v8/src/serialize.h
2014-12-09 15:12:27 +00:00

943 lines
30 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_SERIALIZE_H_
#define V8_SERIALIZE_H_
#include "src/compiler.h"
#include "src/hashmap.h"
#include "src/heap-profiler.h"
#include "src/isolate.h"
#include "src/snapshot-source-sink.h"
namespace v8 {
namespace internal {
// A TypeCode is used to distinguish different kinds of external reference.
// It is a single bit to make testing for types easy.
enum TypeCode {
UNCLASSIFIED, // One-of-a-kind references.
C_BUILTIN,
BUILTIN,
RUNTIME_FUNCTION,
IC_UTILITY,
STATS_COUNTER,
TOP_ADDRESS,
ACCESSOR,
STUB_CACHE_TABLE,
RUNTIME_ENTRY,
LAZY_DEOPTIMIZATION
};
const int kTypeCodeCount = LAZY_DEOPTIMIZATION + 1;
const int kFirstTypeCode = UNCLASSIFIED;
const int kReferenceIdBits = 16;
const int kReferenceIdMask = (1 << kReferenceIdBits) - 1;
const int kReferenceTypeShift = kReferenceIdBits;
const int kDeoptTableSerializeEntryCount = 64;
// ExternalReferenceTable is a helper class that defines the relationship
// between external references and their encodings. It is used to build
// hashmaps in ExternalReferenceEncoder and ExternalReferenceDecoder.
class ExternalReferenceTable {
public:
static ExternalReferenceTable* instance(Isolate* isolate);
~ExternalReferenceTable() { }
int size() const { return refs_.length(); }
Address address(int i) { return refs_[i].address; }
uint32_t code(int i) { return refs_[i].code; }
const char* name(int i) { return refs_[i].name; }
int max_id(int code) { return max_id_[code]; }
private:
explicit ExternalReferenceTable(Isolate* isolate) : refs_(64) {
PopulateTable(isolate);
}
struct ExternalReferenceEntry {
Address address;
uint32_t code;
const char* name;
};
void PopulateTable(Isolate* isolate);
// For a few types of references, we can get their address from their id.
void AddFromId(TypeCode type,
uint16_t id,
const char* name,
Isolate* isolate);
// For other types of references, the caller will figure out the address.
void Add(Address address, TypeCode type, uint16_t id, const char* name);
void Add(Address address, const char* name) {
Add(address, UNCLASSIFIED, ++max_id_[UNCLASSIFIED], name);
}
List<ExternalReferenceEntry> refs_;
uint16_t max_id_[kTypeCodeCount];
};
class ExternalReferenceEncoder {
public:
explicit ExternalReferenceEncoder(Isolate* isolate);
uint32_t Encode(Address key) const;
const char* NameOfAddress(Address key) const;
private:
HashMap encodings_;
static uint32_t Hash(Address key) {
return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key) >> 2);
}
int IndexOf(Address key) const;
void Put(Address key, int index);
Isolate* isolate_;
};
class ExternalReferenceDecoder {
public:
explicit ExternalReferenceDecoder(Isolate* isolate);
~ExternalReferenceDecoder();
Address Decode(uint32_t key) const {
if (key == 0) return NULL;
return *Lookup(key);
}
private:
Address** encodings_;
Address* Lookup(uint32_t key) const {
int type = key >> kReferenceTypeShift;
DCHECK(kFirstTypeCode <= type && type < kTypeCodeCount);
int id = key & kReferenceIdMask;
return &encodings_[type][id];
}
void Put(uint32_t key, Address value) {
*Lookup(key) = value;
}
Isolate* isolate_;
};
class AddressMapBase {
protected:
static void SetValue(HashMap::Entry* entry, uint32_t v) {
entry->value = reinterpret_cast<void*>(v);
}
static uint32_t GetValue(HashMap::Entry* entry) {
return static_cast<uint32_t>(reinterpret_cast<intptr_t>(entry->value));
}
static HashMap::Entry* LookupEntry(HashMap* map, HeapObject* obj,
bool insert) {
return map->Lookup(Key(obj), Hash(obj), insert);
}
private:
static uint32_t Hash(HeapObject* obj) {
return static_cast<int32_t>(reinterpret_cast<intptr_t>(obj->address()));
}
static void* Key(HeapObject* obj) {
return reinterpret_cast<void*>(obj->address());
}
};
class RootIndexMap : public AddressMapBase {
public:
explicit RootIndexMap(Isolate* isolate);
~RootIndexMap() { delete map_; }
