoopType) {
ExpectValidates(sigs.i_i(), {WASM_LOOP_I(WASM_LOCAL_GET(0))});
ExpectValidates(sigs.l_l(), {WASM_LOOP_L(WASM_LOCAL_GET(0))});
ExpectValidates(sigs.f_f(), {WASM_LOOP_F(WASM_LOCAL_GET(0))});
ExpectValidates(sigs.d_d(), {WASM_LOOP_D(WASM_LOCAL_GET(0))});
}
TEST_F(FunctionBodyDecoderTest, LoopType_void) {
ExpectFailure(sigs.v_v(), {WASM_LOOP_I(WASM_ZERO)});
ExpectFailure(sigs.v_v(), {WASM_LOOP_L(WASM_I64V_1(0))});
ExpectFailure(sigs.v_v(), {WASM_LOOP_F(WASM_F32(0.0))});
ExpectFailure(sigs.v_v(), {WASM_LOOP_D(WASM_F64(1.1))});
}
TEST_F(FunctionBodyDecoderTest, LoopType_fail) {
ExpectFailure(sigs.i_i(), {WASM_LOOP_L(WASM_I64V_1(0))});
ExpectFailure(sigs.i_i(), {WASM_LOOP_F(WASM_F32(0.0))});
ExpectFailure(sigs.i_i(), {WASM_LOOP_D(WASM_F64(1.1))});
ExpectFailure(sigs.l_l(), {WASM_LOOP_I(WASM_ZERO)});
ExpectFailure(sigs.l_l(), {WASM_LOOP_F(WASM_F32(0.0))});
ExpectFailure(sigs.l_l(), {WASM_LOOP_D(WASM_F64(1.1))});
ExpectFailure(sigs.f_ff(), {WASM_LOOP_I(WASM_ZERO)});
ExpectFailure(sigs.f_ff(), {WASM_LOOP_L(WASM_I64V_1(0))});
ExpectFailure(sigs.f_ff(), {WASM_LOOP_D(WASM_F64(1.1))});
ExpectFailure(sigs.d_dd(), {WASM_LOOP_I(WASM_ZERO)});
ExpectFailure(sigs.d_dd(), {WASM_LOOP_L(WASM_I64V_1(0))});
ExpectFailure(sigs.d_dd(), {WASM_LOOP_F(WASM_F32(0.0))});
}
TEST_F(FunctionBodyDecoderTest, ReturnVoid1) {
static const byte code[] = {kExprNop};
ExpectValidates(sigs.v_v(), code);
ExpectFailure(sigs.i_i(), code);
ExpectFailure(sigs.i_f(), code);
}
TEST_F(FunctionBodyDecoderTest, ReturnVoid2) {
static const byte code[] = {WASM_BLOCK(WASM_BR(0))};
ExpectValidates(sigs.v_v(), code);
ExpectFailure(sigs.i_i(), code);
ExpectFailure(sigs.i_f(), code);
}
TEST_F(FunctionBodyDecoderTest, ReturnVoid3) {
ExpectFailure(sigs.v_v(), {kExprI32Const, 0});
ExpectFailure(sigs.v_v(), {kExprI64Const, 0});
ExpectFailure(sigs.v_v(), {kExprF32Const, 0, 0, 0, 0});
ExpectFailure(sigs.v_v(), {kExprF64Const, 0, 0, 0, 0, 0, 0, 0, 0});
ExpectFailure(sigs.v_v(), {kExprRefNull});
ExpectFailure(sigs.v_v(), {kExprRefFunc, 0});
ExpectFailure(sigs.v_i(), {kExprLocalGet, 0});
}
TEST_F(FunctionBodyDecoderTest, Unreachable1) {
ExpectValidates(sigs.v_v(), {WASM_UNREACHABLE});
ExpectValidates(sigs.v_v(), {WASM_UNREACHABLE, WASM_UNREACHABLE});
ExpectValidates(sigs.i_i(), {WASM_UNREACHABLE, WASM_ZERO});
}
TEST_F(FunctionBodyDecoderTest, Unreachable2) {
ExpectFailure(sigs.v_v(), {B2(WASM_UNREACHABLE, WASM_ZERO)});
ExpectFailure(sigs.v_v(), {B2(WASM_BR(0), WASM_ZERO)});
}
TEST_F(FunctionBodyDecoderTest, UnreachableLoop1) {
ExpectFailure(sigs.v_v(), {WASM_LOOP(WASM_UNREACHABLE, WASM_ZERO)});
ExpectFailure(sigs.v_v(), {WASM_LOOP(WASM_BR(0), WASM_ZERO)});
ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_UNREACHABLE, WASM_NOP)});
ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_BR(0), WASM_NOP)});
}
TEST_F(FunctionBodyDecoderTest, Unreachable_binop1) {
ExpectValidates(sigs.i_i(), {WASM_I32_AND(WASM_ZERO, WASM_UNREACHABLE)});
ExpectValidates(sigs.i_i(), {WASM_I32_AND(WASM_UNREACHABLE, WASM_ZERO)});
}
TEST_F(FunctionBodyDecoderTest, Unreachable_binop2) {
ExpectValidates(sigs.i_i(), {WASM_I32_AND(WASM_F32(0.0), WASM_UNREACHABLE)});
ExpectFailure(sigs.i_i(), {WASM_I32_AND(WASM_UNREACHABLE, WASM_F32(0.0))});
}
TEST_F(FunctionBodyDecoderTest, Unreachable_select1) {
ExpectValidates(sigs.i_i(),
{WASM_SELECT(WASM_UNREACHABLE, WASM_ZERO, WASM_ZERO)});
ExpectValidates(sigs.i_i(),
{WASM_SELECT(WASM_ZERO, WASM_UNREACHABLE, WASM_ZERO)});
ExpectValidates(sigs.i_i(),
{WASM_SELECT(WASM_ZERO, WASM_ZERO, WASM_UNREACHABLE)});
}
TEST_F(FunctionBodyDecoderTest, Unreachable_select2) {
ExpectValidates(sigs.i_i(),
{WASM_SELECT(WASM_F32(0.0), WASM_UNREACHABLE, WASM_ZERO)});
ExpectFailure(sigs.i_i(),
{WASM_SELECT(WASM_UNREACHABLE, WASM_F32(0.0), WASM_ZERO)});
ExpectFailure(sigs.i_i(),
{WASM_SELECT(WASM_UNREACHABLE, WASM_ZERO, WASM_F32(0.0))});
}
TEST_F(FunctionBodyDecoderTest, UnreachableRefTypes) {
WASM_FEATURE_SCOPE(typed_funcref);
WASM_FEATURE_SCOPE(gc);
WASM_FEATURE_SCOPE(return_call);
byte function_index = builder.AddFunction(sigs.i_ii());
byte struct_index = builder.AddStruct({F(kWasmI32, true), F(kWasmI64, true)});
byte array_index = builder.AddArray(kWasmI32, true);
ValueType struct_type = ValueType::Ref(struct_index, kNonNullable);
ValueType struct_type_null = ValueType::Ref(struct_index, kNullable);
FunctionSig sig_v_s(0, 1, &struct_type);
byte struct_consumer = builder.AddFunction(&sig_v_s);
byte struct_consumer2 = builder.AddFunction(
FunctionSig::Build(zone(), {kWasmI32}, {struct_type, struct_type}));
ExpectValidates(sigs.i_v(), {WASM_UNREACHABLE, kExprRefIsNull});
ExpectValidates(sigs.v_v(), {WASM_UNREACHABLE, kExprRefAsNonNull, kExprDrop});
ExpectValidates(sigs.i_v(), {WASM_UNREACHABLE, kExprCallRef, WASM_I32V(1)});
ExpectValidates(sigs.i_v(), {WASM_UNREACHABLE, WASM_REF_FUNC(function_index),
kExprCallRef});
ExpectValidates(sigs.v_v(), {WASM_UNREACHABLE, kExprReturnCallRef});
ExpectValidates(sigs.v_v(),
{WASM_UNREACHABLE, WASM_GC_OP(kExprStructNewWithRtt),
struct_index, kExprCallFunction, struct_consumer});
ExpectValidates(sigs.v_v(), {WASM_UNREACHABLE, WASM_RTT_CANON(struct_index),
WASM_GC_OP(kExprStructNewWithRtt), struct_index,
kExprCallFunction, struct_consumer});
ExpectValidates(sigs.v_v(), {WASM_UNREACHABLE, WASM_I64V(42),
WASM_RTT_CANON(struct_index),
WASM_GC_OP(kExprStructNewWithRtt), struct_index,
kExprCallFunction, struct_consumer});
ExpectValidates(sigs.v_v(),
{WASM_UNREACHABLE, WASM_GC_OP(kExprStructNewDefaultWithRtt),
struct_index, kExprDrop});
ExpectValidates(sigs.v_v(),
{WASM_UNREACHABLE, WASM_RTT_CANON(struct_index),
WASM_GC_OP(kExprStructNewDefaultWithRtt), struct_index,
kExprCallFunction, struct_consumer});
ExpectValidates(sigs.v_v(),
{WASM_UNREACHABLE, WASM_GC_OP(kExprArrayNewWithRtt),
array_index, kExprDrop});
ExpectValidates(sigs.v_v(),
{WASM_UNREACHABLE, WASM_RTT_CANON(array_index),
WASM_GC_OP(kExprArrayNewWithRtt), array_index, kExprDrop});
ExpectValidates(sigs.v_v(),
{WASM_UNREACHABLE, WASM_I32V(42), WASM_RTT_CANON(array_index),
WASM_GC_OP(kExprArrayNewWithRtt), array_index, kExprDrop});
ExpectValidates(sigs.v_v(),
{WASM_UNREACHABLE, WASM_GC_OP(kExprArrayNewDefaultWithRtt),
array_index, kExprDrop});
ExpectValidates(sigs.v_v(), {WASM_UNREACHABLE, WASM_RTT_CANON(array_index),
WASM_GC_OP(kExprArrayNewDefaultWithRtt),
array_index, kExprDrop});
ExpectValidates(sigs.i_v(), {WASM_UNREACHABLE, WASM_GC_OP(kExprRefTest),
struct_index, struct_index});
ExpectValidates(sigs.i_v(),
{WASM_UNREACHABLE, WASM_RTT_CANON(struct_index),
WASM_GC_OP(kExprRefTest), struct_index, struct_index});
ExpectValidates(sigs.v_v(), {WASM_UNREACHABLE, WASM_GC_OP(kExprRefCast),
struct_index, struct_index, kExprDrop});
ExpectValidates(sigs.v_v(), {WASM_UNREACHABLE, WASM_RTT_CANON(struct_index),
WASM_GC_OP(kExprRefCast), struct_index,
struct_index, kExprDrop});
ExpectValidates(sigs.v_v(), {WASM_UNREACHABLE, kExprBrOnNull, 0, WASM_DROP});
ExpectValidates(&sig_v_s, {WASM_UNREACHABLE, WASM_LOCAL_GET(0), kExprBrOnNull,
0, kExprCallFunction, struct_consumer});
ExpectValidates(FunctionSig::Build(zone(), {struct_type}, {}),
{WASM_UNREACHABLE, WASM_RTT_CANON(struct_index),
WASM_GC_OP(kExprRefCast)});
ExpectValidates(FunctionSig::Build(zone(), {kWasmDataRef}, {}),
{WASM_UNREACHABLE, WASM_GC_OP(kExprRefAsData)});
ExpectValidates(FunctionSig::Build(zone(), {}, {struct_type_null}),
{WASM_UNREACHABLE, WASM_LOCAL_GET(0), kExprBrOnNull, 0,
kExprCallFunction, struct_consumer});
ExpectFailure(
sigs.v_v(), {WASM_UNREACHABLE, WASM_I32V(42), kExprBrOnNull, 0},
kAppendEnd,
"br_on_null[0] expected object reference, found i32.const of type i32");
// This tests for a bug where {TypeCheckStackAgainstMerge} did not insert
// unreachable values into the stack correctly.
ExpectValidates(FunctionSig::Build(zone(), {kWasmI32}, {struct_type_null}),
{WASM_BLOCK_R(struct_type_null, kExprUnreachable, // --
kExprLocalGet, 0, kExprRefAsNonNull, // --
kExprLocalGet, 0, kExprBrOnNull, 0, // --
kExprCallFunction, struct_consumer2, // --
kExprBr, 1),
kExprDrop, WASM_I32V(1)});
}
TEST_F(FunctionBodyDecoderTest, If1) {
ExpectValidates(sigs.i_i(), {WASM_IF_ELSE_I(WASM_LOCAL_GET(0), WASM_I32V_1(9),
WASM_I32V_1(8))});
ExpectValidates(sigs.i_i(), {WASM_IF_ELSE_I(WASM_LOCAL_GET(0), WASM_I32V_1(9),
WASM_LOCAL_GET(0))});
ExpectValidates(
sigs.i_i(),
{WASM_IF_ELSE_I(WASM_LOCAL_GET(0), WASM_LOCAL_GET(0), WASM_I32V_1(8))});
}
TEST_F(FunctionBodyDecoderTest, If_off_end) {
static const byte kCode[] = {
WASM_IF_ELSE(WASM_LOCAL_GET(0), WASM_LOCAL_GET(0), WASM_LOCAL_GET(0))};
for (size_t len = 3; len < arraysize(kCode); len++) {
ExpectFailure(sigs.i_i(), base::VectorOf(kCode, len), kAppendEnd);
ExpectFailure(sigs.i_i(), base::VectorOf(kCode, len), kOmitEnd);
}
}
TEST_F(FunctionBodyDecoderTest, If_type1) {
// float|double ? 1 : 2
static const byte kCode[] = {
WASM_IF_ELSE_I(WASM_LOCAL_GET(0), WASM_I32V_1(0), WASM_I32V_1(2))};
ExpectValidates(sigs.i_i(), kCode);
ExpectFailure(sigs.i_f(), kCode);
ExpectFailure(sigs.i_d(), kCode);
}
TEST_F(FunctionBodyDecoderTest, If_type2) {
// 1 ? float|double : 2
static const byte kCode[] = {
WASM_IF_ELSE_I(WASM_I32V_1(1), WASM_LOCAL_GET(0), WASM_I32V_1(1))};
ExpectValidates(sigs.i_i(), kCode);
ExpectFailure(sigs.i_f(), kCode);
ExpectFailure(sigs.i_d(), kCode);
}
TEST_F(FunctionBodyDecoderTest, If_type3) {
// stmt ? 0 : 1
static const byte kCode[] = {
WASM_IF_ELSE_I(WASM_NOP, WASM_I32V_1(0), WASM_I32V_1(1))};
ExpectFailure(sigs.i_i(), kCode);
ExpectFailure(sigs.i_f(), kCode);
ExpectFailure(sigs.i_d(), kCode);
}
TEST_F(FunctionBodyDecoderTest, If_type4) {
// 0 ? stmt : 1
static const byte kCode[] = {
WASM_IF_ELSE_I(WASM_LOCAL_GET(0), WASM_NOP, WASM_I32V_1(1))};
ExpectFailure(sigs.i_i(), kCode);
ExpectFailure(sigs.i_f(), kCode);
ExpectFailure(sigs.i_d(), kCode);
}
TEST_F(FunctionBodyDecoderTest, If_type5) {
// 0 ? 1 : stmt
static const byte kCode[] = {
WASM_IF_ELSE_I(WASM_ZERO, WASM_I32V_1(1), WASM_NOP)};
ExpectFailure(sigs.i_i(), kCode);
ExpectFailure(sigs.i_f(), kCode);
ExpectFailure(sigs.i_d(), kCode);
}
TEST_F(FunctionBodyDecoderTest, Int64Local_param) {
ExpectValidates(sigs.l_l(), kCodeGetLocal0);
}
TEST_F(FunctionBodyDecoderTest, Int64Locals) {
for (byte i = 1; i < 8; i++) {
AddLocals(kWasmI64, 1);
for (byte j = 0; j < i; j++) {
ExpectValidates(sigs.l_v(), {WASM_LOCAL_GET(j)});
}
}
}
TEST_F(FunctionBodyDecoderTest, Int32Binops) {
TestBinop(kExprI32Add, sigs.i_ii());
TestBinop(kExprI32Sub, sigs.i_ii());
TestBinop(kExprI32Mul, sigs.i_ii());
TestBinop(kExprI32DivS, sigs.i_ii());
TestBinop(kExprI32DivU, sigs.i_ii());
TestBinop(kExprI32RemS, sigs.i_ii());
TestBinop(kExprI32RemU, sigs.i_ii());
TestBinop(kExprI32And, sigs.i_ii());
TestBinop(kExprI32Ior, sigs.i_ii());
TestBinop(kExprI32Xor, sigs.i_ii());
TestBinop(kExprI32Shl, sigs.i_ii());
TestBinop(kExprI32ShrU, sigs.i_ii());
TestBinop(kExprI32ShrS, sigs.i_ii());
TestBinop(kExprI32Eq, sigs.i_ii());
TestBinop(kExprI32LtS, sigs.i_ii());
TestBinop(kExprI32LeS, sigs.i_ii());
TestBinop(kExprI32LtU, sigs.i_ii());
TestBinop(kExprI32LeU, sigs.i_ii());
}
TEST_F(FunctionBodyDecoderTest, DoubleBinops) {
TestBinop(kExprF64Add, sigs.d_dd());
TestBinop(kExprF64Sub, sigs.d_dd());
TestBinop(kExprF64Mul, sigs.d_dd());
TestBinop(kExprF64Div, sigs.d_dd());
TestBinop(kExprF64Eq, sigs.i_dd());
TestBinop(kExprF64Lt, sigs.i_dd());
TestBinop(kExprF64Le, sigs.i_dd());
}
TEST_F(FunctionBodyDecoderTest, FloatBinops) {
TestBinop(kExprF32Add, sigs.f_ff());
TestBinop(kExprF32Sub, sigs.f_ff());
TestBinop(kExprF32Mul, sigs.f_ff());
TestBinop(kExprF32Div, sigs.f_ff());
TestBinop(kExprF32Eq, sigs.i_ff());
TestBinop(kExprF32Lt, sigs.i_ff());
TestBinop(kExprF32Le, sigs.i_ff());
}
TEST_F(FunctionBodyDecoderTest, TypeConversions) {
TestUnop(kExprI32SConvertF32, kWasmI32, kWasmF32);
TestUnop(kExprI32SConvertF64, kWasmI32, kWasmF64);
TestUnop(kExprI32UConvertF32, kWasmI32, kWasmF32);
TestUnop(kExprI32UConvertF64, kWasmI32, kWasmF64);
TestUnop(kExprF64SConvertI32, kWasmF64, kWasmI32);
TestUnop(kExprF64UConvertI32, kWasmF64, kWasmI32);
TestUnop(kExprF64ConvertF32, kWasmF64, kWasmF32);
TestUnop(kExprF32SConvertI32, kWasmF32, kWasmI32);
TestUnop(kExprF32UConvertI32, kWasmF32, kWasmI32);
TestUnop(kExprF32ConvertF64, kWasmF32, kWasmF64);
}
TEST_F(FunctionBodyDecoderTest, MacrosVoid) {
builder.InitializeMemory();
ExpectValidates(sigs.v_i(), {WASM_LOCAL_SET(0, WASM_I32V_3(87348))});
ExpectValidates(
sigs.v_i(),
{WASM_STORE_MEM(MachineType::Int32(), WASM_I32V_1(24), WASM_I32V_1(40))});
ExpectValidates(sigs.v_i(), {WASM_IF(WASM_LOCAL_GET(0), WASM_NOP)});
ExpectValidates(sigs.v_i(),
{WASM_IF_ELSE(WASM_LOCAL_GET(0), WASM_NOP, WASM_NOP)});
ExpectValidates(sigs.v_v(), {WASM_NOP});
ExpectValidates(sigs.v_v(), {B1(WASM_NOP)});
ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_NOP)});
ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_BR(0))});
}
TEST_F(FunctionBodyDecoderTest, MacrosContinue) {
ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_CONTINUE(0))});
}
TEST_F(FunctionBodyDecoderTest, MacrosVariadic) {
ExpectValidates(sigs.v_v(), {B2(WASM_NOP, WASM_NOP)});
ExpectValidates(sigs.v_v(), {B3(WASM_NOP, WASM_NOP, WASM_NOP)});
ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_NOP, WASM_NOP)});
ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_NOP, WASM_NOP, WASM_NOP)});
}
TEST_F(FunctionBodyDecoderTest, MacrosNestedBlocks) {
ExpectValidates(sigs.v_v(), {B2(WASM_NOP, B2(WASM_NOP, WASM_NOP))});
ExpectValidates(sigs.v_v(), {B3(WASM_NOP, // --
B2(WASM_NOP, WASM_NOP), // --
B2(WASM_NOP, WASM_NOP))}); // --
ExpectValidates(sigs.v_v(), {B1(B1(B2(WASM_NOP, WASM_NOP)))});
}
TEST_F(FunctionBodyDecoderTest, MultipleReturn) {
static ValueType kIntTypes5[] = {kWasmI32, kWasmI32, kWasmI32, kWasmI32,
kWasmI32};
FunctionSig sig_ii_v(2, 0, kIntTypes5);
ExpectValidates(&sig_ii_v, {WASM_RETURN(WASM_ZERO, WASM_ONE)});
ExpectFailure(&sig_ii_v, {WASM_RETURN(WASM_ZERO)});
FunctionSig sig_iii_v(3, 0, kIntTypes5);
ExpectValidates(&sig_iii_v,
{WASM_RETURN(WASM_ZERO, WASM_ONE, WASM_I32V_1(44))});
ExpectFailure(&sig_iii_v, {WASM_RETURN(WASM_ZERO, WASM_ONE)});
}
TEST_F(FunctionBodyDecoderTest, MultipleReturn_fallthru) {
static ValueType kIntTypes5[] = {kWasmI32, kWasmI32, kWasmI32, kWasmI32,
kWasmI32};
FunctionSig sig_ii_v(2, 0, kIntTypes5);
ExpectValidates(&sig_ii_v, {WASM_ZERO, WASM_ONE});
ExpectFailure(&sig_ii_v, {WASM_ZERO});
FunctionSig sig_iii_v(3, 0, kIntTypes5);
ExpectValidates(&sig_iii_v, {WASM_ZERO, WASM_ONE, WASM_I32V_1(44)});
ExpectFailure(&sig_iii_v, {WASM_ZERO, WASM_ONE});
}
TEST_F(FunctionBodyDecoderTest, MacrosInt32) {
ExpectValidates(sigs.i_i(),
{WASM_I32_ADD(WASM_LOCAL_GET(0), WASM_I32V_1(12))});
ExpectValidates(sigs.i_i(),
{WASM_I32_SUB(WASM_LOCAL_GET(0), WASM_I32V_1(13))});
ExpectValidates(sigs.i_i(),
{WASM_I32_MUL(WASM_LOCAL_GET(0), WASM_I32V_1(14))});
ExpectValidates(sigs.i_i(),
{WASM_I32_DIVS(WASM_LOCAL_GET(0), WASM_I32V_1(15))});
ExpectValidates(sigs.i_i(),
{WASM_I32_DIVU(WASM_LOCAL_GET(0), WASM_I32V_1(16))});
ExpectValidates(sigs.i_i(),
{WASM_I32_REMS(WASM_LOCAL_GET(0), WASM_I32V_1(17))});
ExpectValidates(sigs.i_i(),
{WASM_I32_REMU(WASM_LOCAL_GET(0), WASM_I32V_1(18))});
ExpectValidates(sigs.i_i(),
{WASM_I32_AND(WASM_LOCAL_GET(0), WASM_I32V_1(19))});
ExpectValidates(sigs.i_i(),
{WASM_I32_IOR(WASM_LOCAL_GET(0), WASM_I32V_1(20))});
ExpectValidates(sigs.i_i(),
{WASM_I32_XOR(WASM_LOCAL_GET(0), WASM_I32V_1(21))});
ExpectValidates(sigs.i_i(),
{WASM_I32_SHL(WASM_LOCAL_GET(0), WASM_I32V_1(22))});
ExpectValidates(sigs.i_i(),
{WASM_I32_SHR(WASM_LOCAL_GET(0), WASM_I32V_1(23))});
ExpectValidates(sigs.i_i(),
{WASM_I32_SAR(WASM_LOCAL_GET(0), WASM_I32V_1(24))});
ExpectValidates(sigs.i_i(),
{WASM_I32_ROR(WASM_LOCAL_GET(0), WASM_I32V_1(24))});
ExpectValidates(sigs.i_i(),
{WASM_I32_ROL(WASM_LOCAL_GET(0), WASM_I32V_1(24))});
ExpectValidates(sigs.i_i(),
{WASM_I32_EQ(WASM_LOCAL_GET(0), WASM_I32V_1(25))});
ExpectValidates(sigs.i_i(),
{WASM_I32_NE(WASM_LOCAL_GET(0), WASM_I32V_1(25))});
ExpectValidates(sigs.i_i(),
{WASM_I32_LTS(WASM_LOCAL_GET(0), WASM_I32V_1(26))});
ExpectValidates(sigs.i_i(),
{WASM_I32_LES(WASM_LOCAL_GET(0), WASM_I32V_1(27))});
ExpectValidates(sigs.i_i(),
{WASM_I32_LTU(WASM_LOCAL_GET(0), WASM_I32V_1(28))});
ExpectValidates(sigs.i_i(),
{WASM_I32_LEU(WASM_LOCAL_GET(0), WASM_I32V_1(29))});
ExpectValidates(sigs.i_i(),
{WASM_I32_GTS(WASM_LOCAL_GET(0), WASM_I32V_1(26))});
ExpectValidates(sigs.i_i(),
{WASM_I32_GES(WASM_LOCAL_GET(0), WASM_I32V_1(27))});
ExpectValidates(sigs.i_i(),
{WASM_I32_GTU(WASM_LOCAL_GET(0), WASM_I32V_1(28))});
ExpectValidates(sigs.i_i(),
{WASM_I32_GEU(WASM_LOCAL_GET(0), WASM_I32V_1(29))});
}
TEST_F(FunctionBodyDecoderTest, MacrosInt64) {
ExpectValidates(sigs.l_ll(),
{WASM_I64_ADD(WASM_LOCAL_GET(0), WASM_I64V_1(12))});
ExpectValidates(sigs.l_ll(),
{WASM_I64_SUB(WASM_LOCAL_GET(0), WASM_I64V_1(13))});
ExpectValidates(sigs.l_ll(),
{WASM_I64_MUL(WASM_LOCAL_GET(0), WASM_I64V_1(14))});
ExpectValidates(sigs.l_ll(),
{WASM_I64_DIVS(WASM_LOCAL_GET(0), WASM_I64V_1(15))});
ExpectValidates(sigs.l_ll(),
{WASM_I64_DIVU(WASM_LOCAL_GET(0), WASM_I64V_1(16))});
ExpectValidates(sigs.l_ll(),
{WASM_I64_REMS(WASM_LOCAL_GET(0), WASM_I64V_1(17))});
ExpectValidates(sigs.l_ll(),
{WASM_I64_REMU(WASM_LOCAL_GET(0), WASM_I64V_1(18))});
ExpectValidates(sigs.l_ll(),
{WASM_I64_AND(WASM_LOCAL_GET(0), WASM_I64V_1(19))});
ExpectValidates(sigs.l_ll(),
{WASM_I64_IOR(WASM_LOCAL_GET(0), WASM_I64V_1(20))});
ExpectValidates(sigs.l_ll(),
{WASM_I64_XOR(WASM_LOCAL_GET(0), WASM_I64V_1(21))});
ExpectValidates(sigs.l_ll(),
{WASM_I64_SHL(WASM_LOCAL_GET(0), WASM_I64V_1(22))});
ExpectValidates(sigs.l_ll(),
{WASM_I64_SHR(WASM_LOCAL_GET(0), WASM_I64V_1(23))});
ExpectValidates(sigs.l_ll(),
{WASM_I64_SAR(WASM_LOCAL_GET(0), WASM_I64V_1(24))});
ExpectValidates(sigs.l_ll(),
{WASM_I64_ROR(WASM_LOCAL_GET(0), WASM_I64V_1(24))});
ExpectValidates(sigs.l_ll(),
{WASM_I64_ROL(WASM_LOCAL_GET(0), WASM_I64V_1(24))});
ExpectValidates(sigs.i_ll(),
{WASM_I64_LTS(WASM_LOCAL_GET(0), WASM_I64V_1(26))});
ExpectValidates(sigs.i_ll(),
{WASM_I64_LES(WASM_LOCAL_GET(0), WASM_I64V_1(27))});
ExpectValidates(sigs.i_ll(),
{WASM_I64_LTU(WASM_LOCAL_GET(0), WASM_I64V_1(28))});
ExpectValidates(sigs.i_ll(),
{WASM_I64_LEU(WASM_LOCAL_GET(0), WASM_I64V_1(29))});
ExpectValidates(sigs.i_ll(),
{WASM_I64_GTS(WASM_LOCAL_GET(0), WASM_I64V_1(26))});
ExpectValidates(sigs.i_ll(),
{WASM_I64_GES(WASM_LOCAL_GET(0), WASM_I64V_1(27))});
ExpectValidates(sigs.i_ll(),
{WASM_I64_GTU(WASM_LOCAL_GET(0), WASM_I64V_1(28))});
ExpectValidates(sigs.i_ll(),
{WASM_I64_GEU(WASM_LOCAL_GET(0), WASM_I64V_1(29))});
ExpectValidates(sigs.i_ll(),
{WASM_I64_EQ(WASM_LOCAL_GET(0), WASM_I64V_1(25))});
ExpectValidates(sigs.i_ll(),
{WASM_I64_NE(WASM_LOCAL_GET(0), WASM_I64V_1(25))});
}
TEST_F(FunctionBodyDecoderTest, AllSimpleExpressions) {
// Test all simple expressions which are described by a signature.
