v8/src/ia32/code-stubs-ia32.cc
danno 2b991784a4 [stubs] Port FastFunctionBindStub to TF
BUG=chromium:608675
LOG=N

Review-Url: https://codereview.chromium.org/2532483002
Cr-Commit-Position: refs/heads/master@{#41439}
2016-12-01 21:15:48 +00:00

4428 lines
154 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_IA32
#include "src/code-stubs.h"
#include "src/api-arguments.h"
#include "src/base/bits.h"
#include "src/bootstrapper.h"
#include "src/codegen.h"
#include "src/ia32/code-stubs-ia32.h"
#include "src/ia32/frames-ia32.h"
#include "src/ic/handler-compiler.h"
#include "src/ic/ic.h"
#include "src/ic/stub-cache.h"
#include "src/isolate.h"
#include "src/regexp/jsregexp.h"
#include "src/regexp/regexp-macro-assembler.h"
#include "src/runtime/runtime.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void ArrayNArgumentsConstructorStub::Generate(MacroAssembler* masm) {
__ pop(ecx);
__ mov(MemOperand(esp, eax, times_4, 0), edi);
__ push(edi);
__ push(ebx);
__ push(ecx);
__ add(eax, Immediate(3));
__ TailCallRuntime(Runtime::kNewArray);
}
void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
ExternalReference miss) {
// Update the static counter each time a new code stub is generated.
isolate()->counters()->code_stubs()->Increment();
CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
int param_count = descriptor.GetRegisterParameterCount();
{
// Call the runtime system in a fresh internal frame.
FrameScope scope(masm, StackFrame::INTERNAL);
DCHECK(param_count == 0 ||
eax.is(descriptor.GetRegisterParameter(param_count - 1)));
// Push arguments
for (int i = 0; i < param_count; ++i) {
__ push(descriptor.GetRegisterParameter(i));
}
__ CallExternalReference(miss, param_count);
}
__ ret(0);
}
void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
// We don't allow a GC during a store buffer overflow so there is no need to
// store the registers in any particular way, but we do have to store and
// restore them.
__ pushad();
if (save_doubles()) {
__ sub(esp, Immediate(kDoubleSize * XMMRegister::kMaxNumRegisters));
for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
XMMRegister reg = XMMRegister::from_code(i);
__ movsd(Operand(esp, i * kDoubleSize), reg);
}
}
const int argument_count = 1;
AllowExternalCallThatCantCauseGC scope(masm);
__ PrepareCallCFunction(argument_count, ecx);
__ mov(Operand(esp, 0 * kPointerSize),
Immediate(ExternalReference::isolate_address(isolate())));
__ CallCFunction(
ExternalReference::store_buffer_overflow_function(isolate()),
argument_count);
if (save_doubles()) {
for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
XMMRegister reg = XMMRegister::from_code(i);
__ movsd(reg, Operand(esp, i * kDoubleSize));
}
__ add(esp, Immediate(kDoubleSize * XMMRegister::kMaxNumRegisters));
}
__ popad();
__ ret(0);
}
class FloatingPointHelper : public AllStatic {
public:
enum ArgLocation {
ARGS_ON_STACK,
ARGS_IN_REGISTERS
};
// Code pattern for loading a floating point value. Input value must
// be either a smi or a heap number object (fp value). Requirements:
// operand in register number. Returns operand as floating point number
// on FPU stack.
static void LoadFloatOperand(MacroAssembler* masm, Register number);
// Test if operands are smi or number objects (fp). Requirements:
// operand_1 in eax, operand_2 in edx; falls through on float
// operands, jumps to the non_float label otherwise.
static void CheckFloatOperands(MacroAssembler* masm,
Label* non_float,
Register scratch);
// Test if operands are numbers (smi or HeapNumber objects), and load
// them into xmm0 and xmm1 if they are. Jump to label not_numbers if
// either operand is not a number. Operands are in edx and eax.
// Leaves operands unchanged.
static void LoadSSE2Operands(MacroAssembler* masm, Label* not_numbers);
};
void DoubleToIStub::Generate(MacroAssembler* masm) {
Register input_reg = this->source();
Register final_result_reg = this->destination();
DCHECK(is_truncating());
Label check_negative, process_64_bits, done, done_no_stash;
int double_offset = offset();
// Account for return address and saved regs if input is esp.
if (input_reg.is(esp)) double_offset += 3 * kPointerSize;
MemOperand mantissa_operand(MemOperand(input_reg, double_offset));
MemOperand exponent_operand(MemOperand(input_reg,
double_offset + kDoubleSize / 2));
Register scratch1;
{
Register scratch_candidates[3] = { ebx, edx, edi };
for (int i = 0; i < 3; i++) {
scratch1 = scratch_candidates[i];
if (!final_result_reg.is(scratch1) && !input_reg.is(scratch1)) break;
}
}
// Since we must use ecx for shifts below, use some other register (eax)
// to calculate the result if ecx is the requested return register.
Register result_reg = final_result_reg.is(ecx) ? eax : final_result_reg;
// Save ecx if it isn't the return register and therefore volatile, or if it
// is the return register, then save the temp register we use in its stead for
// the result.
Register save_reg = final_result_reg.is(ecx) ? eax : ecx;
__ push(scratch1);
__ push(save_reg);
bool stash_exponent_copy = !input_reg.is(esp);
__ mov(scratch1, mantissa_operand);
if (CpuFeatures::IsSupported(SSE3)) {
CpuFeatureScope scope(masm, SSE3);
// Load x87 register with heap number.
__ fld_d(mantissa_operand);
}
__ mov(ecx, exponent_operand);
if (stash_exponent_copy) __ push(ecx);
__ and_(ecx, HeapNumber::kExponentMask);
__ shr(ecx, HeapNumber::kExponentShift);
__ lea(result_reg, MemOperand(ecx, -HeapNumber::kExponentBias));
__ cmp(result_reg, Immediate(HeapNumber::kMantissaBits));
__ j(below, &process_64_bits);
// Result is entirely in lower 32-bits of mantissa
int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize;
if (CpuFeatures::IsSupported(SSE3)) {
__ fstp(0);
}
__ sub(ecx, Immediate(delta));
__ xor_(result_reg, result_reg);
__ cmp(ecx, Immediate(31));
__ j(above, &done);
__ shl_cl(scratch1);
__ jmp(&check_negative);
__ bind(&process_64_bits);
if (CpuFeatures::IsSupported(SSE3)) {
CpuFeatureScope scope(masm, SSE3);
if (stash_exponent_copy) {
// Already a copy of the exponent on the stack, overwrite it.
STATIC_ASSERT(kDoubleSize == 2 * kPointerSize);
__ sub(esp, Immediate(kDoubleSize / 2));
} else {
// Reserve space for 64 bit answer.
__ sub(esp, Immediate(kDoubleSize)); // Nolint.
}
// Do conversion, which cannot fail because we checked the exponent.
__ fisttp_d(Operand(esp, 0));
__ mov(result_reg, Operand(esp, 0)); // Load low word of answer as result
__ add(esp, Immediate(kDoubleSize));
__ jmp(&done_no_stash);
} else {
// Result must be extracted from shifted 32-bit mantissa
__ sub(ecx, Immediate(delta));
__ neg(ecx);
if (stash_exponent_copy) {
__ mov(result_reg, MemOperand(esp, 0));
} else {
__ mov(result_reg, exponent_operand);
}
__ and_(result_reg,
Immediate(static_cast<uint32_t>(Double::kSignificandMask >> 32)));
__ add(result_reg,
Immediate(static_cast<uint32_t>(Double::kHiddenBit >> 32)));
__ shrd_cl(scratch1, result_reg);
__ shr_cl(result_reg);
__ test(ecx, Immediate(32));
__ cmov(not_equal, scratch1, result_reg);
}
// If the double was negative, negate the integer result.
__ bind(&check_negative);
__ mov(result_reg, scratch1);
__ neg(result_reg);
if (stash_exponent_copy) {
__ cmp(MemOperand(esp, 0), Immediate(0));
} else {
__ cmp(exponent_operand, Immediate(0));
}
__ cmov(greater, result_reg, scratch1);
// Restore registers
__ bind(&done);
if (stash_exponent_copy) {
__ add(esp, Immediate(kDoubleSize / 2));
}
__ bind(&done_no_stash);
if (!final_result_reg.is(result_reg)) {
DCHECK(final_result_reg.is(ecx));
__ mov(final_result_reg, result_reg);
}
__ pop(save_reg);
__ pop(scratch1);
__ ret(0);
}
void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm,
Register number) {
Label load_smi, done;
__ JumpIfSmi(number, &load_smi, Label::kNear);
__ fld_d(FieldOperand(number, HeapNumber::kValueOffset));
__ jmp(&done, Label::kNear);
__ bind(&load_smi);
__ SmiUntag(number);
__ push(number);
__ fild_s(Operand(esp, 0));
__ pop(number);
__ bind(&done);
}
void FloatingPointHelper::LoadSSE2Operands(MacroAssembler* masm,
Label* not_numbers) {
Label load_smi_edx, load_eax, load_smi_eax, load_float_eax, done;
// Load operand in edx into xmm0, or branch to not_numbers.
__ JumpIfSmi(edx, &load_smi_edx, Label::kNear);
Factory* factory = masm->isolate()->factory();
__ cmp(FieldOperand(edx, HeapObject::kMapOffset), factory->heap_number_map());
__ j(not_equal, not_numbers); // Argument in edx is not a number.
__ movsd(xmm0, FieldOperand(edx, HeapNumber::kValueOffset));
__ bind(&load_eax);
// Load operand in eax into xmm1, or branch to not_numbers.
__ JumpIfSmi(eax, &load_smi_eax, Label::kNear);
__ cmp(FieldOperand(eax, HeapObject::kMapOffset), factory->heap_number_map());
__ j(equal, &load_float_eax, Label::kNear);
__ jmp(not_numbers); // Argument in eax is not a number.
__ bind(&load_smi_edx);
__ SmiUntag(edx); // Untag smi before converting to float.
__ Cvtsi2sd(xmm0, edx);
__ SmiTag(edx); // Retag smi for heap number overwriting test.
__ jmp(&load_eax);
__ bind(&load_smi_eax);
__ SmiUntag(eax); // Untag smi before converting to float.
__ Cvtsi2sd(xmm1, eax);
__ SmiTag(eax); // Retag smi for heap number overwriting test.
__ jmp(&done, Label::kNear);
__ bind(&load_float_eax);
__ movsd(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
__ bind(&done);
}
void FloatingPointHelper::CheckFloatOperands(MacroAssembler* masm,
Label* non_float,
Register scratch) {
Label test_other, done;
// Test if both operands are floats or smi -> scratch=k_is_float;
// Otherwise scratch = k_not_float.
__ JumpIfSmi(edx, &test_other, Label::kNear);
__ mov(scratch, FieldOperand(edx, HeapObject::kMapOffset));
Factory* factory = masm->isolate()->factory();
__ cmp(scratch, factory->heap_number_map());
__ j(not_equal, non_float); // argument in edx is not a number -> NaN
__ bind(&test_other);
__ JumpIfSmi(eax, &done, Label::kNear);
__ mov(scratch, FieldOperand(eax, HeapObject::kMapOffset));
__ cmp(scratch, factory->heap_number_map());
__ j(not_equal, non_float); // argument in eax is not a number -> NaN
// Fall-through: Both operands are numbers.
__ bind(&done);
}
void MathPowStub::Generate(MacroAssembler* masm) {
const Register exponent = MathPowTaggedDescriptor::exponent();
DCHECK(exponent.is(eax));
const Register scratch = ecx;
const XMMRegister double_result = xmm3;
const XMMRegister double_base = xmm2;
const XMMRegister double_exponent = xmm1;
const XMMRegister double_scratch = xmm4;
Label call_runtime, done, exponent_not_smi, int_exponent;
// Save 1 in double_result - we need this several times later on.