static const int kInvalidRootIndex = -1;
int Lookup(HeapObject* obj) {
HashMap::Entry* entry = LookupEntry(map_, obj, false);
if (entry) return GetValue(entry);
return kInvalidRootIndex;
}
private:
HashMap* map_;
DISALLOW_COPY_AND_ASSIGN(RootIndexMap);
};
class BackReference {
public:
explicit BackReference(uint32_t bitfield) : bitfield_(bitfield) {}
BackReference() : bitfield_(kInvalidValue) {}
static BackReference SourceReference() { return BackReference(kSourceValue); }
static BackReference LargeObjectReference(uint32_t index) {
return BackReference(SpaceBits::encode(LO_SPACE) |
ChunkOffsetBits::encode(index));
}
static BackReference Reference(AllocationSpace space, uint32_t chunk_index,
uint32_t chunk_offset) {
DCHECK(IsAligned(chunk_offset, kObjectAlignment));
DCHECK_NE(LO_SPACE, space);
return BackReference(
SpaceBits::encode(space) | ChunkIndexBits::encode(chunk_index) |
ChunkOffsetBits::encode(chunk_offset >> kObjectAlignmentBits));
}
bool is_valid() const { return bitfield_ != kInvalidValue; }
bool is_source() const { return bitfield_ == kSourceValue; }
AllocationSpace space() const {
DCHECK(is_valid());
return SpaceBits::decode(bitfield_);
}
uint32_t chunk_offset() const {
DCHECK(is_valid());
return ChunkOffsetBits::decode(bitfield_) << kObjectAlignmentBits;
}
uint32_t chunk_index() const {
DCHECK(is_valid());
return ChunkIndexBits::decode(bitfield_);
}
uint32_t reference() const {
DCHECK(is_valid());
return bitfield_ & (ChunkOffsetBits::kMask | ChunkIndexBits::kMask);
}
uint32_t bitfield() const { return bitfield_; }
private:
static const uint32_t kInvalidValue = 0xFFFFFFFF;
static const uint32_t kSourceValue = 0xFFFFFFFE;
static const int kChunkOffsetSize = kPageSizeBits - kObjectAlignmentBits;
static const int kChunkIndexSize = 32 - kChunkOffsetSize - kSpaceTagSize;
public:
static const int kMaxChunkIndex = (1 << kChunkIndexSize) - 1;
private:
class ChunkOffsetBits : public BitField<uint32_t, 0, kChunkOffsetSize> {};
class ChunkIndexBits
: public BitField<uint32_t, ChunkOffsetBits::kNext, kChunkIndexSize> {};
class SpaceBits
: public BitField<AllocationSpace, ChunkIndexBits::kNext, kSpaceTagSize> {
};
uint32_t bitfield_;
};
// Mapping objects to their location after deserialization.
// This is used during building, but not at runtime by V8.
class BackReferenceMap : public AddressMapBase {
public:
BackReferenceMap()
: no_allocation_(), map_(new HashMap(HashMap::PointersMatch)) {}
~BackReferenceMap() { delete map_; }
BackReference Lookup(HeapObject* obj) {
HashMap::Entry* entry = LookupEntry(map_, obj, false);
return entry ? BackReference(GetValue(entry)) : BackReference();
}
void Add(HeapObject* obj, BackReference b) {
DCHECK(b.is_valid());
DCHECK_EQ(NULL, LookupEntry(map_, obj, false));
HashMap::Entry* entry = LookupEntry(map_, obj, true);
SetValue(entry, b.bitfield());
}
void AddSourceString(String* string) {
Add(string, BackReference::SourceReference());
}
private:
DisallowHeapAllocation no_allocation_;
HashMap* map_;
DISALLOW_COPY_AND_ASSIGN(BackReferenceMap);
};
class HotObjectsList {
public:
HotObjectsList() : index_(0) {
for (int i = 0; i < kSize; i++) circular_queue_[i] = NULL;
}
void Add(HeapObject* object) {
circular_queue_[index_] = object;
index_ = (index_ + 1) & kSizeMask;
}
HeapObject* Get(int index) {
DCHECK_NE(NULL, circular_queue_[index]);
return circular_queue_[index];
}
static const int kNotFound = -1;
int Find(HeapObject* object) {
for (int i = 0; i < kSize; i++) {
if (circular_queue_[i] == object) return i;
}
return kNotFound;
}
static const int kSize = 8;
private:
STATIC_ASSERT(IS_POWER_OF_TWO(kSize));
static const int kSizeMask = kSize - 1;
HeapObject* circular_queue_[kSize];
int index_;
DISALLOW_COPY_AND_ASSIGN(HotObjectsList);
};
// The Serializer/Deserializer class is a common superclass for Serializer and
// Deserializer which is used to store common constants and methods used by
// both.