#define DECODE_TEST(name, opcode, sig) \
{ \
const FunctionSig* sig = WasmOpcodes::Signature(kExpr##name); \
if (sig->parameter_count() == 1) { \
TestUnop(kExpr##name, sig); \
} else { \
TestBinop(kExpr##name, sig); \
} \
}
FOREACH_SIMPLE_OPCODE(DECODE_TEST);
#undef DECODE_TEST
}
TEST_F(FunctionBodyDecoderTest, MemorySize) {
builder.InitializeMemory();
byte code[] = {kExprMemorySize, 0};
ExpectValidates(sigs.i_i(), code);
ExpectFailure(sigs.f_ff(), code);
}
TEST_F(FunctionBodyDecoderTest, LoadMemOffset) {
builder.InitializeMemory();
for (int offset = 0; offset < 128; offset += 7) {
byte code[] = {kExprI32Const, 0, kExprI32LoadMem, ZERO_ALIGNMENT,
static_cast<byte>(offset)};
ExpectValidates(sigs.i_i(), code);
}
}
TEST_F(FunctionBodyDecoderTest, LoadMemAlignment) {
builder.InitializeMemory();
struct {
WasmOpcode instruction;
uint32_t maximum_aligment;
} values[] = {
{kExprI32LoadMem8U, 0}, // --
{kExprI32LoadMem8S, 0}, // --
{kExprI32LoadMem16U, 1}, // --
{kExprI32LoadMem16S, 1}, // --
{kExprI64LoadMem8U, 0}, // --
{kExprI64LoadMem8S, 0}, // --
{kExprI64LoadMem16U, 1}, // --
{kExprI64LoadMem16S, 1}, // --
{kExprI64LoadMem32U, 2}, // --
{kExprI64LoadMem32S, 2}, // --
{kExprI32LoadMem, 2}, // --
{kExprI64LoadMem, 3}, // --
{kExprF32LoadMem, 2}, // --
{kExprF64LoadMem, 3}, // --
};
for (size_t i = 0; i < arraysize(values); i++) {
for (byte alignment = 0; alignment <= 4; alignment++) {
byte code[] = {WASM_ZERO, static_cast<byte>(values[i].instruction),
alignment, ZERO_OFFSET, WASM_DROP};
Validate(alignment <= values[i].maximum_aligment, sigs.v_i(), code);
}
}
}
TEST_F(FunctionBodyDecoderTest, StoreMemOffset) {
builder.InitializeMemory();
for (byte offset = 0; offset < 128; offset += 7) {
byte code[] = {WASM_STORE_MEM_OFFSET(MachineType::Int32(), offset,
WASM_ZERO, WASM_ZERO)};
ExpectValidates(sigs.v_i(), code);
}
}
TEST_F(FunctionBodyDecoderTest, StoreMemOffset_void) {
builder.InitializeMemory();
ExpectFailure(sigs.i_i(), {WASM_STORE_MEM_OFFSET(MachineType::Int32(), 0,
WASM_ZERO, WASM_ZERO)});
}
TEST_F(FunctionBodyDecoderTest, LoadMemOffset_varint) {
builder.InitializeMemory();
ExpectValidates(sigs.i_i(),
{WASM_ZERO, kExprI32LoadMem, ZERO_ALIGNMENT, U32V_1(0x45)});
ExpectValidates(sigs.i_i(), {WASM_ZERO, kExprI32LoadMem, ZERO_ALIGNMENT,
U32V_2(0x3999)});
ExpectValidates(sigs.i_i(), {WASM_ZERO, kExprI32LoadMem, ZERO_ALIGNMENT,
U32V_3(0x344445)});
ExpectValidates(sigs.i_i(), {WASM_ZERO, kExprI32LoadMem, ZERO_ALIGNMENT,
U32V_4(0x36666667)});
}
TEST_F(FunctionBodyDecoderTest, StoreMemOffset_varint) {
builder.InitializeMemory();
ExpectValidates(sigs.v_i(), {WASM_ZERO, WASM_ZERO, kExprI32StoreMem,
ZERO_ALIGNMENT, U32V_1(0x33)});
ExpectValidates(sigs.v_i(), {WASM_ZERO, WASM_ZERO, kExprI32StoreMem,
ZERO_ALIGNMENT, U32V_2(0x1111)});
ExpectValidates(sigs.v_i(), {WASM_ZERO, WASM_ZERO, kExprI32StoreMem,
ZERO_ALIGNMENT, U32V_3(0x222222)});
ExpectValidates(sigs.v_i(), {WASM_ZERO, WASM_ZERO, kExprI32StoreMem,
ZERO_ALIGNMENT, U32V_4(0x44444444)});
}
TEST_F(FunctionBodyDecoderTest, AllLoadMemCombinations) {
builder.InitializeMemory();
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
ValueType local_type = kValueTypes[i];
for (size_t j = 0; j < arraysize(machineTypes); j++) {
MachineType mem_type = machineTypes[j];
byte code[] = {WASM_LOAD_MEM(mem_type, WASM_ZERO)};
FunctionSig sig(1, 0, &local_type);
Validate(local_type == ValueType::For(mem_type), &sig, code);
}
}
}
TEST_F(FunctionBodyDecoderTest, AllStoreMemCombinations) {
builder.InitializeMemory();
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
ValueType local_type = kValueTypes[i];
for (size_t j = 0; j < arraysize(machineTypes); j++) {
MachineType mem_type = machineTypes[j];
byte code[] = {WASM_STORE_MEM(mem_type, WASM_ZERO, WASM_LOCAL_GET(0))};
FunctionSig sig(0, 1, &local_type);
Validate(local_type == ValueType::For(mem_type), &sig, code);
}
}
}
TEST_F(FunctionBodyDecoderTest, SimpleCalls) {
const FunctionSig* sig = sigs.i_i();
builder.AddFunction(sigs.i_v());
builder.AddFunction(sigs.i_i());
builder.AddFunction(sigs.i_ii());
ExpectValidates(sig, {WASM_CALL_FUNCTION0(0)});
ExpectValidates(sig, {WASM_CALL_FUNCTION(1, WASM_I32V_1(27))});
ExpectValidates(sig,
{WASM_CALL_FUNCTION(2, WASM_I32V_1(37), WASM_I32V_2(77))});
}
TEST_F(FunctionBodyDecoderTest, CallsWithTooFewArguments) {
const FunctionSig* sig = sigs.i_i();
builder.AddFunction(sigs.i_i());
builder.AddFunction(sigs.i_ii());
builder.AddFunction(sigs.f_ff());
ExpectFailure(sig, {WASM_CALL_FUNCTION0(0)});
ExpectFailure(sig, {WASM_CALL_FUNCTION(1, WASM_ZERO)});
ExpectFailure(sig, {WASM_CALL_FUNCTION(2, WASM_LOCAL_GET(0))});
}
TEST_F(FunctionBodyDecoderTest, CallsWithMismatchedSigs2) {
const FunctionSig* sig = sigs.i_i();
builder.AddFunction(sigs.i_i());
ExpectFailure(sig, {WASM_CALL_FUNCTION(0, WASM_I64V_1(17))});
ExpectFailure(sig, {WASM_CALL_FUNCTION(0, WASM_F32(17.1))});
ExpectFailure(sig, {WASM_CALL_FUNCTION(0, WASM_F64(17.1))});
}
TEST_F(FunctionBodyDecoderTest, CallsWithMismatchedSigs3) {
const FunctionSig* sig = sigs.i_i();
builder.AddFunction(sigs.i_f());
ExpectFailure(sig, {WASM_CALL_FUNCTION(0, WASM_I32V_1(17))});
ExpectFailure(sig, {WASM_CALL_FUNCTION(0, WASM_I64V_1(27))});
ExpectFailure(sig, {WASM_CALL_FUNCTION(0, WASM_F64(37.2))});
builder.AddFunction(sigs.i_d());
ExpectFailure(sig, {WASM_CALL_FUNCTION(1, WASM_I32V_1(16))});
ExpectFailure(sig, {WASM_CALL_FUNCTION(1, WASM_I64V_1(16))});
ExpectFailure(sig, {WASM_CALL_FUNCTION(1, WASM_F32(17.6))});
}
TEST_F(FunctionBodyDecoderTest, SimpleReturnCalls) {
WASM_FEATURE_SCOPE(return_call);
const FunctionSig* sig = sigs.i_i();
builder.AddFunction(sigs.i_v());
builder.AddFunction(sigs.i_i());
builder.AddFunction(sigs.i_ii());
ExpectValidates(sig, {WASM_RETURN_CALL_FUNCTION0(0)});
ExpectValidates(sig, {WASM_RETURN_CALL_FUNCTION(1, WASM_I32V_1(27))});
ExpectValidates(
sig, {WASM_RETURN_CALL_FUNCTION(2, WASM_I32V_1(37), WASM_I32V_2(77))});
}
TEST_F(FunctionBodyDecoderTest, ReturnCallsWithTooFewArguments) {
WASM_FEATURE_SCOPE(return_call);
const FunctionSig* sig = sigs.i_i();
builder.AddFunction(sigs.i_i());
builder.AddFunction(sigs.i_ii());
builder.AddFunction(sigs.f_ff());
ExpectFailure(sig, {WASM_RETURN_CALL_FUNCTION0(0)});
ExpectFailure(sig, {WASM_RETURN_CALL_FUNCTION(1, WASM_ZERO)});
ExpectFailure(sig, {WASM_RETURN_CALL_FUNCTION(2, WASM_LOCAL_GET(0))});
}
TEST_F(FunctionBodyDecoderTest, ReturnCallWithSubtype) {
WASM_FEATURE_SCOPE(return_call);
auto sig = MakeSig::Returns(kWasmAnyRef);
auto callee_sig = MakeSig::Returns(kWasmAnyNonNullableRef);
builder.AddFunction(&callee_sig);
ExpectValidates(&sig, {WASM_RETURN_CALL_FUNCTION0(0)});
}
TEST_F(FunctionBodyDecoderTest, ReturnCallsWithMismatchedSigs) {
WASM_FEATURE_SCOPE(return_call);
const FunctionSig* sig = sigs.i_i();
builder.AddFunction(sigs.i_f());
builder.AddFunction(sigs.f_f());
ExpectFailure(sig, {WASM_RETURN_CALL_FUNCTION(0, WASM_I32V_1(17))});
ExpectFailure(sig, {WASM_RETURN_CALL_FUNCTION(0, WASM_I64V_1(27))});
ExpectFailure(sig, {WASM_RETURN_CALL_FUNCTION(0, WASM_F64(37.2))});
ExpectFailure(sig, {WASM_RETURN_CALL_FUNCTION(1, WASM_F64(37.2))});
ExpectFailure(sig, {WASM_RETURN_CALL_FUNCTION(1, WASM_F32(37.2))});
ExpectFailure(sig, {WASM_RETURN_CALL_FUNCTION(1, WASM_I32V_1(17))});
}
TEST_F(FunctionBodyDecoderTest, SimpleIndirectReturnCalls) {
WASM_FEATURE_SCOPE(return_call);
const FunctionSig* sig = sigs.i_i();
builder.AddTable(kWasmFuncRef, 20, true, 30);
byte sig0 = builder.AddSignature(sigs.i_v());
byte sig1 = builder.AddSignature(sigs.i_i());
byte sig2 = builder.AddSignature(sigs.i_ii());
ExpectValidates(sig, {WASM_RETURN_CALL_INDIRECT(sig0, WASM_ZERO)});
ExpectValidates(
sig, {WASM_RETURN_CALL_INDIRECT(sig1, WASM_I32V_1(22), WASM_ZERO)});
ExpectValidates(sig, {WASM_RETURN_CALL_INDIRECT(sig2, WASM_I32V_1(32),
WASM_I32V_2(72), WASM_ZERO)});
}
TEST_F(FunctionBodyDecoderTest, IndirectReturnCallsOutOfBounds) {
WASM_FEATURE_SCOPE(return_call);
const FunctionSig* sig = sigs.i_i();
builder.AddTable(kWasmFuncRef, 20, false, 20);
ExpectFailure(sig, {WASM_RETURN_CALL_INDIRECT(0, WASM_ZERO)});
builder.AddSignature(sigs.i_v());
ExpectValidates(sig, {WASM_RETURN_CALL_INDIRECT(0, WASM_ZERO)});
ExpectFailure(sig,
{WASM_RETURN_CALL_INDIRECT(1, WASM_I32V_1(22), WASM_ZERO)});
builder.AddSignature(sigs.i_i());
ExpectValidates(sig,
{WASM_RETURN_CALL_INDIRECT(1, WASM_I32V_1(27), WASM_ZERO)});
ExpectFailure(sig,
{WASM_RETURN_CALL_INDIRECT(2, WASM_I32V_1(27), WASM_ZERO)});
}
TEST_F(FunctionBodyDecoderTest, IndirectReturnCallsWithMismatchedSigs3) {
WASM_FEATURE_SCOPE(return_call);
const FunctionSig* sig = sigs.i_i();
builder.InitializeTable(wasm::kWasmVoid);
byte sig0 = builder.AddSignature(sigs.i_f());
ExpectFailure(sig,
{WASM_RETURN_CALL_INDIRECT(sig0, WASM_I32V_1(17), WASM_ZERO)});
ExpectFailure(sig,
{WASM_RETURN_CALL_INDIRECT(sig0, WASM_I64V_1(27), WASM_ZERO)});
ExpectFailure(sig,
{WASM_RETURN_CALL_INDIRECT(sig0, WASM_F64(37.2), WASM_ZERO)});
ExpectFailure(sig, {WASM_RETURN_CALL_INDIRECT(sig0, WASM_I32V_1(17))});
ExpectFailure(sig, {WASM_RETURN_CALL_INDIRECT(sig0, WASM_I64V_1(27))});
ExpectFailure(sig, {WASM_RETURN_CALL_INDIRECT(sig0, WASM_F64(37.2))});
byte sig1 = builder.AddFunction(sigs.i_d());
ExpectFailure(sig,
{WASM_RETURN_CALL_INDIRECT(sig1, WASM_I32V_1(16), WASM_ZERO)});
ExpectFailure(sig,
{WASM_RETURN_CALL_INDIRECT(sig1, WASM_I64V_1(16), WASM_ZERO)});
ExpectFailure(sig,
{WASM_RETURN_CALL_INDIRECT(sig1, WASM_F32(17.6), WASM_ZERO)});
}
TEST_F(FunctionBodyDecoderTest, IndirectReturnCallsWithoutTableCrash) {
WASM_FEATURE_SCOPE(return_call);
const FunctionSig* sig = sigs.i_i();
byte sig0 = builder.AddSignature(sigs.i_v());
byte sig1 = builder.AddSignature(sigs.i_i());
byte sig2 = builder.AddSignature(sigs.i_ii());
ExpectFailure(sig, {WASM_RETURN_CALL_INDIRECT(sig0, WASM_ZERO)});
ExpectFailure(sig,
{WASM_RETURN_CALL_INDIRECT(sig1, WASM_I32V_1(22), WASM_ZERO)});
ExpectFailure(sig, {WASM_RETURN_CALL_INDIRECT(sig2, WASM_I32V_1(32),
WASM_I32V_2(72), WASM_ZERO)});
}
TEST_F(FunctionBodyDecoderTest, IncompleteIndirectReturnCall) {
const FunctionSig* sig = sigs.i_i();
builder.InitializeTable(wasm::kWasmVoid);
static byte code[] = {kExprReturnCallIndirect};
ExpectFailure(sig, base::ArrayVector(code), kOmitEnd);
}
TEST_F(FunctionBodyDecoderTest, MultiReturn) {
ValueType storage[] = {kWasmI32, kWasmI32};
FunctionSig sig_ii_v(2, 0, storage);
FunctionSig sig_v_ii(0, 2, storage);
builder.AddFunction(&sig_v_ii);
builder.AddFunction(&sig_ii_v);
ExpectValidates(&sig_ii_v, {WASM_CALL_FUNCTION0(1)});
ExpectValidates(sigs.v_v(), {WASM_CALL_FUNCTION0(1), WASM_DROP, WASM_DROP});
ExpectValidates(sigs.v_v(), {WASM_CALL_FUNCTION0(1), kExprCallFunction, 0});
}
TEST_F(FunctionBodyDecoderTest, MultiReturnType) {
for (size_t a = 0; a < arraysize(kValueTypes); a++) {
for (size_t b = 0; b < arraysize(kValueTypes); b++) {
for (size_t c = 0; c < arraysize(kValueTypes); c++) {
for (size_t d = 0; d < arraysize(kValueTypes); d++) {
ValueType storage_ab[] = {kValueTypes[a], kValueTypes[b]};
FunctionSig sig_ab_v(2, 0, storage_ab);
ValueType storage_cd[] = {kValueTypes[c], kValueTypes[d]};
FunctionSig sig_cd_v(2, 0, storage_cd);
TestModuleBuilder builder;
module = builder.module();
builder.AddFunction(&sig_cd_v);
ExpectValidates(&sig_cd_v, {WASM_CALL_FUNCTION0(0)});
if (IsSubtypeOf(kValueTypes[c], kValueTypes[a], module) &&
IsSubtypeOf(kValueTypes[d], kValueTypes[b], module)) {
ExpectValidates(&sig_ab_v, {WASM_CALL_FUNCTION0(0)});
} else {
ExpectFailure(&sig_ab_v, {WASM_CALL_FUNCTION0(0)});
}
}
}
}
}
}
TEST_F(FunctionBodyDecoderTest, SimpleIndirectCalls) {
const FunctionSig* sig = sigs.i_i();
builder.AddTable(kWasmFuncRef, 20, false, 20);
byte sig0 = builder.AddSignature(sigs.i_v());
byte sig1 = builder.AddSignature(sigs.i_i());
byte sig2 = builder.AddSignature(sigs.i_ii());
ExpectValidates(sig, {WASM_CALL_INDIRECT(sig0, WASM_ZERO)});
ExpectValidates(sig, {WASM_CALL_INDIRECT(sig1, WASM_I32V_1(22), WASM_ZERO)});
ExpectValidates(sig, {WASM_CALL_INDIRECT(sig2, WASM_I32V_1(32),
WASM_I32V_2(72), WASM_ZERO)});
}
TEST_F(FunctionBodyDecoderTest, IndirectCallsOutOfBounds) {
const FunctionSig* sig = sigs.i_i();
builder.AddTable(kWasmFuncRef, 20, false, 20);
ExpectFailure(sig, {WASM_CALL_INDIRECT(0, WASM_ZERO)});
builder.AddSignature(sigs.i_v());
ExpectValidates(sig, {WASM_CALL_INDIRECT(0, WASM_ZERO)});
ExpectFailure(sig, {WASM_CALL_INDIRECT(1, WASM_I32V_1(22), WASM_ZERO)});
builder.AddSignature(sigs.i_i());
ExpectValidates(sig, {WASM_CALL_INDIRECT(1, WASM_I32V_1(27), WASM_ZERO)});
ExpectFailure(sig, {WASM_CALL_INDIRECT(2, WASM_I32V_1(27), WASM_ZERO)});
}
TEST_F(FunctionBodyDecoderTest, IndirectCallsWithMismatchedSigs1) {
const FunctionSig* sig = sigs.i_i();
builder.InitializeTable(wasm::kWasmVoid);
byte sig0 = builder.AddSignature(sigs.i_f());
ExpectFailure(sig, {WASM_CALL_INDIRECT(sig0, WASM_I32V_1(17), WASM_ZERO)});
ExpectFailure(sig, {WASM_CALL_INDIRECT(sig0, WASM_I64V_1(27), WASM_ZERO)});
ExpectFailure(sig, {WASM_CALL_INDIRECT(sig0, WASM_F64(37.2), WASM_ZERO)});
ExpectFailure(sig, {WASM_CALL_INDIRECT(sig0, WASM_I32V_1(17))});
ExpectFailure(sig, {WASM_CALL_INDIRECT(sig0, WASM_I64V_1(27))});
ExpectFailure(sig, {WASM_CALL_INDIRECT(sig0, WASM_F64(37.2))});
byte sig1 = builder.AddFunction(sigs.i_d());
ExpectFailure(sig, {WASM_CALL_INDIRECT(sig1, WASM_I32V_1(16), WASM_ZERO)});
ExpectFailure(sig, {WASM_CALL_INDIRECT(sig1, WASM_I64V_1(16), WASM_ZERO)});
ExpectFailure(sig, {WASM_CALL_INDIRECT(sig1, WASM_F32(17.6), WASM_ZERO)});
}
TEST_F(FunctionBodyDecoderTest, IndirectCallsWithMismatchedSigs2) {
WASM_FEATURE_SCOPE(typed_funcref);
byte table_type_index = builder.AddSignature(sigs.i_i());
byte table_index =
builder.InitializeTable(ValueType::Ref(table_type_index, kNullable));
ExpectValidates(sigs.i_v(),
{WASM_CALL_INDIRECT_TABLE(table_index, table_type_index,
WASM_I32V_1(42), WASM_ZERO)});
byte wrong_type_index = builder.AddSignature(sigs.i_ii());
ExpectFailure(sigs.i_v(),
{WASM_CALL_INDIRECT_TABLE(table_index, wrong_type_index,
WASM_I32V_1(42), WASM_ZERO)},
kAppendEnd,
"call_indirect: Immediate signature #1 is not a subtype of "
"immediate table #0");
byte non_function_table_index = builder.InitializeTable(kWasmAnyRef);
ExpectFailure(
sigs.i_v(),
{WASM_CALL_INDIRECT_TABLE(non_function_table_index, table_type_index,
WASM_I32V_1(42), WASM_ZERO)},
kAppendEnd,
"call_indirect: immediate table #1 is not of a function type");
}
TEST_F(FunctionBodyDecoderTest, TablesWithFunctionSubtyping) {
WASM_FEATURE_SCOPE(typed_funcref);
WASM_FEATURE_SCOPE(gc);
EXPERIMENTAL_FLAG_SCOPE(gc);
byte empty_struct = builder.AddStruct({});
byte super_struct = builder.AddStruct({F(kWasmI32, false)}, empty_struct);
byte sub_struct =
builder.AddStruct({F(kWasmI32, false), F(kWasmF64, false)}, super_struct);
byte table_supertype = builder.AddSignature(
FunctionSig::Build(zone(), {ValueType::Ref(empty_struct, kNullable)},
{ValueType::Ref(sub_struct, kNullable)}));
byte table_type = builder.AddSignature(
FunctionSig::Build(zone(), {ValueType::Ref(super_struct, kNullable)},
{ValueType::Ref(sub_struct, kNullable)}),
table_supertype);
auto function_sig =
FunctionSig::Build(zone(), {ValueType::Ref(sub_struct, kNullable)},
{ValueType::Ref(super_struct, kNullable)});
byte function_type = builder.AddSignature(function_sig, table_type);
byte function = builder.AddFunction(function_type);
byte table = builder.InitializeTable(ValueType::Ref(table_type, kNullable));
// We can call-indirect from a typed function table with an immediate type
// that is a subtype of the table type.