__ mov(scratch, Immediate(1));
__ Cvtsi2sd(double_result, scratch);
if (exponent_type() == TAGGED) {
__ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
__ SmiUntag(exponent);
__ jmp(&int_exponent);
__ bind(&exponent_not_smi);
__ movsd(double_exponent,
FieldOperand(exponent, HeapNumber::kValueOffset));
}
if (exponent_type() != INTEGER) {
Label fast_power, try_arithmetic_simplification;
__ DoubleToI(exponent, double_exponent, double_scratch,
TREAT_MINUS_ZERO_AS_ZERO, &try_arithmetic_simplification,
&try_arithmetic_simplification,
&try_arithmetic_simplification);
__ jmp(&int_exponent);
__ bind(&try_arithmetic_simplification);
// Skip to runtime if possibly NaN (indicated by the indefinite integer).
__ cvttsd2si(exponent, Operand(double_exponent));
__ cmp(exponent, Immediate(0x1));
__ j(overflow, &call_runtime);
// Using FPU instructions to calculate power.
Label fast_power_failed;
__ bind(&fast_power);
__ fnclex(); // Clear flags to catch exceptions later.
// Transfer (B)ase and (E)xponent onto the FPU register stack.
__ sub(esp, Immediate(kDoubleSize));
__ movsd(Operand(esp, 0), double_exponent);
__ fld_d(Operand(esp, 0)); // E
__ movsd(Operand(esp, 0), double_base);
__ fld_d(Operand(esp, 0)); // B, E
// Exponent is in st(1) and base is in st(0)
// B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B)
// FYL2X calculates st(1) * log2(st(0))
__ fyl2x(); // X
__ fld(0); // X, X
__ frndint(); // rnd(X), X
__ fsub(1); // rnd(X), X-rnd(X)
__ fxch(1); // X - rnd(X), rnd(X)
// F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1
__ f2xm1(); // 2^(X-rnd(X)) - 1, rnd(X)
__ fld1(); // 1, 2^(X-rnd(X)) - 1, rnd(X)
__ faddp(1); // 2^(X-rnd(X)), rnd(X)
// FSCALE calculates st(0) * 2^st(1)
__ fscale(); // 2^X, rnd(X)
__ fstp(1); // 2^X
// Bail out to runtime in case of exceptions in the status word.
__ fnstsw_ax();
__ test_b(eax,
Immediate(0x5F)); // We check for all but precision exception.
__ j(not_zero, &fast_power_failed, Label::kNear);
__ fstp_d(Operand(esp, 0));
__ movsd(double_result, Operand(esp, 0));
__ add(esp, Immediate(kDoubleSize));
__ jmp(&done);
__ bind(&fast_power_failed);
__ fninit();
__ add(esp, Immediate(kDoubleSize));
__ jmp(&call_runtime);
}
// Calculate power with integer exponent.
__ bind(&int_exponent);
const XMMRegister double_scratch2 = double_exponent;
__ mov(scratch, exponent); // Back up exponent.
__ movsd(double_scratch, double_base); // Back up base.
__ movsd(double_scratch2, double_result); // Load double_exponent with 1.
// Get absolute value of exponent.
Label no_neg, while_true, while_false;
__ test(scratch, scratch);
__ j(positive, &no_neg, Label::kNear);
__ neg(scratch);
__ bind(&no_neg);
__ j(zero, &while_false, Label::kNear);
__ shr(scratch, 1);
// Above condition means CF==0 && ZF==0. This means that the
// bit that has been shifted out is 0 and the result is not 0.
__ j(above, &while_true, Label::kNear);
__ movsd(double_result, double_scratch);
__ j(zero, &while_false, Label::kNear);
__ bind(&while_true);
__ shr(scratch, 1);
__ mulsd(double_scratch, double_scratch);
__ j(above, &while_true, Label::kNear);
__ mulsd(double_result, double_scratch);
__ j(not_zero, &while_true);
__ bind(&while_false);
// scratch has the original value of the exponent - if the exponent is
// negative, return 1/result.
__ test(exponent, exponent);
__ j(positive, &done);
__ divsd(double_scratch2, double_result);
__ movsd(double_result, double_scratch2);
// Test whether result is zero. Bail out to check for subnormal result.
// Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
__ xorps(double_scratch2, double_scratch2);
__ ucomisd(double_scratch2, double_result); // Result cannot be NaN.
// double_exponent aliased as double_scratch2 has already been overwritten
// and may not have contained the exponent value in the first place when the
// exponent is a smi. We reset it with exponent value before bailing out.
__ j(not_equal, &done);
__ Cvtsi2sd(double_exponent, exponent);
// Returning or bailing out.
__ bind(&call_runtime);
{
AllowExternalCallThatCantCauseGC scope(masm);
__ PrepareCallCFunction(4, scratch);
__ movsd(Operand(esp, 0 * kDoubleSize), double_base);
__ movsd(Operand(esp, 1 * kDoubleSize), double_exponent);
__ CallCFunction(ExternalReference::power_double_double_function(isolate()),
4);
}
// Return value is in st(0) on ia32.
// Store it into the (fixed) result register.
__ sub(esp, Immediate(kDoubleSize));
__ fstp_d(Operand(esp, 0));
__ movsd(double_result, Operand(esp, 0));
__ add(esp, Immediate(kDoubleSize));
__ bind(&done);
__ ret(0);
}
void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
Label miss;
Register receiver = LoadDescriptor::ReceiverRegister();
// With careful management, we won't have to save slot and vector on
// the stack. Simply handle the possibly missing case first.
// TODO(mvstanton): this code can be more efficient.
__ cmp(FieldOperand(receiver, JSFunction::kPrototypeOrInitialMapOffset),
Immediate(isolate()->factory()->the_hole_value()));
__ j(equal, &miss);
__ TryGetFunctionPrototype(receiver, eax, ebx, &miss);
__ ret(0);
__ bind(&miss);
PropertyAccessCompiler::TailCallBuiltin(
masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
}
void LoadIndexedStringStub::Generate(MacroAssembler* masm) {
// Return address is on the stack.
Label miss;
Register receiver = LoadDescriptor::ReceiverRegister();
Register index = LoadDescriptor::NameRegister();
Register scratch = edi;
DCHECK(!scratch.is(receiver) && !scratch.is(index));
Register result = eax;
DCHECK(!result.is(scratch));
DCHECK(!scratch.is(LoadWithVectorDescriptor::VectorRegister()) &&
result.is(LoadDescriptor::SlotRegister()));
// StringCharAtGenerator doesn't use the result register until it's passed
// the different miss possibilities. If it did, we would have a conflict
// when FLAG_vector_ics is true.
StringCharAtGenerator char_at_generator(receiver, index, scratch, result,
&miss, // When not a string.
&miss, // When not a number.
&miss, // When index out of range.
RECEIVER_IS_STRING);
char_at_generator.GenerateFast(masm);
__ ret(0);
StubRuntimeCallHelper call_helper;
char_at_generator.GenerateSlow(masm, PART_OF_IC_HANDLER, call_helper);
__ bind(&miss);
PropertyAccessCompiler::TailCallBuiltin(
masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
}
void RegExpExecStub::Generate(MacroAssembler* masm) {
// Just jump directly to runtime if native RegExp is not selected at compile
// time or if regexp entry in generated code is turned off runtime switch or
// at compilation.
#ifdef V8_INTERPRETED_REGEXP
__ TailCallRuntime(Runtime::kRegExpExec);
#else // V8_INTERPRETED_REGEXP
// Stack frame on entry.
// esp[0]: return address
// esp[4]: last_match_info (expected JSArray)
// esp[8]: previous index
// esp[12]: subject string
// esp[16]: JSRegExp object
static const int kLastMatchInfoOffset = 1 * kPointerSize;
static const int kPreviousIndexOffset = 2 * kPointerSize;
static const int kSubjectOffset = 3 * kPointerSize;
static const int kJSRegExpOffset = 4 * kPointerSize;
Label runtime;
Factory* factory = isolate()->factory();
// Ensure that a RegExp stack is allocated.
ExternalReference address_of_regexp_stack_memory_address =
ExternalReference::address_of_regexp_stack_memory_address(isolate());
ExternalReference address_of_regexp_stack_memory_size =
ExternalReference::address_of_regexp_stack_memory_size(isolate());
__ mov(ebx, Operand::StaticVariable(address_of_regexp_stack_memory_size));
__ test(ebx, ebx);
__ j(zero, &runtime);
// Check that the first argument is a JSRegExp object.
__ mov(eax, Operand(esp, kJSRegExpOffset));
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfSmi(eax, &runtime);
__ CmpObjectType(eax, JS_REGEXP_TYPE, ecx);
__ j(not_equal, &runtime);
// Check that the RegExp has been compiled (data contains a fixed array).
__ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
if (FLAG_debug_code) {
__ test(ecx, Immediate(kSmiTagMask));
__ Check(not_zero, kUnexpectedTypeForRegExpDataFixedArrayExpected);
__ CmpObjectType(ecx, FIXED_ARRAY_TYPE, ebx);
__ Check(equal, kUnexpectedTypeForRegExpDataFixedArrayExpected);
}
// ecx: RegExp data (FixedArray)
// Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
__ mov(ebx, FieldOperand(ecx, JSRegExp::kDataTagOffset));
__ cmp(ebx, Immediate(Smi::FromInt(JSRegExp::IRREGEXP)));
__ j(not_equal, &runtime);
// ecx: RegExp data (FixedArray)
// Check that the number of captures fit in the static offsets vector buffer.
__ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
// Check (number_of_captures + 1) * 2 <= offsets vector size
// Or number_of_captures * 2 <= offsets vector size - 2
// Multiplying by 2 comes for free since edx is smi-tagged.
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
__ cmp(edx, Isolate::kJSRegexpStaticOffsetsVectorSize - 2);
__ j(above, &runtime);
// Reset offset for possibly sliced string.
__ Move(edi, Immediate(0));
__ mov(eax, Operand(esp, kSubjectOffset));
__ JumpIfSmi(eax, &runtime);
__ mov(edx, eax); // Make a copy of the original subject string.
// eax: subject string
// edx: subject string
// ecx: RegExp data (FixedArray)
// Handle subject string according to its encoding and representation:
// (1) Sequential two byte? If yes, go to (9).
// (2) Sequential one byte? If yes, go to (5).
// (3) Sequential or cons? If not, go to (6).
// (4) Cons string. If the string is flat, replace subject with first string
// and go to (1). Otherwise bail out to runtime.
// (5) One byte sequential. Load regexp code for one byte.
// (E) Carry on.
/// [...]
// Deferred code at the end of the stub:
// (6) Long external string? If not, go to (10).
// (7) External string. Make it, offset-wise, look like a sequential string.
// (8) Is the external string one byte? If yes, go to (5).
// (9) Two byte sequential. Load regexp code for two byte. Go to (E).
// (10) Short external string or not a string? If yes, bail out to runtime.
// (11) Sliced string. Replace subject with parent. Go to (1).
Label seq_one_byte_string /* 5 */, seq_two_byte_string /* 9 */,
external_string /* 7 */, check_underlying /* 1 */,
not_seq_nor_cons /* 6 */, check_code /* E */, not_long_external /* 10 */;
__ bind(&check_underlying);
// (1) Sequential two byte? If yes, go to (9).
__ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
__ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
__ and_(ebx, kIsNotStringMask |
kStringRepresentationMask |
kStringEncodingMask |
kShortExternalStringMask);
STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0);
__ j(zero, &seq_two_byte_string); // Go to (9).
// (2) Sequential one byte? If yes, go to (5).
// Any other sequential string must be one byte.
__ and_(ebx, Immediate(kIsNotStringMask |
kStringRepresentationMask |
kShortExternalStringMask));
__ j(zero, &seq_one_byte_string, Label::kNear); // Go to (5).
// (3) Sequential or cons? If not, go to (6).
// We check whether the subject string is a cons, since sequential strings
// have already been covered.
STATIC_ASSERT(kConsStringTag < kExternalStringTag);
STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
__ cmp(ebx, Immediate(kExternalStringTag));
__ j(greater_equal, &not_seq_nor_cons); // Go to (6).
// (4) Cons string. Check that it's flat.
// Replace subject with first string and reload instance type.
__ cmp(FieldOperand(eax, ConsString::kSecondOffset), factory->empty_string());
__ j(not_equal, &runtime);
__ mov(eax, FieldOperand(eax, ConsString::kFirstOffset));
__ jmp(&check_underlying);
// eax: sequential subject string (or look-alike, external string)
// edx: original subject string
// ecx: RegExp data (FixedArray)
// (5) One byte sequential. Load regexp code for one byte.