class SerializerDeserializer: public ObjectVisitor {
public:
static void Iterate(Isolate* isolate, ObjectVisitor* visitor);
static int nop() { return kNop; }
// No reservation for large object space necessary.
static const int kNumberOfPreallocatedSpaces = LO_SPACE;
static const int kNumberOfSpaces = LAST_SPACE + 1;
protected:
// Where the pointed-to object can be found:
enum Where {
kNewObject = 0, // Object is next in snapshot.
// 1-7 One per space.
// 0x8 Unused.
kRootArray = 0x9, // Object is found in root array.
kPartialSnapshotCache = 0xa, // Object is in the cache.
kExternalReference = 0xb, // Pointer to an external reference.
kSkip = 0xc, // Skip n bytes.
kBuiltin = 0xd, // Builtin code object.
kAttachedReference = 0xe, // Object is described in an attached list.
// 0xf Used by misc. See below.
kBackref = 0x10, // Object is described relative to end.
// 0x11-0x17 One per space.
kBackrefWithSkip = 0x18, // Object is described relative to end.
// 0x19-0x1f One per space.
// 0x20-0x3f Used by misc. See below.
kPointedToMask = 0x3f
};
// How to code the pointer to the object.
enum HowToCode {
kPlain = 0, // Straight pointer.
// What this means depends on the architecture:
kFromCode = 0x40, // A pointer inlined in code.
kHowToCodeMask = 0x40
};
// For kRootArrayConstants
enum WithSkip {
kNoSkipDistance = 0,
kHasSkipDistance = 0x40,
kWithSkipMask = 0x40
};
// Where to point within the object.
enum WhereToPoint {
kStartOfObject = 0,
kInnerPointer = 0x80, // First insn in code object or payload of cell.
kWhereToPointMask = 0x80
};
// Misc.
// Raw data to be copied from the snapshot. This byte code does not advance
// the current pointer, which is used for code objects, where we write the
// entire code in one memcpy, then fix up stuff with kSkip and other byte
// codes that overwrite data.
static const int kRawData = 0x20;
// Some common raw lengths: 0x21-0x3f.
// These autoadvance the current pointer.
static const int kOnePointerRawData = 0x21;
static const int kVariableRepeat = 0x60;
// 0x61-0x6f Repeat last word
static const int kFixedRepeat = 0x61;
static const int kFixedRepeatBase = kFixedRepeat - 1;
static const int kLastFixedRepeat = 0x6f;
static const int kMaxFixedRepeats = kLastFixedRepeat - kFixedRepeatBase;
static int CodeForRepeats(int repeats) {
DCHECK(repeats >= 1 && repeats <= kMaxFixedRepeats);
return kFixedRepeatBase + repeats;
}
static int RepeatsForCode(int byte_code) {
DCHECK(byte_code > kFixedRepeatBase && byte_code <= kLastFixedRepeat);
return byte_code - kFixedRepeatBase;
}
// Hot objects are a small set of recently seen or back-referenced objects.
// They are represented by a single opcode to save space.
// We use 0x70..0x77 for 8 hot objects, and 0x78..0x7f to add skip.
static const int kHotObject = 0x70;
static const int kMaxHotObjectIndex = 0x77 - kHotObject;
static const int kHotObjectWithSkip = 0x78;
STATIC_ASSERT(HotObjectsList::kSize == kMaxHotObjectIndex + 1);
STATIC_ASSERT(0x7f - kHotObjectWithSkip == kMaxHotObjectIndex);
static const int kHotObjectIndexMask = 0x7;
static const int kRootArrayConstants = 0xa0;
// 0xa0-0xbf Things from the first 32 elements of the root array.
static const int kRootArrayNumberOfConstantEncodings = 0x20;
static int RootArrayConstantFromByteCode(int byte_code) {
return byte_code & 0x1f;
}
// Do nothing, used for padding.
static const int kNop = 0xf;
// Move to next reserved chunk.
static const int kNextChunk = 0x4f;
// A tag emitted at strategic points in the snapshot to delineate sections.