ExpectValidates(
FunctionSig::Build(zone(), {ValueType::Ref(sub_struct, kNullable)}, {}),
{WASM_CALL_INDIRECT_TABLE(table, function_type,
WASM_STRUCT_NEW_DEFAULT_WITH_RTT(
super_struct, WASM_RTT_CANON(super_struct)),
WASM_ZERO)});
// table.set's subtyping works as expected.
ExpectValidates(sigs.v_i(), {WASM_TABLE_SET(0, WASM_LOCAL_GET(0),
WASM_REF_FUNC(function))});
// table.get's subtyping works as expected.
ExpectValidates(
FunctionSig::Build(zone(), {ValueType::Ref(table_supertype, kNullable)},
{kWasmI32}),
{WASM_TABLE_GET(0, WASM_LOCAL_GET(0))});
}
TEST_F(FunctionBodyDecoderTest, IndirectCallsWithoutTableCrash) {
const FunctionSig* sig = sigs.i_i();
byte sig0 = builder.AddSignature(sigs.i_v());
byte sig1 = builder.AddSignature(sigs.i_i());
byte sig2 = builder.AddSignature(sigs.i_ii());
ExpectFailure(sig, {WASM_CALL_INDIRECT(sig0, WASM_ZERO)});
ExpectFailure(sig, {WASM_CALL_INDIRECT(sig1, WASM_I32V_1(22), WASM_ZERO)});
ExpectFailure(sig, {WASM_CALL_INDIRECT(sig2, WASM_I32V_1(32), WASM_I32V_2(72),
WASM_ZERO)});
}
TEST_F(FunctionBodyDecoderTest, IncompleteIndirectCall) {
const FunctionSig* sig = sigs.i_i();
builder.InitializeTable(wasm::kWasmVoid);
static byte code[] = {kExprCallIndirect};
ExpectFailure(sig, base::ArrayVector(code), kOmitEnd);
}
TEST_F(FunctionBodyDecoderTest, IncompleteStore) {
const FunctionSig* sig = sigs.i_i();
builder.InitializeMemory();
builder.InitializeTable(wasm::kWasmVoid);
static byte code[] = {kExprI32StoreMem};
ExpectFailure(sig, base::ArrayVector(code), kOmitEnd);
}
TEST_F(FunctionBodyDecoderTest, IncompleteI8x16Shuffle) {
WASM_FEATURE_SCOPE(simd);
const FunctionSig* sig = sigs.i_i();
builder.InitializeMemory();
builder.InitializeTable(wasm::kWasmVoid);
static byte code[] = {kSimdPrefix,
static_cast<byte>(kExprI8x16Shuffle & 0xff)};
ExpectFailure(sig, base::ArrayVector(code), kOmitEnd);
}
TEST_F(FunctionBodyDecoderTest, SimpleImportCalls) {
const FunctionSig* sig = sigs.i_i();
byte f0 = builder.AddImport(sigs.i_v());
byte f1 = builder.AddImport(sigs.i_i());
byte f2 = builder.AddImport(sigs.i_ii());
ExpectValidates(sig, {WASM_CALL_FUNCTION0(f0)});
ExpectValidates(sig, {WASM_CALL_FUNCTION(f1, WASM_I32V_1(22))});
ExpectValidates(sig,
{WASM_CALL_FUNCTION(f2, WASM_I32V_1(32), WASM_I32V_2(72))});
}
TEST_F(FunctionBodyDecoderTest, ImportCallsWithMismatchedSigs3) {
const FunctionSig* sig = sigs.i_i();
byte f0 = builder.AddImport(sigs.i_f());
ExpectFailure(sig, {WASM_CALL_FUNCTION0(f0)});
ExpectFailure(sig, {WASM_CALL_FUNCTION(f0, WASM_I32V_1(17))});
ExpectFailure(sig, {WASM_CALL_FUNCTION(f0, WASM_I64V_1(27))});
ExpectFailure(sig, {WASM_CALL_FUNCTION(f0, WASM_F64(37.2))});
byte f1 = builder.AddImport(sigs.i_d());
ExpectFailure(sig, {WASM_CALL_FUNCTION0(f1)});
ExpectFailure(sig, {WASM_CALL_FUNCTION(f1, WASM_I32V_1(16))});
ExpectFailure(sig, {WASM_CALL_FUNCTION(f1, WASM_I64V_1(16))});
ExpectFailure(sig, {WASM_CALL_FUNCTION(f1, WASM_F32(17.6))});
}
TEST_F(FunctionBodyDecoderTest, Int32Globals) {
const FunctionSig* sig = sigs.i_i();
builder.AddGlobal(kWasmI32);
ExpectValidates(sig, {WASM_GLOBAL_GET(0)});
ExpectFailure(sig, {WASM_GLOBAL_SET(0, WASM_LOCAL_GET(0))});
ExpectValidates(sig, {WASM_GLOBAL_SET(0, WASM_LOCAL_GET(0)), WASM_ZERO});
}
TEST_F(FunctionBodyDecoderTest, ImmutableGlobal) {
const FunctionSig* sig = sigs.v_v();
uint32_t g0 = builder.AddGlobal(kWasmI32, true);
uint32_t g1 = builder.AddGlobal(kWasmI32, false);
ExpectValidates(sig, {WASM_GLOBAL_SET(g0, WASM_ZERO)});
ExpectFailure(sig, {WASM_GLOBAL_SET(g1, WASM_ZERO)});
}
TEST_F(FunctionBodyDecoderTest, Int32Globals_fail) {
const FunctionSig* sig = sigs.i_i();
builder.AddGlobal(kWasmI64);
builder.AddGlobal(kWasmI64);
builder.AddGlobal(kWasmF32);
builder.AddGlobal(kWasmF64);
ExpectFailure(sig, {WASM_GLOBAL_GET(0)});
ExpectFailure(sig, {WASM_GLOBAL_GET(1)});
ExpectFailure(sig, {WASM_GLOBAL_GET(2)});
ExpectFailure(sig, {WASM_GLOBAL_GET(3)});
ExpectFailure(sig, {WASM_GLOBAL_SET(0, WASM_LOCAL_GET(0)), WASM_ZERO});
ExpectFailure(sig, {WASM_GLOBAL_SET(1, WASM_LOCAL_GET(0)), WASM_ZERO});
ExpectFailure(sig, {WASM_GLOBAL_SET(2, WASM_LOCAL_GET(0)), WASM_ZERO});
ExpectFailure(sig, {WASM_GLOBAL_SET(3, WASM_LOCAL_GET(0)), WASM_ZERO});
}
TEST_F(FunctionBodyDecoderTest, Int64Globals) {
const FunctionSig* sig = sigs.l_l();
builder.AddGlobal(kWasmI64);
builder.AddGlobal(kWasmI64);
ExpectValidates(sig, {WASM_GLOBAL_GET(0)});
ExpectValidates(sig, {WASM_GLOBAL_GET(1)});
ExpectValidates(sig,
{WASM_GLOBAL_SET(0, WASM_LOCAL_GET(0)), WASM_LOCAL_GET(0)});
ExpectValidates(sig,
{WASM_GLOBAL_SET(1, WASM_LOCAL_GET(0)), WASM_LOCAL_GET(0)});
}
TEST_F(FunctionBodyDecoderTest, Float32Globals) {
const FunctionSig* sig = sigs.f_ff();
builder.AddGlobal(kWasmF32);
ExpectValidates(sig, {WASM_GLOBAL_GET(0)});
ExpectValidates(sig,
{WASM_GLOBAL_SET(0, WASM_LOCAL_GET(0)), WASM_LOCAL_GET(0)});
}
TEST_F(FunctionBodyDecoderTest, Float64Globals) {
const FunctionSig* sig = sigs.d_dd();
builder.AddGlobal(kWasmF64);
ExpectValidates(sig, {WASM_GLOBAL_GET(0)});
ExpectValidates(sig,
{WASM_GLOBAL_SET(0, WASM_LOCAL_GET(0)), WASM_LOCAL_GET(0)});
}
TEST_F(FunctionBodyDecoderTest, AllGetGlobalCombinations) {
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
ValueType local_type = kValueTypes[i];
for (size_t j = 0; j < arraysize(kValueTypes); j++) {
ValueType global_type = kValueTypes[j];
FunctionSig sig(1, 0, &local_type);
TestModuleBuilder builder;
module = builder.module();
builder.AddGlobal(global_type);
Validate(IsSubtypeOf(global_type, local_type, module), &sig,
{WASM_GLOBAL_GET(0)});
}
}
}
TEST_F(FunctionBodyDecoderTest, AllSetGlobalCombinations) {
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
ValueType local_type = kValueTypes[i];
for (size_t j = 0; j < arraysize(kValueTypes); j++) {
ValueType global_type = kValueTypes[j];
FunctionSig sig(0, 1, &local_type);
TestModuleBuilder builder;
module = builder.module();
builder.AddGlobal(global_type);
Validate(IsSubtypeOf(local_type, global_type, module), &sig,
{WASM_GLOBAL_SET(0, WASM_LOCAL_GET(0))});
}
}
}
TEST_F(FunctionBodyDecoderTest, TableSet) {
WASM_FEATURE_SCOPE(typed_funcref);
byte tab_type = builder.AddSignature(sigs.i_i());
byte tab_ref1 = builder.AddTable(kWasmAnyRef, 10, true, 20);
byte tab_func1 = builder.AddTable(kWasmFuncRef, 20, true, 30);
byte tab_func2 = builder.AddTable(kWasmFuncRef, 10, false, 20);
byte tab_ref2 = builder.AddTable(kWasmAnyRef, 10, false, 20);
byte tab_typed_func =
builder.AddTable(ValueType::Ref(tab_type, kNullable), 10, false, 20);
ValueType sig_types[]{kWasmAnyRef, kWasmFuncRef, kWasmI32,
ValueType::Ref(tab_type, kNonNullable)};
FunctionSig sig(0, 4, sig_types);
byte local_ref = 0;
byte local_func = 1;
byte local_int = 2;
byte local_typed_func = 3;
ExpectValidates(&sig, {WASM_TABLE_SET(tab_ref1, WASM_I32V(6),
WASM_LOCAL_GET(local_ref))});
ExpectValidates(&sig, {WASM_TABLE_SET(tab_func1, WASM_I32V(5),
WASM_LOCAL_GET(local_func))});
ExpectValidates(&sig, {WASM_TABLE_SET(tab_func2, WASM_I32V(7),
WASM_LOCAL_GET(local_func))});
ExpectValidates(&sig, {WASM_TABLE_SET(tab_ref2, WASM_I32V(8),
WASM_LOCAL_GET(local_ref))});
ExpectValidates(&sig, {WASM_TABLE_SET(tab_typed_func, WASM_I32V(8),
WASM_LOCAL_GET(local_typed_func))});
ExpectValidates(&sig, {WASM_TABLE_SET(tab_func1, WASM_I32V(8),
WASM_LOCAL_GET(local_typed_func))});
// Only values of the correct type can be set to a table.
ExpectFailure(&sig, {WASM_TABLE_SET(tab_ref1, WASM_I32V(4),
WASM_LOCAL_GET(local_func))});
ExpectFailure(&sig, {WASM_TABLE_SET(tab_func1, WASM_I32V(9),
WASM_LOCAL_GET(local_ref))});
ExpectFailure(&sig, {WASM_TABLE_SET(tab_func2, WASM_I32V(3),
WASM_LOCAL_GET(local_ref))});
ExpectFailure(&sig, {WASM_TABLE_SET(tab_ref2, WASM_I32V(2),
WASM_LOCAL_GET(local_func))});
ExpectFailure(&sig, {WASM_TABLE_SET(tab_ref1, WASM_I32V(9),
WASM_LOCAL_GET(local_int))});
ExpectFailure(&sig, {WASM_TABLE_SET(tab_func1, WASM_I32V(3),
WASM_LOCAL_GET(local_int))});
ExpectFailure(&sig, {WASM_TABLE_SET(tab_typed_func, WASM_I32V(3),
WASM_LOCAL_GET(local_func))});
// Out-of-bounds table index should fail.
byte oob_tab = 37;
ExpectFailure(
&sig, {WASM_TABLE_SET(oob_tab, WASM_I32V(9), WASM_LOCAL_GET(local_ref))});
ExpectFailure(&sig, {WASM_TABLE_SET(oob_tab, WASM_I32V(3),
WASM_LOCAL_GET(local_func))});
}
TEST_F(FunctionBodyDecoderTest, TableGet) {
WASM_FEATURE_SCOPE(typed_funcref);
byte tab_type = builder.AddSignature(sigs.i_i());
byte tab_ref1 = builder.AddTable(kWasmAnyRef, 10, true, 20);
byte tab_func1 = builder.AddTable(kWasmFuncRef, 20, true, 30);
byte tab_func2 = builder.AddTable(kWasmFuncRef, 10, false, 20);
byte tab_ref2 = builder.AddTable(kWasmAnyRef, 10, false, 20);
byte tab_typed_func =
builder.AddTable(ValueType::Ref(tab_type, kNullable), 10, false, 20);
ValueType sig_types[]{kWasmAnyRef, kWasmFuncRef, kWasmI32,
ValueType::Ref(tab_type, kNullable)};
FunctionSig sig(0, 4, sig_types);
byte local_ref = 0;
byte local_func = 1;
byte local_int = 2;
byte local_typed_func = 3;
ExpectValidates(
&sig,
{WASM_LOCAL_SET(local_ref, WASM_TABLE_GET(tab_ref1, WASM_I32V(6)))});
ExpectValidates(
&sig,
{WASM_LOCAL_SET(local_ref, WASM_TABLE_GET(tab_ref2, WASM_I32V(8)))});
ExpectValidates(
&sig,
{WASM_LOCAL_SET(local_func, WASM_TABLE_GET(tab_func1, WASM_I32V(5)))});
ExpectValidates(
&sig,
{WASM_LOCAL_SET(local_func, WASM_TABLE_GET(tab_func2, WASM_I32V(7)))});
ExpectValidates(
&sig, {WASM_LOCAL_SET(local_ref, WASM_SEQ(WASM_I32V(6), kExprTableGet,
U32V_2(tab_ref1)))});
ExpectValidates(
&sig, {WASM_LOCAL_SET(local_func,
WASM_TABLE_GET(tab_typed_func, WASM_I32V(7)))});
ExpectValidates(
&sig, {WASM_LOCAL_SET(local_typed_func,
WASM_TABLE_GET(tab_typed_func, WASM_I32V(7)))});
// We cannot store references as any other type.
ExpectFailure(&sig, {WASM_LOCAL_SET(local_func,
WASM_TABLE_GET(tab_ref1, WASM_I32V(4)))});
ExpectFailure(&sig, {WASM_LOCAL_SET(
local_ref, WASM_TABLE_GET(tab_func1, WASM_I32V(9)))});
ExpectFailure(&sig, {WASM_LOCAL_SET(
local_ref, WASM_TABLE_GET(tab_func2, WASM_I32V(3)))});
ExpectFailure(&sig, {WASM_LOCAL_SET(local_func,
WASM_TABLE_GET(tab_ref2, WASM_I32V(2)))});
ExpectFailure(&sig, {WASM_LOCAL_SET(local_int,
WASM_TABLE_GET(tab_ref1, WASM_I32V(9)))});
ExpectFailure(&sig, {WASM_LOCAL_SET(
local_int, WASM_TABLE_GET(tab_func1, WASM_I32V(3)))});
ExpectFailure(&sig,
{WASM_LOCAL_SET(local_typed_func,
WASM_TABLE_GET(tab_func1, WASM_I32V(3)))});
// Out-of-bounds table index should fail.
byte oob_tab = 37;
ExpectFailure(
&sig, {WASM_LOCAL_SET(local_ref, WASM_TABLE_GET(oob_tab, WASM_I32V(9)))});
ExpectFailure(&sig, {WASM_LOCAL_SET(local_func,
WASM_TABLE_GET(oob_tab, WASM_I32V(3)))});
}
TEST_F(FunctionBodyDecoderTest, MultiTableCallIndirect) {
byte tab_ref = builder.AddTable(kWasmAnyRef, 10, true, 20);
byte tab_func = builder.AddTable(kWasmFuncRef, 20, true, 30);
ValueType sig_types[]{kWasmAnyRef, kWasmFuncRef, kWasmI32};
FunctionSig sig(0, 3, sig_types);
byte sig_index = builder.AddSignature(sigs.i_v());
// We can store funcref values as externref, but not the other way around.
ExpectValidates(sigs.i_v(),
{kExprI32Const, 0, kExprCallIndirect, sig_index, tab_func});
ExpectFailure(sigs.i_v(),
{kExprI32Const, 0, kExprCallIndirect, sig_index, tab_ref});
}
TEST_F(FunctionBodyDecoderTest, WasmMemoryGrow) {
builder.InitializeMemory();
byte code[] = {WASM_LOCAL_GET(0), kExprMemoryGrow, 0};
ExpectValidates(sigs.i_i(), code);
ExpectFailure(sigs.i_d(), code);
}
TEST_F(FunctionBodyDecoderTest, AsmJsBinOpsCheckOrigin) {
ValueType float32int32float32[] = {kWasmF32, kWasmI32, kWasmF32};
FunctionSig sig_f_if(1, 2, float32int32float32);
ValueType float64int32float64[] = {kWasmF64, kWasmI32, kWasmF64};
FunctionSig sig_d_id(1, 2, float64int32float64);
struct {
WasmOpcode op;
const FunctionSig* sig;
} AsmJsBinOps[] = {
{kExprF64Atan2, sigs.d_dd()},
{kExprF64Pow, sigs.d_dd()},
{kExprF64Mod, sigs.d_dd()},
{kExprI32AsmjsDivS, sigs.i_ii()},
{kExprI32AsmjsDivU, sigs.i_ii()},
{kExprI32AsmjsRemS, sigs.i_ii()},
{kExprI32AsmjsRemU, sigs.i_ii()},
{kExprI32AsmjsStoreMem8, sigs.i_ii()},
{kExprI32AsmjsStoreMem16, sigs.i_ii()},
{kExprI32AsmjsStoreMem, sigs.i_ii()},
{kExprF32AsmjsStoreMem, &sig_f_if},
{kExprF64AsmjsStoreMem, &sig_d_id},
};
{
TestModuleBuilder builder(kAsmJsSloppyOrigin);
module = builder.module();
builder.InitializeMemory();
for (size_t i = 0; i < arraysize(AsmJsBinOps); i++) {
TestBinop(AsmJsBinOps[i].op, AsmJsBinOps[i].sig);
}
}
{
TestModuleBuilder builder;
module = builder.module();
builder.InitializeMemory();
for (size_t i = 0; i < arraysize(AsmJsBinOps); i++) {
ExpectFailure(AsmJsBinOps[i].sig,
{WASM_BINOP(AsmJsBinOps[i].op, WASM_LOCAL_GET(0),
WASM_LOCAL_GET(1))});
}
}
}
TEST_F(FunctionBodyDecoderTest, AsmJsUnOpsCheckOrigin) {
ValueType float32int32[] = {kWasmF32, kWasmI32};
FunctionSig sig_f_i(1, 1, float32int32);
ValueType float64int32[] = {kWasmF64, kWasmI32};
FunctionSig sig_d_i(1, 1, float64int32);
struct {
WasmOpcode op;
const FunctionSig* sig;
} AsmJsUnOps[] = {{kExprF64Acos, sigs.d_d()},
{kExprF64Asin, sigs.d_d()},
{kExprF64Atan, sigs.d_d()},
{kExprF64Cos, sigs.d_d()},
{kExprF64Sin, sigs.d_d()},
{kExprF64Tan, sigs.d_d()},
{kExprF64Exp, sigs.d_d()},
{kExprF64Log, sigs.d_d()},
{kExprI32AsmjsLoadMem8S, sigs.i_i()},
{kExprI32AsmjsLoadMem8U, sigs.i_i()},
{kExprI32AsmjsLoadMem16S, sigs.i_i()},
{kExprI32AsmjsLoadMem16U, sigs.i_i()},
{kExprI32AsmjsLoadMem, sigs.i_i()},
{kExprF32AsmjsLoadMem, &sig_f_i},
{kExprF64AsmjsLoadMem, &sig_d_i},
{kExprI32AsmjsSConvertF32, sigs.i_f()},
{kExprI32AsmjsUConvertF32, sigs.i_f()},
{kExprI32AsmjsSConvertF64, sigs.i_d()},
{kExprI32AsmjsUConvertF64, sigs.i_d()}};
{
TestModuleBuilder builder(kAsmJsSloppyOrigin);
module = builder.module();
builder.InitializeMemory();
for (size_t i = 0; i < arraysize(AsmJsUnOps); i++) {
TestUnop(AsmJsUnOps[i].op, AsmJsUnOps[i].sig);
}
}
{
TestModuleBuilder builder;
module = builder.module();
builder.InitializeMemory();
for (size_t i = 0; i < arraysize(AsmJsUnOps); i++) {
ExpectFailure(AsmJsUnOps[i].sig,
{WASM_UNOP(AsmJsUnOps[i].op, WASM_LOCAL_GET(0))});
}
}
}
TEST_F(FunctionBodyDecoderTest, BreakEnd) {
ExpectValidates(
sigs.i_i(),
{WASM_BLOCK_I(WASM_I32_ADD(WASM_BRV(0, WASM_ZERO), WASM_ZERO))});
ExpectValidates(
sigs.i_i(),
{WASM_BLOCK_I(WASM_I32_ADD(WASM_ZERO, WASM_BRV(0, WASM_ZERO)))});
}
TEST_F(FunctionBodyDecoderTest, BreakIfBinop) {
ExpectValidates(sigs.i_i(),
{WASM_BLOCK_I(WASM_I32_ADD(
WASM_BRV_IF(0, WASM_ZERO, WASM_ZERO), WASM_ZERO))});
ExpectValidates(sigs.i_i(),
{WASM_BLOCK_I(WASM_I32_ADD(
WASM_ZERO, WASM_BRV_IF(0, WASM_ZERO, WASM_ZERO)))});
ExpectValidates(
sigs.f_ff(),
{WASM_BLOCK_F(WASM_F32_ABS(WASM_BRV_IF(0, WASM_F32(0.0f), WASM_ZERO)))});
}
TEST_F(FunctionBodyDecoderTest, BreakIfBinop_fail) {
ExpectFailure(
sigs.f_ff(),
{WASM_BLOCK_F(WASM_F32_ABS(WASM_BRV_IF(0, WASM_ZERO, WASM_ZERO)))});
ExpectFailure(
sigs.i_i(),
{WASM_BLOCK_I(WASM_F32_ABS(WASM_BRV_IF(0, WASM_F32(0.0f), WASM_ZERO)))});
}
TEST_F(FunctionBodyDecoderTest, BreakIfUnrNarrow) {
ExpectFailure(
sigs.f_ff(),
{WASM_BLOCK_I(WASM_BRV_IF(0, WASM_UNREACHABLE, WASM_UNREACHABLE),
WASM_RETURN0),
WASM_F32(0.0)});
}
TEST_F(FunctionBodyDecoderTest, BreakNesting1) {
for (int i = 0; i < 5; i++) {
// (block[2] (loop[2] (if (get p) break[N]) (set p 1)) p)
byte code[] = {WASM_BLOCK_I(
WASM_LOOP(WASM_IF(WASM_LOCAL_GET(0), WASM_BRV(i + 1, WASM_ZERO)),
WASM_LOCAL_SET(0, WASM_I32V_1(1))),
WASM_ZERO)};
Validate(i < 3, sigs.i_i(), code);
}
}
TEST_F(FunctionBodyDecoderTest, BreakNesting2) {
for (int i = 0; i < 7; i++) {
byte code[] = {B1(WASM_LOOP(WASM_IF(WASM_ZERO, WASM_BR(i)), WASM_NOP))};
Validate(i <= 3, sigs.v_v(), code);
}
}
TEST_F(FunctionBodyDecoderTest, BreakNesting3) {
for (int i = 0; i < 7; i++) {
// (block[1] (loop[1] (block[1] (if 0 break[N])
byte code[] = {
WASM_BLOCK(WASM_LOOP(B1(WASM_IF(WASM_ZERO, WASM_BR(i + 1)))))};
Validate(i < 4, sigs.v_v(), code);
}
}
TEST_F(FunctionBodyDecoderTest, BreaksWithMultipleTypes) {
ExpectFailure(sigs.i_i(),
{B2(WASM_BRV_IF_ZERO(0, WASM_I32V_1(7)), WASM_F32(7.7))});
ExpectFailure(sigs.i_i(), {B2(WASM_BRV_IF_ZERO(0, WASM_I32V_1(7)),
WASM_BRV_IF_ZERO(0, WASM_F32(7.7)))});
ExpectFailure(sigs.i_i(), {B3(WASM_BRV_IF_ZERO(0, WASM_I32V_1(8)),
WASM_BRV_IF_ZERO(0, WASM_I32V_1(0)),
WASM_BRV_IF_ZERO(0, WASM_F32(7.7)))});
ExpectFailure(sigs.i_i(), {B3(WASM_BRV_IF_ZERO(0, WASM_I32V_1(9)),
WASM_BRV_IF_ZERO(0, WASM_F32(7.7)),
WASM_BRV_IF_ZERO(0, WASM_I32V_1(11)))});
}
TEST_F(FunctionBodyDecoderTest, BreakNesting_6_levels) {