__ bind(&seq_one_byte_string);
// Load previous index and check range before edx is overwritten. We have
// to use edx instead of eax here because it might have been only made to
// look like a sequential string when it actually is an external string.
__ mov(ebx, Operand(esp, kPreviousIndexOffset));
__ JumpIfNotSmi(ebx, &runtime);
__ cmp(ebx, FieldOperand(edx, String::kLengthOffset));
__ j(above_equal, &runtime);
__ mov(edx, FieldOperand(ecx, JSRegExp::kDataOneByteCodeOffset));
__ Move(ecx, Immediate(1)); // Type is one byte.
// (E) Carry on. String handling is done.
__ bind(&check_code);
// edx: irregexp code
// Check that the irregexp code has been generated for the actual string
// encoding. If it has, the field contains a code object otherwise it contains
// a smi (code flushing support).
__ JumpIfSmi(edx, &runtime);
// eax: subject string
// ebx: previous index (smi)
// edx: code
// ecx: encoding of subject string (1 if one_byte, 0 if two_byte);
// All checks done. Now push arguments for native regexp code.
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->regexp_entry_native(), 1);
// Isolates: note we add an additional parameter here (isolate pointer).
static const int kRegExpExecuteArguments = 9;
__ EnterApiExitFrame(kRegExpExecuteArguments);
// Argument 9: Pass current isolate address.
__ mov(Operand(esp, 8 * kPointerSize),
Immediate(ExternalReference::isolate_address(isolate())));
// Argument 8: Indicate that this is a direct call from JavaScript.
__ mov(Operand(esp, 7 * kPointerSize), Immediate(1));
// Argument 7: Start (high end) of backtracking stack memory area.
__ mov(esi, Operand::StaticVariable(address_of_regexp_stack_memory_address));
__ add(esi, Operand::StaticVariable(address_of_regexp_stack_memory_size));
__ mov(Operand(esp, 6 * kPointerSize), esi);
// Argument 6: Set the number of capture registers to zero to force global
// regexps to behave as non-global. This does not affect non-global regexps.
__ mov(Operand(esp, 5 * kPointerSize), Immediate(0));
// Argument 5: static offsets vector buffer.
__ mov(Operand(esp, 4 * kPointerSize),
Immediate(ExternalReference::address_of_static_offsets_vector(
isolate())));
// Argument 2: Previous index.
__ SmiUntag(ebx);
__ mov(Operand(esp, 1 * kPointerSize), ebx);
// Argument 1: Original subject string.
// The original subject is in the previous stack frame. Therefore we have to
// use ebp, which points exactly to one pointer size below the previous esp.
// (Because creating a new stack frame pushes the previous ebp onto the stack
// and thereby moves up esp by one kPointerSize.)
__ mov(esi, Operand(ebp, kSubjectOffset + kPointerSize));
__ mov(Operand(esp, 0 * kPointerSize), esi);
// esi: original subject string
// eax: underlying subject string
// ebx: previous index
// ecx: encoding of subject string (1 if one_byte 0 if two_byte);
// edx: code
// Argument 4: End of string data
// Argument 3: Start of string data
// Prepare start and end index of the input.
// Load the length from the original sliced string if that is the case.
__ mov(esi, FieldOperand(esi, String::kLengthOffset));
__ add(esi, edi); // Calculate input end wrt offset.
__ SmiUntag(edi);
__ add(ebx, edi); // Calculate input start wrt offset.
// ebx: start index of the input string
// esi: end index of the input string
Label setup_two_byte, setup_rest;
__ test(ecx, ecx);
__ j(zero, &setup_two_byte, Label::kNear);
__ SmiUntag(esi);
__ lea(ecx, FieldOperand(eax, esi, times_1, SeqOneByteString::kHeaderSize));
__ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4.
__ lea(ecx, FieldOperand(eax, ebx, times_1, SeqOneByteString::kHeaderSize));
__ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3.
__ jmp(&setup_rest, Label::kNear);
__ bind(&setup_two_byte);
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiTagSize == 1); // esi is smi (powered by 2).
__ lea(ecx, FieldOperand(eax, esi, times_1, SeqTwoByteString::kHeaderSize));
__ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4.
__ lea(ecx, FieldOperand(eax, ebx, times_2, SeqTwoByteString::kHeaderSize));
__ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3.
__ bind(&setup_rest);
// Locate the code entry and call it.
__ add(edx, Immediate(Code::kHeaderSize - kHeapObjectTag));
__ call(edx);
// Drop arguments and come back to JS mode.
__ LeaveApiExitFrame(true);
// Check the result.
Label success;
__ cmp(eax, 1);
// We expect exactly one result since we force the called regexp to behave
// as non-global.
__ j(equal, &success);
Label failure;
__ cmp(eax, NativeRegExpMacroAssembler::FAILURE);
__ j(equal, &failure);
__ cmp(eax, NativeRegExpMacroAssembler::EXCEPTION);
// If not exception it can only be retry. Handle that in the runtime system.
__ j(not_equal, &runtime);
// Result must now be exception. If there is no pending exception already a
// stack overflow (on the backtrack stack) was detected in RegExp code but
// haven't created the exception yet. Handle that in the runtime system.
// TODO(592): Rerunning the RegExp to get the stack overflow exception.
ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
isolate());
__ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
__ mov(eax, Operand::StaticVariable(pending_exception));
__ cmp(edx, eax);
__ j(equal, &runtime);
// For exception, throw the exception again.
__ TailCallRuntime(Runtime::kRegExpExecReThrow);
__ bind(&failure);
// For failure to match, return null.
__ mov(eax, factory->null_value());
__ ret(4 * kPointerSize);
// Load RegExp data.
__ bind(&success);
__ mov(eax, Operand(esp, kJSRegExpOffset));
__ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
__ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
// Calculate number of capture registers (number_of_captures + 1) * 2.
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
__ add(edx, Immediate(2)); // edx was a smi.
// edx: Number of capture registers
// Check that the last match info is a FixedArray.
__ mov(ebx, Operand(esp, kLastMatchInfoOffset));
__ JumpIfSmi(ebx, &runtime);
// Check that the object has fast elements.
__ mov(eax, FieldOperand(ebx, HeapObject::kMapOffset));
__ cmp(eax, factory->fixed_array_map());
__ j(not_equal, &runtime);
// Check that the last match info has space for the capture registers and the
// additional information.
__ mov(eax, FieldOperand(ebx, FixedArray::kLengthOffset));
__ SmiUntag(eax);
__ sub(eax, Immediate(RegExpMatchInfo::kLastMatchOverhead));
__ cmp(edx, eax);
__ j(greater, &runtime);
// ebx: last_match_info (FixedArray)
// edx: number of capture registers
// Store the capture count.
__ SmiTag(edx); // Number of capture registers to smi.
__ mov(FieldOperand(ebx, RegExpMatchInfo::kNumberOfCapturesOffset), edx);
__ SmiUntag(edx); // Number of capture registers back from smi.
// Store last subject and last input.
__ mov(eax, Operand(esp, kSubjectOffset));
__ mov(ecx, eax);
__ mov(FieldOperand(ebx, RegExpMatchInfo::kLastSubjectOffset), eax);
__ RecordWriteField(ebx, RegExpMatchInfo::kLastSubjectOffset, eax, edi,
kDontSaveFPRegs);
__ mov(eax, ecx);
__ mov(FieldOperand(ebx, RegExpMatchInfo::kLastInputOffset), eax);
__ RecordWriteField(ebx, RegExpMatchInfo::kLastInputOffset, eax, edi,
kDontSaveFPRegs);
// Get the static offsets vector filled by the native regexp code.
ExternalReference address_of_static_offsets_vector =
ExternalReference::address_of_static_offsets_vector(isolate());
__ mov(ecx, Immediate(address_of_static_offsets_vector));
// ebx: last_match_info (FixedArray)
// ecx: offsets vector
// edx: number of capture registers
Label next_capture, done;
// Capture register counter starts from number of capture registers and
// counts down until wrapping after zero.
__ bind(&next_capture);
__ sub(edx, Immediate(1));
__ j(negative, &done, Label::kNear);
// Read the value from the static offsets vector buffer.
__ mov(edi, Operand(ecx, edx, times_int_size, 0));
__ SmiTag(edi);
// Store the smi value in the last match info.
__ mov(FieldOperand(ebx, edx, times_pointer_size,
RegExpMatchInfo::kFirstCaptureOffset),
edi);
__ jmp(&next_capture);
__ bind(&done);
// Return last match info.
__ mov(eax, ebx);
__ ret(4 * kPointerSize);
// Do the runtime call to execute the regexp.
__ bind(&runtime);
__ TailCallRuntime(Runtime::kRegExpExec);
// Deferred code for string handling.
// (6) Long external string? If not, go to (10).
__ bind(&not_seq_nor_cons);
// Compare flags are still set from (3).
__ j(greater, &not_long_external, Label::kNear); // Go to (10).
// (7) External string. Short external strings have been ruled out.
__ bind(&external_string);
// Reload instance type.
__ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
__ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
if (FLAG_debug_code) {
// Assert that we do not have a cons or slice (indirect strings) here.
// Sequential strings have already been ruled out.
__ test_b(ebx, Immediate(kIsIndirectStringMask));
__ Assert(zero, kExternalStringExpectedButNotFound);
}
__ mov(eax, FieldOperand(eax, ExternalString::kResourceDataOffset));
// Move the pointer so that offset-wise, it looks like a sequential string.
STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
__ sub(eax, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
STATIC_ASSERT(kTwoByteStringTag == 0);
// (8) Is the external string one byte? If yes, go to (5).
__ test_b(ebx, Immediate(kStringEncodingMask));
__ j(not_zero, &seq_one_byte_string); // Go to (5).
// eax: sequential subject string (or look-alike, external string)
// edx: original subject string
// ecx: RegExp data (FixedArray)
// (9) Two byte sequential. Load regexp code for two byte. Go to (E).
__ bind(&seq_two_byte_string);
// Load previous index and check range before edx is overwritten. We have
// to use edx instead of eax here because it might have been only made to
// look like a sequential string when it actually is an external string.
__ mov(ebx, Operand(esp, kPreviousIndexOffset));
__ JumpIfNotSmi(ebx, &runtime);
__ cmp(ebx, FieldOperand(edx, String::kLengthOffset));
__ j(above_equal, &runtime);
__ mov(edx, FieldOperand(ecx, JSRegExp::kDataUC16CodeOffset));
__ Move(ecx, Immediate(0)); // Type is two byte.
__ jmp(&check_code); // Go to (E).
// (10) Not a string or a short external string? If yes, bail out to runtime.
__ bind(&not_long_external);
// Catch non-string subject or short external string.
STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
__ test(ebx, Immediate(kIsNotStringMask | kShortExternalStringTag));
__ j(not_zero, &runtime);
// (11) Sliced string. Replace subject with parent. Go to (1).
// Load offset into edi and replace subject string with parent.
__ mov(edi, FieldOperand(eax, SlicedString::kOffsetOffset));
__ mov(eax, FieldOperand(eax, SlicedString::kParentOffset));
__ jmp(&check_underlying); // Go to (1).
#endif // V8_INTERPRETED_REGEXP
}
static int NegativeComparisonResult(Condition cc) {
DCHECK(cc != equal);
DCHECK((cc == less) || (cc == less_equal)
|| (cc == greater) || (cc == greater_equal));
return (cc == greater || cc == greater_equal) ? LESS : GREATER;
}
static void CheckInputType(MacroAssembler* masm, Register input,
CompareICState::State expected, Label* fail) {
Label ok;
if (expected == CompareICState::SMI) {
__ JumpIfNotSmi(input, fail);
} else if (expected == CompareICState::NUMBER) {
__ JumpIfSmi(input, &ok);
__ cmp(FieldOperand(input, HeapObject::kMapOffset),
Immediate(masm->isolate()->factory()->heap_number_map()));
__ j(not_equal, fail);
}
// We could be strict about internalized/non-internalized here, but as long as
// hydrogen doesn't care, the stub doesn't have to care either.
