v8/src/scanner.h
bmeurer@chromium.org d07a2eb806 Rename ASSERT* to DCHECK*.
This way we don't clash with the ASSERT* macros
defined by GoogleTest, and we are one step closer
to being able to replace our homegrown base/ with
base/ from Chrome.

R=jochen@chromium.org, svenpanne@chromium.org

Review URL: https://codereview.chromium.org/430503007

git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@22812 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-08-04 11:34:54 +00:00

655 lines
21 KiB
C++

// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Features shared by parsing and pre-parsing scanners.
#ifndef V8_SCANNER_H_
#define V8_SCANNER_H_
#include "src/allocation.h"
#include "src/base/logging.h"
#include "src/char-predicates.h"
#include "src/globals.h"
#include "src/hashmap.h"
#include "src/list.h"
#include "src/token.h"
#include "src/unicode-inl.h"
#include "src/utils.h"
namespace v8 {
namespace internal {
class AstRawString;
class AstValueFactory;
class ParserRecorder;
// Returns the value (0 .. 15) of a hexadecimal character c.
// If c is not a legal hexadecimal character, returns a value < 0.
inline int HexValue(uc32 c) {
c -= '0';
if (static_cast<unsigned>(c) <= 9) return c;
c = (c | 0x20) - ('a' - '0'); // detect 0x11..0x16 and 0x31..0x36.
if (static_cast<unsigned>(c) <= 5) return c + 10;
return -1;
}
// ---------------------------------------------------------------------
// Buffered stream of UTF-16 code units, using an internal UTF-16 buffer.
// A code unit is a 16 bit value representing either a 16 bit code point
// or one part of a surrogate pair that make a single 21 bit code point.
class Utf16CharacterStream {
public:
Utf16CharacterStream() : pos_(0) { }
virtual ~Utf16CharacterStream() { }
// Returns and advances past the next UTF-16 code unit in the input
// stream. If there are no more code units, it returns a negative
// value.
inline uc32 Advance() {
if (buffer_cursor_ < buffer_end_ || ReadBlock()) {
pos_++;
return static_cast<uc32>(*(buffer_cursor_++));
}
// Note: currently the following increment is necessary to avoid a
// parser problem! The scanner treats the final kEndOfInput as
// a code unit with a position, and does math relative to that
// position.
pos_++;
return kEndOfInput;
}
// Return the current position in the code unit stream.
// Starts at zero.
inline unsigned pos() const { return pos_; }
// Skips forward past the next code_unit_count UTF-16 code units
// in the input, or until the end of input if that comes sooner.
// Returns the number of code units actually skipped. If less
// than code_unit_count,
inline unsigned SeekForward(unsigned code_unit_count) {
unsigned buffered_chars =
static_cast<unsigned>(buffer_end_ - buffer_cursor_);
if (code_unit_count <= buffered_chars) {
buffer_cursor_ += code_unit_count;
pos_ += code_unit_count;
return code_unit_count;
}
return SlowSeekForward(code_unit_count);
}
// Pushes back the most recently read UTF-16 code unit (or negative
// value if at end of input), i.e., the value returned by the most recent
// call to Advance.
// Must not be used right after calling SeekForward.
virtual void PushBack(int32_t code_unit) = 0;
protected:
static const uc32 kEndOfInput = -1;
// Ensures that the buffer_cursor_ points to the code_unit at
// position pos_ of the input, if possible. If the position
// is at or after the end of the input, return false. If there
// are more code_units available, return true.
virtual bool ReadBlock() = 0;
virtual unsigned SlowSeekForward(unsigned code_unit_count) = 0;
const uint16_t* buffer_cursor_;
const uint16_t* buffer_end_;
unsigned pos_;
};
// ---------------------------------------------------------------------
// Caching predicates used by scanners.