// If the deserializer does not find these at the expected moments then it
// is an indication that the snapshot and the VM do not fit together.
// Examine the build process for architecture, version or configuration
// mismatches.
static const int kSynchronize = 0x8f;
// Used for the source code of the natives, which is in the executable, but
// is referred to from external strings in the snapshot.
static const int kNativesStringResource = 0xcf;
static const int kAnyOldSpace = -1;
// A bitmask for getting the space out of an instruction.
static const int kSpaceMask = 7;
STATIC_ASSERT(kNumberOfSpaces <= kSpaceMask + 1);
// Sentinel after a new object to indicate that double alignment is needed.
static const int kDoubleAlignmentSentinel = 0;
// Used as index for the attached reference representing the source object.
static const int kSourceObjectReference = 0;
HotObjectsList hot_objects_;
};
class SerializedData {
public:
class Reservation {
public:
explicit Reservation(uint32_t size)
: reservation_(ChunkSizeBits::encode(size)) {}
uint32_t chunk_size() const { return ChunkSizeBits::decode(reservation_); }
bool is_last() const { return IsLastChunkBits::decode(reservation_); }
void mark_as_last() { reservation_ |= IsLastChunkBits::encode(true); }
private:
uint32_t reservation_;
};
SerializedData(byte* data, int size)
: data_(data), size_(size), owns_data_(false) {}
SerializedData() : data_(NULL), size_(0), owns_data_(false) {}
~SerializedData() {
if (owns_data_) DeleteArray<byte>(data_);
}
class ChunkSizeBits : public BitField<uint32_t, 0, 31> {};
class IsLastChunkBits : public BitField<bool, 31, 1> {};
protected:
void SetHeaderValue(int offset, int value) {
reinterpret_cast<int*>(data_)[offset] = value;
}
int GetHeaderValue(int offset) const {
return reinterpret_cast<const int*>(data_)[offset];
}
void AllocateData(int size);
byte* data_;
int size_;
bool owns_data_;
};
// A Deserializer reads a snapshot and reconstructs the Object graph it defines.
class Deserializer: public SerializerDeserializer {
public:
// Create a deserializer from a snapshot byte source.
template <class Data>
explicit Deserializer(Data* data)
: isolate_(NULL),
attached_objects_(NULL),
source_(data->Payload()),
external_reference_decoder_(NULL),
deserialized_large_objects_(0) {
DecodeReservation(data->Reservations());
}
virtual ~Deserializer();
// Deserialize the snapshot into an empty heap.
void Deserialize(Isolate* isolate);
enum OnOOM { FATAL_ON_OOM, NULL_ON_OOM };
// Deserialize a single object and the objects reachable from it.
// We may want to abort gracefully even if deserialization fails.
void DeserializePartial(Isolate* isolate, Object** root,
OnOOM on_oom = FATAL_ON_OOM);
void FlushICacheForNewCodeObjects();
// Serialized user code reference certain objects that are provided in a list
// By calling this method, we assume that we are deserializing user code.
void SetAttachedObjects(Vector<Handle<Object> >* attached_objects) {
attached_objects_ = attached_objects;
}
bool deserializing_user_code() { return attached_objects_ != NULL; }
private:
virtual void VisitPointers(Object** start, Object** end);
virtual void VisitRuntimeEntry(RelocInfo* rinfo) {
UNREACHABLE();
}
void DecodeReservation(Vector<const SerializedData::Reservation> res);
bool ReserveSpace();
// Allocation sites are present in the snapshot, and must be linked into
// a list at deserialization time.
void RelinkAllocationSite(AllocationSite* site);
// Fills in some heap data in an area from start to end (non-inclusive). The
// space id is used for the write barrier. The object_address is the address
// of the object we are writing into, or NULL if we are not writing into an
// object, i.e. if we are writing a series of tagged values that are not on
// the heap.
void ReadData(Object** start, Object** end, int space,
Address object_address);
void ReadObject(int space_number, Object** write_back);
Address Allocate(int space_index, int size);
// Special handling for serialized code like hooking up internalized strings.