__ bind(&ok);
}
static void BranchIfNotInternalizedString(MacroAssembler* masm,
Label* label,
Register object,
Register scratch) {
__ JumpIfSmi(object, label);
__ mov(scratch, FieldOperand(object, HeapObject::kMapOffset));
__ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
__ test(scratch, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
__ j(not_zero, label);
}
void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
Label runtime_call, check_unequal_objects;
Condition cc = GetCondition();
Label miss;
CheckInputType(masm, edx, left(), &miss);
CheckInputType(masm, eax, right(), &miss);
// Compare two smis.
Label non_smi, smi_done;
__ mov(ecx, edx);
__ or_(ecx, eax);
__ JumpIfNotSmi(ecx, &non_smi, Label::kNear);
__ sub(edx, eax); // Return on the result of the subtraction.
__ j(no_overflow, &smi_done, Label::kNear);
__ not_(edx); // Correct sign in case of overflow. edx is never 0 here.
__ bind(&smi_done);
__ mov(eax, edx);
__ ret(0);
__ bind(&non_smi);
// NOTICE! This code is only reached after a smi-fast-case check, so
// it is certain that at least one operand isn't a smi.
// Identical objects can be compared fast, but there are some tricky cases
// for NaN and undefined.
Label generic_heap_number_comparison;
{
Label not_identical;
__ cmp(eax, edx);
__ j(not_equal, &not_identical);
if (cc != equal) {
// Check for undefined. undefined OP undefined is false even though
// undefined == undefined.
__ cmp(edx, isolate()->factory()->undefined_value());
Label check_for_nan;
__ j(not_equal, &check_for_nan, Label::kNear);
__ Move(eax, Immediate(Smi::FromInt(NegativeComparisonResult(cc))));
__ ret(0);
__ bind(&check_for_nan);
}
// Test for NaN. Compare heap numbers in a general way,
// to handle NaNs correctly.
__ cmp(FieldOperand(edx, HeapObject::kMapOffset),
Immediate(isolate()->factory()->heap_number_map()));
__ j(equal, &generic_heap_number_comparison, Label::kNear);
if (cc != equal) {
__ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
__ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
// Call runtime on identical JSObjects. Otherwise return equal.
__ cmpb(ecx, Immediate(FIRST_JS_RECEIVER_TYPE));
__ j(above_equal, &runtime_call, Label::kFar);
// Call runtime on identical symbols since we need to throw a TypeError.
__ cmpb(ecx, Immediate(SYMBOL_TYPE));
__ j(equal, &runtime_call, Label::kFar);
// Call runtime on identical SIMD values since we must throw a TypeError.
__ cmpb(ecx, Immediate(SIMD128_VALUE_TYPE));
__ j(equal, &runtime_call, Label::kFar);
}
__ Move(eax, Immediate(Smi::FromInt(EQUAL)));
__ ret(0);
__ bind(&not_identical);
}
// Strict equality can quickly decide whether objects are equal.
// Non-strict object equality is slower, so it is handled later in the stub.
if (cc == equal && strict()) {
Label slow; // Fallthrough label.
Label not_smis;
// If we're doing a strict equality comparison, we don't have to do
// type conversion, so we generate code to do fast comparison for objects
// and oddballs. Non-smi numbers and strings still go through the usual
// slow-case code.
// If either is a Smi (we know that not both are), then they can only
// be equal if the other is a HeapNumber. If so, use the slow case.
STATIC_ASSERT(kSmiTag == 0);
DCHECK_EQ(static_cast<Smi*>(0), Smi::kZero);
__ mov(ecx, Immediate(kSmiTagMask));
__ and_(ecx, eax);
__ test(ecx, edx);
__ j(not_zero, &not_smis, Label::kNear);
// One operand is a smi.
// Check whether the non-smi is a heap number.
STATIC_ASSERT(kSmiTagMask == 1);
// ecx still holds eax & kSmiTag, which is either zero or one.
__ sub(ecx, Immediate(0x01));
__ mov(ebx, edx);
__ xor_(ebx, eax);
__ and_(ebx, ecx); // ebx holds either 0 or eax ^ edx.
__ xor_(ebx, eax);
// if eax was smi, ebx is now edx, else eax.
// Check if the non-smi operand is a heap number.
__ cmp(FieldOperand(ebx, HeapObject::kMapOffset),
Immediate(isolate()->factory()->heap_number_map()));
// If heap number, handle it in the slow case.
__ j(equal, &slow, Label::kNear);
// Return non-equal (ebx is not zero)
__ mov(eax, ebx);
__ ret(0);
__ bind(&not_smis);
// If either operand is a JSObject or an oddball value, then they are not
// equal since their pointers are different
// There is no test for undetectability in strict equality.
// Get the type of the first operand.
// If the first object is a JS object, we have done pointer comparison.
Label first_non_object;
STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
__ CmpObjectType(eax, FIRST_JS_RECEIVER_TYPE, ecx);
__ j(below, &first_non_object, Label::kNear);
// Return non-zero (eax is not zero)
Label return_not_equal;
STATIC_ASSERT(kHeapObjectTag != 0);
__ bind(&return_not_equal);
__ ret(0);
__ bind(&first_non_object);
// Check for oddballs: true, false, null, undefined.
__ CmpInstanceType(ecx, ODDBALL_TYPE);
__ j(equal, &return_not_equal);
__ CmpObjectType(edx, FIRST_JS_RECEIVER_TYPE, ecx);
__ j(above_equal, &return_not_equal);
// Check for oddballs: true, false, null, undefined.
__ CmpInstanceType(ecx, ODDBALL_TYPE);
__ j(equal, &return_not_equal);
// Fall through to the general case.
__ bind(&slow);
}
// Generate the number comparison code.
Label non_number_comparison;
Label unordered;
__ bind(&generic_heap_number_comparison);
FloatingPointHelper::LoadSSE2Operands(masm, &non_number_comparison);
__ ucomisd(xmm0, xmm1);
// Don't base result on EFLAGS when a NaN is involved.
__ j(parity_even, &unordered, Label::kNear);
__ mov(eax, 0); // equal
__ mov(ecx, Immediate(Smi::FromInt(1)));
__ cmov(above, eax, ecx);
__ mov(ecx, Immediate(Smi::FromInt(-1)));
__ cmov(below, eax, ecx);
__ ret(0);
// If one of the numbers was NaN, then the result is always false.
// The cc is never not-equal.
__ bind(&unordered);
DCHECK(cc != not_equal);
if (cc == less || cc == less_equal) {
__ mov(eax, Immediate(Smi::FromInt(1)));
} else {
__ mov(eax, Immediate(Smi::FromInt(-1)));
}
__ ret(0);
// The number comparison code did not provide a valid result.
__ bind(&non_number_comparison);
// Fast negative check for internalized-to-internalized equality.
Label check_for_strings;
if (cc == equal) {
BranchIfNotInternalizedString(masm, &check_for_strings, eax, ecx);
BranchIfNotInternalizedString(masm, &check_for_strings, edx, ecx);
// We've already checked for object identity, so if both operands
// are internalized they aren't equal. Register eax already holds a
// non-zero value, which indicates not equal, so just return.
__ ret(0);
}
__ bind(&check_for_strings);
__ JumpIfNotBothSequentialOneByteStrings(edx, eax, ecx, ebx,
&check_unequal_objects);
// Inline comparison of one-byte strings.
if (cc == equal) {
StringHelper::GenerateFlatOneByteStringEquals(masm, edx, eax, ecx, ebx);
} else {
StringHelper::GenerateCompareFlatOneByteStrings(masm, edx, eax, ecx, ebx,
edi);
}
#ifdef DEBUG
__ Abort(kUnexpectedFallThroughFromStringComparison);
#endif
__ bind(&check_unequal_objects);
if (cc == equal && !strict()) {
// Non-strict equality. Objects are unequal if
// they are both JSObjects and not undetectable,
// and their pointers are different.
Label return_equal, return_unequal, undetectable;
// At most one is a smi, so we can test for smi by adding the two.
// A smi plus a heap object has the low bit set, a heap object plus
// a heap object has the low bit clear.
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiTagMask == 1);
__ lea(ecx, Operand(eax, edx, times_1, 0));
__ test(ecx, Immediate(kSmiTagMask));
__ j(not_zero, &runtime_call);
__ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
__ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset));
__ test_b(FieldOperand(ebx, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
__ j(not_zero, &undetectable, Label::kNear);
__ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
__ j(not_zero, &return_unequal, Label::kNear);
__ CmpInstanceType(ebx, FIRST_JS_RECEIVER_TYPE);
__ j(below, &runtime_call, Label::kNear);
__ CmpInstanceType(ecx, FIRST_JS_RECEIVER_TYPE);
__ j(below, &runtime_call, Label::kNear);
__ bind(&return_unequal);
// Return non-equal by returning the non-zero object pointer in eax.
__ ret(0); // eax, edx were pushed
__ bind(&undetectable);
__ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
__ j(zero, &return_unequal, Label::kNear);
// If both sides are JSReceivers, then the result is false according to
// the HTML specification, which says that only comparisons with null or
// undefined are affected by special casing for document.all.
__ CmpInstanceType(ebx, ODDBALL_TYPE);
__ j(zero, &return_equal, Label::kNear);
__ CmpInstanceType(ecx, ODDBALL_TYPE);
__ j(not_zero, &return_unequal, Label::kNear);
__ bind(&return_equal);
__ Move(eax, Immediate(EQUAL));
__ ret(0); // eax, edx were pushed
}
__ bind(&runtime_call);
if (cc == equal) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(edx);
__ Push(eax);
__ CallRuntime(strict() ? Runtime::kStrictEqual : Runtime::kEqual);
}
// Turn true into 0 and false into some non-zero value.
STATIC_ASSERT(EQUAL == 0);
__ sub(eax, Immediate(isolate()->factory()->true_value()));
__ Ret();
} else {
// Push arguments below the return address.
__ pop(ecx);
__ push(edx);
__ push(eax);
__ push(Immediate(Smi::FromInt(NegativeComparisonResult(cc))));
__ push(ecx);
// Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
// tagged as a small integer.
__ TailCallRuntime(Runtime::kCompare);
}
__ bind(&miss);
GenerateMiss(masm);
}
static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub) {
// eax : number of arguments to the construct function
// ebx : feedback vector
// edx : slot in feedback vector (Smi)
// edi : the function to call
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Number-of-arguments register must be smi-tagged to call out.
__ SmiTag(eax);
__ push(eax);
__ push(edi);
__ push(edx);
__ push(ebx);
__ push(esi);
__ CallStub(stub);
__ pop(esi);
__ pop(ebx);
__ pop(edx);
__ pop(edi);
__ pop(eax);
__ SmiUntag(eax);
}
}
static void GenerateRecordCallTarget(MacroAssembler* masm) {
// Cache the called function in a feedback vector slot. Cache states
// are uninitialized, monomorphic (indicated by a JSFunction), and
// megamorphic.
// eax : number of arguments to the construct function
// ebx : feedback vector
// edx : slot in feedback vector (Smi)
// edi : the function to call
Isolate* isolate = masm->isolate();
Label initialize, done, miss, megamorphic, not_array_function;
// Load the cache state into ecx.
__ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
FixedArray::kHeaderSize));
// A monomorphic cache hit or an already megamorphic state: invoke the
// function without changing the state.
// We don't know if ecx is a WeakCell or a Symbol, but it's harmless to read
// at this position in a symbol (see static asserts in
// type-feedback-vector.h).
Label check_allocation_site;
__ cmp(edi, FieldOperand(ecx, WeakCell::kValueOffset));
__ j(equal, &done, Label::kFar);
__ CompareRoot(ecx, Heap::kmegamorphic_symbolRootIndex);
__ j(equal, &done, Label::kFar);
__ CompareRoot(FieldOperand(ecx, HeapObject::kMapOffset),
Heap::kWeakCellMapRootIndex);
__ j(not_equal, &check_allocation_site);
// If the weak cell is cleared, we have a new chance to become monomorphic.
__ JumpIfSmi(FieldOperand(ecx, WeakCell::kValueOffset), &initialize);
__ jmp(&megamorphic);
__ bind(&check_allocation_site);
// If we came here, we need to see if we are the array function.
// If we didn't have a matching function, and we didn't find the megamorph
// sentinel, then we have in the slot either some other function or an
// AllocationSite.