for (int mask = 0; mask < 64; mask++) {
for (int i = 0; i < 14; i++) {
byte code[] = {WASM_BLOCK(WASM_BLOCK(
WASM_BLOCK(WASM_BLOCK(WASM_BLOCK(WASM_BLOCK(WASM_BR(i)))))))};
int depth = 6;
int m = mask;
for (size_t pos = 0; pos < sizeof(code) - 1; pos++) {
if (code[pos] != kExprBlock) continue;
if (m & 1) {
code[pos] = kExprLoop;
code[pos + 1] = kVoidCode;
}
m >>= 1;
}
Validate(i <= depth, sigs.v_v(), code);
}
}
}
TEST_F(FunctionBodyDecoderTest, Break_TypeCheck) {
for (const FunctionSig* sig :
{sigs.i_i(), sigs.l_l(), sigs.f_ff(), sigs.d_dd()}) {
// unify X and X => OK
byte code[] = {WASM_BLOCK_T(
sig->GetReturn(), WASM_IF(WASM_ZERO, WASM_BRV(0, WASM_LOCAL_GET(0))),
WASM_LOCAL_GET(0))};
ExpectValidates(sig, code);
}
// unify i32 and f32 => fail
ExpectFailure(sigs.i_i(),
{WASM_BLOCK_I(WASM_IF(WASM_ZERO, WASM_BRV(0, WASM_ZERO)),
WASM_F32(1.2))});
// unify f64 and f64 => OK
ExpectValidates(
sigs.d_dd(),
{WASM_BLOCK_D(WASM_IF(WASM_ZERO, WASM_BRV(0, WASM_LOCAL_GET(0))),
WASM_F64(1.2))});
}
TEST_F(FunctionBodyDecoderTest, Break_TypeCheckAll1) {
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
for (size_t j = 0; j < arraysize(kValueTypes); j++) {
ValueType storage[] = {kValueTypes[i], kValueTypes[i], kValueTypes[j]};
FunctionSig sig(1, 2, storage);
byte code[] = {WASM_BLOCK_T(
sig.GetReturn(), WASM_IF(WASM_ZERO, WASM_BRV(0, WASM_LOCAL_GET(0))),
WASM_LOCAL_GET(1))};
Validate(IsSubtypeOf(kValueTypes[j], kValueTypes[i], module), &sig, code);
}
}
}
TEST_F(FunctionBodyDecoderTest, Break_TypeCheckAll2) {
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
for (size_t j = 0; j < arraysize(kValueTypes); j++) {
ValueType storage[] = {kValueTypes[i], kValueTypes[i], kValueTypes[j]};
FunctionSig sig(1, 2, storage);
byte code[] = {WASM_IF_ELSE_T(sig.GetReturn(0), WASM_ZERO,
WASM_BRV_IF_ZERO(0, WASM_LOCAL_GET(0)),
WASM_LOCAL_GET(1))};
Validate(IsSubtypeOf(kValueTypes[j], kValueTypes[i], module), &sig, code);
}
}
}
TEST_F(FunctionBodyDecoderTest, Break_TypeCheckAll3) {
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
for (size_t j = 0; j < arraysize(kValueTypes); j++) {
ValueType storage[] = {kValueTypes[i], kValueTypes[i], kValueTypes[j]};
FunctionSig sig(1, 2, storage);
byte code[] = {WASM_IF_ELSE_T(sig.GetReturn(), WASM_ZERO,
WASM_LOCAL_GET(1),
WASM_BRV_IF_ZERO(0, WASM_LOCAL_GET(0)))};
Validate(IsSubtypeOf(kValueTypes[j], kValueTypes[i], module), &sig, code);
}
}
}
TEST_F(FunctionBodyDecoderTest, Break_Unify) {
for (int which = 0; which < 2; which++) {
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
ValueType type = kValueTypes[i];
ValueType storage[] = {kWasmI32, kWasmI32, type};
FunctionSig sig(1, 2, storage);
byte code1[] = {WASM_BLOCK_T(
type, WASM_IF(WASM_ZERO, WASM_BRV(1, WASM_LOCAL_GET(which))),
WASM_LOCAL_GET(which ^ 1))};
Validate(type == kWasmI32, &sig, code1);
}
}
}
TEST_F(FunctionBodyDecoderTest, BreakIf_cond_type) {
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
for (size_t j = 0; j < arraysize(kValueTypes); j++) {
ValueType types[] = {kValueTypes[i], kValueTypes[i], kValueTypes[j]};
FunctionSig sig(1, 2, types);
byte code[] = {WASM_BLOCK_T(
types[0], WASM_BRV_IF(0, WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)))};
Validate(types[2] == kWasmI32, &sig, code);
}
}
}
TEST_F(FunctionBodyDecoderTest, BreakIf_val_type) {
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
for (size_t j = 0; j < arraysize(kValueTypes); j++) {
ValueType types[] = {kValueTypes[i], kValueTypes[i], kValueTypes[j],
kWasmI32};
FunctionSig sig(1, 3, types);
byte code[] = {WASM_BLOCK_T(
types[1], WASM_BRV_IF(0, WASM_LOCAL_GET(1), WASM_LOCAL_GET(2)),
WASM_DROP, WASM_LOCAL_GET(0))};
Validate(IsSubtypeOf(kValueTypes[j], kValueTypes[i], module), &sig, code);
}
}
}
TEST_F(FunctionBodyDecoderTest, BreakIf_Unify) {
for (int which = 0; which < 2; which++) {
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
ValueType type = kValueTypes[i];
ValueType storage[] = {kWasmI32, kWasmI32, type};
FunctionSig sig(1, 2, storage);
byte code[] = {WASM_BLOCK_I(WASM_BRV_IF_ZERO(0, WASM_LOCAL_GET(which)),
WASM_DROP, WASM_LOCAL_GET(which ^ 1))};
Validate(type == kWasmI32, &sig, code);
}
}
}
TEST_F(FunctionBodyDecoderTest, BrTable0) {
ExpectFailure(sigs.v_v(), {kExprBrTable, 0, BR_TARGET(0)});
}
TEST_F(FunctionBodyDecoderTest, BrTable0b) {
static byte code[] = {kExprI32Const, 11, kExprBrTable, 0, BR_TARGET(0)};
ExpectValidates(sigs.v_v(), code);
ExpectFailure(sigs.i_i(), code);
}
TEST_F(FunctionBodyDecoderTest, BrTable0c) {
static byte code[] = {kExprI32Const, 11, kExprBrTable, 0, BR_TARGET(1)};
ExpectFailure(sigs.v_v(), code);
ExpectFailure(sigs.i_i(), code);
}
TEST_F(FunctionBodyDecoderTest, BrTable1a) {
ExpectValidates(sigs.v_v(),
{B1(WASM_BR_TABLE(WASM_I32V_2(67), 0, BR_TARGET(0)))});
}
TEST_F(FunctionBodyDecoderTest, BrTable1b) {
static byte code[] = {B1(WASM_BR_TABLE(WASM_ZERO, 0, BR_TARGET(0)))};
ExpectValidates(sigs.v_v(), code);
ExpectFailure(sigs.i_i(), code);
ExpectFailure(sigs.f_ff(), code);
ExpectFailure(sigs.d_dd(), code);
}
TEST_F(FunctionBodyDecoderTest, BrTable2a) {
ExpectValidates(
sigs.v_v(),
{B1(WASM_BR_TABLE(WASM_I32V_2(67), 1, BR_TARGET(0), BR_TARGET(0)))});
}
TEST_F(FunctionBodyDecoderTest, BrTable2b) {
ExpectValidates(sigs.v_v(),
{WASM_BLOCK(WASM_BLOCK(WASM_BR_TABLE(
WASM_I32V_2(67), 1, BR_TARGET(0), BR_TARGET(1))))});
}
TEST_F(FunctionBodyDecoderTest, BrTableSubtyping) {
WASM_FEATURE_SCOPE(typed_funcref);
WASM_FEATURE_SCOPE(gc);
byte supertype1 = builder.AddStruct({F(kWasmI8, true)});
byte supertype2 =
builder.AddStruct({F(kWasmI8, true), F(kWasmI16, false)}, supertype1);
byte subtype = builder.AddStruct(
{F(kWasmI8, true), F(kWasmI16, false), F(kWasmI32, true)}, supertype2);
ExpectValidates(
sigs.v_v(),
{WASM_BLOCK_R(wasm::ValueType::Ref(supertype1, kNonNullable),
WASM_BLOCK_R(wasm::ValueType::Ref(supertype2, kNonNullable),
WASM_STRUCT_NEW_DEFAULT_WITH_RTT(
subtype, WASM_RTT_CANON(subtype)),
WASM_BR_TABLE(WASM_I32V(5), 1, BR_TARGET(0),
BR_TARGET(1))),
WASM_UNREACHABLE),
WASM_DROP});
}
TEST_F(FunctionBodyDecoderTest, BrTable_off_end) {
static byte code[] = {B1(WASM_BR_TABLE(WASM_LOCAL_GET(0), 0, BR_TARGET(0)))};
for (size_t len = 1; len < sizeof(code); len++) {
ExpectFailure(sigs.i_i(), base::VectorOf(code, len), kAppendEnd);
ExpectFailure(sigs.i_i(), base::VectorOf(code, len), kOmitEnd);
}
}
TEST_F(FunctionBodyDecoderTest, BrTable_invalid_br1) {
for (int depth = 0; depth < 4; depth++) {
byte code[] = {B1(WASM_BR_TABLE(WASM_LOCAL_GET(0), 0, BR_TARGET(depth)))};
Validate(depth <= 1, sigs.v_i(), code);
}
}
TEST_F(FunctionBodyDecoderTest, BrTable_invalid_br2) {
for (int depth = 0; depth < 7; depth++) {
byte code[] = {
WASM_LOOP(WASM_BR_TABLE(WASM_LOCAL_GET(0), 0, BR_TARGET(depth)))};
Validate(depth < 2, sigs.v_i(), code);
}
}
TEST_F(FunctionBodyDecoderTest, BrTable_arity_mismatch1) {
ExpectFailure(
sigs.v_v(),
{WASM_BLOCK(WASM_BLOCK_I(
WASM_ONE, WASM_BR_TABLE(WASM_ONE, 1, BR_TARGET(0), BR_TARGET(1))))});
}
TEST_F(FunctionBodyDecoderTest, BrTable_arity_mismatch2) {
ExpectFailure(
sigs.v_v(),
{WASM_BLOCK_I(WASM_BLOCK(
WASM_ONE, WASM_BR_TABLE(WASM_ONE, 1, BR_TARGET(0), BR_TARGET(1))))});
}
TEST_F(FunctionBodyDecoderTest, BrTable_arity_mismatch_loop1) {
ExpectFailure(
sigs.v_v(),
{WASM_LOOP(WASM_BLOCK_I(
WASM_ONE, WASM_BR_TABLE(WASM_ONE, 1, BR_TARGET(0), BR_TARGET(1))))});
}
TEST_F(FunctionBodyDecoderTest, BrTable_arity_mismatch_loop2) {
ExpectFailure(
sigs.v_v(),
{WASM_BLOCK_I(WASM_LOOP(
WASM_ONE, WASM_BR_TABLE(WASM_ONE, 1, BR_TARGET(0), BR_TARGET(1))))});
}
TEST_F(FunctionBodyDecoderTest, BrTable_loop_block) {
ExpectValidates(
sigs.v_v(),
{WASM_LOOP(WASM_BLOCK(
WASM_ONE, WASM_BR_TABLE(WASM_ONE, 1, BR_TARGET(0), BR_TARGET(1))))});
}
TEST_F(FunctionBodyDecoderTest, BrTable_block_loop) {
ExpectValidates(
sigs.v_v(),
{WASM_LOOP(WASM_BLOCK(
WASM_ONE, WASM_BR_TABLE(WASM_ONE, 1, BR_TARGET(0), BR_TARGET(1))))});
}
TEST_F(FunctionBodyDecoderTest, BrTable_type_mismatch1) {
ExpectFailure(
sigs.v_v(),
{WASM_BLOCK_I(WASM_BLOCK_F(
WASM_ONE, WASM_BR_TABLE(WASM_ONE, 1, BR_TARGET(0), BR_TARGET(1))))});
}
TEST_F(FunctionBodyDecoderTest, BrTable_type_mismatch2) {
ExpectFailure(
sigs.v_v(),
{WASM_BLOCK_F(WASM_BLOCK_I(
WASM_ONE, WASM_BR_TABLE(WASM_ONE, 1, BR_TARGET(0), BR_TARGET(1))))});
}
TEST_F(FunctionBodyDecoderTest, BrTable_type_mismatch_unreachable) {
ExpectFailure(sigs.v_v(),
{WASM_BLOCK_F(WASM_BLOCK_I(
WASM_UNREACHABLE,
WASM_BR_TABLE(WASM_ONE, 1, BR_TARGET(0), BR_TARGET(1))))});
}
TEST_F(FunctionBodyDecoderTest, BrUnreachable1) {
ExpectValidates(sigs.v_i(),
{WASM_LOCAL_GET(0), kExprBrTable, 0, BR_TARGET(0)});
}
TEST_F(FunctionBodyDecoderTest, BrUnreachable2) {
ExpectValidates(sigs.v_i(),
{WASM_LOCAL_GET(0), kExprBrTable, 0, BR_TARGET(0), WASM_NOP});
ExpectFailure(sigs.v_i(),
{WASM_LOCAL_GET(0), kExprBrTable, 0, BR_TARGET(0), WASM_ZERO});
}
TEST_F(FunctionBodyDecoderTest, Brv1) {
ExpectValidates(sigs.i_i(), {WASM_BLOCK_I(WASM_BRV(0, WASM_ZERO))});
ExpectValidates(sigs.i_i(),
{WASM_BLOCK_I(WASM_LOOP_I(WASM_BRV(2, WASM_ZERO)))});
}
TEST_F(FunctionBodyDecoderTest, Brv1_type) {
ExpectValidates(sigs.i_ii(), {WASM_BLOCK_I(WASM_BRV(0, WASM_LOCAL_GET(0)))});
ExpectValidates(sigs.l_ll(), {WASM_BLOCK_L(WASM_BRV(0, WASM_LOCAL_GET(0)))});
ExpectValidates(sigs.f_ff(), {WASM_BLOCK_F(WASM_BRV(0, WASM_LOCAL_GET(0)))});
ExpectValidates(sigs.d_dd(), {WASM_BLOCK_D(WASM_BRV(0, WASM_LOCAL_GET(0)))});
}
TEST_F(FunctionBodyDecoderTest, Brv1_type_n) {
ExpectFailure(sigs.i_f(), {WASM_BLOCK_I(WASM_BRV(0, WASM_LOCAL_GET(0)))});
ExpectFailure(sigs.i_d(), {WASM_BLOCK_I(WASM_BRV(0, WASM_LOCAL_GET(0)))});
}
TEST_F(FunctionBodyDecoderTest, BrvIf1) {
ExpectValidates(sigs.i_v(), {WASM_BLOCK_I(WASM_BRV_IF_ZERO(0, WASM_ZERO))});
}
TEST_F(FunctionBodyDecoderTest, BrvIf1_type) {
ExpectValidates(sigs.i_i(),
{WASM_BLOCK_I(WASM_BRV_IF_ZERO(0, WASM_LOCAL_GET(0)))});
ExpectValidates(sigs.l_l(),
{WASM_BLOCK_L(WASM_BRV_IF_ZERO(0, WASM_LOCAL_GET(0)))});
ExpectValidates(sigs.f_ff(),
{WASM_BLOCK_F(WASM_BRV_IF_ZERO(0, WASM_LOCAL_GET(0)))});
ExpectValidates(sigs.d_dd(),
{WASM_BLOCK_D(WASM_BRV_IF_ZERO(0, WASM_LOCAL_GET(0)))});
}
TEST_F(FunctionBodyDecoderTest, BrvIf1_type_n) {
ExpectFailure(sigs.i_f(),
{WASM_BLOCK_I(WASM_BRV_IF_ZERO(0, WASM_LOCAL_GET(0)))});
ExpectFailure(sigs.i_d(),
{WASM_BLOCK_I(WASM_BRV_IF_ZERO(0, WASM_LOCAL_GET(0)))});
}
TEST_F(FunctionBodyDecoderTest, Select) {
ExpectValidates(sigs.i_i(), {WASM_SELECT(WASM_LOCAL_GET(0), WASM_LOCAL_GET(0),
WASM_ZERO)});
ExpectValidates(sigs.f_ff(),
{WASM_SELECT(WASM_F32(0.0), WASM_F32(0.0), WASM_ZERO)});
ExpectValidates(sigs.d_dd(),
{WASM_SELECT(WASM_F64(0.0), WASM_F64(0.0), WASM_ZERO)});
ExpectValidates(sigs.l_l(),
{WASM_SELECT(WASM_I64V_1(0), WASM_I64V_1(0), WASM_ZERO)});
}
TEST_F(FunctionBodyDecoderTest, Select_needs_value_type) {
ExpectFailure(sigs.a_a(),
{WASM_SELECT(WASM_LOCAL_GET(0), WASM_LOCAL_GET(0), WASM_ZERO)});
ExpectFailure(sigs.c_c(),
{WASM_SELECT(WASM_LOCAL_GET(0), WASM_LOCAL_GET(0), WASM_ZERO)});
}
TEST_F(FunctionBodyDecoderTest, Select_fail1) {
ExpectFailure(sigs.i_i(), {WASM_SELECT(WASM_F32(0.0), WASM_LOCAL_GET(0),
WASM_LOCAL_GET(0))});
ExpectFailure(sigs.i_i(), {WASM_SELECT(WASM_LOCAL_GET(0), WASM_F32(0.0),
WASM_LOCAL_GET(0))});
ExpectFailure(sigs.i_i(), {WASM_SELECT(WASM_LOCAL_GET(0), WASM_LOCAL_GET(0),
WASM_F32(0.0))});
}
TEST_F(FunctionBodyDecoderTest, Select_fail2) {
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
ValueType type = kValueTypes[i];
if (type == kWasmI32) continue;
// Select without specified type is only allowed for number types.
if (type == kWasmAnyRef) continue;
ValueType types[] = {type, kWasmI32, type};
FunctionSig sig(1, 2, types);
ExpectValidates(&sig, {WASM_SELECT(WASM_LOCAL_GET(1), WASM_LOCAL_GET(1),
WASM_LOCAL_GET(0))});
ExpectFailure(&sig, {WASM_SELECT(WASM_LOCAL_GET(1), WASM_LOCAL_GET(0),
WASM_LOCAL_GET(0))});
ExpectFailure(&sig, {WASM_SELECT(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1),
WASM_LOCAL_GET(0))});
ExpectFailure(&sig, {WASM_SELECT(WASM_LOCAL_GET(0), WASM_LOCAL_GET(0),
WASM_LOCAL_GET(1))});
}
}
TEST_F(FunctionBodyDecoderTest, Select_TypeCheck) {
ExpectFailure(sigs.i_i(), {WASM_SELECT(WASM_F32(9.9), WASM_LOCAL_GET(0),
WASM_LOCAL_GET(0))});
ExpectFailure(sigs.i_i(), {WASM_SELECT(WASM_LOCAL_GET(0), WASM_F64(0.25),
WASM_LOCAL_GET(0))});
ExpectFailure(sigs.i_i(), {WASM_SELECT(WASM_F32(9.9), WASM_LOCAL_GET(0),
WASM_I64V_1(0))});
}
TEST_F(FunctionBodyDecoderTest, SelectWithType) {
ExpectValidates(sigs.i_i(), {WASM_SELECT_I(WASM_LOCAL_GET(0),
WASM_LOCAL_GET(0), WASM_ZERO)});
ExpectValidates(sigs.f_ff(),
{WASM_SELECT_F(WASM_F32(0.0), WASM_F32(0.0), WASM_ZERO)});
ExpectValidates(sigs.d_dd(),
{WASM_SELECT_D(WASM_F64(0.0), WASM_F64(0.0), WASM_ZERO)});
ExpectValidates(sigs.l_l(),
{WASM_SELECT_L(WASM_I64V_1(0), WASM_I64V_1(0), WASM_ZERO)});
ExpectValidates(sigs.a_a(),
{WASM_SELECT_R(WASM_REF_NULL(kAnyRefCode),
WASM_REF_NULL(kAnyRefCode), WASM_ZERO)});
ExpectValidates(sigs.c_c(),
{WASM_SELECT_A(WASM_REF_NULL(kFuncRefCode),
WASM_REF_NULL(kFuncRefCode), WASM_ZERO)});
}
TEST_F(FunctionBodyDecoderTest, SelectWithType_fail) {
ExpectFailure(sigs.i_i(), {WASM_SELECT_F(WASM_LOCAL_GET(0), WASM_LOCAL_GET(0),
WASM_ZERO)});
ExpectFailure(sigs.f_ff(),
{WASM_SELECT_D(WASM_F32(0.0), WASM_F32(0.0), WASM_ZERO)});
ExpectFailure(sigs.d_dd(),
{WASM_SELECT_L(WASM_F64(0.0), WASM_F64(0.0), WASM_ZERO)});
ExpectFailure(sigs.l_l(),
{WASM_SELECT_I(WASM_I64V_1(0), WASM_I64V_1(0), WASM_ZERO)});
}
TEST_F(FunctionBodyDecoderTest, Throw) {
WASM_FEATURE_SCOPE(eh);
byte ex1 = builder.AddException(sigs.v_v());
byte ex2 = builder.AddException(sigs.v_i());
byte ex3 = builder.AddException(sigs.v_ii());
ExpectValidates(sigs.v_v(), {kExprThrow, ex1});
ExpectValidates(sigs.v_v(), {WASM_I32V(0), kExprThrow, ex2});
ExpectFailure(sigs.v_v(), {WASM_F32(0.0), kExprThrow, ex2});
ExpectValidates(sigs.v_v(), {WASM_I32V(0), WASM_I32V(0), kExprThrow, ex3});
ExpectFailure(sigs.v_v(), {WASM_F32(0.0), WASM_I32V(0), kExprThrow, ex3});
ExpectFailure(sigs.v_v(), {kExprThrow, 99});
}
TEST_F(FunctionBodyDecoderTest, ThrowUnreachable) {
WASM_FEATURE_SCOPE(eh);
byte ex1 = builder.AddException(sigs.v_v());
byte ex2 = builder.AddException(sigs.v_i());
ExpectValidates(sigs.i_i(), {WASM_LOCAL_GET(0), kExprThrow, ex1, WASM_NOP});
ExpectValidates(sigs.v_i(), {WASM_LOCAL_GET(0), kExprThrow, ex2, WASM_NOP});
ExpectValidates(sigs.i_i(), {WASM_LOCAL_GET(0), kExprThrow, ex1, WASM_ZERO});
ExpectFailure(sigs.v_i(), {WASM_LOCAL_GET(0), kExprThrow, ex2, WASM_ZERO});
ExpectFailure(sigs.i_i(),
{WASM_LOCAL_GET(0), kExprThrow, ex1, WASM_F32(0.0)});
ExpectFailure(sigs.v_i(),
{WASM_LOCAL_GET(0), kExprThrow, ex2, WASM_F32(0.0)});
}
#define WASM_TRY_OP kExprTry, kVoidCode
TEST_F(FunctionBodyDecoderTest, TryCatch) {
WASM_FEATURE_SCOPE(eh);
byte ex = builder.AddException(sigs.v_v());
ExpectValidates(sigs.v_v(), {WASM_TRY_OP, kExprCatch, ex, kExprEnd});
ExpectValidates(sigs.v_v(),
{WASM_TRY_OP, kExprCatch, ex, kExprCatchAll, kExprEnd});
ExpectValidates(sigs.v_v(), {WASM_TRY_OP, kExprEnd}, kAppendEnd);
ExpectFailure(sigs.v_v(),
{WASM_TRY_OP, kExprCatchAll, kExprCatch, ex, kExprEnd},
kAppendEnd, "catch after catch-all for try");
ExpectFailure(sigs.v_v(),
{WASM_TRY_OP, kExprCatchAll, kExprCatchAll, kExprEnd},
kAppendEnd, "catch-all already present for try");
ExpectFailure(sigs.v_v(), {kExprCatch, ex, kExprEnd}, kAppendEnd,
"catch does not match a try");
}
TEST_F(FunctionBodyDecoderTest, Rethrow) {
WASM_FEATURE_SCOPE(eh);
ExpectValidates(sigs.v_v(),
{WASM_TRY_OP, kExprCatchAll, kExprRethrow, 0, kExprEnd});
ExpectFailure(sigs.v_v(),
{WASM_TRY_OP, kExprRethrow, 0, kExprCatch, kExprEnd},
kAppendEnd, "rethrow not targeting catch or catch-all");
ExpectFailure(sigs.v_v(), {WASM_BLOCK(kExprRethrow, 0)}, kAppendEnd,
"rethrow not targeting catch or catch-all");
ExpectFailure(sigs.v_v(), {kExprRethrow, 0}, kAppendEnd,
"rethrow not targeting catch or catch-all");
}
TEST_F(FunctionBodyDecoderTest, TryDelegate) {
WASM_FEATURE_SCOPE(eh);
byte ex = builder.AddException(sigs.v_v());
ExpectValidates(sigs.v_v(), {WASM_TRY_OP,
WASM_TRY_DELEGATE(WASM_STMTS(kExprThrow, ex), 0),
kExprCatch, ex, kExprEnd});
ExpectValidates(
sigs.v_v(),
{WASM_BLOCK(WASM_TRY_OP, WASM_TRY_DELEGATE(WASM_STMTS(kExprThrow, ex), 2),
kExprCatch, ex, kExprEnd)});
ExpectValidates(sigs.v_v(),
{WASM_TRY_OP, kExprCatch, ex,
WASM_TRY_DELEGATE(WASM_STMTS(kExprThrow, ex), 0), kExprEnd},
kAppendEnd);
ExpectValidates(sigs.v_v(),
{WASM_TRY_OP,