class UnicodeCache {
public:
UnicodeCache() {}
typedef unibrow::Utf8Decoder<512> Utf8Decoder;
StaticResource<Utf8Decoder>* utf8_decoder() {
return &utf8_decoder_;
}
bool IsIdentifierStart(unibrow::uchar c) { return kIsIdentifierStart.get(c); }
bool IsIdentifierPart(unibrow::uchar c) { return kIsIdentifierPart.get(c); }
bool IsLineTerminator(unibrow::uchar c) { return kIsLineTerminator.get(c); }
bool IsWhiteSpace(unibrow::uchar c) { return kIsWhiteSpace.get(c); }
bool IsWhiteSpaceOrLineTerminator(unibrow::uchar c) {
return kIsWhiteSpaceOrLineTerminator.get(c);
}
private:
unibrow::Predicate<IdentifierStart, 128> kIsIdentifierStart;
unibrow::Predicate<IdentifierPart, 128> kIsIdentifierPart;
unibrow::Predicate<unibrow::LineTerminator, 128> kIsLineTerminator;
unibrow::Predicate<WhiteSpace, 128> kIsWhiteSpace;
unibrow::Predicate<WhiteSpaceOrLineTerminator, 128>
kIsWhiteSpaceOrLineTerminator;
StaticResource<Utf8Decoder> utf8_decoder_;
DISALLOW_COPY_AND_ASSIGN(UnicodeCache);
};
// ---------------------------------------------------------------------
// DuplicateFinder discovers duplicate symbols.
class DuplicateFinder {
public:
explicit DuplicateFinder(UnicodeCache* constants)
: unicode_constants_(constants),
backing_store_(16),
map_(&Match) { }
int AddOneByteSymbol(Vector<const uint8_t> key, int value);
int AddTwoByteSymbol(Vector<const uint16_t> key, int value);
// Add a a number literal by converting it (if necessary)
// to the string that ToString(ToNumber(literal)) would generate.
// and then adding that string with AddAsciiSymbol.
// This string is the actual value used as key in an object literal,
// and the one that must be different from the other keys.
int AddNumber(Vector<const uint8_t> key, int value);
private:
int AddSymbol(Vector<const uint8_t> key, bool is_one_byte, int value);
// Backs up the key and its length in the backing store.
// The backup is stored with a base 127 encoding of the
// length (plus a bit saying whether the string is one byte),
// followed by the bytes of the key.
uint8_t* BackupKey(Vector<const uint8_t> key, bool is_one_byte);
// Compare two encoded keys (both pointing into the backing store)
// for having the same base-127 encoded lengths and ASCII-ness,
// and then having the same 'length' bytes following.
static bool Match(void* first, void* second);
// Creates a hash from a sequence of bytes.
static uint32_t Hash(Vector<const uint8_t> key, bool is_one_byte);
// Checks whether a string containing a JS number is its canonical
// form.
static bool IsNumberCanonical(Vector<const uint8_t> key);
// Size of buffer. Sufficient for using it to call DoubleToCString in
// from conversions.h.
static const int kBufferSize = 100;
UnicodeCache* unicode_constants_;
// Backing store used to store strings used as hashmap keys.
SequenceCollector<unsigned char> backing_store_;
HashMap map_;
// Buffer used for string->number->canonical string conversions.
char number_buffer_[kBufferSize];
};
// ----------------------------------------------------------------------------
// LiteralBuffer - Collector of chars of literals.
class LiteralBuffer {
public:
LiteralBuffer() : is_one_byte_(true), position_(0), backing_store_() { }
~LiteralBuffer() {
if (backing_store_.length() > 0) {
backing_store_.Dispose();
}
}
INLINE(void AddChar(uint32_t code_unit)) {
if (position_ >= backing_store_.length()) ExpandBuffer();
if (is_one_byte_) {
if (code_unit <= unibrow::Latin1::kMaxChar) {
backing_store_[position_] = static_cast<byte>(code_unit);
position_ += kOneByteSize;
return;
}
ConvertToTwoByte();
}
DCHECK(code_unit < 0x10000u);
*reinterpret_cast<uint16_t*>(&backing_store_[position_]) = code_unit;
position_ += kUC16Size;
}
bool is_one_byte() const { return is_one_byte_; }
bool is_contextual_keyword(Vector<const char> keyword) const {
return is_one_byte() && keyword.length() == position_ &&