__ CompareRoot(FieldOperand(ecx, 0), Heap::kAllocationSiteMapRootIndex);
__ j(not_equal, &miss);
// Make sure the function is the Array() function
__ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
__ cmp(edi, ecx);
__ j(not_equal, &megamorphic);
__ jmp(&done, Label::kFar);
__ bind(&miss);
// A monomorphic miss (i.e, here the cache is not uninitialized) goes
// megamorphic.
__ CompareRoot(ecx, Heap::kuninitialized_symbolRootIndex);
__ j(equal, &initialize);
// MegamorphicSentinel is an immortal immovable object (undefined) so no
// write-barrier is needed.
__ bind(&megamorphic);
__ mov(
FieldOperand(ebx, edx, times_half_pointer_size, FixedArray::kHeaderSize),
Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
__ jmp(&done, Label::kFar);
// An uninitialized cache is patched with the function or sentinel to
// indicate the ElementsKind if function is the Array constructor.
__ bind(&initialize);
// Make sure the function is the Array() function
__ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
__ cmp(edi, ecx);
__ j(not_equal, &not_array_function);
// The target function is the Array constructor,
// Create an AllocationSite if we don't already have it, store it in the
// slot.
CreateAllocationSiteStub create_stub(isolate);
CallStubInRecordCallTarget(masm, &create_stub);
__ jmp(&done);
__ bind(&not_array_function);
CreateWeakCellStub weak_cell_stub(isolate);
CallStubInRecordCallTarget(masm, &weak_cell_stub);
__ bind(&done);
// Increment the call count for all function calls.
__ add(FieldOperand(ebx, edx, times_half_pointer_size,
FixedArray::kHeaderSize + kPointerSize),
Immediate(Smi::FromInt(1)));
}
void CallConstructStub::Generate(MacroAssembler* masm) {
// eax : number of arguments
// ebx : feedback vector
// edx : slot in feedback vector (Smi, for RecordCallTarget)
// edi : constructor function
Label non_function;
// Check that function is not a smi.
__ JumpIfSmi(edi, &non_function);
// Check that function is a JSFunction.
__ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
__ j(not_equal, &non_function);
GenerateRecordCallTarget(masm);
Label feedback_register_initialized;
// Put the AllocationSite from the feedback vector into ebx, or undefined.
__ mov(ebx, FieldOperand(ebx, edx, times_half_pointer_size,
FixedArray::kHeaderSize));
Handle<Map> allocation_site_map = isolate()->factory()->allocation_site_map();
__ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map));
__ j(equal, &feedback_register_initialized);
__ mov(ebx, isolate()->factory()->undefined_value());
__ bind(&feedback_register_initialized);
__ AssertUndefinedOrAllocationSite(ebx);
// Pass new target to construct stub.
__ mov(edx, edi);
// Tail call to the function-specific construct stub (still in the caller
// context at this point).
__ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kConstructStubOffset));
__ lea(ecx, FieldOperand(ecx, Code::kHeaderSize));
__ jmp(ecx);
__ bind(&non_function);
__ mov(edx, edi);
__ Jump(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
}
static void IncrementCallCount(MacroAssembler* masm, Register feedback_vector,
Register slot) {
__ add(FieldOperand(feedback_vector, slot, times_half_pointer_size,
FixedArray::kHeaderSize + kPointerSize),
Immediate(Smi::FromInt(1)));
}
void CallICStub::HandleArrayCase(MacroAssembler* masm, Label* miss) {
// eax - number of arguments
// edi - function
// edx - slot id
// ebx - vector
__ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
__ cmp(edi, ecx);
__ j(not_equal, miss);
// Reload ecx.
__ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
FixedArray::kHeaderSize));
// Increment the call count for monomorphic function calls.
IncrementCallCount(masm, ebx, edx);
__ mov(ebx, ecx);
__ mov(edx, edi);
ArrayConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
// Unreachable.
}
void CallICStub::Generate(MacroAssembler* masm) {
// edi - number of arguments
// edi - function
// edx - slot id
// ebx - vector
Isolate* isolate = masm->isolate();
Label extra_checks_or_miss, call, call_function, call_count_incremented;
// The checks. First, does edi match the recorded monomorphic target?
__ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
FixedArray::kHeaderSize));
// We don't know that we have a weak cell. We might have a private symbol
// or an AllocationSite, but the memory is safe to examine.
// AllocationSite::kTransitionInfoOffset - contains a Smi or pointer to
// FixedArray.
// WeakCell::kValueOffset - contains a JSFunction or Smi(0)
// Symbol::kHashFieldSlot - if the low bit is 1, then the hash is not
// computed, meaning that it can't appear to be a pointer. If the low bit is
// 0, then hash is computed, but the 0 bit prevents the field from appearing
// to be a pointer.
STATIC_ASSERT(WeakCell::kSize >= kPointerSize);
STATIC_ASSERT(AllocationSite::kTransitionInfoOffset ==
WeakCell::kValueOffset &&
WeakCell::kValueOffset == Symbol::kHashFieldSlot);
__ cmp(edi, FieldOperand(ecx, WeakCell::kValueOffset));
__ j(not_equal, &extra_checks_or_miss);
// The compare above could have been a SMI/SMI comparison. Guard against this
// convincing us that we have a monomorphic JSFunction.
__ JumpIfSmi(edi, &extra_checks_or_miss);
__ bind(&call_function);
// Increment the call count for monomorphic function calls.
IncrementCallCount(masm, ebx, edx);
__ Jump(masm->isolate()->builtins()->CallFunction(convert_mode(),
tail_call_mode()),
RelocInfo::CODE_TARGET);
__ bind(&extra_checks_or_miss);
Label uninitialized, miss, not_allocation_site;
__ cmp(ecx, Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
__ j(equal, &call);
// Check if we have an allocation site.
__ CompareRoot(FieldOperand(ecx, HeapObject::kMapOffset),
Heap::kAllocationSiteMapRootIndex);
__ j(not_equal, &not_allocation_site);
// We have an allocation site.
HandleArrayCase(masm, &miss);
__ bind(&not_allocation_site);
// The following cases attempt to handle MISS cases without going to the
// runtime.
if (FLAG_trace_ic) {
__ jmp(&miss);
}
__ cmp(ecx, Immediate(TypeFeedbackVector::UninitializedSentinel(isolate)));
__ j(equal, &uninitialized);
// We are going megamorphic. If the feedback is a JSFunction, it is fine
// to handle it here. More complex cases are dealt with in the runtime.
__ AssertNotSmi(ecx);
__ CmpObjectType(ecx, JS_FUNCTION_TYPE, ecx);
__ j(not_equal, &miss);
__ mov(
FieldOperand(ebx, edx, times_half_pointer_size, FixedArray::kHeaderSize),
Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
__ bind(&call);
// Increment the call count for megamorphic function calls.
IncrementCallCount(masm, ebx, edx);
__ bind(&call_count_incremented);
__ Jump(masm->isolate()->builtins()->Call(convert_mode(), tail_call_mode()),
RelocInfo::CODE_TARGET);
__ bind(&uninitialized);
// We are going monomorphic, provided we actually have a JSFunction.
__ JumpIfSmi(edi, &miss);
// Goto miss case if we do not have a function.
__ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
__ j(not_equal, &miss);
// Make sure the function is not the Array() function, which requires special
// behavior on MISS.
__ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
__ cmp(edi, ecx);
__ j(equal, &miss);
// Make sure the function belongs to the same native context.
__ mov(ecx, FieldOperand(edi, JSFunction::kContextOffset));
__ mov(ecx, ContextOperand(ecx, Context::NATIVE_CONTEXT_INDEX));
__ cmp(ecx, NativeContextOperand());
__ j(not_equal, &miss);
// Store the function. Use a stub since we need a frame for allocation.
// eax - number of arguments
// ebx - vector
// edx - slot
// edi - function
{
FrameScope scope(masm, StackFrame::INTERNAL);
CreateWeakCellStub create_stub(isolate);
__ SmiTag(eax);
__ push(eax);
__ push(ebx);
__ push(edx);
__ push(edi);
__ push(esi);
__ CallStub(&create_stub);
__ pop(esi);
__ pop(edi);
__ pop(edx);
__ pop(ebx);
__ pop(eax);
__ SmiUntag(eax);
}
__ jmp(&call_function);
// We are here because tracing is on or we encountered a MISS case we can't
// handle here.
__ bind(&miss);
GenerateMiss(masm);
__ jmp(&call_count_incremented);
// Unreachable
__ int3();
}
void CallICStub::GenerateMiss(MacroAssembler* masm) {
FrameScope scope(masm, StackFrame::INTERNAL);
// Preserve the number of arguments.
__ SmiTag(eax);
__ push(eax);
// Push the function and feedback info.
__ push(edi);
__ push(ebx);
__ push(edx);
// Call the entry.
__ CallRuntime(Runtime::kCallIC_Miss);
// Move result to edi and exit the internal frame.
__ mov(edi, eax);
// Restore number of arguments.
__ pop(eax);
__ SmiUntag(eax);
}
bool CEntryStub::NeedsImmovableCode() {
return false;
}
void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
CEntryStub::GenerateAheadOfTime(isolate);
StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
// It is important that the store buffer overflow stubs are generated first.
CommonArrayConstructorStub::GenerateStubsAheadOfTime(isolate);
CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
CreateWeakCellStub::GenerateAheadOfTime(isolate);
BinaryOpICStub::GenerateAheadOfTime(isolate);
BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
StoreFastElementStub::GenerateAheadOfTime(isolate);
}
void CodeStub::GenerateFPStubs(Isolate* isolate) {
// Generate if not already in cache.
CEntryStub(isolate, 1, kSaveFPRegs).GetCode();
isolate->set_fp_stubs_generated(true);
}
void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
CEntryStub stub(isolate, 1, kDontSaveFPRegs);
stub.GetCode();
}
void CEntryStub::Generate(MacroAssembler* masm) {
// eax: number of arguments including receiver
// ebx: pointer to C function (C callee-saved)
// ebp: frame pointer (restored after C call)
// esp: stack pointer (restored after C call)
// esi: current context (C callee-saved)
// edi: JS function of the caller (C callee-saved)
//
// If argv_in_register():
// ecx: pointer to the first argument
ProfileEntryHookStub::MaybeCallEntryHook(masm);
// Reserve space on the stack for the three arguments passed to the call. If
// result size is greater than can be returned in registers, also reserve
// space for the hidden argument for the result location, and space for the
// result itself.
int arg_stack_space = result_size() < 3 ? 3 : 4 + result_size();
// Enter the exit frame that transitions from JavaScript to C++.
if (argv_in_register()) {
DCHECK(!save_doubles());
DCHECK(!is_builtin_exit());
__ EnterApiExitFrame(arg_stack_space);
// Move argc and argv into the correct registers.
__ mov(esi, ecx);
__ mov(edi, eax);
} else {
__ EnterExitFrame(
arg_stack_space, save_doubles(),
is_builtin_exit() ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT);
}
// ebx: pointer to C function (C callee-saved)
// ebp: frame pointer (restored after C call)
// esp: stack pointer (restored after C call)
// edi: number of arguments including receiver (C callee-saved)
// esi: pointer to the first argument (C callee-saved)
// Result returned in eax, or eax+edx if result size is 2.
// Check stack alignment.
if (FLAG_debug_code) {
__ CheckStackAlignment();
}
// Call C function.
if (result_size() <= 2) {
__ mov(Operand(esp, 0 * kPointerSize), edi); // argc.
__ mov(Operand(esp, 1 * kPointerSize), esi); // argv.
__ mov(Operand(esp, 2 * kPointerSize),
Immediate(ExternalReference::isolate_address(isolate())));
} else {
DCHECK_EQ(3, result_size());
// Pass a pointer to the result location as the first argument.
__ lea(eax, Operand(esp, 4 * kPointerSize));
__ mov(Operand(esp, 0 * kPointerSize), eax);
__ mov(Operand(esp, 1 * kPointerSize), edi); // argc.
__ mov(Operand(esp, 2 * kPointerSize), esi); // argv.
__ mov(Operand(esp, 3 * kPointerSize),
Immediate(ExternalReference::isolate_address(isolate())));
}
__ call(ebx);
if (result_size() > 2) {
DCHECK_EQ(3, result_size());
#ifndef _WIN32
// Restore the "hidden" argument on the stack which was popped by caller.
__ sub(esp, Immediate(kPointerSize));
#endif
// Read result values stored on stack. Result is stored above the arguments.