WASM_BLOCK(WASM_TRY_DELEGATE(WASM_STMTS(kExprThrow, ex), 0)),
kExprCatch, ex, kExprEnd},
kAppendEnd);
ExpectFailure(
sigs.v_v(),
{WASM_BLOCK(WASM_TRY_OP, WASM_TRY_DELEGATE(WASM_STMTS(kExprThrow, ex), 3),
kExprCatch, ex, kExprEnd)},
kAppendEnd, "invalid branch depth: 3");
ExpectFailure(
sigs.v_v(),
{WASM_TRY_OP, WASM_TRY_OP, kExprCatch, ex, kExprDelegate, 0, kExprEnd},
kAppendEnd, "delegate does not match a try");
ExpectFailure(
sigs.v_v(),
{WASM_TRY_OP, WASM_TRY_OP, kExprCatchAll, kExprDelegate, 1, kExprEnd},
kAppendEnd, "delegate does not match a try");
}
#undef WASM_TRY_OP
TEST_F(FunctionBodyDecoderTest, MultiValBlock1) {
byte sig0 = builder.AddSignature(sigs.ii_v());
ExpectValidates(
sigs.i_ii(),
{WASM_BLOCK_X(sig0, WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)), kExprI32Add});
ExpectFailure(sigs.i_ii(), {WASM_BLOCK_X(sig0, WASM_NOP), kExprI32Add},
kAppendEnd,
"expected 2 elements on the stack for fallthru, found 0");
ExpectFailure(
sigs.i_ii(), {WASM_BLOCK_X(sig0, WASM_LOCAL_GET(0)), kExprI32Add},
kAppendEnd, "expected 2 elements on the stack for fallthru, found 1");
ExpectFailure(sigs.i_ii(),
{WASM_BLOCK_X(sig0, WASM_LOCAL_GET(0), WASM_LOCAL_GET(1),
WASM_LOCAL_GET(0)),
kExprI32Add},
kAppendEnd,
"expected 2 elements on the stack for fallthru, found 3");
ExpectFailure(
sigs.i_ii(),
{WASM_BLOCK_X(sig0, WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)), kExprF32Add},
kAppendEnd, "f32.add[1] expected type f32, found block of type i32");
byte sig1 = builder.AddSignature(sigs.v_i());
ExpectFailure(
sigs.v_i(),
{WASM_LOCAL_GET(0), WASM_BLOCK(WASM_BLOCK_X(sig1, WASM_UNREACHABLE))},
kAppendEnd,
"not enough arguments on the stack for block (need 1, got 0)");
}
TEST_F(FunctionBodyDecoderTest, MultiValBlock2) {
byte sig0 = builder.AddSignature(sigs.ii_v());
ExpectValidates(sigs.i_ii(),
{WASM_BLOCK_X(sig0, WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)),
WASM_I32_ADD(WASM_NOP, WASM_NOP)});
ExpectFailure(sigs.i_ii(), {WASM_BLOCK_X(sig0, WASM_NOP),
WASM_I32_ADD(WASM_NOP, WASM_NOP)});
ExpectFailure(sigs.i_ii(), {WASM_BLOCK_X(sig0, WASM_LOCAL_GET(0)),
WASM_I32_ADD(WASM_NOP, WASM_NOP)});
ExpectFailure(sigs.i_ii(),
{WASM_BLOCK_X(sig0, WASM_LOCAL_GET(0), WASM_LOCAL_GET(1),
WASM_LOCAL_GET(0)),
WASM_I32_ADD(WASM_NOP, WASM_NOP)});
ExpectFailure(sigs.i_ii(),
{WASM_BLOCK_X(sig0, WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)),
WASM_F32_ADD(WASM_NOP, WASM_NOP)});
}
TEST_F(FunctionBodyDecoderTest, MultiValBlockBr) {
byte sig0 = builder.AddSignature(sigs.ii_v());
ExpectFailure(sigs.i_ii(), {WASM_BLOCK_X(sig0, WASM_LOCAL_GET(0), WASM_BR(0)),
kExprI32Add});
ExpectValidates(sigs.i_ii(), {WASM_BLOCK_X(sig0, WASM_LOCAL_GET(0),
WASM_LOCAL_GET(1), WASM_BR(0)),
kExprI32Add});
}
TEST_F(FunctionBodyDecoderTest, MultiValLoop1) {
byte sig0 = builder.AddSignature(sigs.ii_v());
ExpectValidates(
sigs.i_ii(),
{WASM_LOOP_X(sig0, WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)), kExprI32Add});
ExpectFailure(sigs.i_ii(), {WASM_LOOP_X(sig0, WASM_NOP), kExprI32Add});
ExpectFailure(sigs.i_ii(),
{WASM_LOOP_X(sig0, WASM_LOCAL_GET(0)), kExprI32Add});
ExpectFailure(sigs.i_ii(), {WASM_LOOP_X(sig0, WASM_LOCAL_GET(0),
WASM_LOCAL_GET(1), WASM_LOCAL_GET(0)),
kExprI32Add});
ExpectFailure(
sigs.i_ii(),
{WASM_LOOP_X(sig0, WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)), kExprF32Add});
}
TEST_F(FunctionBodyDecoderTest, MultiValIf) {
byte sig0 = builder.AddSignature(sigs.ii_v());
ExpectValidates(
sigs.i_ii(),
{WASM_IF_ELSE_X(sig0, WASM_LOCAL_GET(0),
WASM_SEQ(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)),
WASM_SEQ(WASM_LOCAL_GET(1), WASM_LOCAL_GET(0))),
kExprI32Add});
ExpectFailure(sigs.i_ii(),
{WASM_IF_ELSE_X(sig0, WASM_LOCAL_GET(0), WASM_NOP, WASM_NOP),
kExprI32Add});
ExpectFailure(sigs.i_ii(),
{WASM_IF_ELSE_X(sig0, WASM_LOCAL_GET(0), WASM_NOP,
WASM_SEQ(WASM_LOCAL_GET(1), WASM_LOCAL_GET(0))),
kExprI32Add});
ExpectFailure(
sigs.i_ii(),
{WASM_IF_ELSE_X(sig0, WASM_LOCAL_GET(0),
WASM_SEQ(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)), WASM_NOP),
kExprI32Add});
ExpectFailure(sigs.i_ii(),
{WASM_IF_ELSE_X(sig0, WASM_LOCAL_GET(0), WASM_LOCAL_GET(0),
WASM_LOCAL_GET(1)),
kExprI32Add});
ExpectFailure(sigs.i_ii(),
{WASM_IF_ELSE_X(sig0, WASM_LOCAL_GET(0), WASM_LOCAL_GET(0),
WASM_SEQ(WASM_LOCAL_GET(1), WASM_LOCAL_GET(0))),
kExprI32Add});
ExpectFailure(sigs.i_ii(),
{WASM_IF_ELSE_X(sig0, WASM_LOCAL_GET(0),
WASM_SEQ(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)),
WASM_LOCAL_GET(1)),
kExprI32Add});
ExpectFailure(
sigs.i_ii(),
{WASM_IF_ELSE_X(
sig0, WASM_LOCAL_GET(0),
WASM_SEQ(WASM_LOCAL_GET(0), WASM_LOCAL_GET(0), WASM_LOCAL_GET(0)),
WASM_SEQ(WASM_LOCAL_GET(1), WASM_LOCAL_GET(0), WASM_LOCAL_GET(0))),
kExprI32Add});
ExpectFailure(sigs.i_ii(),
{WASM_IF_ELSE_X(sig0, WASM_LOCAL_GET(0),
WASM_SEQ(WASM_LOCAL_GET(0), WASM_LOCAL_GET(0),
WASM_LOCAL_GET(0)),
WASM_SEQ(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))),
kExprI32Add});
ExpectFailure(sigs.i_ii(),
{WASM_IF_ELSE_X(sig0, WASM_LOCAL_GET(0),
WASM_SEQ(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)),
WASM_SEQ(WASM_LOCAL_GET(1), WASM_LOCAL_GET(1),
WASM_LOCAL_GET(1))),
kExprI32Add});
ExpectFailure(sigs.i_ii(),
{WASM_IF_ELSE_X(sig0, WASM_LOCAL_GET(0),
WASM_SEQ(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)),
WASM_SEQ(WASM_LOCAL_GET(1), WASM_LOCAL_GET(0))),
kExprF32Add});
}
TEST_F(FunctionBodyDecoderTest, BlockParam) {
byte sig1 = builder.AddSignature(sigs.i_i());
byte sig2 = builder.AddSignature(sigs.i_ii());
ExpectValidates(
sigs.i_ii(),
{WASM_LOCAL_GET(0), WASM_BLOCK_X(sig1, WASM_LOCAL_GET(1),
WASM_I32_ADD(WASM_NOP, WASM_NOP))});
ExpectValidates(sigs.i_ii(),
{WASM_LOCAL_GET(0), WASM_LOCAL_GET(1),
WASM_BLOCK_X(sig2, WASM_I32_ADD(WASM_NOP, WASM_NOP))});
ExpectValidates(sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_LOCAL_GET(1),
WASM_BLOCK_X(sig1, WASM_NOP),
WASM_I32_ADD(WASM_NOP, WASM_NOP)});
ExpectFailure(sigs.i_ii(),
{WASM_BLOCK_X(sig1, WASM_NOP), WASM_RETURN(WASM_LOCAL_GET(0))});
ExpectFailure(sigs.i_ii(), {WASM_BLOCK_X(sig1, WASM_LOCAL_GET(0)),
WASM_RETURN(WASM_LOCAL_GET(0))});
ExpectFailure(
sigs.i_ii(),
{WASM_LOCAL_GET(0), WASM_BLOCK_X(sig2, WASM_I32_ADD(WASM_NOP, WASM_NOP)),
WASM_RETURN(WASM_LOCAL_GET(0))});
ExpectFailure(sigs.i_ii(),
{WASM_LOCAL_GET(0), WASM_BLOCK_X(sig1, WASM_F32_NEG(WASM_NOP)),
WASM_RETURN(WASM_LOCAL_GET(0))});
}
TEST_F(FunctionBodyDecoderTest, LoopParam) {
byte sig1 = builder.AddSignature(sigs.i_i());
byte sig2 = builder.AddSignature(sigs.i_ii());
ExpectValidates(sigs.i_ii(), {WASM_LOCAL_GET(0),
WASM_LOOP_X(sig1, WASM_LOCAL_GET(1),
WASM_I32_ADD(WASM_NOP, WASM_NOP))});
ExpectValidates(sigs.i_ii(),
{WASM_LOCAL_GET(0), WASM_LOCAL_GET(1),
WASM_LOOP_X(sig2, WASM_I32_ADD(WASM_NOP, WASM_NOP))});
ExpectValidates(sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_LOCAL_GET(1),
WASM_LOOP_X(sig1, WASM_NOP),
WASM_I32_ADD(WASM_NOP, WASM_NOP)});
ExpectFailure(sigs.i_ii(),
{WASM_LOOP_X(sig1, WASM_NOP), WASM_RETURN(WASM_LOCAL_GET(0))});
ExpectFailure(sigs.i_ii(), {WASM_LOOP_X(sig1, WASM_LOCAL_GET(0)),
WASM_RETURN(WASM_LOCAL_GET(0))});
ExpectFailure(
sigs.i_ii(),
{WASM_LOCAL_GET(0), WASM_LOOP_X(sig2, WASM_I32_ADD(WASM_NOP, WASM_NOP)),
WASM_RETURN(WASM_LOCAL_GET(0))});
ExpectFailure(sigs.i_ii(),
{WASM_LOCAL_GET(0), WASM_LOOP_X(sig1, WASM_F32_NEG(WASM_NOP)),
WASM_RETURN(WASM_LOCAL_GET(0))});
}
TEST_F(FunctionBodyDecoderTest, LoopParamBr) {
byte sig1 = builder.AddSignature(sigs.i_i());
byte sig2 = builder.AddSignature(sigs.i_ii());
ExpectValidates(sigs.i_ii(),
{WASM_LOCAL_GET(0), WASM_LOOP_X(sig1, WASM_BR(0))});
ExpectValidates(
sigs.i_ii(),
{WASM_LOCAL_GET(0), WASM_LOOP_X(sig1, WASM_BRV(0, WASM_LOCAL_GET(1)))});
ExpectValidates(sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_LOCAL_GET(1),
WASM_LOOP_X(sig2, WASM_BR(0))});
ExpectValidates(
sigs.i_ii(),
{WASM_LOCAL_GET(0), WASM_LOOP_X(sig1, WASM_BLOCK_X(sig1, WASM_BR(1)))});
ExpectFailure(sigs.i_ii(),
{WASM_LOCAL_GET(0), WASM_LOOP_X(sig1, WASM_BLOCK(WASM_BR(1))),
WASM_RETURN(WASM_LOCAL_GET(0))});
ExpectFailure(sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_LOCAL_GET(1),
WASM_LOOP_X(sig2, WASM_BLOCK_X(sig1, WASM_BR(1))),
WASM_RETURN(WASM_LOCAL_GET(0))});
}
TEST_F(FunctionBodyDecoderTest, IfParam) {
byte sig1 = builder.AddSignature(sigs.i_i());
byte sig2 = builder.AddSignature(sigs.i_ii());
ExpectValidates(sigs.i_ii(),
{WASM_LOCAL_GET(0),
WASM_IF_X(sig1, WASM_LOCAL_GET(0),
WASM_I32_ADD(WASM_NOP, WASM_LOCAL_GET(1)))});
ExpectValidates(sigs.i_ii(),
{WASM_LOCAL_GET(0),
WASM_IF_ELSE_X(sig1, WASM_LOCAL_GET(0),
WASM_I32_ADD(WASM_NOP, WASM_LOCAL_GET(1)),
WASM_I32_EQZ(WASM_NOP))});
ExpectValidates(
sigs.i_ii(),
{WASM_LOCAL_GET(0), WASM_LOCAL_GET(1),
WASM_IF_ELSE_X(sig2, WASM_LOCAL_GET(0), WASM_I32_ADD(WASM_NOP, WASM_NOP),
WASM_I32_MUL(WASM_NOP, WASM_NOP))});
ExpectValidates(sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_LOCAL_GET(1),
WASM_IF_X(sig1, WASM_LOCAL_GET(0), WASM_NOP),
WASM_I32_ADD(WASM_NOP, WASM_NOP)});
ExpectValidates(sigs.i_ii(),
{WASM_LOCAL_GET(0), WASM_LOCAL_GET(1),
WASM_IF_ELSE_X(sig1, WASM_LOCAL_GET(0), WASM_NOP,
WASM_I32_EQZ(WASM_NOP)),
WASM_I32_ADD(WASM_NOP, WASM_NOP)});
}
TEST_F(FunctionBodyDecoderTest, Regression709741) {
AddLocals(kWasmI32, kV8MaxWasmFunctionLocals - 1);
ExpectValidates(sigs.v_v(), {WASM_NOP});
byte code[] = {WASM_NOP, WASM_END};
for (size_t i = 0; i < arraysize(code); ++i) {
FunctionBody body(sigs.v_v(), 0, code, code + i);
WasmFeatures unused_detected_features;
DecodeResult result =
VerifyWasmCode(this->zone()->allocator(), WasmFeatures::All(), nullptr,
&unused_detected_features, body);
if (result.ok()) {
std::ostringstream str;
str << "Expected verification to fail";
}
}
}
TEST_F(FunctionBodyDecoderTest, MemoryInit) {
builder.InitializeMemory();
builder.SetDataSegmentCount(1);
ExpectValidates(sigs.v_v(),
{WASM_MEMORY_INIT(0, WASM_ZERO, WASM_ZERO, WASM_ZERO)});
ExpectFailure(sigs.v_v(),
{WASM_TABLE_INIT(0, 1, WASM_ZERO, WASM_ZERO, WASM_ZERO)});
}
TEST_F(FunctionBodyDecoderTest, MemoryInitInvalid) {
builder.InitializeMemory();
builder.SetDataSegmentCount(1);
byte code[] = {WASM_MEMORY_INIT(0, WASM_ZERO, WASM_ZERO, WASM_ZERO),
WASM_END};
for (size_t i = 0; i <= arraysize(code); ++i) {
Validate(i == arraysize(code), sigs.v_v(), base::VectorOf(code, i),
kOmitEnd);
}
}
TEST_F(FunctionBodyDecoderTest, DataDrop) {
builder.InitializeMemory();
builder.SetDataSegmentCount(1);
ExpectValidates(sigs.v_v(), {WASM_DATA_DROP(0)});
ExpectFailure(sigs.v_v(), {WASM_DATA_DROP(1)});
}
TEST_F(FunctionBodyDecoderTest, DataSegmentIndexUnsigned) {
builder.InitializeMemory();
builder.SetDataSegmentCount(65);
// Make sure that the index is interpreted as an unsigned number; 64 is
// interpreted as -64 when decoded as a signed LEB.
ExpectValidates(sigs.v_v(),
{WASM_MEMORY_INIT(64, WASM_ZERO, WASM_ZERO, WASM_ZERO)});
ExpectValidates(sigs.v_v(), {WASM_DATA_DROP(64)});
}
TEST_F(FunctionBodyDecoderTest, MemoryCopy) {
builder.InitializeMemory();
ExpectValidates(sigs.v_v(),
{WASM_MEMORY_COPY(WASM_ZERO, WASM_ZERO, WASM_ZERO)});
}
TEST_F(FunctionBodyDecoderTest, MemoryFill) {
builder.InitializeMemory();
ExpectValidates(sigs.v_v(),
{WASM_MEMORY_FILL(WASM_ZERO, WASM_ZERO, WASM_ZERO)});
}
TEST_F(FunctionBodyDecoderTest, BulkMemoryOpsWithoutMemory) {
ExpectFailure(sigs.v_v(),
{WASM_MEMORY_INIT(0, WASM_ZERO, WASM_ZERO, WASM_ZERO)});
ExpectFailure(sigs.v_v(),
{WASM_MEMORY_COPY(WASM_ZERO, WASM_ZERO, WASM_ZERO)});
ExpectFailure(sigs.v_v(),
{WASM_MEMORY_FILL(WASM_ZERO, WASM_ZERO, WASM_ZERO)});
}
TEST_F(FunctionBodyDecoderTest, TableInit) {
builder.InitializeTable(wasm::kWasmFuncRef);
builder.AddPassiveElementSegment(wasm::kWasmFuncRef);
ExpectValidates(sigs.v_v(),
{WASM_TABLE_INIT(0, 0, WASM_ZERO, WASM_ZERO, WASM_ZERO)});
ExpectFailure(sigs.v_v(),
{WASM_TABLE_INIT(0, 1, WASM_ZERO, WASM_ZERO, WASM_ZERO)});
}
TEST_F(FunctionBodyDecoderTest, TableInitWrongType) {
uint32_t table_index = builder.InitializeTable(wasm::kWasmFuncRef);
uint32_t element_index = builder.AddPassiveElementSegment(wasm::kWasmAnyRef);
ExpectFailure(sigs.v_v(), {WASM_TABLE_INIT(table_index, element_index,
WASM_ZERO, WASM_ZERO, WASM_ZERO)});
}
TEST_F(FunctionBodyDecoderTest, TableInitInvalid) {
builder.InitializeTable(wasm::kWasmFuncRef);
builder.AddPassiveElementSegment(wasm::kWasmFuncRef);
byte code[] = {WASM_TABLE_INIT(0, 0, WASM_ZERO, WASM_ZERO, WASM_ZERO),
WASM_END};
for (size_t i = 0; i <= arraysize(code); ++i) {
Validate(i == arraysize(code), sigs.v_v(), base::VectorOf(code, i),
kOmitEnd);
}
}
TEST_F(FunctionBodyDecoderTest, ElemDrop) {
builder.InitializeTable(wasm::kWasmFuncRef);
builder.AddPassiveElementSegment(wasm::kWasmFuncRef);
ExpectValidates(sigs.v_v(), {WASM_ELEM_DROP(0)});
ExpectFailure(sigs.v_v(), {WASM_ELEM_DROP(1)});
}
TEST_F(FunctionBodyDecoderTest, TableInitDeclarativeElem) {
builder.InitializeTable(wasm::kWasmFuncRef);
builder.AddDeclarativeElementSegment();
byte code[] = {WASM_TABLE_INIT(0, 0, WASM_ZERO, WASM_ZERO, WASM_ZERO),
WASM_END};
for (size_t i = 0; i <= arraysize(code); ++i) {
Validate(i == arraysize(code), sigs.v_v(), base::VectorOf(code, i),
kOmitEnd);
}
}
TEST_F(FunctionBodyDecoderTest, DeclarativeElemDrop) {
builder.InitializeTable(wasm::kWasmFuncRef);
builder.AddDeclarativeElementSegment();
ExpectValidates(sigs.v_v(), {WASM_ELEM_DROP(0)});
ExpectFailure(sigs.v_v(), {WASM_ELEM_DROP(1)});
}
TEST_F(FunctionBodyDecoderTest, RefFuncDeclared) {
byte function_index = builder.AddFunction(sigs.v_i());
ExpectValidates(sigs.c_v(), {WASM_REF_FUNC(function_index)});
}
TEST_F(FunctionBodyDecoderTest, RefFuncUndeclared) {
byte function_index = builder.AddFunction(sigs.v_i(), false);
ExpectFailure(sigs.c_v(), {WASM_REF_FUNC(function_index)});
}
TEST_F(FunctionBodyDecoderTest, ElemSegmentIndexUnsigned) {
builder.InitializeTable(wasm::kWasmFuncRef);
for (int i = 0; i < 65; ++i) {
builder.AddPassiveElementSegment(wasm::kWasmFuncRef);
}
// Make sure that the index is interpreted as an unsigned number; 64 is
// interpreted as -64 when decoded as a signed LEB.
ExpectValidates(sigs.v_v(),
{WASM_TABLE_INIT(0, 64, WASM_ZERO, WASM_ZERO, WASM_ZERO)});
ExpectValidates(sigs.v_v(), {WASM_ELEM_DROP(64)});
}
TEST_F(FunctionBodyDecoderTest, TableCopy) {
builder.InitializeTable(wasm::kWasmVoid);
ExpectValidates(sigs.v_v(),
{WASM_TABLE_COPY(0, 0, WASM_ZERO, WASM_ZERO, WASM_ZERO)});
}
TEST_F(FunctionBodyDecoderTest, TableCopyWrongType) {
uint32_t dst_table_index = builder.InitializeTable(wasm::kWasmFuncRef);
uint32_t src_table_index = builder.InitializeTable(wasm::kWasmAnyRef);
ExpectFailure(sigs.v_v(), {WASM_TABLE_COPY(dst_table_index, src_table_index,
WASM_ZERO, WASM_ZERO, WASM_ZERO)});
}
TEST_F(FunctionBodyDecoderTest, TableGrow) {
byte tab_func = builder.AddTable(kWasmFuncRef, 10, true, 20);
byte tab_ref = builder.AddTable(kWasmAnyRef, 10, true, 20);
ExpectValidates(
sigs.i_c(),
{WASM_TABLE_GROW(tab_func, WASM_REF_NULL(kFuncRefCode), WASM_ONE)});
ExpectValidates(
sigs.i_a(),
{WASM_TABLE_GROW(tab_ref, WASM_REF_NULL(kAnyRefCode), WASM_ONE)});
// FuncRef table cannot be initialized with an ExternRef value.
ExpectFailure(sigs.i_a(),
{WASM_TABLE_GROW(tab_func, WASM_LOCAL_GET(0), WASM_ONE)});
// ExternRef table cannot be initialized with a FuncRef value.
ExpectFailure(sigs.i_c(),
{WASM_TABLE_GROW(tab_ref, WASM_LOCAL_GET(0), WASM_ONE)});
// Check that the table index gets verified.
ExpectFailure(
sigs.i_a(),
{WASM_TABLE_GROW(tab_ref + 2, WASM_REF_NULL(kAnyRefCode), WASM_ONE)});
}
TEST_F(FunctionBodyDecoderTest, TableSize) {
int tab = builder.AddTable(kWasmFuncRef, 10, true, 20);
ExpectValidates(sigs.i_v(), {WASM_TABLE_SIZE(tab)});
ExpectFailure(sigs.i_v(), {WASM_TABLE_SIZE(tab + 2)});
}
TEST_F(FunctionBodyDecoderTest, TableFill) {
byte tab_func = builder.AddTable(kWasmFuncRef, 10, true, 20);
byte tab_ref = builder.AddTable(kWasmAnyRef, 10, true, 20);
ExpectValidates(sigs.v_c(),
{WASM_TABLE_FILL(tab_func, WASM_ONE,
WASM_REF_NULL(kFuncRefCode), WASM_ONE)});
ExpectValidates(sigs.v_a(),
{WASM_TABLE_FILL(tab_ref, WASM_ONE,
WASM_REF_NULL(kAnyRefCode), WASM_ONE)});
// FuncRef table cannot be initialized with an ExternRef value.
ExpectFailure(sigs.v_a(), {WASM_TABLE_FILL(tab_func, WASM_ONE,
WASM_LOCAL_GET(0), WASM_ONE)});
// ExternRef table cannot be initialized with a FuncRef value.
ExpectFailure(sigs.v_c(), {WASM_TABLE_FILL(tab_ref, WASM_ONE,
WASM_LOCAL_GET(0), WASM_ONE)});
// Check that the table index gets verified.