(memcmp(keyword.start(), backing_store_.start(), position_) == 0);
}
Vector<const uint16_t> two_byte_literal() const {
DCHECK(!is_one_byte_);
DCHECK((position_ & 0x1) == 0);
return Vector<const uint16_t>(
reinterpret_cast<const uint16_t*>(backing_store_.start()),
position_ >> 1);
}
Vector<const uint8_t> one_byte_literal() const {
DCHECK(is_one_byte_);
return Vector<const uint8_t>(
reinterpret_cast<const uint8_t*>(backing_store_.start()),
position_);
}
int length() const {
return is_one_byte_ ? position_ : (position_ >> 1);
}
void Reset() {
position_ = 0;
is_one_byte_ = true;
}
Handle<String> Internalize(Isolate* isolate) const;
private:
static const int kInitialCapacity = 16;
static const int kGrowthFactory = 4;
static const int kMinConversionSlack = 256;
static const int kMaxGrowth = 1 * MB;
inline int NewCapacity(int min_capacity) {
int capacity = Max(min_capacity, backing_store_.length());
int new_capacity = Min(capacity * kGrowthFactory, capacity + kMaxGrowth);
return new_capacity;
}
void ExpandBuffer() {
Vector<byte> new_store = Vector<byte>::New(NewCapacity(kInitialCapacity));
MemCopy(new_store.start(), backing_store_.start(), position_);
backing_store_.Dispose();
backing_store_ = new_store;
}
void ConvertToTwoByte() {
DCHECK(is_one_byte_);
Vector<byte> new_store;
int new_content_size = position_ * kUC16Size;
if (new_content_size >= backing_store_.length()) {
// Ensure room for all currently read code units as UC16 as well
// as the code unit about to be stored.
new_store = Vector<byte>::New(NewCapacity(new_content_size));
} else {
new_store = backing_store_;
}
uint8_t* src = backing_store_.start();
uint16_t* dst = reinterpret_cast<uint16_t*>(new_store.start());
for (int i = position_ - 1; i >= 0; i--) {
dst[i] = src[i];
}
if (new_store.start() != backing_store_.start()) {
backing_store_.Dispose();
backing_store_ = new_store;
}
position_ = new_content_size;
is_one_byte_ = false;
}
bool is_one_byte_;
int position_;
Vector<byte> backing_store_;
DISALLOW_COPY_AND_ASSIGN(LiteralBuffer);
};
// ----------------------------------------------------------------------------
// JavaScript Scanner.
class Scanner {
public:
// Scoped helper for literal recording. Automatically drops the literal
// if aborting the scanning before it's complete.
class LiteralScope {
public:
explicit LiteralScope(Scanner* self)
: scanner_(self), complete_(false) {
scanner_->StartLiteral();
}
~LiteralScope() {
if (!complete_) scanner_->DropLiteral();
}
void Complete() {
scanner_->TerminateLiteral();
complete_ = true;
}
private:
Scanner* scanner_;
bool complete_;
};
// Representation of an interval of source positions.
struct Location {
Location(int b, int e) : beg_pos(b), end_pos(e) { }
Location() : beg_pos(0), end_pos(0) { }
bool IsValid() const {
return beg_pos >= 0 && end_pos >= beg_pos;
}
static Location invalid() { return Location(-1, -1); }
int beg_pos;
int end_pos;
};
// -1 is outside of the range of any real source code.
static const int kNoOctalLocation = -1;
explicit Scanner(UnicodeCache* scanner_contants);
void Initialize(Utf16CharacterStream* source);
// Returns the next token and advances input.
Token::Value Next();
// Returns the current token again.
Token::Value current_token() { return current_.token; }
// Returns the location information for the current token
// (the token last returned by Next()).
Location location() const { return current_.location; }
// Similar functions for the upcoming token.
// One token look-ahead (past the token returned by Next()).
Token::Value peek() const { return next_.token; }
Location peek_location() const { return next_.location; }
bool literal_contains_escapes() const {
Location location = current_.location;
int source_length = (location.end_pos - location.beg_pos);
if (current_.token == Token::STRING) {
// Subtract delimiters.