__ mov(kReturnRegister0, Operand(esp, 4 * kPointerSize));
__ mov(kReturnRegister1, Operand(esp, 5 * kPointerSize));
__ mov(kReturnRegister2, Operand(esp, 6 * kPointerSize));
}
// Result is in eax, edx:eax or edi:edx:eax - do not destroy these registers!
// Check result for exception sentinel.
Label exception_returned;
__ cmp(eax, isolate()->factory()->exception());
__ j(equal, &exception_returned);
// Check that there is no pending exception, otherwise we
// should have returned the exception sentinel.
if (FLAG_debug_code) {
__ push(edx);
__ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
Label okay;
ExternalReference pending_exception_address(
Isolate::kPendingExceptionAddress, isolate());
__ cmp(edx, Operand::StaticVariable(pending_exception_address));
// Cannot use check here as it attempts to generate call into runtime.
__ j(equal, &okay, Label::kNear);
__ int3();
__ bind(&okay);
__ pop(edx);
}
// Exit the JavaScript to C++ exit frame.
__ LeaveExitFrame(save_doubles(), !argv_in_register());
__ ret(0);
// Handling of exception.
__ bind(&exception_returned);
ExternalReference pending_handler_context_address(
Isolate::kPendingHandlerContextAddress, isolate());
ExternalReference pending_handler_code_address(
Isolate::kPendingHandlerCodeAddress, isolate());
ExternalReference pending_handler_offset_address(
Isolate::kPendingHandlerOffsetAddress, isolate());
ExternalReference pending_handler_fp_address(
Isolate::kPendingHandlerFPAddress, isolate());
ExternalReference pending_handler_sp_address(
Isolate::kPendingHandlerSPAddress, isolate());
// Ask the runtime for help to determine the handler. This will set eax to
// contain the current pending exception, don't clobber it.
ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
isolate());
{
FrameScope scope(masm, StackFrame::MANUAL);
__ PrepareCallCFunction(3, eax);
__ mov(Operand(esp, 0 * kPointerSize), Immediate(0)); // argc.
__ mov(Operand(esp, 1 * kPointerSize), Immediate(0)); // argv.
__ mov(Operand(esp, 2 * kPointerSize),
Immediate(ExternalReference::isolate_address(isolate())));
__ CallCFunction(find_handler, 3);
}
// Retrieve the handler context, SP and FP.
__ mov(esi, Operand::StaticVariable(pending_handler_context_address));
__ mov(esp, Operand::StaticVariable(pending_handler_sp_address));
__ mov(ebp, Operand::StaticVariable(pending_handler_fp_address));
// If the handler is a JS frame, restore the context to the frame. Note that
// the context will be set to (esi == 0) for non-JS frames.
Label skip;
__ test(esi, esi);
__ j(zero, &skip, Label::kNear);
__ mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi);
__ bind(&skip);
// Compute the handler entry address and jump to it.
__ mov(edi, Operand::StaticVariable(pending_handler_code_address));
__ mov(edx, Operand::StaticVariable(pending_handler_offset_address));
__ lea(edi, FieldOperand(edi, edx, times_1, Code::kHeaderSize));
__ jmp(edi);
}
void JSEntryStub::Generate(MacroAssembler* masm) {
Label invoke, handler_entry, exit;
Label not_outermost_js, not_outermost_js_2;
ProfileEntryHookStub::MaybeCallEntryHook(masm);
// Set up frame.
__ push(ebp);
__ mov(ebp, esp);
// Push marker in two places.
int marker = type();
__ push(Immediate(Smi::FromInt(marker))); // marker
ExternalReference context_address(Isolate::kContextAddress, isolate());
__ push(Operand::StaticVariable(context_address)); // context
// Save callee-saved registers (C calling conventions).
__ push(edi);
__ push(esi);
__ push(ebx);
// Save copies of the top frame descriptor on the stack.
ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate());
__ push(Operand::StaticVariable(c_entry_fp));
// If this is the outermost JS call, set js_entry_sp value.
ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
__ cmp(Operand::StaticVariable(js_entry_sp), Immediate(0));
__ j(not_equal, &not_outermost_js, Label::kNear);
__ mov(Operand::StaticVariable(js_entry_sp), ebp);
__ push(Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
__ jmp(&invoke, Label::kNear);
__ bind(&not_outermost_js);
__ push(Immediate(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
// Jump to a faked try block that does the invoke, with a faked catch
// block that sets the pending exception.
__ jmp(&invoke);
__ bind(&handler_entry);
handler_offset_ = handler_entry.pos();
// Caught exception: Store result (exception) in the pending exception
// field in the JSEnv and return a failure sentinel.
ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
isolate());
__ mov(Operand::StaticVariable(pending_exception), eax);
__ mov(eax, Immediate(isolate()->factory()->exception()));
__ jmp(&exit);
// Invoke: Link this frame into the handler chain.
__ bind(&invoke);
__ PushStackHandler();
// Fake a receiver (NULL).
__ push(Immediate(0)); // receiver
// Invoke the function by calling through JS entry trampoline builtin and
// pop the faked function when we return. Notice that we cannot store a
// reference to the trampoline code directly in this stub, because the
// builtin stubs may not have been generated yet.
if (type() == StackFrame::ENTRY_CONSTRUCT) {
ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
isolate());
__ mov(edx, Immediate(construct_entry));
} else {
ExternalReference entry(Builtins::kJSEntryTrampoline, isolate());
__ mov(edx, Immediate(entry));
}
__ mov(edx, Operand(edx, 0)); // deref address
__ lea(edx, FieldOperand(edx, Code::kHeaderSize));
__ call(edx);
// Unlink this frame from the handler chain.
__ PopStackHandler();
__ bind(&exit);
// Check if the current stack frame is marked as the outermost JS frame.
__ pop(ebx);
__ cmp(ebx, Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
__ j(not_equal, &not_outermost_js_2);
__ mov(Operand::StaticVariable(js_entry_sp), Immediate(0));
__ bind(&not_outermost_js_2);
// Restore the top frame descriptor from the stack.
__ pop(Operand::StaticVariable(ExternalReference(
Isolate::kCEntryFPAddress, isolate())));
// Restore callee-saved registers (C calling conventions).
__ pop(ebx);
__ pop(esi);
__ pop(edi);
__ add(esp, Immediate(2 * kPointerSize)); // remove markers
// Restore frame pointer and return.
__ pop(ebp);
__ ret(0);
}
// -------------------------------------------------------------------------
// StringCharCodeAtGenerator
void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
// If the receiver is a smi trigger the non-string case.
STATIC_ASSERT(kSmiTag == 0);
if (check_mode_ == RECEIVER_IS_UNKNOWN) {
__ JumpIfSmi(object_, receiver_not_string_);
// Fetch the instance type of the receiver into result register.
__ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
__ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
// If the receiver is not a string trigger the non-string case.
__ test(result_, Immediate(kIsNotStringMask));
__ j(not_zero, receiver_not_string_);
}
// If the index is non-smi trigger the non-smi case.
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfNotSmi(index_, &index_not_smi_);
__ bind(&got_smi_index_);
// Check for index out of range.
__ cmp(index_, FieldOperand(object_, String::kLengthOffset));
__ j(above_equal, index_out_of_range_);
__ SmiUntag(index_);
Factory* factory = masm->isolate()->factory();
StringCharLoadGenerator::Generate(
masm, factory, object_, index_, result_, &call_runtime_);
__ SmiTag(result_);
__ bind(&exit_);
}
void StringCharCodeAtGenerator::GenerateSlow(
MacroAssembler* masm, EmbedMode embed_mode,
const RuntimeCallHelper& call_helper) {
__ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
// Index is not a smi.
__ bind(&index_not_smi_);
// If index is a heap number, try converting it to an integer.
__ CheckMap(index_,
masm->isolate()->factory()->heap_number_map(),
index_not_number_,
DONT_DO_SMI_CHECK);
call_helper.BeforeCall(masm);
if (embed_mode == PART_OF_IC_HANDLER) {
__ push(LoadWithVectorDescriptor::VectorRegister());
__ push(LoadDescriptor::SlotRegister());
}
__ push(object_);
__ push(index_); // Consumed by runtime conversion function.
__ CallRuntime(Runtime::kNumberToSmi);
if (!index_.is(eax)) {
// Save the conversion result before the pop instructions below
// have a chance to overwrite it.
__ mov(index_, eax);
}
__ pop(object_);
if (embed_mode == PART_OF_IC_HANDLER) {
__ pop(LoadDescriptor::SlotRegister());
__ pop(LoadWithVectorDescriptor::VectorRegister());
}
// Reload the instance type.
__ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
__ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
call_helper.AfterCall(masm);
// If index is still not a smi, it must be out of range.
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfNotSmi(index_, index_out_of_range_);
// Otherwise, return to the fast path.
__ jmp(&got_smi_index_);
// Call runtime. We get here when the receiver is a string and the
// index is a number, but the code of getting the actual character
// is too complex (e.g., when the string needs to be flattened).
__ bind(&call_runtime_);
call_helper.BeforeCall(masm);
__ push(object_);
__ SmiTag(index_);
__ push(index_);
__ CallRuntime(Runtime::kStringCharCodeAtRT);
if (!result_.is(eax)) {
__ mov(result_, eax);
}
call_helper.AfterCall(masm);
__ jmp(&exit_);
__ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
}
// -------------------------------------------------------------------------
// StringCharFromCodeGenerator
void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
// Fast case of Heap::LookupSingleCharacterStringFromCode.
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiShiftSize == 0);
DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCodeU + 1));
__ test(code_, Immediate(kSmiTagMask |
((~String::kMaxOneByteCharCodeU) << kSmiTagSize)));
__ j(not_zero, &slow_case_);
Factory* factory = masm->isolate()->factory();
__ Move(result_, Immediate(factory->single_character_string_cache()));
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiTagSize == 1);
STATIC_ASSERT(kSmiShiftSize == 0);
// At this point code register contains smi tagged one byte char code.
__ mov(result_, FieldOperand(result_,
code_, times_half_pointer_size,
FixedArray::kHeaderSize));
__ cmp(result_, factory->undefined_value());
__ j(equal, &slow_case_);
__ bind(&exit_);
}
void StringCharFromCodeGenerator::GenerateSlow(
MacroAssembler* masm,
const RuntimeCallHelper& call_helper) {
__ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
__ bind(&slow_case_);
call_helper.BeforeCall(masm);
__ push(code_);
__ CallRuntime(Runtime::kStringCharFromCode);
if (!result_.is(eax)) {
__ mov(result_, eax);
}
call_helper.AfterCall(masm);
__ jmp(&exit_);
__ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
}
void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
Register dest,
Register src,
Register count,
Register scratch,
String::Encoding encoding) {
DCHECK(!scratch.is(dest));
DCHECK(!scratch.is(src));
DCHECK(!scratch.is(count));
// Nothing to do for zero characters.
Label done;
__ test(count, count);
__ j(zero, &done);
// Make count the number of bytes to copy.
if (encoding == String::TWO_BYTE_ENCODING) {
__ shl(count, 1);
}
Label loop;
__ bind(&loop);
__ mov_b(scratch, Operand(src, 0));
__ mov_b(Operand(dest, 0), scratch);
__ inc(src);
__ inc(dest);
__ dec(count);
__ j(not_zero, &loop);
__ bind(&done);
}
void StringHelper::GenerateFlatOneByteStringEquals(MacroAssembler* masm,
Register left,
Register right,
Register scratch1,
Register scratch2) {
Register length = scratch1;
// Compare lengths.
Label strings_not_equal, check_zero_length;
__ mov(length, FieldOperand(left, String::kLengthOffset));
__ cmp(length, FieldOperand(right, String::kLengthOffset));
__ j(equal, &check_zero_length, Label::kNear);
__ bind(&strings_not_equal);
__ Move(eax, Immediate(Smi::FromInt(NOT_EQUAL)));
__ ret(0);
// Check if the length is zero.
Label compare_chars;
__ bind(&check_zero_length);
STATIC_ASSERT(kSmiTag == 0);
__ test(length, length);
__ j(not_zero, &compare_chars, Label::kNear);
__ Move(eax, Immediate(Smi::FromInt(EQUAL)));
__ ret(0);
// Compare characters.
__ bind(&compare_chars);
GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2,
&strings_not_equal, Label::kNear);
// Characters are equal.