ExpectFailure(sigs.v_a(),
{WASM_TABLE_FILL(tab_ref + 2, WASM_ONE,
WASM_REF_NULL(kAnyRefCode), WASM_ONE)});
}
TEST_F(FunctionBodyDecoderTest, TableOpsWithoutTable) {
ExpectFailure(sigs.i_v(),
{WASM_TABLE_GROW(0, WASM_REF_NULL(kAnyRefCode), WASM_ONE)});
ExpectFailure(sigs.i_v(), {WASM_TABLE_SIZE(0)});
ExpectFailure(
sigs.i_a(),
{WASM_TABLE_FILL(0, WASM_ONE, WASM_REF_NULL(kAnyRefCode), WASM_ONE)});
builder.AddPassiveElementSegment(wasm::kWasmFuncRef);
ExpectFailure(sigs.v_v(),
{WASM_TABLE_INIT(0, 0, WASM_ZERO, WASM_ZERO, WASM_ZERO)});
ExpectFailure(sigs.v_v(),
{WASM_TABLE_COPY(0, 0, WASM_ZERO, WASM_ZERO, WASM_ZERO)});
}
TEST_F(FunctionBodyDecoderTest, TableCopyMultiTable) {
{
TestModuleBuilder builder;
builder.AddTable(kWasmAnyRef, 10, true, 20);
builder.AddPassiveElementSegment(wasm::kWasmFuncRef);
module = builder.module();
// We added one table, therefore table.copy on table 0 should work.
int table_src = 0;
int table_dst = 0;
ExpectValidates(sigs.v_v(),
{WASM_TABLE_COPY(table_dst, table_src, WASM_ZERO, WASM_ZERO,
WASM_ZERO)});
// There is only one table, so table.copy on table 1 should fail.
table_src = 0;
table_dst = 1;
ExpectFailure(sigs.v_v(), {WASM_TABLE_COPY(table_dst, table_src, WASM_ZERO,
WASM_ZERO, WASM_ZERO)});
table_src = 1;
table_dst = 0;
ExpectFailure(sigs.v_v(), {WASM_TABLE_COPY(table_dst, table_src, WASM_ZERO,
WASM_ZERO, WASM_ZERO)});
}
{
TestModuleBuilder builder;
builder.AddTable(kWasmAnyRef, 10, true, 20);
builder.AddTable(kWasmAnyRef, 10, true, 20);
builder.AddPassiveElementSegment(wasm::kWasmFuncRef);
module = builder.module();
// We added two tables, therefore table.copy on table 0 should work.
int table_src = 0;
int table_dst = 0;
ExpectValidates(sigs.v_v(),
{WASM_TABLE_COPY(table_dst, table_src, WASM_ZERO, WASM_ZERO,
WASM_ZERO)});
// Also table.copy on table 1 should work now.
table_src = 1;
table_dst = 0;
ExpectValidates(sigs.v_v(),
{WASM_TABLE_COPY(table_dst, table_src, WASM_ZERO, WASM_ZERO,
WASM_ZERO)});
table_src = 0;
table_dst = 1;
ExpectValidates(sigs.v_v(),
{WASM_TABLE_COPY(table_dst, table_src, WASM_ZERO, WASM_ZERO,
WASM_ZERO)});
}
}
TEST_F(FunctionBodyDecoderTest, TableInitMultiTable) {
{
TestModuleBuilder builder;
builder.AddTable(kWasmAnyRef, 10, true, 20);
builder.AddPassiveElementSegment(wasm::kWasmAnyRef);
module = builder.module();
// We added one table, therefore table.init on table 0 should work.
int table_index = 0;
ExpectValidates(sigs.v_v(), {WASM_TABLE_INIT(table_index, 0, WASM_ZERO,
WASM_ZERO, WASM_ZERO)});
// There is only one table, so table.init on table 1 should fail.
table_index = 1;
ExpectFailure(sigs.v_v(), {WASM_TABLE_INIT(table_index, 0, WASM_ZERO,
WASM_ZERO, WASM_ZERO)});
}
{
TestModuleBuilder builder;
builder.AddTable(kWasmAnyRef, 10, true, 20);
builder.AddTable(kWasmAnyRef, 10, true, 20);
builder.AddPassiveElementSegment(wasm::kWasmAnyRef);
module = builder.module();
// We added two tables, therefore table.init on table 0 should work.
int table_index = 0;
ExpectValidates(sigs.v_v(), {WASM_TABLE_INIT(table_index, 0, WASM_ZERO,
WASM_ZERO, WASM_ZERO)});
// Also table.init on table 1 should work now.
table_index = 1;
ExpectValidates(sigs.v_v(), {WASM_TABLE_INIT(table_index, 0, WASM_ZERO,
WASM_ZERO, WASM_ZERO)});
}
}
TEST_F(FunctionBodyDecoderTest, UnpackPackedTypes) {
WASM_FEATURE_SCOPE(typed_funcref);
WASM_FEATURE_SCOPE(gc);
{
TestModuleBuilder builder;
byte type_index = builder.AddStruct({F(kWasmI8, true), F(kWasmI16, false)});
module = builder.module();
ExpectValidates(
sigs.v_v(),
{WASM_STRUCT_SET(
type_index, 0,
WASM_STRUCT_NEW_WITH_RTT(type_index, WASM_I32V(1), WASM_I32V(42),
WASM_RTT_CANON(type_index)),
WASM_I32V(-1))});
}
{
TestModuleBuilder builder;
byte type_index = builder.AddArray(kWasmI8, true);
module = builder.module();
ExpectValidates(sigs.v_v(),
{WASM_ARRAY_SET(type_index,
WASM_ARRAY_NEW_WITH_RTT(
type_index, WASM_I32V(10), WASM_I32V(5),
WASM_RTT_CANON(type_index)),
WASM_I32V(3), WASM_I32V(12345678))});
}
}
ValueType ref(byte type_index) {
return ValueType::Ref(type_index, kNonNullable);
}
ValueType optref(byte type_index) {
return ValueType::Ref(type_index, kNullable);
}
TEST_F(FunctionBodyDecoderTest, StructNewDefaultWithRtt) {
WASM_FEATURE_SCOPE(typed_funcref);
WASM_FEATURE_SCOPE(gc);
{
TestModuleBuilder builder;
byte type_index = builder.AddStruct({F(kWasmI32, true)});
byte bad_type_index = builder.AddStruct({F(ref(type_index), true)});
module = builder.module();
ExpectValidates(sigs.v_v(), {WASM_STRUCT_NEW_DEFAULT_WITH_RTT(
type_index, WASM_RTT_CANON(type_index)),
WASM_DROP});
ExpectFailure(sigs.v_v(),
{WASM_STRUCT_NEW_DEFAULT_WITH_RTT(
bad_type_index, WASM_RTT_CANON(bad_type_index)),
WASM_DROP});
}
{
TestModuleBuilder builder;
byte type_index = builder.AddArray(kWasmI32, true);
byte bad_type_index = builder.AddArray(ref(type_index), true);
module = builder.module();
ExpectValidates(sigs.v_v(),
{WASM_ARRAY_NEW_DEFAULT_WITH_RTT(
type_index, WASM_I32V(3), WASM_RTT_CANON(type_index)),
WASM_DROP});
ExpectFailure(sigs.v_v(), {WASM_ARRAY_NEW_DEFAULT_WITH_RTT(
bad_type_index, WASM_I32V(3),
WASM_RTT_CANON(bad_type_index)),
WASM_DROP});
}
}
TEST_F(FunctionBodyDecoderTest, DefaultableLocal) {
WASM_FEATURE_SCOPE(typed_funcref);
AddLocals(kWasmAnyRef, 1);
ExpectValidates(sigs.v_v(), {});
}
TEST_F(FunctionBodyDecoderTest, NonDefaultableLocal) {
WASM_FEATURE_SCOPE(typed_funcref);
AddLocals(ValueType::Ref(HeapType::kAny, kNonNullable), 1);
ExpectFailure(sigs.v_v(), {}, kAppendEnd,
"Cannot define function-level local of non-defaultable type");
}
TEST_F(FunctionBodyDecoderTest, AllowingNonDefaultableLocals) {
WASM_FEATURE_SCOPE(typed_funcref);
WASM_FEATURE_SCOPE(nn_locals);
byte struct_type_index = builder.AddStruct({F(kWasmI32, true)});
ValueType rep = ref(struct_type_index);
FunctionSig sig(0, 1, &rep);
AddLocals(rep, 2);
// Declaring non-defaultable locals is fine.
ExpectValidates(&sig, {});
// Loading from an uninitialized non-defaultable local fails.
ExpectFailure(&sig, {WASM_LOCAL_GET(1), WASM_DROP}, kAppendEnd,
"uninitialized non-defaultable local: 1");
// Loading from an initialized local is fine.
ExpectValidates(&sig, {WASM_LOCAL_SET(1, WASM_LOCAL_GET(0)),
WASM_LOCAL_GET(1), WASM_DROP});
ExpectValidates(&sig, {WASM_LOCAL_TEE(1, WASM_LOCAL_GET(0)),
WASM_LOCAL_GET(1), WASM_DROP, WASM_DROP});
// Non-nullable locals must be initialized with non-null values.
ExpectFailure(&sig, {WASM_LOCAL_SET(1, WASM_REF_NULL(struct_type_index))},
kAppendEnd,
"expected type (ref 0), found ref.null of type (ref null 0)");
// Initialization status is propagated into inner blocks.
ExpectValidates(&sig, {WASM_LOCAL_SET(1, WASM_LOCAL_GET(0)),
WASM_BLOCK(WASM_LOCAL_GET(1), WASM_DROP),
WASM_LOCAL_GET(1), WASM_DROP});
// Initialization status is forgotten at the end of a block.
ExpectFailure(&sig,
{WASM_LOCAL_SET(1, WASM_LOCAL_GET(0)),
WASM_BLOCK(WASM_LOCAL_SET(2, WASM_LOCAL_GET(0))),
WASM_LOCAL_GET(1), WASM_DROP, // OK
WASM_LOCAL_GET(2), WASM_DROP}, // Error
kAppendEnd, "uninitialized non-defaultable local: 2");
}
TEST_F(FunctionBodyDecoderTest, UnsafeNonDefaultableLocals) {
WASM_FEATURE_SCOPE(typed_funcref);
WASM_FEATURE_SCOPE(unsafe_nn_locals);
byte struct_type_index = builder.AddStruct({F(kWasmI32, true)});
ValueType rep = ref(struct_type_index);
FunctionSig sig(0, 1, &rep);
AddLocals(rep, 2);
// Declaring non-defaultable locals is fine.
ExpectValidates(&sig, {});
// Loading from an uninitialized non-defaultable local validates (but crashes
// when executed).
ExpectValidates(&sig, {WASM_LOCAL_GET(1), WASM_DROP});
// Loading from an initialized local is fine.
ExpectValidates(&sig, {WASM_LOCAL_SET(1, WASM_LOCAL_GET(0)),
WASM_LOCAL_GET(1), WASM_DROP});
ExpectValidates(&sig, {WASM_LOCAL_TEE(1, WASM_LOCAL_GET(0)),
WASM_LOCAL_GET(1), WASM_DROP, WASM_DROP});
// Non-nullable locals must be initialized with non-null values.
ExpectFailure(&sig, {WASM_LOCAL_SET(1, WASM_REF_NULL(struct_type_index))},
kAppendEnd,
"expected type (ref 0), found ref.null of type (ref null 0)");
// Block structure doesn't matter, everything validates.
ExpectValidates(&sig, {WASM_LOCAL_SET(1, WASM_LOCAL_GET(0)),
WASM_BLOCK(WASM_LOCAL_GET(1), WASM_DROP),
WASM_LOCAL_GET(1), WASM_DROP});
ExpectValidates(&sig,
{WASM_LOCAL_SET(1, WASM_LOCAL_GET(0)),
WASM_BLOCK(WASM_LOCAL_SET(2, WASM_LOCAL_GET(0))),
WASM_LOCAL_GET(1), WASM_DROP, WASM_LOCAL_GET(2), WASM_DROP});
}
TEST_F(FunctionBodyDecoderTest, RefEq) {
WASM_FEATURE_SCOPE(eh);
WASM_FEATURE_SCOPE(typed_funcref);
WASM_FEATURE_SCOPE(simd);
WASM_FEATURE_SCOPE(gc);
byte struct_type_index = builder.AddStruct({F(kWasmI32, true)});
ValueType eqref_subtypes[] = {kWasmEqRef,
kWasmI31Ref,
ValueType::Ref(HeapType::kEq, kNonNullable),
ValueType::Ref(HeapType::kI31, kNullable),
ref(struct_type_index),
optref(struct_type_index)};
ValueType non_eqref_subtypes[] = {
kWasmI32,
kWasmI64,
kWasmF32,
kWasmF64,
kWasmS128,
kWasmFuncRef,
kWasmAnyRef,
ValueType::Ref(HeapType::kAny, kNonNullable),
ValueType::Ref(HeapType::kFunc, kNonNullable)};
for (ValueType type1 : eqref_subtypes) {
for (ValueType type2 : eqref_subtypes) {
ValueType reps[] = {kWasmI32, type1, type2};
FunctionSig sig(1, 2, reps);
ExpectValidates(&sig,
{WASM_REF_EQ(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))});
}
}
for (ValueType type1 : eqref_subtypes) {
for (ValueType type2 : non_eqref_subtypes) {
ValueType reps[] = {kWasmI32, type1, type2};
FunctionSig sig(1, 2, reps);
ExpectFailure(&sig, {WASM_REF_EQ(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))},
kAppendEnd, "expected type eqref, found local.get of type");
ExpectFailure(&sig, {WASM_REF_EQ(WASM_LOCAL_GET(1), WASM_LOCAL_GET(0))},
kAppendEnd, "expected type eqref, found local.get of type");
}
}
}
TEST_F(FunctionBodyDecoderTest, RefAsNonNull) {
WASM_FEATURE_SCOPE(eh);
WASM_FEATURE_SCOPE(typed_funcref);
WASM_FEATURE_SCOPE(simd);
WASM_FEATURE_SCOPE(gc);
byte struct_type_index = builder.AddStruct({F(kWasmI32, true)});
byte array_type_index = builder.AddArray(kWasmI32, true);
uint32_t heap_types[] = {struct_type_index, array_type_index, HeapType::kFunc,
HeapType::kEq, HeapType::kAny, HeapType::kI31};
ValueType non_compatible_types[] = {kWasmI32, kWasmI64, kWasmF32, kWasmF64,
kWasmS128};
// It works with nullable types.
for (uint32_t heap_type : heap_types) {
ValueType reprs[] = {ValueType::Ref(heap_type, kNonNullable),
ValueType::Ref(heap_type, kNullable)};
FunctionSig sig(1, 1, reprs);
ExpectValidates(&sig, {WASM_REF_AS_NON_NULL(WASM_LOCAL_GET(0))});
}
// It works with non-nullable types.
for (uint32_t heap_type : heap_types) {
ValueType reprs[] = {ValueType::Ref(heap_type, kNonNullable),
ValueType::Ref(heap_type, kNonNullable)};
FunctionSig sig(1, 1, reprs);
ExpectValidates(&sig, {WASM_REF_AS_NON_NULL(WASM_LOCAL_GET(0))});
}
// It fails with other types.
for (ValueType type : non_compatible_types) {
FunctionSig sig(0, 1, &type);
ExpectFailure(
&sig, {WASM_REF_AS_NON_NULL(WASM_LOCAL_GET(0)), kExprDrop}, kAppendEnd,
"ref.as_non_null[0] expected reference type, found local.get of type");
}
}
TEST_F(FunctionBodyDecoderTest, RefNull) {
WASM_FEATURE_SCOPE(eh);
WASM_FEATURE_SCOPE(typed_funcref);
WASM_FEATURE_SCOPE(gc);
byte struct_type_index = builder.AddStruct({F(kWasmI32, true)});
byte array_type_index = builder.AddArray(kWasmI32, true);
uint32_t type_reprs[] = {struct_type_index, array_type_index, HeapType::kFunc,
HeapType::kEq, HeapType::kAny, HeapType::kI31};
// It works with heap types.
for (uint32_t type_repr : type_reprs) {
const ValueType type = ValueType::Ref(type_repr, kNullable);
const FunctionSig sig(1, 0, &type);
ExpectValidates(&sig, {WASM_REF_NULL(WASM_HEAP_TYPE(HeapType(type_repr)))});
}
// It fails for undeclared types.
ExpectFailure(sigs.v_v(), {WASM_REF_NULL(42), kExprDrop}, kAppendEnd,
"Type index 42 is out of bounds");
}
TEST_F(FunctionBodyDecoderTest, RefIsNull) {
WASM_FEATURE_SCOPE(eh);
WASM_FEATURE_SCOPE(typed_funcref);
WASM_FEATURE_SCOPE(gc);
ExpectValidates(sigs.i_i(), {WASM_REF_IS_NULL(WASM_REF_NULL(kAnyRefCode))});
ExpectFailure(
sigs.i_i(), {WASM_REF_IS_NULL(WASM_LOCAL_GET(0))}, kAppendEnd,
"ref.is_null[0] expected reference type, found local.get of type i32");
byte struct_type_index = builder.AddStruct({F(kWasmI32, true)});
byte array_type_index = builder.AddArray(kWasmI32, true);
uint32_t heap_types[] = {struct_type_index, array_type_index, HeapType::kFunc,
HeapType::kEq, HeapType::kAny, HeapType::kI31};
for (uint32_t heap_type : heap_types) {
const ValueType types[] = {kWasmI32, ValueType::Ref(heap_type, kNullable)};
const FunctionSig sig(1, 1, types);
// It works for nullable references.
ExpectValidates(&sig, {WASM_REF_IS_NULL(WASM_LOCAL_GET(0))});
// It works for non-nullable references.
ExpectValidates(
&sig, {WASM_REF_IS_NULL(WASM_REF_AS_NON_NULL(WASM_LOCAL_GET(0)))});
}
// It fails if the argument type is not a reference type.
ExpectFailure(
sigs.v_v(), {WASM_REF_IS_NULL(WASM_I32V(0)), kExprDrop}, kAppendEnd,
"ref.is_null[0] expected reference type, found i32.const of type i32");
}
TEST_F(FunctionBodyDecoderTest, BrOnNull) {
WASM_FEATURE_SCOPE(typed_funcref);
WASM_FEATURE_SCOPE(gc);
const ValueType reps[] = {ValueType::Ref(HeapType::kFunc, kNonNullable),
ValueType::Ref(HeapType::kFunc, kNullable)};
const FunctionSig sig(1, 1, reps);
ExpectValidates(
&sig, {WASM_BLOCK_R(reps[0], WASM_REF_AS_NON_NULL(WASM_LOCAL_GET(0)),
WASM_BR_ON_NULL(0, WASM_LOCAL_GET(0)), WASM_I32V(0),
kExprSelectWithType, 1, WASM_REF_TYPE(reps[0]))});
// Should have block return value on stack before calling br_on_null.
ExpectFailure(&sig,
{WASM_BLOCK_R(reps[0], WASM_BR_ON_NULL(0, WASM_LOCAL_GET(0)),
WASM_I32V(0), kExprSelectWithType, 1,
WASM_REF_TYPE(reps[0]))},
kAppendEnd,
"expected 1 elements on the stack for branch, found 0");
}
TEST_F(FunctionBodyDecoderTest, BrOnNonNull) {
WASM_FEATURE_SCOPE(typed_funcref);
WASM_FEATURE_SCOPE(gc);
FLAG_SCOPE(experimental_wasm_gc);
const ValueType reps[] = {ValueType::Ref(HeapType::kFunc, kNonNullable),
ValueType::Ref(HeapType::kFunc, kNullable)};
const FunctionSig sig(1, 1, reps);
ExpectValidates(
&sig,
{WASM_BLOCK_R(reps[0], WASM_BR_ON_NON_NULL(0, WASM_LOCAL_GET(0)),
WASM_RETURN(WASM_REF_AS_NON_NULL(WASM_LOCAL_GET(0))))});
// Wrong branch type.
ExpectFailure(
&sig,
{WASM_BLOCK_I(WASM_BR_ON_NON_NULL(0, WASM_LOCAL_GET(0)),
WASM_RETURN(WASM_REF_AS_NON_NULL(WASM_LOCAL_GET(0))))},
kAppendEnd, "type error in branch[0] (expected i32, got (ref func))");
// br_on_non_null does not leave a value on the stack.
ExpectFailure(&sig, {WASM_BR_ON_NON_NULL(0, WASM_LOCAL_GET(0))}, kAppendEnd,
"expected 1 elements on the stack for fallthru, found 0");
}
TEST_F(FunctionBodyDecoderTest, GCStruct) {
WASM_FEATURE_SCOPE(typed_funcref);
WASM_FEATURE_SCOPE(gc);
byte struct_type_index = builder.AddStruct({F(kWasmI32, true)});
byte array_type_index = builder.AddArray(kWasmI32, true);
byte immutable_struct_type_index = builder.AddStruct({F(kWasmI32, false)});
byte field_index = 0;
ValueType struct_type = ValueType::Ref(struct_type_index, kNonNullable);
ValueType reps_i_r[] = {kWasmI32, struct_type};
ValueType reps_f_r[] = {kWasmF32, struct_type};
const FunctionSig sig_i_r(1, 1, reps_i_r);
const FunctionSig sig_v_r(0, 1, &struct_type);
const FunctionSig sig_r_v(1, 0, &struct_type);
const FunctionSig sig_f_r(1, 1, reps_f_r);
/** struct.new_with_rtt **/
ExpectValidates(
&sig_r_v, {WASM_STRUCT_NEW_WITH_RTT(struct_type_index, WASM_I32V(0),
WASM_RTT_CANON(struct_type_index))});
// Too few arguments.
ExpectFailure(&sig_r_v,
{WASM_STRUCT_NEW_WITH_RTT(struct_type_index,
WASM_RTT_CANON(struct_type_index))},
kAppendEnd,
"not enough arguments on the stack for struct.new_with_rtt "
"(need 2, got 1)");
// Too many arguments.
ExpectFailure(
&sig_r_v,
{WASM_STRUCT_NEW_WITH_RTT(struct_type_index, WASM_I32V(0), WASM_I32V(1),
WASM_RTT_CANON(struct_type_index))},
kAppendEnd, "expected 1 elements on the stack for fallthru, found 2");
// Mistyped arguments.
ExpectFailure(&sig_v_r,
{WASM_STRUCT_NEW_WITH_RTT(struct_type_index, WASM_LOCAL_GET(0),
WASM_RTT_CANON(struct_type_index))},
kAppendEnd,
"struct.new_with_rtt[0] expected type i32, found local.get of "
"type (ref 0)");
// Wrongly typed index.
ExpectFailure(sigs.v_v(),
{WASM_STRUCT_NEW_WITH_RTT(array_type_index, WASM_I32V(0),
WASM_RTT_CANON(struct_type_index)),
kExprDrop},
kAppendEnd, "invalid struct index: 1");
// Wrongly typed rtt.
ExpectFailure(sigs.v_v(),
{WASM_STRUCT_NEW_WITH_RTT(struct_type_index, WASM_I32V(0),
WASM_RTT_CANON(array_type_index)),
kExprDrop},
kAppendEnd,
"struct.new_with_rtt[1] expected type (rtt 0), found "
"rtt.canon of type (rtt 1)");
// Out-of-bounds index.
ExpectFailure(sigs.v_v(),
{WASM_STRUCT_NEW_WITH_RTT(42, WASM_I32V(0),
WASM_RTT_CANON(struct_type_index)),
kExprDrop},
kAppendEnd, "invalid struct index: 42");
/** struct.get **/
ExpectValidates(&sig_i_r, {WASM_STRUCT_GET(struct_type_index, field_index,
WASM_LOCAL_GET(0))});
// With non-nullable struct.
ExpectValidates(&sig_i_r,
{WASM_STRUCT_GET(struct_type_index, field_index,
WASM_REF_AS_NON_NULL(WASM_LOCAL_GET(0)))});
// Wrong index.
ExpectFailure(
&sig_v_r,
{WASM_STRUCT_GET(struct_type_index, field_index + 1, WASM_LOCAL_GET(0)),
kExprDrop},
kAppendEnd, "invalid field index: 1");
// Mistyped expected type.
ExpectFailure(
&sig_f_r,
{WASM_STRUCT_GET(struct_type_index, field_index, WASM_LOCAL_GET(0))},
kAppendEnd, "type error in fallthru[0] (expected f32, got i32)");
/** struct.set **/
ExpectValidates(&sig_v_r, {WASM_STRUCT_SET(struct_type_index, field_index,
WASM_LOCAL_GET(0), WASM_I32V(0))});
// Non-nullable struct.
ExpectValidates(
&sig_v_r,
{WASM_STRUCT_SET(struct_type_index, field_index,
WASM_REF_AS_NON_NULL(WASM_LOCAL_GET(0)), WASM_I32V(0))});
// Wrong index.
ExpectFailure(&sig_v_r,
{WASM_STRUCT_SET(struct_type_index, field_index + 1,
WASM_LOCAL_GET(0), WASM_I32V(0))},
kAppendEnd, "invalid field index: 1");
// Mistyped input.
ExpectFailure(&sig_v_r,
{WASM_STRUCT_SET(struct_type_index, field_index,
WASM_LOCAL_GET(0), WASM_I64V(0))},
kAppendEnd,
"struct.set[1] expected type i32, found i64.const of type i64");
// Expecting output.
ExpectFailure(&sig_i_r,
{WASM_STRUCT_SET(struct_type_index, field_index,
WASM_LOCAL_GET(0), WASM_I32V(0))},
kAppendEnd,
"expected 1 elements on the stack for fallthru, found 0");
// Setting immutable field.
ExpectFailure(
sigs.v_v(),
{WASM_STRUCT_SET(
immutable_struct_type_index, field_index,
WASM_STRUCT_NEW_WITH_RTT(immutable_struct_type_index, WASM_I32V(42),
WASM_RTT_CANON(immutable_struct_type_index)),
WASM_I32V(0))},
kAppendEnd, "struct.set: Field 0 of type 2 is immutable.");
// struct.get_s/u fail
ExpectFailure(
&sig_i_r,
{WASM_STRUCT_GET_S(struct_type_index, field_index, WASM_LOCAL_GET(0))},
kAppendEnd,
"struct.get_s: Immediate field 0 of type 0 has non-packed type i32. Use "
"struct.get instead.");
ExpectFailure(
&sig_i_r,
{WASM_STRUCT_GET_U(struct_type_index, field_index, WASM_LOCAL_GET(0))},
kAppendEnd,
"struct.get_u: Immediate field 0 of type 0 has non-packed type i32. Use "
"struct.get instead.");
}
TEST_F(FunctionBodyDecoderTest, GCArray) {
WASM_FEATURE_SCOPE(typed_funcref);
WASM_FEATURE_SCOPE(gc);
byte array_type_index = builder.AddArray(kWasmFuncRef, true);
byte struct_type_index = builder.AddStruct({F(kWasmI32, false)});
byte immutable_array_type_index = builder.AddArray(kWasmI32, false);
ValueType array_type = ValueType::Ref(array_type_index, kNonNullable);
ValueType immutable_array_type =
ValueType::Ref(immutable_array_type_index, kNonNullable);
ValueType reps_c_r[] = {kWasmFuncRef, array_type};
ValueType reps_f_r[] = {kWasmF32, array_type};
ValueType reps_i_r[] = {kWasmI32, array_type};
ValueType reps_i_a[] = {kWasmI32, kWasmArrayRef};
ValueType reps_i_s[] = {kWasmI32,
ValueType::Ref(struct_type_index, kNonNullable)};
const FunctionSig sig_c_r(1, 1, reps_c_r);
const FunctionSig sig_v_r(0, 1, &array_type);
const FunctionSig sig_v_r2(0, 1, &immutable_array_type);
const FunctionSig sig_r_v(1, 0, &array_type);
const FunctionSig sig_f_r(1, 1, reps_f_r);
const FunctionSig sig_v_cr(0, 2, reps_c_r);
const FunctionSig sig_i_r(1, 1, reps_i_r);
const FunctionSig sig_i_a(1, 1, reps_i_a);
const FunctionSig sig_i_s(1, 1, reps_i_s);
/** array.new_with_rtt **/
ExpectValidates(&sig_r_v,
{WASM_ARRAY_NEW_WITH_RTT(
array_type_index, WASM_REF_NULL(kFuncRefCode),
WASM_I32V(10), WASM_RTT_CANON(array_type_index))});
// Too few arguments.
ExpectFailure(&sig_r_v,
{WASM_I32V(10), WASM_RTT_CANON(array_type_index),
WASM_GC_OP(kExprArrayNewWithRtt), array_type_index},
kAppendEnd,
"not enough arguments on the stack for array.new_with_rtt "
"(need 3, got 2)");
// Mistyped initializer.