source_length -= 2;
}
return current_.literal_chars->length() != source_length;
}
bool is_literal_contextual_keyword(Vector<const char> keyword) {
DCHECK_NOT_NULL(current_.literal_chars);
return current_.literal_chars->is_contextual_keyword(keyword);
}
bool is_next_contextual_keyword(Vector<const char> keyword) {
DCHECK_NOT_NULL(next_.literal_chars);
return next_.literal_chars->is_contextual_keyword(keyword);
}
const AstRawString* CurrentSymbol(AstValueFactory* ast_value_factory);
const AstRawString* NextSymbol(AstValueFactory* ast_value_factory);
double DoubleValue();
bool UnescapedLiteralMatches(const char* data, int length) {
if (is_literal_one_byte() &&
literal_length() == length &&
!literal_contains_escapes()) {
const char* token =
reinterpret_cast<const char*>(literal_one_byte_string().start());
return !strncmp(token, data, length);
}
return false;
}
void IsGetOrSet(bool* is_get, bool* is_set) {
if (is_literal_one_byte() &&
literal_length() == 3 &&
!literal_contains_escapes()) {
const char* token =
reinterpret_cast<const char*>(literal_one_byte_string().start());
*is_get = strncmp(token, "get", 3) == 0;
*is_set = !*is_get && strncmp(token, "set", 3) == 0;
}
}
int FindNumber(DuplicateFinder* finder, int value);
int FindSymbol(DuplicateFinder* finder, int value);
UnicodeCache* unicode_cache() { return unicode_cache_; }
// Returns the location of the last seen octal literal.
Location octal_position() const { return octal_pos_; }
void clear_octal_position() { octal_pos_ = Location::invalid(); }
// Seek forward to the given position. This operation does not
// work in general, for instance when there are pushed back
// characters, but works for seeking forward until simple delimiter
// tokens, which is what it is used for.
void SeekForward(int pos);
bool HarmonyScoping() const {
return harmony_scoping_;
}
void SetHarmonyScoping(bool scoping) {
harmony_scoping_ = scoping;
}
bool HarmonyModules() const {
return harmony_modules_;
}
void SetHarmonyModules(bool modules) {
harmony_modules_ = modules;
}
bool HarmonyNumericLiterals() const {
return harmony_numeric_literals_;
}
void SetHarmonyNumericLiterals(bool numeric_literals) {
harmony_numeric_literals_ = numeric_literals;
}
// Returns true if there was a line terminator before the peek'ed token,
// possibly inside a multi-line comment.
bool HasAnyLineTerminatorBeforeNext() const {
return has_line_terminator_before_next_ ||
has_multiline_comment_before_next_;
}
// Scans the input as a regular expression pattern, previous
// character(s) must be /(=). Returns true if a pattern is scanned.
bool ScanRegExpPattern(bool seen_equal);
// Returns true if regexp flags are scanned (always since flags can
// be empty).
bool ScanRegExpFlags();
const LiteralBuffer* source_url() const { return &source_url_; }
const LiteralBuffer* source_mapping_url() const {
return &source_mapping_url_;
}
bool IdentifierIsFutureStrictReserved(const AstRawString* string) const;
private:
// The current and look-ahead token.
struct TokenDesc {
Token::Value token;
Location location;
LiteralBuffer* literal_chars;
};
static const int kCharacterLookaheadBufferSize = 1;
// Scans octal escape sequence. Also accepts "\0" decimal escape sequence.
uc32 ScanOctalEscape(uc32 c, int length);
// Call this after setting source_ to the input.
void Init() {
// Set c0_ (one character ahead)
STATIC_ASSERT(kCharacterLookaheadBufferSize == 1);
Advance();
// Initialize current_ to not refer to a literal.
current_.literal_chars = NULL;
}
// Literal buffer support
inline void StartLiteral() {
LiteralBuffer* free_buffer = (current_.literal_chars == &literal_buffer1_) ?
&literal_buffer2_ : &literal_buffer1_;
free_buffer->Reset();
next_.literal_chars = free_buffer;
}
INLINE(void AddLiteralChar(uc32 c)) {
DCHECK_NOT_NULL(next_.literal_chars);
next_.literal_chars->AddChar(c);
}
// Complete scanning of a literal.
inline void TerminateLiteral() {
// Does nothing in the current implementation.
}
// Stops scanning of a literal and drop the collected characters,
// e.g., due to an encountered error.
inline void DropLiteral() {
next_.literal_chars = NULL;
}
inline void AddLiteralCharAdvance() {
AddLiteralChar(c0_);
Advance();
}
// Low-level scanning support.
void Advance() { c0_ = source_->Advance(); }
void PushBack(uc32 ch) {
source_->PushBack(c0_);
c0_ = ch;
}
inline Token::Value Select(Token::Value tok) {
Advance();
return tok;
}
inline Token::Value Select(uc32 next, Token::Value then, Token::Value else_) {
Advance();
if (c0_ == next) {
Advance();
return then;
} else {
return else_;
}
}
// Returns the literal string, if any, for the current token (the
// token last returned by Next()). The string is 0-terminated.