__ Move(eax, Immediate(Smi::FromInt(EQUAL)));
__ ret(0);
}
void StringHelper::GenerateCompareFlatOneByteStrings(
MacroAssembler* masm, Register left, Register right, Register scratch1,
Register scratch2, Register scratch3) {
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->string_compare_native(), 1);
// Find minimum length.
Label left_shorter;
__ mov(scratch1, FieldOperand(left, String::kLengthOffset));
__ mov(scratch3, scratch1);
__ sub(scratch3, FieldOperand(right, String::kLengthOffset));
Register length_delta = scratch3;
__ j(less_equal, &left_shorter, Label::kNear);
// Right string is shorter. Change scratch1 to be length of right string.
__ sub(scratch1, length_delta);
__ bind(&left_shorter);
Register min_length = scratch1;
// If either length is zero, just compare lengths.
Label compare_lengths;
__ test(min_length, min_length);
__ j(zero, &compare_lengths, Label::kNear);
// Compare characters.
Label result_not_equal;
GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
&result_not_equal, Label::kNear);
// Compare lengths - strings up to min-length are equal.
__ bind(&compare_lengths);
__ test(length_delta, length_delta);
Label length_not_equal;
__ j(not_zero, &length_not_equal, Label::kNear);
// Result is EQUAL.
STATIC_ASSERT(EQUAL == 0);
STATIC_ASSERT(kSmiTag == 0);
__ Move(eax, Immediate(Smi::FromInt(EQUAL)));
__ ret(0);
Label result_greater;
Label result_less;
__ bind(&length_not_equal);
__ j(greater, &result_greater, Label::kNear);
__ jmp(&result_less, Label::kNear);
__ bind(&result_not_equal);
__ j(above, &result_greater, Label::kNear);
__ bind(&result_less);
// Result is LESS.
__ Move(eax, Immediate(Smi::FromInt(LESS)));
__ ret(0);
// Result is GREATER.
__ bind(&result_greater);
__ Move(eax, Immediate(Smi::FromInt(GREATER)));
__ ret(0);
}
void StringHelper::GenerateOneByteCharsCompareLoop(
MacroAssembler* masm, Register left, Register right, Register length,
Register scratch, Label* chars_not_equal,
Label::Distance chars_not_equal_near) {
// Change index to run from -length to -1 by adding length to string
// start. This means that loop ends when index reaches zero, which
// doesn't need an additional compare.
__ SmiUntag(length);
__ lea(left,
FieldOperand(left, length, times_1, SeqOneByteString::kHeaderSize));
__ lea(right,
FieldOperand(right, length, times_1, SeqOneByteString::kHeaderSize));
__ neg(length);
Register index = length; // index = -length;
// Compare loop.
Label loop;
__ bind(&loop);
__ mov_b(scratch, Operand(left, index, times_1, 0));
__ cmpb(scratch, Operand(right, index, times_1, 0));
__ j(not_equal, chars_not_equal, chars_not_equal_near);
__ inc(index);
__ j(not_zero, &loop);
}
void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- edx : left
// -- eax : right
// -- esp[0] : return address
// -----------------------------------
// Load ecx with the allocation site. We stick an undefined dummy value here
// and replace it with the real allocation site later when we instantiate this
// stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
__ mov(ecx, isolate()->factory()->undefined_value());
// Make sure that we actually patched the allocation site.
if (FLAG_debug_code) {
__ test(ecx, Immediate(kSmiTagMask));
__ Assert(not_equal, kExpectedAllocationSite);
__ cmp(FieldOperand(ecx, HeapObject::kMapOffset),
isolate()->factory()->allocation_site_map());
__ Assert(equal, kExpectedAllocationSite);
}
// Tail call into the stub that handles binary operations with allocation
// sites.
BinaryOpWithAllocationSiteStub stub(isolate(), state());
__ TailCallStub(&stub);
}
void CompareICStub::GenerateBooleans(MacroAssembler* masm) {
DCHECK_EQ(CompareICState::BOOLEAN, state());
Label miss;
Label::Distance const miss_distance =
masm->emit_debug_code() ? Label::kFar : Label::kNear;
__ JumpIfSmi(edx, &miss, miss_distance);
__ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset));
__ JumpIfSmi(eax, &miss, miss_distance);
__ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
__ JumpIfNotRoot(ecx, Heap::kBooleanMapRootIndex, &miss, miss_distance);
__ JumpIfNotRoot(ebx, Heap::kBooleanMapRootIndex, &miss, miss_distance);
if (!Token::IsEqualityOp(op())) {
__ mov(eax, FieldOperand(eax, Oddball::kToNumberOffset));
__ AssertSmi(eax);
__ mov(edx, FieldOperand(edx, Oddball::kToNumberOffset));
__ AssertSmi(edx);
__ push(eax);
__ mov(eax, edx);
__ pop(edx);
}
__ sub(eax, edx);
__ Ret();
__ bind(&miss);
GenerateMiss(masm);
}
void CompareICStub::GenerateSmis(MacroAssembler* masm) {
DCHECK(state() == CompareICState::SMI);
Label miss;
__ mov(ecx, edx);
__ or_(ecx, eax);
__ JumpIfNotSmi(ecx, &miss, Label::kNear);
if (GetCondition() == equal) {
// For equality we do not care about the sign of the result.
__ sub(eax, edx);
} else {
Label done;
__ sub(edx, eax);
__ j(no_overflow, &done, Label::kNear);
// Correct sign of result in case of overflow.
__ not_(edx);
__ bind(&done);
__ mov(eax, edx);
}
__ ret(0);
__ bind(&miss);
GenerateMiss(masm);
}
void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
DCHECK(state() == CompareICState::NUMBER);
Label generic_stub;
Label unordered, maybe_undefined1, maybe_undefined2;
Label miss;
if (left() == CompareICState::SMI) {
__ JumpIfNotSmi(edx, &miss);
}
if (right() == CompareICState::SMI) {
__ JumpIfNotSmi(eax, &miss);
}
// Load left and right operand.
Label done, left, left_smi, right_smi;
__ JumpIfSmi(eax, &right_smi, Label::kNear);
__ cmp(FieldOperand(eax, HeapObject::kMapOffset),
isolate()->factory()->heap_number_map());
__ j(not_equal, &maybe_undefined1, Label::kNear);
__ movsd(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
__ jmp(&left, Label::kNear);
__ bind(&right_smi);
__ mov(ecx, eax); // Can't clobber eax because we can still jump away.
__ SmiUntag(ecx);
__ Cvtsi2sd(xmm1, ecx);
__ bind(&left);
__ JumpIfSmi(edx, &left_smi, Label::kNear);
__ cmp(FieldOperand(edx, HeapObject::kMapOffset),
isolate()->factory()->heap_number_map());
__ j(not_equal, &maybe_undefined2, Label::kNear);
__ movsd(xmm0, FieldOperand(edx, HeapNumber::kValueOffset));
__ jmp(&done);
__ bind(&left_smi);
__ mov(ecx, edx); // Can't clobber edx because we can still jump away.
__ SmiUntag(ecx);
__ Cvtsi2sd(xmm0, ecx);
__ bind(&done);
// Compare operands.
__ ucomisd(xmm0, xmm1);
// Don't base result on EFLAGS when a NaN is involved.
__ j(parity_even, &unordered, Label::kNear);
// Return a result of -1, 0, or 1, based on EFLAGS.
// Performing mov, because xor would destroy the flag register.
__ mov(eax, 0); // equal
__ mov(ecx, Immediate(Smi::FromInt(1)));
__ cmov(above, eax, ecx);
__ mov(ecx, Immediate(Smi::FromInt(-1)));
__ cmov(below, eax, ecx);
__ ret(0);
__ bind(&unordered);
__ bind(&generic_stub);
CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
CompareICState::GENERIC, CompareICState::GENERIC);
__ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
__ bind(&maybe_undefined1);
if (Token::IsOrderedRelationalCompareOp(op())) {
__ cmp(eax, Immediate(isolate()->factory()->undefined_value()));
__ j(not_equal, &miss);
__ JumpIfSmi(edx, &unordered);
__ CmpObjectType(edx, HEAP_NUMBER_TYPE, ecx);
__ j(not_equal, &maybe_undefined2, Label::kNear);
__ jmp(&unordered);
}
__ bind(&maybe_undefined2);
if (Token::IsOrderedRelationalCompareOp(op())) {
__ cmp(edx, Immediate(isolate()->factory()->undefined_value()));
__ j(equal, &unordered);
}
__ bind(&miss);
GenerateMiss(masm);
}
void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
DCHECK(state() == CompareICState::INTERNALIZED_STRING);
DCHECK(GetCondition() == equal);
// Registers containing left and right operands respectively.
Register left = edx;
Register right = eax;
Register tmp1 = ecx;
Register tmp2 = ebx;
// Check that both operands are heap objects.
Label miss;
__ mov(tmp1, left);
STATIC_ASSERT(kSmiTag == 0);
__ and_(tmp1, right);
__ JumpIfSmi(tmp1, &miss, Label::kNear);
// Check that both operands are internalized strings.
__ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
__ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
__ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
__ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
__ or_(tmp1, tmp2);
__ test(tmp1, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
__ j(not_zero, &miss, Label::kNear);
// Internalized strings are compared by identity.
Label done;
__ cmp(left, right);
// Make sure eax is non-zero. At this point input operands are
// guaranteed to be non-zero.
DCHECK(right.is(eax));
__ j(not_equal, &done, Label::kNear);
STATIC_ASSERT(EQUAL == 0);
STATIC_ASSERT(kSmiTag == 0);
__ Move(eax, Immediate(Smi::FromInt(EQUAL)));
__ bind(&done);
__ ret(0);
__ bind(&miss);
GenerateMiss(masm);
}
void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
DCHECK(state() == CompareICState::UNIQUE_NAME);
DCHECK(GetCondition() == equal);
// Registers containing left and right operands respectively.
Register left = edx;
Register right = eax;
Register tmp1 = ecx;
Register tmp2 = ebx;
// Check that both operands are heap objects.
Label miss;
__ mov(tmp1, left);
STATIC_ASSERT(kSmiTag == 0);
__ and_(tmp1, right);
__ JumpIfSmi(tmp1, &miss, Label::kNear);
// Check that both operands are unique names. This leaves the instance
// types loaded in tmp1 and tmp2.
__ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
__ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
__ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
__ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
__ JumpIfNotUniqueNameInstanceType(tmp1, &miss, Label::kNear);
__ JumpIfNotUniqueNameInstanceType(tmp2, &miss, Label::kNear);
// Unique names are compared by identity.
Label done;
__ cmp(left, right);
// Make sure eax is non-zero. At this point input operands are
// guaranteed to be non-zero.
DCHECK(right.is(eax));
__ j(not_equal, &done, Label::kNear);
STATIC_ASSERT(EQUAL == 0);
STATIC_ASSERT(kSmiTag == 0);
__ Move(eax, Immediate(Smi::FromInt(EQUAL)));
__ bind(&done);
__ ret(0);
__ bind(&miss);
GenerateMiss(masm);
}
void CompareICStub::GenerateStrings(MacroAssembler* masm) {
DCHECK(state() == CompareICState::STRING);
Label miss;
bool equality = Token::IsEqualityOp(op());
// Registers containing left and right operands respectively.
Register left = edx;
Register right = eax;
Register tmp1 = ecx;
Register tmp2 = ebx;
Register tmp3 = edi;
// Check that both operands are heap objects.
__ mov(tmp1, left);
STATIC_ASSERT(kSmiTag == 0);
__ and_(tmp1, right);
__ JumpIfSmi(tmp1, &miss);
// Check that both operands are strings. This leaves the instance
// types loaded in tmp1 and tmp2.
__ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
__ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
__ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
__ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
__ mov(tmp3, tmp1);
STATIC_ASSERT(kNotStringTag != 0);
__ or_(tmp3, tmp2);
__ test(tmp3, Immediate(kIsNotStringMask));
__ j(not_zero, &miss);
// Fast check for identical strings.
Label not_same;
__ cmp(left, right);
__ j(not_equal, &not_same, Label::kNear);
STATIC_ASSERT(EQUAL == 0);
STATIC_ASSERT(kSmiTag == 0);
__ Move(eax, Immediate(Smi::FromInt(EQUAL)));
__ ret(0);
// Handle not identical strings.