HeapObject* ProcessNewObjectFromSerializedCode(HeapObject* obj);
// This returns the address of an object that has been described in the
// snapshot by chunk index and offset.
HeapObject* GetBackReferencedObject(int space);
// Cached current isolate.
Isolate* isolate_;
// Objects from the attached object descriptions in the serialized user code.
Vector<Handle<Object> >* attached_objects_;
SnapshotByteSource source_;
// The address of the next object that will be allocated in each space.
// Each space has a number of chunks reserved by the GC, with each chunk
// fitting into a page. Deserialized objects are allocated into the
// current chunk of the target space by bumping up high water mark.
Heap::Reservation reservations_[kNumberOfSpaces];
uint32_t current_chunk_[kNumberOfPreallocatedSpaces];
Address high_water_[kNumberOfPreallocatedSpaces];
ExternalReferenceDecoder* external_reference_decoder_;
List<HeapObject*> deserialized_large_objects_;
DISALLOW_COPY_AND_ASSIGN(Deserializer);
};
class CodeAddressMap;
// There can be only one serializer per V8 process.
class Serializer : public SerializerDeserializer {
public:
Serializer(Isolate* isolate, SnapshotByteSink* sink);
~Serializer();
virtual void VisitPointers(Object** start, Object** end) OVERRIDE;
void EncodeReservations(List<SerializedData::Reservation>* out) const;
Isolate* isolate() const { return isolate_; }
BackReferenceMap* back_reference_map() { return &back_reference_map_; }
RootIndexMap* root_index_map() { return &root_index_map_; }
protected:
class ObjectSerializer : public ObjectVisitor {
public:
ObjectSerializer(Serializer* serializer,
Object* o,
SnapshotByteSink* sink,
HowToCode how_to_code,
WhereToPoint where_to_point)
: serializer_(serializer),
object_(HeapObject::cast(o)),
sink_(sink),
reference_representation_(how_to_code + where_to_point),
bytes_processed_so_far_(0),
code_object_(o->IsCode()),
code_has_been_output_(false) { }
void Serialize();
void VisitPointers(Object** start, Object** end);
void VisitEmbeddedPointer(RelocInfo* target);
void VisitExternalReference(Address* p);
void VisitExternalReference(RelocInfo* rinfo);
void VisitCodeTarget(RelocInfo* target);
void VisitCodeEntry(Address entry_address);
void VisitCell(RelocInfo* rinfo);
void VisitRuntimeEntry(RelocInfo* reloc);
// Used for seralizing the external strings that hold the natives source.
void VisitExternalOneByteString(
v8::String::ExternalOneByteStringResource** resource);
// We can't serialize a heap with external two byte strings.
void VisitExternalTwoByteString(
v8::String::ExternalStringResource** resource) {
UNREACHABLE();
}
private:
void SerializePrologue(AllocationSpace space, int size, Map* map);
enum ReturnSkip { kCanReturnSkipInsteadOfSkipping, kIgnoringReturn };
// This function outputs or skips the raw data between the last pointer and
// up to the current position. It optionally can just return the number of
// bytes to skip instead of performing a skip instruction, in case the skip
// can be merged into the next instruction.
int OutputRawData(Address up_to, ReturnSkip return_skip = kIgnoringReturn);
// External strings are serialized in a way to resemble sequential strings.
void SerializeExternalString();
Serializer* serializer_;
HeapObject* object_;
SnapshotByteSink* sink_;
int reference_representation_;
int bytes_processed_so_far_;
bool code_object_;
bool code_has_been_output_;
};
virtual void SerializeObject(HeapObject* o, HowToCode how_to_code,
WhereToPoint where_to_point, int skip) = 0;
void PutRoot(int index, HeapObject* object, HowToCode how, WhereToPoint where,
int skip);
// Returns true if the object was successfully serialized.
bool SerializeKnownObject(HeapObject* obj, HowToCode how_to_code,
WhereToPoint where_to_point, int skip);
inline void FlushSkip(int skip) {
if (skip != 0) {
sink_->Put(kSkip, "SkipFromSerializeObject");
sink_->PutInt(skip, "SkipDistanceFromSerializeObject");
}
}
void InitializeAllocators();
// This will return the space for an object.