ExpectFailure(&sig_r_v,
{WASM_ARRAY_NEW_WITH_RTT(
array_type_index, WASM_REF_NULL(kAnyRefCode), WASM_I32V(10),
WASM_RTT_CANON(array_type_index))},
kAppendEnd,
"array.new_with_rtt[0] expected type funcref, found ref.null "
"of type externref");
// Mistyped length.
ExpectFailure(
&sig_r_v,
{WASM_ARRAY_NEW_WITH_RTT(array_type_index, WASM_REF_NULL(kFuncRefCode),
WASM_I64V(5), WASM_RTT_CANON(array_type_index))},
kAppendEnd,
"array.new_with_rtt[1] expected type i32, found i64.const of type i64");
// Mistyped rtt.
ExpectFailure(&sig_r_v,
{WASM_ARRAY_NEW_WITH_RTT(
array_type_index, WASM_REF_NULL(kFuncRefCode), WASM_I32V(5),
WASM_RTT_CANON(struct_type_index))},
kAppendEnd,
"array.new_with_rtt[2] expected type (rtt 0), found "
"rtt.canon of type (rtt 1)");
// Wrong type index.
ExpectFailure(
sigs.v_v(),
{WASM_ARRAY_NEW_WITH_RTT(struct_type_index, WASM_REF_NULL(kFuncRefCode),
WASM_I32V(10), WASM_RTT_CANON(array_type_index)),
kExprDrop},
kAppendEnd, "invalid array index: 1");
/** array.get **/
ExpectValidates(&sig_c_r, {WASM_ARRAY_GET(array_type_index, WASM_LOCAL_GET(0),
WASM_I32V(5))});
// With non-nullable array type.
ExpectValidates(
&sig_c_r,
{WASM_ARRAY_GET(array_type_index, WASM_REF_AS_NON_NULL(WASM_LOCAL_GET(0)),
WASM_I32V(5))});
// Wrongly typed index.
ExpectFailure(
&sig_v_r,
{WASM_ARRAY_GET(array_type_index, WASM_LOCAL_GET(0), WASM_I64V(5)),
kExprDrop},
kAppendEnd,
"array.get[1] expected type i32, found i64.const of type i64");
// Mistyped expected type.
ExpectFailure(
&sig_f_r,
{WASM_ARRAY_GET(array_type_index, WASM_LOCAL_GET(0), WASM_I32V(5))},
kAppendEnd, "type error in fallthru[0] (expected f32, got funcref)");
// array.get_s/u fail.
ExpectFailure(
&sig_c_r,
{WASM_ARRAY_GET_S(array_type_index, WASM_LOCAL_GET(0), WASM_I32V(5))},
kAppendEnd,
"array.get_s: Immediate array type 0 has non-packed type funcref. Use "
"array.get instead.");
ExpectFailure(
&sig_c_r,
{WASM_ARRAY_GET_U(array_type_index, WASM_LOCAL_GET(0), WASM_I32V(5))},
kAppendEnd,
"array.get_u: Immediate array type 0 has non-packed type funcref. Use "
"array.get instead.");
/** array.set **/
ExpectValidates(&sig_v_r,
{WASM_ARRAY_SET(array_type_index, WASM_LOCAL_GET(0),
WASM_I32V(42), WASM_REF_NULL(kFuncRefCode))});
// With non-nullable array type.
ExpectValidates(
&sig_v_cr,
{WASM_ARRAY_SET(array_type_index, WASM_LOCAL_GET(1), WASM_I32V(42),
WASM_REF_AS_NON_NULL(WASM_LOCAL_GET(0)))});
// Non-array type index.
ExpectFailure(&sig_v_cr,
{WASM_ARRAY_SET(struct_type_index, WASM_LOCAL_GET(1),
WASM_I32V(42), WASM_LOCAL_GET(0))},
kAppendEnd, "invalid array index: 1");
// Wrongly typed index.
ExpectFailure(&sig_v_cr,
{WASM_ARRAY_SET(array_type_index, WASM_LOCAL_GET(1),
WASM_I64V(42), WASM_LOCAL_GET(0))},
kAppendEnd,
"array.set[1] expected type i32, found i64.const of type i64");
// Wrongly typed value.
ExpectFailure(
&sig_v_cr,
{WASM_ARRAY_SET(array_type_index, WASM_LOCAL_GET(1), WASM_I32V(42),
WASM_I64V(0))},
kAppendEnd,
"array.set[2] expected type funcref, found i64.const of type i64");
/** array.len **/
// Works both with conrete array types and arrayref.
ExpectValidates(&sig_i_r, {WASM_ARRAY_LEN(WASM_LOCAL_GET(0))});
ExpectValidates(&sig_i_a, {WASM_ARRAY_LEN(WASM_LOCAL_GET(0))});
// Wrong return type.
ExpectFailure(&sig_f_r, {WASM_ARRAY_LEN(WASM_LOCAL_GET(0))}, kAppendEnd,
"type error in fallthru[0] (expected f32, got i32)");
// Non-array argument.
ExpectFailure(&sig_i_s, {WASM_ARRAY_LEN(WASM_LOCAL_GET(0))}, kAppendEnd,
"array.len[0] expected type (ref null array), found local.get "
"of type (ref 1)");
// Immutable array.
// Allocating and reading is OK:
ExpectValidates(
sigs.i_v(),
{WASM_ARRAY_GET(
immutable_array_type_index,
WASM_ARRAY_INIT(immutable_array_type_index, 1, WASM_I32V(42),
WASM_RTT_CANON(immutable_array_type_index)),
WASM_I32V(0))});
// Writing fails:
ExpectFailure(&sig_v_r2,
{WASM_ARRAY_SET(immutable_array_type_index, WASM_LOCAL_GET(0),
WASM_I32V(0), WASM_I32V(42))},
kAppendEnd, "array.set: immediate array type 2 is immutable");
}
TEST_F(FunctionBodyDecoderTest, PackedFields) {
WASM_FEATURE_SCOPE(typed_funcref);
WASM_FEATURE_SCOPE(gc);
byte array_type_index = builder.AddArray(kWasmI8, true);
byte struct_type_index = builder.AddStruct({F(kWasmI16, true)});
byte field_index = 0;
// *.new with packed fields works.
ExpectValidates(sigs.v_v(), {WASM_ARRAY_NEW_WITH_RTT(
array_type_index, WASM_I32V(0), WASM_I32V(5),
WASM_RTT_CANON(array_type_index)),
kExprDrop});
ExpectValidates(sigs.v_v(),
{WASM_STRUCT_NEW_WITH_RTT(struct_type_index, WASM_I32V(42),
WASM_RTT_CANON(struct_type_index)),
kExprDrop});
// It can't unpack types other that i32.
ExpectFailure(
sigs.v_v(),
{WASM_ARRAY_NEW_WITH_RTT(array_type_index, WASM_I64V(0), WASM_I32V(5),
WASM_RTT_CANON(array_type_index)),
kExprDrop},
kAppendEnd,
"array.new_with_rtt[0] expected type i32, found i64.const of type i64");
ExpectFailure(
sigs.v_v(),
{WASM_STRUCT_NEW_WITH_RTT(struct_type_index, WASM_I64V(42),
WASM_RTT_CANON(struct_type_index)),
kExprDrop},
kAppendEnd,
"struct.new_with_rtt[0] expected type i32, found i64.const of type i64");
// *.set with packed fields works.
ExpectValidates(sigs.v_v(), {WASM_ARRAY_SET(array_type_index,
WASM_REF_NULL(array_type_index),
WASM_I32V(0), WASM_I32V(5))});
ExpectValidates(sigs.v_v(), {WASM_STRUCT_SET(struct_type_index, field_index,
WASM_REF_NULL(struct_type_index),
WASM_I32V(42))});
// It can't unpack into types other that i32.
ExpectFailure(
sigs.v_v(),
{WASM_ARRAY_SET(array_type_index, WASM_REF_NULL(array_type_index),
WASM_I32V(0), WASM_I64V(5))},
kAppendEnd,
"array.set[2] expected type i32, found i64.const of type i64");
ExpectFailure(
sigs.v_v(),
{WASM_STRUCT_NEW_WITH_RTT(struct_type_index, field_index,
WASM_REF_NULL(struct_type_index), WASM_I64V(42),
WASM_RTT_CANON(struct_type_index))},
kAppendEnd,
"struct.new_with_rtt[0] expected type i32, found i64.const of type i64");
// *.get_s/u works.
ExpectValidates(sigs.i_v(), {WASM_ARRAY_GET_S(array_type_index,
WASM_REF_NULL(array_type_index),
WASM_I32V(0))});
ExpectValidates(sigs.i_v(), {WASM_ARRAY_GET_U(array_type_index,
WASM_REF_NULL(array_type_index),
WASM_I32V(0))});
ExpectValidates(sigs.i_v(),
{WASM_STRUCT_GET_S(struct_type_index, field_index,
WASM_REF_NULL(struct_type_index))});
ExpectValidates(sigs.i_v(),
{WASM_STRUCT_GET_U(struct_type_index, field_index,
WASM_REF_NULL(struct_type_index))});
// *.get fails.
ExpectFailure(sigs.i_v(),
{WASM_ARRAY_GET(array_type_index,
WASM_REF_NULL(array_type_index), WASM_I32V(0))},
kAppendEnd,
"array.get: Immediate array type 0 has packed type i8. Use "
"array.get_s or array.get_u instead.");
ExpectFailure(sigs.i_v(),
{WASM_STRUCT_GET(struct_type_index, field_index,
WASM_REF_NULL(struct_type_index))},
kAppendEnd,
"struct.get: Immediate field 0 of type 1 has packed type i16. "
"Use struct.get_s or struct.get_u instead.");
}
TEST_F(FunctionBodyDecoderTest, PackedTypesAsLocals) {
WASM_FEATURE_SCOPE(typed_funcref);
WASM_FEATURE_SCOPE(gc);
AddLocals(kWasmI8, 1);
ExpectFailure(sigs.v_v(), {}, kAppendEnd, "invalid value type");
}
TEST_F(FunctionBodyDecoderTest, RttCanon) {
WASM_FEATURE_SCOPE(typed_funcref);
WASM_FEATURE_SCOPE(gc);
WASM_FEATURE_SCOPE(eh);
uint8_t array_type_index = builder.AddArray(kWasmI32, true);
uint8_t struct_type_index = builder.AddStruct({F(kWasmI64, true)});
for (uint32_t type_index : {array_type_index, struct_type_index}) {
ValueType rtt1 = ValueType::Rtt(type_index);
FunctionSig sig1(1, 0, &rtt1);
ExpectValidates(&sig1, {WASM_RTT_CANON(type_index)});
}
}
TEST_F(FunctionBodyDecoderTest, RefTestCast) {
WASM_FEATURE_SCOPE(typed_funcref);
WASM_FEATURE_SCOPE(gc);
HeapType::Representation array_heap =
static_cast<HeapType::Representation>(builder.AddArray(kWasmI8, true));
HeapType::Representation super_struct_heap =
static_cast<HeapType::Representation>(
builder.AddStruct({F(kWasmI16, true)}));
HeapType::Representation sub_struct_heap =
static_cast<HeapType::Representation>(
builder.AddStruct({F(kWasmI16, true), F(kWasmI32, false)}));
HeapType::Representation func_heap_1 =
static_cast<HeapType::Representation>(builder.AddSignature(sigs.i_i()));
HeapType::Representation func_heap_2 =
static_cast<HeapType::Representation>(builder.AddSignature(sigs.i_v()));
std::tuple<HeapType::Representation, HeapType::Representation, bool> tests[] =
{std::make_tuple(HeapType::kData, array_heap, true),
std::make_tuple(HeapType::kData, super_struct_heap, true),
std::make_tuple(HeapType::kFunc, func_heap_1, true),
std::make_tuple(func_heap_1, func_heap_1, true),
std::make_tuple(func_heap_1, func_heap_2, true),
std::make_tuple(super_struct_heap, sub_struct_heap, true),
std::make_tuple(array_heap, sub_struct_heap, true),
std::make_tuple(super_struct_heap, func_heap_1, true),
std::make_tuple(HeapType::kEq, super_struct_heap, false),
std::make_tuple(HeapType::kAny, func_heap_1, false),
std::make_tuple(HeapType::kI31, array_heap, false)};
for (auto test : tests) {
HeapType from_heap = HeapType(std::get<0>(test));
HeapType to_heap = HeapType(std::get<1>(test));
bool should_pass = std::get<2>(test);
ValueType test_reps[] = {kWasmI32, ValueType::Ref(from_heap, kNullable)};
FunctionSig test_sig(1, 1, test_reps);
ValueType cast_reps_with_depth[] = {ValueType::Ref(to_heap, kNullable),
ValueType::Ref(from_heap, kNullable)};
FunctionSig cast_sig_with_depth(1, 1, cast_reps_with_depth);
ValueType cast_reps[] = {ValueType::Ref(to_heap, kNullable),
ValueType::Ref(from_heap, kNullable),
ValueType::Rtt(to_heap.ref_index())};
FunctionSig cast_sig(1, 2, cast_reps);
if (should_pass) {
ExpectValidates(&test_sig,
{WASM_REF_TEST(WASM_LOCAL_GET(0),
WASM_RTT_CANON(WASM_HEAP_TYPE(to_heap)))});
ExpectValidates(&cast_sig_with_depth,
{WASM_REF_CAST(WASM_LOCAL_GET(0),
WASM_RTT_CANON(WASM_HEAP_TYPE(to_heap)))});
ExpectValidates(&cast_sig,
{WASM_REF_CAST(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))});
} else {
std::string error_message =
"[0] expected subtype of (ref null func) or (ref null data), found "
"local.get of type " +
test_reps[1].name();
ExpectFailure(&test_sig,
{WASM_REF_TEST(WASM_LOCAL_GET(0),
WASM_RTT_CANON(WASM_HEAP_TYPE(to_heap)))},
kAppendEnd, ("ref.test" + error_message).c_str());
ExpectFailure(&cast_sig_with_depth,
{WASM_REF_CAST(WASM_LOCAL_GET(0),
WASM_RTT_CANON(WASM_HEAP_TYPE(to_heap)))},
kAppendEnd, ("ref.cast" + error_message).c_str());
ExpectFailure(&cast_sig,
{WASM_REF_CAST(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))},
kAppendEnd, ("ref.cast" + error_message).c_str());
}
}
// Trivial type error.
ExpectFailure(
sigs.v_v(),
{WASM_REF_TEST(WASM_I32V(1), WASM_RTT_CANON(array_heap)), kExprDrop},
kAppendEnd,
"ref.test[0] expected subtype of (ref null func) or (ref null data), "
"found i32.const of type i32");
ExpectFailure(
sigs.v_v(),
{WASM_REF_CAST(WASM_I32V(1), WASM_RTT_CANON(array_heap)), kExprDrop},
kAppendEnd,
"ref.cast[0] expected subtype of (ref null func) or (ref null data), "
"found i32.const of type i32");
}
TEST_F(FunctionBodyDecoderTest, BrOnCastOrCastFail) {
WASM_FEATURE_SCOPE(typed_funcref);
WASM_FEATURE_SCOPE(gc);
FLAG_SCOPE(experimental_wasm_gc);
byte super_struct = builder.AddStruct({F(kWasmI16, true)});
byte sub_struct =
builder.AddStruct({F(kWasmI16, true), F(kWasmI32, false)}, super_struct);
ValueType supertype = ValueType::Ref(super_struct, kNullable);
ValueType subtype = ValueType::Ref(sub_struct, kNullable);
ExpectValidates(
FunctionSig::Build(this->zone(), {kWasmI32, subtype}, {supertype}),
{WASM_I32V(42), WASM_LOCAL_GET(0),
WASM_BR_ON_CAST(0, WASM_RTT_CANON(sub_struct)),
WASM_RTT_CANON(sub_struct), WASM_GC_OP(kExprRefCast)});
ExpectValidates(
FunctionSig::Build(this->zone(), {kWasmI32, supertype}, {supertype}),
{WASM_I32V(42), WASM_LOCAL_GET(0),
WASM_BR_ON_CAST_FAIL(0, WASM_RTT_CANON(sub_struct))});
// Wrong branch type.
ExpectFailure(
FunctionSig::Build(this->zone(), {}, {supertype}),
{WASM_LOCAL_GET(0), WASM_BR_ON_CAST(0, WASM_RTT_CANON(sub_struct)),
WASM_UNREACHABLE},
kAppendEnd, "br_on_cast must target a branch of arity at least 1");
ExpectFailure(
FunctionSig::Build(this->zone(), {subtype}, {supertype}),
{WASM_I32V(42), WASM_LOCAL_GET(0),
WASM_BR_ON_CAST_FAIL(0, WASM_RTT_CANON(sub_struct))},
kAppendEnd,
"type error in branch[0] (expected (ref null 1), got (ref null 0))");
// Wrong fallthrough type.
ExpectFailure(
FunctionSig::Build(this->zone(), {subtype}, {supertype}),
{WASM_LOCAL_GET(0), WASM_BR_ON_CAST(0, WASM_RTT_CANON(sub_struct))},
kAppendEnd,
"type error in fallthru[0] (expected (ref null 1), got (ref null 0))");
ExpectFailure(
FunctionSig::Build(this->zone(), {supertype}, {supertype}),
{WASM_BLOCK_I(WASM_LOCAL_GET(0),
WASM_BR_ON_CAST_FAIL(0, WASM_RTT_CANON(sub_struct)))},
kAppendEnd, "type error in branch[0] (expected i32, got (ref null 0))");
// Argument type error.
ExpectFailure(
FunctionSig::Build(this->zone(), {subtype}, {kWasmAnyRef}),
{WASM_LOCAL_GET(0), WASM_BR_ON_CAST(0, WASM_RTT_CANON(sub_struct)),
WASM_RTT_CANON(sub_struct), WASM_GC_OP(kExprRefCast)},
kAppendEnd,
"br_on_cast[0] expected subtype of (ref null func) or (ref null data), "
"found local.get of type anyref");
ExpectFailure(
FunctionSig::Build(this->zone(), {supertype}, {kWasmAnyRef}),
{WASM_LOCAL_GET(0), WASM_BR_ON_CAST_FAIL(0, WASM_RTT_CANON(sub_struct))},
kAppendEnd,
"br_on_cast_fail[0] expected subtype of (ref null func) or (ref null "
"data), found local.get of type anyref");
// Trivial rtt type error.
ExpectFailure(FunctionSig::Build(this->zone(), {supertype}, {supertype}),
{WASM_LOCAL_GET(0), WASM_BR_ON_CAST_FAIL(0, WASM_I64V(42))},
kAppendEnd,
"br_on_cast_fail[1] expected rtt, found i64.const of type i64");
}
TEST_F(FunctionBodyDecoderTest, BrOnAbstractType) {
WASM_FEATURE_SCOPE(typed_funcref);
WASM_FEATURE_SCOPE(gc);
FLAG_SCOPE(experimental_wasm_gc);
ValueType kNonNullableFunc = ValueType::Ref(HeapType::kFunc, kNonNullable);
ExpectValidates(
FunctionSig::Build(this->zone(), {kNonNullableFunc}, {kWasmAnyRef}),
{WASM_LOCAL_GET(0), WASM_BR_ON_FUNC(0), WASM_GC_OP(kExprRefAsFunc)});
ExpectValidates(
FunctionSig::Build(this->zone(), {kWasmAnyRef}, {kWasmAnyRef}),
{WASM_LOCAL_GET(0), WASM_BR_ON_NON_FUNC(0)});
ExpectValidates(
FunctionSig::Build(this->zone(), {kWasmDataRef}, {kWasmAnyRef}),
{WASM_LOCAL_GET(0), WASM_BR_ON_DATA(0), WASM_GC_OP(kExprRefAsData)});
ExpectValidates(
FunctionSig::Build(this->zone(), {kWasmAnyRef}, {kWasmAnyRef}),
{WASM_LOCAL_GET(0), WASM_BR_ON_NON_DATA(0)});
ExpectValidates(
FunctionSig::Build(this->zone(), {kWasmI31Ref}, {kWasmAnyRef}),
{WASM_LOCAL_GET(0), WASM_BR_ON_I31(0), WASM_GC_OP(kExprRefAsI31)});
ExpectValidates(
FunctionSig::Build(this->zone(), {kWasmAnyRef}, {kWasmAnyRef}),
{WASM_LOCAL_GET(0), WASM_BR_ON_NON_I31(0)});
// Unrelated types are OK.
ExpectValidates(
FunctionSig::Build(this->zone(), {kNonNullableFunc}, {kWasmDataRef}),
{WASM_LOCAL_GET(0), WASM_BR_ON_FUNC(0), WASM_GC_OP(kExprRefAsFunc)});
// Wrong branch type.
ExpectFailure(FunctionSig::Build(this->zone(), {}, {kWasmAnyRef}),
{WASM_LOCAL_GET(0), WASM_BR_ON_FUNC(0), WASM_UNREACHABLE},
kAppendEnd,
"br_on_func must target a branch of arity at least 1");
ExpectFailure(
FunctionSig::Build(this->zone(), {kNonNullableFunc}, {kWasmAnyRef}),
{WASM_LOCAL_GET(0), WASM_BR_ON_NON_FUNC(0)}, kAppendEnd,
"type error in branch[0] (expected (ref func), got anyref)");
// Wrong fallthrough type.
ExpectFailure(FunctionSig::Build(this->zone(), {kWasmDataRef}, {kWasmAnyRef}),
{WASM_LOCAL_GET(0), WASM_BR_ON_DATA(0)}, kAppendEnd,
"type error in fallthru[0] (expected dataref, got anyref)");
ExpectFailure(FunctionSig::Build(this->zone(), {kWasmAnyRef}, {kWasmAnyRef}),
{WASM_BLOCK_I(WASM_LOCAL_GET(0), WASM_BR_ON_NON_DATA(0))},
kAppendEnd,
"type error in branch[0] (expected i32, got anyref)");
// Argument type error.
ExpectFailure(
FunctionSig::Build(this->zone(), {kWasmI31Ref}, {kWasmI32}),
{WASM_LOCAL_GET(0), WASM_BR_ON_I31(0), WASM_GC_OP(kExprRefAsI31)},
kAppendEnd,
"br_on_i31[0] expected type anyref, found local.get of type i32");
}
TEST_F(FunctionBodyDecoderTest, LocalTeeTyping) {
WASM_FEATURE_SCOPE(typed_funcref);
WASM_FEATURE_SCOPE(gc);
byte array_type = builder.AddArray(kWasmI8, true);
ValueType types[] = {ValueType::Ref(array_type, kNonNullable)};
FunctionSig sig(1, 0, types);
AddLocals(ValueType::Ref(array_type, kNullable), 1);
ExpectFailure(&sig,
{WASM_LOCAL_TEE(0, WASM_ARRAY_NEW_DEFAULT_WITH_RTT(
array_type, WASM_I32V(5),
WASM_RTT_CANON(array_type)))},
kAppendEnd, "expected (ref 0), got (ref null 0)");
}
TEST_F(FunctionBodyDecoderTest, MergeNullableTypes) {
WASM_FEATURE_SCOPE(typed_funcref);
WASM_FEATURE_SCOPE(gc);
byte struct_type_index = builder.AddStruct({F(kWasmI32, true)});
ValueType struct_type = optref(struct_type_index);
FunctionSig loop_sig(0, 1, &struct_type);
byte loop_sig_index = builder.AddSignature(&loop_sig);
// Verifies that when a loop consuming a nullable type is entered with a
// statically known non-null value on the stack, its {start_merge_} can
// consume null values later.
// Regression test for crbug.com/1234453.
ExpectValidates(sigs.v_v(),
{WASM_GC_OP(kExprRttCanon), struct_type_index,
WASM_GC_OP(kExprStructNewDefaultWithRtt), struct_type_index,
WASM_LOOP_X(loop_sig_index, kExprDrop, kExprRefNull,
struct_type_index, kExprBr, 0)});
}
// This tests that num_locals_ in decoder remains consistent, even if we fail
// mid-DecodeLocals().