// Literal strings are collected for identifiers, strings, and
// numbers.
// These functions only give the correct result if the literal
// was scanned between calls to StartLiteral() and TerminateLiteral().
Vector<const uint8_t> literal_one_byte_string() {
DCHECK_NOT_NULL(current_.literal_chars);
return current_.literal_chars->one_byte_literal();
}
Vector<const uint16_t> literal_two_byte_string() {
DCHECK_NOT_NULL(current_.literal_chars);
return current_.literal_chars->two_byte_literal();
}
bool is_literal_one_byte() {
DCHECK_NOT_NULL(current_.literal_chars);
return current_.literal_chars->is_one_byte();
}
int literal_length() const {
DCHECK_NOT_NULL(current_.literal_chars);
return current_.literal_chars->length();
}
// Returns the literal string for the next token (the token that
// would be returned if Next() were called).
Vector<const uint8_t> next_literal_one_byte_string() {
DCHECK_NOT_NULL(next_.literal_chars);
return next_.literal_chars->one_byte_literal();
}
Vector<const uint16_t> next_literal_two_byte_string() {
DCHECK_NOT_NULL(next_.literal_chars);
return next_.literal_chars->two_byte_literal();
}
bool is_next_literal_one_byte() {
DCHECK_NOT_NULL(next_.literal_chars);
return next_.literal_chars->is_one_byte();
}
int next_literal_length() const {
DCHECK_NOT_NULL(next_.literal_chars);
return next_.literal_chars->length();
}
uc32 ScanHexNumber(int expected_length);
// Scans a single JavaScript token.
void Scan();
bool SkipWhiteSpace();
Token::Value SkipSingleLineComment();
Token::Value SkipSourceURLComment();
void TryToParseSourceURLComment();
Token::Value SkipMultiLineComment();
// Scans a possible HTML comment -- begins with '<!'.
Token::Value ScanHtmlComment();
void ScanDecimalDigits();
Token::Value ScanNumber(bool seen_period);
Token::Value ScanIdentifierOrKeyword();
Token::Value ScanIdentifierSuffix(LiteralScope* literal);
Token::Value ScanString();
// Scans an escape-sequence which is part of a string and adds the
// decoded character to the current literal. Returns true if a pattern
// is scanned.
bool ScanEscape();
// Decodes a Unicode escape-sequence which is part of an identifier.
// If the escape sequence cannot be decoded the result is kBadChar.
uc32 ScanIdentifierUnicodeEscape();
// Scans a Unicode escape-sequence and adds its characters,
// uninterpreted, to the current literal. Used for parsing RegExp
// flags.
bool ScanLiteralUnicodeEscape();
// Return the current source position.
int source_pos() {
return source_->pos() - kCharacterLookaheadBufferSize;
}
UnicodeCache* unicode_cache_;
// Buffers collecting literal strings, numbers, etc.
LiteralBuffer literal_buffer1_;
LiteralBuffer literal_buffer2_;
// Values parsed from magic comments.
LiteralBuffer source_url_;
LiteralBuffer source_mapping_url_;
TokenDesc current_; // desc for current token (as returned by Next())
TokenDesc next_; // desc for next token (one token look-ahead)
// Input stream. Must be initialized to an Utf16CharacterStream.
Utf16CharacterStream* source_;
// Start position of the octal literal last scanned.
Location octal_pos_;
// One Unicode character look-ahead; c0_ < 0 at the end of the input.
uc32 c0_;
// Whether there is a line terminator whitespace character after
// the current token, and before the next. Does not count newlines
// inside multiline comments.
bool has_line_terminator_before_next_;
// Whether there is a multi-line comment that contains a
// line-terminator after the current token, and before the next.
bool has_multiline_comment_before_next_;
// Whether we scan 'let' as a keyword for harmony block-scoped let bindings.
bool harmony_scoping_;
// Whether we scan 'module', 'import', 'export' as keywords.
bool harmony_modules_;
// Whether we scan 0o777 and 0b111 as numbers.
bool harmony_numeric_literals_;
};
} } // namespace v8::internal
#endif // V8_SCANNER_H_