static AllocationSpace SpaceOfObject(HeapObject* object);
BackReference AllocateLargeObject(int size);
BackReference Allocate(AllocationSpace space, int size);
int EncodeExternalReference(Address addr) {
return external_reference_encoder_->Encode(addr);
}
// GetInt reads 4 bytes at once, requiring padding at the end.
void Pad();
// Some roots should not be serialized, because their actual value depends on
// absolute addresses and they are reset after deserialization, anyway.
bool ShouldBeSkipped(Object** current);
// We may not need the code address map for logging for every instance
// of the serializer. Initialize it on demand.
void InitializeCodeAddressMap();
inline uint32_t max_chunk_size(int space) const {
DCHECK_LE(0, space);
DCHECK_LT(space, kNumberOfSpaces);
return max_chunk_size_[space];
}
Isolate* isolate_;
SnapshotByteSink* sink_;
ExternalReferenceEncoder* external_reference_encoder_;
BackReferenceMap back_reference_map_;
RootIndexMap root_index_map_;
friend class ObjectSerializer;
friend class Deserializer;
private:
CodeAddressMap* code_address_map_;
// Objects from the same space are put into chunks for bulk-allocation
// when deserializing. We have to make sure that each chunk fits into a
// page. So we track the chunk size in pending_chunk_ of a space, but
// when it exceeds a page, we complete the current chunk and start a new one.
uint32_t pending_chunk_[kNumberOfPreallocatedSpaces];
List<uint32_t> completed_chunks_[kNumberOfPreallocatedSpaces];
uint32_t max_chunk_size_[kNumberOfPreallocatedSpaces];
// We map serialized large objects to indexes for back-referencing.
uint32_t large_objects_total_size_;
uint32_t seen_large_objects_index_;
DISALLOW_COPY_AND_ASSIGN(Serializer);
};
class PartialSerializer : public Serializer {
public:
PartialSerializer(Isolate* isolate,
Serializer* startup_snapshot_serializer,
SnapshotByteSink* sink)
: Serializer(isolate, sink),
startup_serializer_(startup_snapshot_serializer) {
InitializeCodeAddressMap();
}
// Serialize the objects reachable from a single object pointer.
void Serialize(Object** o);
virtual void SerializeObject(HeapObject* o, HowToCode how_to_code,
WhereToPoint where_to_point, int skip) OVERRIDE;
private:
int PartialSnapshotCacheIndex(HeapObject* o);
bool ShouldBeInThePartialSnapshotCache(HeapObject* o) {
// Scripts should be referred only through shared function infos. We can't
// allow them to be part of the partial snapshot because they contain a
// unique ID, and deserializing several partial snapshots containing script
// would cause dupes.
DCHECK(!o->IsScript());
return o->IsName() || o->IsSharedFunctionInfo() ||
o->IsHeapNumber() || o->IsCode() ||
o->IsScopeInfo() ||
o->map() ==
startup_serializer_->isolate()->heap()->fixed_cow_array_map();
}
Serializer* startup_serializer_;
DISALLOW_COPY_AND_ASSIGN(PartialSerializer);
};
class StartupSerializer : public Serializer {
public:
StartupSerializer(Isolate* isolate, SnapshotByteSink* sink)
: Serializer(isolate, sink), root_index_wave_front_(0) {
// Clear the cache of objects used by the partial snapshot. After the
// strong roots have been serialized we can create a partial snapshot
// which will repopulate the cache with objects needed by that partial
// snapshot.
isolate->set_serialize_partial_snapshot_cache_length(0);
InitializeCodeAddressMap();
}
// The StartupSerializer has to serialize the root array, which is slightly
// different.
virtual void VisitPointers(Object** start, Object** end) OVERRIDE;
// Serialize the current state of the heap. The order is:
// 1) Strong references.
// 2) Partial snapshot cache.
// 3) Weak references (e.g. the string table).