TEST_F(FunctionBodyDecoderTest, Regress_1154439) {
WASM_FEATURE_SCOPE(typed_funcref);
AddLocals(kWasmI32, 1);
AddLocals(kWasmI64, 1000000);
ExpectFailure(sigs.v_v(), {}, kAppendEnd, "local count too large");
}
TEST_F(FunctionBodyDecoderTest, DropOnEmptyStack) {
// Valid code:
ExpectValidates(sigs.v_v(), {kExprI32Const, 1, kExprDrop}, kAppendEnd);
// Invalid code (dropping from empty stack):
ExpectFailure(sigs.v_v(), {kExprDrop}, kAppendEnd,
"not enough arguments on the stack for drop");
// Valid code (dropping from empty stack in unreachable code):
ExpectValidates(sigs.v_v(), {kExprUnreachable, kExprDrop}, kAppendEnd);
}
class BranchTableIteratorTest : public TestWithZone {
public:
BranchTableIteratorTest() : TestWithZone() {}
void CheckBrTableSize(const byte* start, const byte* end) {
Decoder decoder(start, end);
BranchTableImmediate<Decoder::kFullValidation> operand(&decoder, start + 1);
BranchTableIterator<Decoder::kFullValidation> iterator(&decoder, operand);
EXPECT_EQ(end - start - 1u, iterator.length());
EXPECT_OK(decoder);
}
void CheckBrTableError(const byte* start, const byte* end) {
Decoder decoder(start, end);
BranchTableImmediate<Decoder::kFullValidation> operand(&decoder, start + 1);
BranchTableIterator<Decoder::kFullValidation> iterator(&decoder, operand);
iterator.length();
EXPECT_FALSE(decoder.ok());
}
};
#define CHECK_BR_TABLE_LENGTH(...) \
{ \
static byte code[] = {kExprBrTable, __VA_ARGS__}; \
CheckBrTableSize(code, code + sizeof(code)); \
}
#define CHECK_BR_TABLE_ERROR(...) \
{ \
static byte code[] = {kExprBrTable, __VA_ARGS__}; \
CheckBrTableError(code, code + sizeof(code)); \
}
TEST_F(BranchTableIteratorTest, count0) {
CHECK_BR_TABLE_LENGTH(0, U32V_1(1));
CHECK_BR_TABLE_LENGTH(0, U32V_2(200));
CHECK_BR_TABLE_LENGTH(0, U32V_3(30000));
CHECK_BR_TABLE_LENGTH(0, U32V_4(400000));
CHECK_BR_TABLE_LENGTH(0, U32V_1(2));
CHECK_BR_TABLE_LENGTH(0, U32V_2(300));
CHECK_BR_TABLE_LENGTH(0, U32V_3(40000));
CHECK_BR_TABLE_LENGTH(0, U32V_4(500000));
}
TEST_F(BranchTableIteratorTest, count1) {
CHECK_BR_TABLE_LENGTH(1, U32V_1(1), U32V_1(6));
CHECK_BR_TABLE_LENGTH(1, U32V_2(200), U32V_1(8));
CHECK_BR_TABLE_LENGTH(1, U32V_3(30000), U32V_1(9));
CHECK_BR_TABLE_LENGTH(1, U32V_4(400000), U32V_1(11));
CHECK_BR_TABLE_LENGTH(1, U32V_1(2), U32V_2(6));
CHECK_BR_TABLE_LENGTH(1, U32V_2(300), U32V_2(7));
CHECK_BR_TABLE_LENGTH(1, U32V_3(40000), U32V_2(8));
CHECK_BR_TABLE_LENGTH(1, U32V_4(500000), U32V_2(9));
}
TEST_F(BranchTableIteratorTest, error0) {
CHECK_BR_TABLE_ERROR(0);
CHECK_BR_TABLE_ERROR(1, U32V_1(33));
}
#undef CHECK_BR_TABLE_LENGTH
#undef CHECK_BR_TABLE_ERROR
struct PrintOpcodes {
const byte* start;
const byte* end;
};
std::ostream& operator<<(std::ostream& out, const PrintOpcodes& range) {
out << "First opcode: \""
<< WasmOpcodes::OpcodeName(static_cast<WasmOpcode>(*range.start))
<< "\"\nall bytes: [";
for (const byte* b = range.start; b < range.end; ++b) {
out << (b == range.start ? "" : ", ") << uint32_t{*b} << "/"
<< AsHex(*b, 2, true);
}
return out << "]";
}
class WasmOpcodeLengthTest : public TestWithZone {
public:
WasmOpcodeLengthTest() : TestWithZone() {}
template <typename... Bytes>
void ExpectLength(unsigned expected, Bytes... bytes) {
const byte code[] = {static_cast<byte>(bytes)..., 0, 0, 0, 0, 0, 0, 0, 0};
EXPECT_EQ(expected, OpcodeLength(code, code + sizeof(code)))
<< PrintOpcodes{code, code + sizeof...(bytes)};
}
// Helper to check for prefixed opcodes, which can have multiple bytes.
void ExpectLengthPrefixed(unsigned operands, WasmOpcode opcode) {
uint8_t prefix = WasmOpcodes::ExtractPrefix(opcode);
DCHECK(WasmOpcodes::IsPrefixOpcode(static_cast<WasmOpcode>(prefix)));
uint16_t index = ExtractPrefixedOpcodeBytes(opcode);
uint8_t encoded[2] = {0, 0};
uint8_t* p = encoded;
unsigned len = static_cast<unsigned>(LEBHelper::sizeof_u32v(index));
DCHECK_GE(2, len);
LEBHelper::write_u32v(&p, index);
// length of index, + number of operands + prefix bye
ExpectLength(len + operands + 1, prefix, encoded[0], encoded[1]);
}
template <typename... Bytes>
void ExpectFailure(Bytes... bytes) {
const byte code[] = {static_cast<byte>(bytes)..., 0, 0, 0, 0, 0, 0, 0, 0};
WasmFeatures no_features = WasmFeatures::None();
WasmDecoder<Decoder::kFullValidation> decoder(
this->zone(), nullptr, no_features, &no_features, nullptr, code,
code + sizeof(code), 0);
WasmDecoder<Decoder::kFullValidation>::OpcodeLength(&decoder, code);
EXPECT_EQ(decoder.failed(), true);
}
};
TEST_F(WasmOpcodeLengthTest, Statements) {
ExpectLength(1, kExprNop);
ExpectLength(1, kExprElse);
ExpectLength(1, kExprEnd);
ExpectLength(1, kExprSelect);
ExpectLength(2, kExprCatch);
ExpectLength(2, kExprDelegate);
ExpectLength(2, kExprRethrow);
ExpectLength(2, kExprBr);
ExpectLength(2, kExprBrIf);
ExpectLength(2, kExprThrow);
ExpectLength(2, kExprBlock, kI32Code);
ExpectLength(2, kExprLoop, kI32Code);
ExpectLength(2, kExprIf, kI32Code);
ExpectLength(2, kExprTry, kI32Code);
}
TEST_F(WasmOpcodeLengthTest, MiscExpressions) {
ExpectLength(5, kExprF32Const);
ExpectLength(9, kExprF64Const);
ExpectLength(2, kExprRefNull);
ExpectLength(2, kExprLocalGet);
ExpectLength(2, kExprLocalSet);
ExpectLength(2, kExprGlobalGet);
ExpectLength(2, kExprGlobalSet);
ExpectLength(2, kExprCallFunction);
ExpectLength(3, kExprCallIndirect);
}
TEST_F(WasmOpcodeLengthTest, I32Const) {
ExpectLength(2, kExprI32Const, U32V_1(1));
ExpectLength(3, kExprI32Const, U32V_2(999));
ExpectLength(4, kExprI32Const, U32V_3(9999));
ExpectLength(5, kExprI32Const, U32V_4(999999));
ExpectLength(6, kExprI32Const, U32V_5(99999999));
}
TEST_F(WasmOpcodeLengthTest, I64Const) {
ExpectLength(2, kExprI64Const, U32V_1(1));
ExpectLength(3, kExprI64Const, U32V_2(99));
ExpectLength(4, kExprI64Const, U32V_3(9999));
ExpectLength(5, kExprI64Const, U32V_4(99999));
ExpectLength(6, kExprI64Const, U32V_5(9999999));
ExpectLength(7, WASM_I64V_6(777777));
ExpectLength(8, WASM_I64V_7(7777777));
ExpectLength(9, WASM_I64V_8(77777777));
ExpectLength(10, WASM_I64V_9(777777777));
}
TEST_F(WasmOpcodeLengthTest, VariableLength) {
ExpectLength(2, kExprGlobalGet, U32V_1(1));
ExpectLength(3, kExprGlobalGet, U32V_2(33));
ExpectLength(4, kExprGlobalGet, U32V_3(44));
ExpectLength(5, kExprGlobalGet, U32V_4(66));
ExpectLength(6, kExprGlobalGet, U32V_5(77));
ExpectLength(2, kExprRefFunc, U32V_1(1));
ExpectLength(3, kExprRefFunc, U32V_2(33));
ExpectLength(4, kExprRefFunc, U32V_3(44));
ExpectLength(5, kExprRefFunc, U32V_4(66));
ExpectLength(6, kExprRefFunc, U32V_5(77));
ExpectLength(2, kExprTableGet, U32V_1(1));
ExpectLength(3, kExprTableGet, U32V_2(33));
ExpectLength(4, kExprTableGet, U32V_3(44));
ExpectLength(5, kExprTableGet, U32V_4(66));
ExpectLength(6, kExprTableGet, U32V_5(77));
ExpectLength(2, kExprTableSet, U32V_1(1));
ExpectLength(3, kExprTableSet, U32V_2(33));
ExpectLength(4, kExprTableSet, U32V_3(44));
ExpectLength(5, kExprTableSet, U32V_4(66));
ExpectLength(6, kExprTableSet, U32V_5(77));
ExpectLength(3, kExprCallIndirect, U32V_1(1), U32V_1(1));
ExpectLength(4, kExprCallIndirect, U32V_1(1), U32V_2(33));
ExpectLength(5, kExprCallIndirect, U32V_1(1), U32V_3(44));
ExpectLength(6, kExprCallIndirect, U32V_1(1), U32V_4(66));
ExpectLength(7, kExprCallIndirect, U32V_1(1), U32V_5(77));
}
TEST_F(WasmOpcodeLengthTest, LoadsAndStores) {
ExpectLength(3, kExprI32LoadMem8S);
ExpectLength(3, kExprI32LoadMem8U);
ExpectLength(3, kExprI32LoadMem16S);
ExpectLength(3, kExprI32LoadMem16U);
ExpectLength(3, kExprI32LoadMem);
ExpectLength(3, kExprI64LoadMem8S);
ExpectLength(3, kExprI64LoadMem8U);
ExpectLength(3, kExprI64LoadMem16S);
ExpectLength(3, kExprI64LoadMem16U);
ExpectLength(3, kExprI64LoadMem32S);
ExpectLength(3, kExprI64LoadMem32U);
ExpectLength(3, kExprI64LoadMem);
ExpectLength(3, kExprF32LoadMem);
ExpectLength(3, kExprF64LoadMem);
ExpectLength(3, kExprI32StoreMem8);
ExpectLength(3, kExprI32StoreMem16);
ExpectLength(3, kExprI32StoreMem);
ExpectLength(3, kExprI64StoreMem8);
ExpectLength(3, kExprI64StoreMem16);
ExpectLength(3, kExprI64StoreMem32);
ExpectLength(3, kExprI64StoreMem);
ExpectLength(3, kExprF32StoreMem);
ExpectLength(3, kExprF64StoreMem);
}
TEST_F(WasmOpcodeLengthTest, MiscMemExpressions) {
ExpectLength(2, kExprMemorySize);
ExpectLength(2, kExprMemoryGrow);
}
TEST_F(WasmOpcodeLengthTest, SimpleExpressions) {
#define SIMPLE_OPCODE(name, byte, sig) byte,
static constexpr uint8_t kSimpleOpcodes[] = {
FOREACH_SIMPLE_OPCODE(SIMPLE_OPCODE)};
#undef SIMPLE_OPCODE
for (uint8_t simple_opcode : kSimpleOpcodes) {
ExpectLength(1, simple_opcode);
}
}
TEST_F(WasmOpcodeLengthTest, SimdExpressions) {
#define TEST_SIMD(name, opcode, sig) ExpectLengthPrefixed(0, kExpr##name);
FOREACH_SIMD_0_OPERAND_OPCODE(TEST_SIMD)
#undef TEST_SIMD
#define TEST_SIMD(name, opcode, sig) ExpectLengthPrefixed(1, kExpr##name);
FOREACH_SIMD_1_OPERAND_OPCODE(TEST_SIMD)
#undef TEST_SIMD
ExpectLengthPrefixed(16, kExprI8x16Shuffle);
// test for bad simd opcode, 0xFF is encoded in two bytes.
ExpectLength(3, kSimdPrefix, 0xFF, 0x1);
}
TEST_F(WasmOpcodeLengthTest, IllegalRefIndices) {
ExpectFailure(kExprBlock, kOptRefCode, U32V_3(kV8MaxWasmTypes + 1));
ExpectFailure(kExprBlock, kOptRefCode, U32V_4(0x01000000));
}
TEST_F(WasmOpcodeLengthTest, GCOpcodes) {
// GC opcodes aren't parsed as LEBs.
// struct.new_with_rtt, with leb immediate operand.
ExpectLength(3, 0xfb, 0x01, 0x42);
ExpectLength(4, 0xfb, 0x01, 0x80, 0x00);
// string.new_wtf8 with $mem=0.
ExpectLength(3, 0xfb, 0x80, 0x00);
// string.as_wtf8.
ExpectLength(2, 0xfb, 0x90);
}
TEST_F(WasmOpcodeLengthTest, PrefixedOpcodesLEB) {
// kExprI8x16Splat with a 3-byte LEB-encoded opcode.
ExpectLength(4, 0xfd, 0x8f, 0x80, 0x00);
// kExprI32SConvertSatF32 with a 4-byte LEB-encoded opcode.
ExpectLength(5, 0xfc, 0x80, 0x80, 0x80, 0x00);
// kExprAtomicNotify with a 2-byte LEB-encoded opcode, and 2 i32 imm for
// memarg.
ExpectLength(5, 0xfe, 0x80, 0x00, 0x00, 0x00);
}
class TypeReaderTest : public TestWithZone {
public:
ValueType DecodeValueType(const byte* start, const byte* end,
const WasmModule* module) {
Decoder decoder(start, end);
uint32_t length;
return value_type_reader::read_value_type<Decoder::kFullValidation>(
&decoder, start, &length, module, enabled_features_);
}
HeapType DecodeHeapType(const byte* start, const byte* end,
const WasmModule* module) {
Decoder decoder(start, end);
uint32_t length;
return value_type_reader::read_heap_type<Decoder::kFullValidation>(
&decoder, start, &length, module, enabled_features_);
}
// This variable is modified by WASM_FEATURE_SCOPE.
WasmFeatures enabled_features_;
};
TEST_F(TypeReaderTest, HeapTypeDecodingTest) {
WASM_FEATURE_SCOPE(gc);
WASM_FEATURE_SCOPE(typed_funcref);
HeapType heap_func = HeapType(HeapType::kFunc);
HeapType heap_bottom = HeapType(HeapType::kBottom);
// 1- to 5-byte representation of kFuncRefCode.
{
const byte data[] = {kFuncRefCode};
HeapType result = DecodeHeapType(data, data + sizeof(data), nullptr);
EXPECT_TRUE(result == heap_func);
}
{
const byte data[] = {kFuncRefCode | 0x80, 0x7F};
HeapType result = DecodeHeapType(data, data + sizeof(data), nullptr);
EXPECT_EQ(result, heap_func);
}
{
const byte data[] = {kFuncRefCode | 0x80, 0xFF, 0x7F};
HeapType result = DecodeHeapType(data, data + sizeof(data), nullptr);
EXPECT_EQ(result, heap_func);
}
{
const byte data[] = {kFuncRefCode | 0x80, 0xFF, 0xFF, 0x7F};
HeapType result = DecodeHeapType(data, data + sizeof(data), nullptr);
EXPECT_EQ(result, heap_func);
}
{
const byte data[] = {kFuncRefCode | 0x80, 0xFF, 0xFF, 0xFF, 0x7F};
HeapType result = DecodeHeapType(data, data + sizeof(data), nullptr);
EXPECT_EQ(result, heap_func);
}
{
// Some negative number.
const byte data[] = {0xB4, 0x7F};
HeapType result = DecodeHeapType(data, data + sizeof(data), nullptr);
EXPECT_EQ(result, heap_bottom);
}
{
// This differs from kFuncRefCode by one bit outside the 1-byte LEB128
// range. This should therefore NOT be decoded as HeapType::kFunc and
// instead fail.
const byte data[] = {kFuncRefCode | 0x80, 0x6F};
HeapType result = DecodeHeapType(data, data + sizeof(data), nullptr);
EXPECT_EQ(result, heap_bottom);
}
}
using TypesOfLocals = ZoneVector<ValueType>;
class LocalDeclDecoderTest : public TestWithZone {
public:
v8::internal::AccountingAllocator allocator;
WasmFeatures enabled_features_;
size_t ExpectRun(TypesOfLocals map, size_t pos, ValueType expected,
size_t count) {
for (size_t i = 0; i < count; i++) {
EXPECT_EQ(expected, map[pos++]);
}
return pos;
}
bool DecodeLocalDecls(BodyLocalDecls* decls, const byte* start,
const byte* end) {
WasmModule module;
return i::wasm::DecodeLocalDecls(enabled_features_, decls, &module, start,
end);
}
};
TEST_F(LocalDeclDecoderTest, EmptyLocals) {
BodyLocalDecls decls(zone());
bool result = DecodeLocalDecls(&decls, nullptr, nullptr);
EXPECT_FALSE(result);
}
TEST_F(LocalDeclDecoderTest, NoLocals) {
static const byte data[] = {0};
BodyLocalDecls decls(zone());
bool result = DecodeLocalDecls(&decls, data, data + sizeof(data));
EXPECT_TRUE(result);
EXPECT_TRUE(decls.type_list.empty());
}
TEST_F(LocalDeclDecoderTest, WrongLocalDeclsCount1) {
static const byte data[] = {1};
BodyLocalDecls decls(zone());
bool result = DecodeLocalDecls(&decls, data, data + sizeof(data));
EXPECT_FALSE(result);
}
TEST_F(LocalDeclDecoderTest, WrongLocalDeclsCount2) {
static const byte data[] = {2, 1,
static_cast<byte>(kWasmI32.value_type_code())};
BodyLocalDecls decls(zone());
bool result = DecodeLocalDecls(&decls, data, data + sizeof(data));
EXPECT_FALSE(result);
}
TEST_F(LocalDeclDecoderTest, OneLocal) {
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
ValueType type = kValueTypes[i];
const byte data[] = {1, 1, static_cast<byte>(type.value_type_code())};
BodyLocalDecls decls(zone());
bool result = DecodeLocalDecls(&decls, data, data + sizeof(data));
EXPECT_TRUE(result);
EXPECT_EQ(1u, decls.type_list.size());
TypesOfLocals map = decls.type_list;
EXPECT_EQ(type, map[0]);
}
}
TEST_F(LocalDeclDecoderTest, FiveLocals) {
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
ValueType type = kValueTypes[i];
const byte data[] = {1, 5, static_cast<byte>(type.value_type_code())};
BodyLocalDecls decls(zone());
bool result = DecodeLocalDecls(&decls, data, data + sizeof(data));
EXPECT_TRUE(result);
EXPECT_EQ(sizeof(data), decls.encoded_size);
EXPECT_EQ(5u, decls.type_list.size());
TypesOfLocals map = decls.type_list;
EXPECT_EQ(5u, map.size());
ExpectRun(map, 0, type, 5);
}
}
TEST_F(LocalDeclDecoderTest, MixedLocals) {
for (byte a = 0; a < 3; a++) {
for (byte b = 0; b < 3; b++) {
for (byte c = 0; c < 3; c++) {
for (byte d = 0; d < 3; d++) {
const byte data[] = {4, a, kI32Code, b, kI64Code,
c, kF32Code, d, kF64Code};
BodyLocalDecls decls(zone());
bool result = DecodeLocalDecls(&decls, data, data + sizeof(data));
EXPECT_TRUE(result);
EXPECT_EQ(sizeof(data), decls.encoded_size);
EXPECT_EQ(static_cast<uint32_t>(a + b + c + d),
decls.type_list.size());
TypesOfLocals map = decls.type_list;
size_t pos = 0;
pos = ExpectRun(map, pos, kWasmI32, a);
pos = ExpectRun(map, pos, kWasmI64, b);
pos = ExpectRun(map, pos, kWasmF32, c);
pos = ExpectRun(map, pos, kWasmF64, d);
}
}
}
}
}
TEST_F(LocalDeclDecoderTest, UseEncoder) {
const byte* data = nullptr;
const byte* end = nullptr;
LocalDeclEncoder local_decls(zone());
local_decls.AddLocals(5, kWasmF32);
local_decls.AddLocals(1337, kWasmI32);
local_decls.AddLocals(212, kWasmI64);
local_decls.Prepend(zone(), &data, &end);
BodyLocalDecls decls(zone());
bool result = DecodeLocalDecls(&decls, data, end);
EXPECT_TRUE(result);
EXPECT_EQ(5u + 1337u + 212u, decls.type_list.size());
TypesOfLocals map = decls.type_list;
size_t pos = 0;
pos = ExpectRun(map, pos, kWasmF32, 5);
pos = ExpectRun(map, pos, kWasmI32, 1337);
pos = ExpectRun(map, pos, kWasmI64, 212);
}
TEST_F(LocalDeclDecoderTest, InvalidTypeIndex) {
WASM_FEATURE_SCOPE(typed_funcref);
const byte* data = nullptr;
const byte* end = nullptr;
LocalDeclEncoder local_decls(zone());
local_decls.AddLocals(1, ValueType::Ref(0, kNullable));
BodyLocalDecls decls(zone());
bool result = DecodeLocalDecls(&decls, data, end);
EXPECT_FALSE(result);
}
class BytecodeIteratorTest : public TestWithZone {};
TEST_F(BytecodeIteratorTest, SimpleForeach) {
byte code[] = {WASM_IF_ELSE(WASM_ZERO, WASM_ZERO, WASM_ZERO)};
BytecodeIterator iter(code, code + sizeof(code));
WasmOpcode expected[] = {kExprI32Const, kExprIf, kExprI32Const,
kExprElse, kExprI32Const, kExprEnd};
size_t pos = 0;
for (WasmOpcode opcode : iter.opcodes()) {
if (pos >= arraysize(expected)) {
EXPECT_TRUE(false);
break;
}
EXPECT_EQ(expected[pos++], opcode);
}
EXPECT_EQ(arraysize(expected), pos);
}
TEST_F(BytecodeIteratorTest, ForeachTwice) {
byte code[] = {WASM_IF_ELSE(WASM_ZERO, WASM_ZERO, WASM_ZERO)};
BytecodeIterator iter(code, code + sizeof(code));
int count = 0;
count = 0;
for (WasmOpcode opcode : iter.opcodes()) {
USE(opcode);
count++;
}
EXPECT_EQ(6, count);
count = 0;
for (WasmOpcode opcode : iter.opcodes()) {
USE(opcode);
count++;
}
EXPECT_EQ(6, count);
}
TEST_F(BytecodeIteratorTest, ForeachOffset) {
byte code[] = {WASM_IF_ELSE(WASM_ZERO, WASM_ZERO, WASM_ZERO)};
BytecodeIterator iter(code, code + sizeof(code));
int count = 0;
count = 0;
for (auto offset : iter.offsets()) {
USE(offset);
count++;
}
EXPECT_EQ(6, count);
count = 0;
for (auto offset : iter.offsets()) {
USE(offset);
count++;
}
EXPECT_EQ(6, count);
}
TEST_F(BytecodeIteratorTest, WithLocalDecls) {
byte code[] = {1, 1, kI32Code, WASM_I32V_1(9), WASM_I32V_1(11)};
BodyLocalDecls decls(zone());
BytecodeIterator iter(code, code + sizeof(code), &decls);
EXPECT_EQ(3u, decls.encoded_size);
EXPECT_EQ(3u, iter.pc_offset());
EXPECT_TRUE(iter.has_next());
EXPECT_EQ(kExprI32Const, iter.current());
iter.next();
EXPECT_TRUE(iter.has_next());
EXPECT_EQ(kExprI32Const, iter.current());
iter.next();
EXPECT_FALSE(iter.has_next());
}
/*******************************************************************************
* Memory64 tests
******************************************************************************/
class FunctionBodyDecoderTestOnBothMemoryTypes
: public FunctionBodyDecoderTestBase<
WithDefaultPlatformMixin<::testing::TestWithParam<MemoryType>>> {
public:
bool is_memory64() const { return GetParam() == kMemory64; }
};
std::string PrintMemoryType(::testing::TestParamInfo<MemoryType> info) {
switch (info.param) {
case kMemory32:
return "kMemory32";
case kMemory64:
return "kMemory64";
}
UNREACHABLE();
}
INSTANTIATE_TEST_SUITE_P(MemoryTypes, FunctionBodyDecoderTestOnBothMemoryTypes,
::testing::Values(kMemory32, kMemory64),
PrintMemoryType);
TEST_P(FunctionBodyDecoderTestOnBothMemoryTypes, IndexTypes) {
builder.InitializeMemory(GetParam());
Validate(!is_memory64(), sigs.i_v(),
{WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO)});
Validate(is_memory64(), sigs.i_v(),
{WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO64)});
Validate(!is_memory64(), sigs.v_v(),
{WASM_STORE_MEM(MachineType::Int32(), WASM_ZERO, WASM_ZERO)});
Validate(is_memory64(), sigs.v_v(),
{WASM_STORE_MEM(MachineType::Int32(), WASM_ZERO64, WASM_ZERO)});
}
TEST_P(FunctionBodyDecoderTestOnBothMemoryTypes, 64BitOffset) {
builder.InitializeMemory(GetParam());
// Macro for defining a zero constant of the right type. Explicitly use
// {uint8_t} to make MSVC happy.
#define ZERO_FOR_TYPE \
WASM_SEQ(is_memory64() ? uint8_t{kExprI64Const} : uint8_t{kExprI32Const}, 0)
// Offset is zero encoded in 5 bytes (works always).
Validate(
true, sigs.i_v(),
{WASM_LOAD_MEM_OFFSET(MachineType::Int32(), U64V_5(0), ZERO_FOR_TYPE)});
// Offset is zero encoded in 6 bytes (works only in memory64).
Validate(
is_memory64(), sigs.i_v(),
{WASM_LOAD_MEM_OFFSET(MachineType::Int32(), U64V_6(0), ZERO_FOR_TYPE)});
// Same with store.
Validate(true, sigs.v_v(),
{WASM_STORE_MEM_OFFSET(MachineType::Int32(), U64V_5(0),
ZERO_FOR_TYPE, WASM_ZERO)});
Validate(is_memory64(), sigs.v_v(),
{WASM_STORE_MEM_OFFSET(MachineType::Int32(), U64V_6(0),
ZERO_FOR_TYPE, WASM_ZERO)});
#undef ZERO_FOR_TYPE
}
TEST_P(FunctionBodyDecoderTestOnBothMemoryTypes, MemorySize) {
builder.InitializeMemory(GetParam());
// memory.size returns i32 on memory32.
Validate(!is_memory64(), sigs.v_v(),
{WASM_MEMORY_SIZE, kExprI32Eqz, kExprDrop});
// memory.size returns i64 on memory64.
Validate(is_memory64(), sigs.v_v(),
{WASM_MEMORY_SIZE, kExprI64Eqz, kExprDrop});
}
TEST_P(FunctionBodyDecoderTestOnBothMemoryTypes, MemoryGrow) {
builder.InitializeMemory(GetParam());
// memory.grow is i32->i32 memory32.
Validate(!is_memory64(), sigs.i_i(), {WASM_MEMORY_GROW(WASM_LOCAL_GET(0))});
// memory.grow is i64->i64 memory32.
Validate(is_memory64(), sigs.l_l(), {WASM_MEMORY_GROW(WASM_LOCAL_GET(0))});
// any other combination always fails.
auto sig_l_i = MakeSig::Returns(kWasmI64).Params(kWasmI32);
ExpectFailure(&sig_l_i, {WASM_MEMORY_GROW(WASM_LOCAL_GET(0))});
auto sig_i_l = MakeSig::Returns(kWasmI32).Params(kWasmI64);
ExpectFailure(&sig_i_l, {WASM_MEMORY_GROW(WASM_LOCAL_GET(0))});
}
#undef B1
#undef B2
#undef B3
#undef WASM_IF_OP
#undef WASM_LOOP_OP
#undef WASM_BRV_IF_ZERO
#undef EXPECT_OK
} // namespace function_body_decoder_unittest
} // namespace wasm
} // namespace internal
} // namespace v8