virtual void SerializeStrongReferences();
virtual void SerializeObject(HeapObject* o, HowToCode how_to_code,
WhereToPoint where_to_point, int skip) OVERRIDE;
void SerializeWeakReferences();
void Serialize() {
SerializeStrongReferences();
SerializeWeakReferences();
Pad();
}
private:
intptr_t root_index_wave_front_;
DISALLOW_COPY_AND_ASSIGN(StartupSerializer);
};
class CodeSerializer : public Serializer {
public:
static ScriptData* Serialize(Isolate* isolate,
Handle<SharedFunctionInfo> info,
Handle<String> source);
MUST_USE_RESULT static MaybeHandle<SharedFunctionInfo> Deserialize(
Isolate* isolate, ScriptData* cached_data, Handle<String> source);
static const int kSourceObjectIndex = 0;
STATIC_ASSERT(kSourceObjectReference == kSourceObjectIndex);
static const int kCodeStubsBaseIndex = 1;
String* source() const {
DCHECK(!AllowHeapAllocation::IsAllowed());
return source_;
}
const List<uint32_t>* stub_keys() const { return &stub_keys_; }
int num_internalized_strings() const { return num_internalized_strings_; }
private:
CodeSerializer(Isolate* isolate, SnapshotByteSink* sink, String* source,
Code* main_code)
: Serializer(isolate, sink),
source_(source),
main_code_(main_code),
num_internalized_strings_(0) {
back_reference_map_.AddSourceString(source);
}
virtual void SerializeObject(HeapObject* o, HowToCode how_to_code,
WhereToPoint where_to_point, int skip) OVERRIDE;
void SerializeBuiltin(int builtin_index, HowToCode how_to_code,
WhereToPoint where_to_point);
void SerializeIC(Code* ic, HowToCode how_to_code,
WhereToPoint where_to_point);
void SerializeCodeStub(uint32_t stub_key, HowToCode how_to_code,
WhereToPoint where_to_point);
void SerializeSourceObject(HowToCode how_to_code,
WhereToPoint where_to_point);
void SerializeGeneric(HeapObject* heap_object, HowToCode how_to_code,
WhereToPoint where_to_point);
int AddCodeStubKey(uint32_t stub_key);
DisallowHeapAllocation no_gc_;
String* source_;
Code* main_code_;
int num_internalized_strings_;
List<uint32_t> stub_keys_;
DISALLOW_COPY_AND_ASSIGN(CodeSerializer);
};
// Wrapper around reservation sizes and the serialization payload.
class SnapshotData : public SerializedData {
public:
// Used when producing.
SnapshotData(const SnapshotByteSink& sink, const Serializer& ser);
// Used when consuming.
explicit SnapshotData(const Vector<const byte> snapshot)
: SerializedData(const_cast<byte*>(snapshot.begin()), snapshot.length()) {
CHECK(IsSane());
}
Vector<const Reservation> Reservations() const;
Vector<const byte> Payload() const;
Vector<const byte> RawData() const {
return Vector<const byte>(data_, size_);
}
private:
bool IsSane();
// The data header consists of int-sized entries:
// [0] version hash
// [1] number of reservation size entries
// [2] payload length
static const int kCheckSumOffset = 0;
static const int kReservationsOffset = 1;
static const int kPayloadLengthOffset = 2;
static const int kHeaderSize = (kPayloadLengthOffset + 1) * kIntSize;
};
// Wrapper around ScriptData to provide code-serializer-specific functionality.
class SerializedCodeData : public SerializedData {
public:
// Used when consuming.
static SerializedCodeData* FromCachedData(ScriptData* cached_data,
String* source) {
DisallowHeapAllocation no_gc;
SerializedCodeData* scd = new SerializedCodeData(cached_data);
if (scd->IsSane(source)) return scd;
cached_data->Reject();
delete scd;
return NULL;
}
// Used when producing.
SerializedCodeData(const List<byte>& payload, const CodeSerializer& cs);
// Return ScriptData object and relinquish ownership over it to the caller.
ScriptData* GetScriptData();
Vector<const Reservation> Reservations() const;
Vector<const byte> Payload() const;
int NumInternalizedStrings() const;
Vector<const uint32_t> CodeStubKeys() const;
private:
explicit SerializedCodeData(ScriptData* data)
: SerializedData(const_cast<byte*>(data->data()), data->length()) {}
bool IsSane(String* source);
int CheckSum(String* source);
// The data header consists of int-sized entries:
// [0] version hash
// [1] number of internalized strings
// [2] number of code stub keys
// [3] number of reservation size entries
// [4] payload length
static const int kCheckSumOffset = 0;
static const int kNumInternalizedStringsOffset = 1;
static const int kReservationsOffset = 2;
static const int kNumCodeStubKeysOffset = 3;
static const int kPayloadLengthOffset = 4;
static const int kHeaderSize = (kPayloadLengthOffset + 1) * kIntSize;
};
} } // namespace v8::internal
#endif // V8_SERIALIZE_H_