__ bind(&not_same);
// Check that both strings are internalized. If they are, we're done
// because we already know they are not identical. But in the case of
// non-equality compare, we still need to determine the order. We
// also know they are both strings.
if (equality) {
Label do_compare;
STATIC_ASSERT(kInternalizedTag == 0);
__ or_(tmp1, tmp2);
__ test(tmp1, Immediate(kIsNotInternalizedMask));
__ j(not_zero, &do_compare, Label::kNear);
// Make sure eax is non-zero. At this point input operands are
// guaranteed to be non-zero.
DCHECK(right.is(eax));
__ ret(0);
__ bind(&do_compare);
}
// Check that both strings are sequential one-byte.
Label runtime;
__ JumpIfNotBothSequentialOneByteStrings(left, right, tmp1, tmp2, &runtime);
// Compare flat one byte strings. Returns when done.
if (equality) {
StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1,
tmp2);
} else {
StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
tmp2, tmp3);
}
// Handle more complex cases in runtime.
__ bind(&runtime);
if (equality) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(left);
__ Push(right);
__ CallRuntime(Runtime::kStringEqual);
}
__ sub(eax, Immediate(masm->isolate()->factory()->true_value()));
__ Ret();
} else {
__ pop(tmp1); // Return address.
__ push(left);
__ push(right);
__ push(tmp1);
__ TailCallRuntime(Runtime::kStringCompare);
}
__ bind(&miss);
GenerateMiss(masm);
}
void CompareICStub::GenerateReceivers(MacroAssembler* masm) {
DCHECK_EQ(CompareICState::RECEIVER, state());
Label miss;
__ mov(ecx, edx);
__ and_(ecx, eax);
__ JumpIfSmi(ecx, &miss, Label::kNear);
STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
__ CmpObjectType(eax, FIRST_JS_RECEIVER_TYPE, ecx);
__ j(below, &miss, Label::kNear);
__ CmpObjectType(edx, FIRST_JS_RECEIVER_TYPE, ecx);
__ j(below, &miss, Label::kNear);
DCHECK_EQ(equal, GetCondition());
__ sub(eax, edx);
__ ret(0);
__ bind(&miss);
GenerateMiss(masm);
}
void CompareICStub::GenerateKnownReceivers(MacroAssembler* masm) {
Label miss;
Handle<WeakCell> cell = Map::WeakCellForMap(known_map_);
__ mov(ecx, edx);
__ and_(ecx, eax);
__ JumpIfSmi(ecx, &miss, Label::kNear);
__ GetWeakValue(edi, cell);
__ cmp(edi, FieldOperand(eax, HeapObject::kMapOffset));
__ j(not_equal, &miss, Label::kNear);
__ cmp(edi, FieldOperand(edx, HeapObject::kMapOffset));
__ j(not_equal, &miss, Label::kNear);
if (Token::IsEqualityOp(op())) {
__ sub(eax, edx);
__ ret(0);
} else {
__ PopReturnAddressTo(ecx);
__ Push(edx);
__ Push(eax);
__ Push(Immediate(Smi::FromInt(NegativeComparisonResult(GetCondition()))));
__ PushReturnAddressFrom(ecx);
__ TailCallRuntime(Runtime::kCompare);
}
__ bind(&miss);
GenerateMiss(masm);
}
void CompareICStub::GenerateMiss(MacroAssembler* masm) {
{
// Call the runtime system in a fresh internal frame.
FrameScope scope(masm, StackFrame::INTERNAL);
__ push(edx); // Preserve edx and eax.
__ push(eax);
__ push(edx); // And also use them as the arguments.
__ push(eax);
__ push(Immediate(Smi::FromInt(op())));
__ CallRuntime(Runtime::kCompareIC_Miss);
// Compute the entry point of the rewritten stub.
__ lea(edi, FieldOperand(eax, Code::kHeaderSize));
__ pop(eax);
__ pop(edx);
}
// Do a tail call to the rewritten stub.
__ jmp(edi);
}
// Helper function used to check that the dictionary doesn't contain
// the property. This function may return false negatives, so miss_label
// must always call a backup property check that is complete.
// This function is safe to call if the receiver has fast properties.
// Name must be a unique name and receiver must be a heap object.
void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
Label* miss,
Label* done,
Register properties,
Handle<Name> name,
Register r0) {
DCHECK(name->IsUniqueName());
// If names of slots in range from 1 to kProbes - 1 for the hash value are
// not equal to the name and kProbes-th slot is not used (its name is the
// undefined value), it guarantees the hash table doesn't contain the
// property. It's true even if some slots represent deleted properties
// (their names are the hole value).
for (int i = 0; i < kInlinedProbes; i++) {
// Compute the masked index: (hash + i + i * i) & mask.
Register index = r0;
// Capacity is smi 2^n.
__ mov(index, FieldOperand(properties, kCapacityOffset));
__ dec(index);
__ and_(index,
Immediate(Smi::FromInt(name->Hash() +
NameDictionary::GetProbeOffset(i))));
// Scale the index by multiplying by the entry size.
STATIC_ASSERT(NameDictionary::kEntrySize == 3);
__ lea(index, Operand(index, index, times_2, 0)); // index *= 3.
Register entity_name = r0;
// Having undefined at this place means the name is not contained.
STATIC_ASSERT(kSmiTagSize == 1);
__ mov(entity_name, Operand(properties, index, times_half_pointer_size,
kElementsStartOffset - kHeapObjectTag));
__ cmp(entity_name, masm->isolate()->factory()->undefined_value());
__ j(equal, done);
// Stop if found the property.
__ cmp(entity_name, Handle<Name>(name));
__ j(equal, miss);
Label good;
// Check for the hole and skip.
__ cmp(entity_name, masm->isolate()->factory()->the_hole_value());
__ j(equal, &good, Label::kNear);
// Check if the entry name is not a unique name.
__ mov(entity_name, FieldOperand(entity_name, HeapObject::kMapOffset));
__ JumpIfNotUniqueNameInstanceType(
FieldOperand(entity_name, Map::kInstanceTypeOffset), miss);
__ bind(&good);
}
NameDictionaryLookupStub stub(masm->isolate(), properties, r0, r0,
NEGATIVE_LOOKUP);
__ push(Immediate(Handle<Object>(name)));
__ push(Immediate(name->Hash()));
__ CallStub(&stub);
__ test(r0, r0);
__ j(not_zero, miss);
__ jmp(done);
}
// Probe the name dictionary in the |elements| register. Jump to the
// |done| label if a property with the given name is found leaving the
// index into the dictionary in |r0|. Jump to the |miss| label
// otherwise.
void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
Label* miss,
Label* done,
Register elements,
Register name,
Register r0,
Register r1) {
DCHECK(!elements.is(r0));
DCHECK(!elements.is(r1));
DCHECK(!name.is(r0));
DCHECK(!name.is(r1));
__ AssertName(name);
__ mov(r1, FieldOperand(elements, kCapacityOffset));
__ shr(r1, kSmiTagSize); // convert smi to int
__ dec(r1);
// Generate an unrolled loop that performs a few probes before
// giving up. Measurements done on Gmail indicate that 2 probes
// cover ~93% of loads from dictionaries.
for (int i = 0; i < kInlinedProbes; i++) {
// Compute the masked index: (hash + i + i * i) & mask.
__ mov(r0, FieldOperand(name, Name::kHashFieldOffset));
__ shr(r0, Name::kHashShift);
if (i > 0) {
__ add(r0, Immediate(NameDictionary::GetProbeOffset(i)));
}
__ and_(r0, r1);
// Scale the index by multiplying by the entry size.
STATIC_ASSERT(NameDictionary::kEntrySize == 3);
__ lea(r0, Operand(r0, r0, times_2, 0)); // r0 = r0 * 3
// Check if the key is identical to the name.
__ cmp(name, Operand(elements,
r0,
times_4,
kElementsStartOffset - kHeapObjectTag));
__ j(equal, done);
}
NameDictionaryLookupStub stub(masm->isolate(), elements, r1, r0,
POSITIVE_LOOKUP);
__ push(name);
__ mov(r0, FieldOperand(name, Name::kHashFieldOffset));
__ shr(r0, Name::kHashShift);
__ push(r0);
__ CallStub(&stub);
__ test(r1, r1);
__ j(zero, miss);
__ jmp(done);
}
void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
// This stub overrides SometimesSetsUpAFrame() to return false. That means
// we cannot call anything that could cause a GC from this stub.
// Stack frame on entry:
// esp[0 * kPointerSize]: return address.
// esp[1 * kPointerSize]: key's hash.
// esp[2 * kPointerSize]: key.
// Registers:
// dictionary_: NameDictionary to probe.
// result_: used as scratch.
// index_: will hold an index of entry if lookup is successful.
// might alias with result_.
// Returns:
// result_ is zero if lookup failed, non zero otherwise.
Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
Register scratch = result();
__ mov(scratch, FieldOperand(dictionary(), kCapacityOffset));
__ dec(scratch);
__ SmiUntag(scratch);
__ push(scratch);
// If names of slots in range from 1 to kProbes - 1 for the hash value are
// not equal to the name and kProbes-th slot is not used (its name is the
// undefined value), it guarantees the hash table doesn't contain the
// property. It's true even if some slots represent deleted properties
// (their names are the null value).
for (int i = kInlinedProbes; i < kTotalProbes; i++) {
// Compute the masked index: (hash + i + i * i) & mask.
__ mov(scratch, Operand(esp, 2 * kPointerSize));
if (i > 0) {
__ add(scratch, Immediate(NameDictionary::GetProbeOffset(i)));
}
__ and_(scratch, Operand(esp, 0));
// Scale the index by multiplying by the entry size.
STATIC_ASSERT(NameDictionary::kEntrySize == 3);
__ lea(index(), Operand(scratch, scratch, times_2, 0)); // index *= 3.
// Having undefined at this place means the name is not contained.
STATIC_ASSERT(kSmiTagSize == 1);
__ mov(scratch, Operand(dictionary(), index(), times_pointer_size,
kElementsStartOffset - kHeapObjectTag));
__ cmp(scratch, isolate()->factory()->undefined_value());
__ j(equal, &not_in_dictionary);
// Stop if found the property.
__ cmp(scratch, Operand(esp, 3 * kPointerSize));
__ j(equal, &in_dictionary);
if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
// If we hit a key that is not a unique name during negative
// lookup we have to bailout as this key might be equal to the
// key we are looking for.
// Check if the entry name is not a unique name.
__ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
__ JumpIfNotUniqueNameInstanceType(
FieldOperand(scratch, Map::kInstanceTypeOffset),
&maybe_in_dictionary);
}
}
__ bind(&maybe_in_dictionary);
// If we are doing negative lookup then probing failure should be
// treated as a lookup success. For positive lookup probing failure
// should be treated as lookup failure.
if (mode() == POSITIVE_LOOKUP) {
__ mov(result(), Immediate(0));
__ Drop(1);
__ ret(2 * kPointerSize);
}
__ bind(&in_dictionary);
__ mov(result(), Immediate(1));
__ Drop(1);
__ ret(2 * kPointerSize);
__ bind(&not_in_dictionary);
__ mov(result(), Immediate(0));
__ Drop(1);
__ ret(2 * kPointerSize);
}
void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
Isolate* isolate) {
StoreBufferOverflowStub stub(isolate, kDontSaveFPRegs);
stub.GetCode();
StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
stub2.GetCode();
}
// Takes the input in 3 registers: address_ value_ and object_. A pointer to
// the value has just been written into the object, now this stub makes sure
// we keep the GC informed. The word in the object where the value has been
// written is in the address register.
void RecordWriteStub::Generate(MacroAssembler* masm) {
Label skip_to_incremental_noncompacting;
Label skip_to_incremental_compacting;
// The first two instructions are generated with labels so as to get the
// offset fixed up correctly by the bind(Label*) call. We patch it back and
// forth between a compare instructions (a nop in this position) and the
// real branch when we start and stop incremental heap marking.
__ jmp(&skip_to_incremental_noncompacting, Label::kNear);
__ jmp(&skip_to_incremental_compacting, Label::kFar);
if (remembered_set_action() == EMIT_REMEMBERED_SET) {
__ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
MacroAssembler::kReturnAtEnd);
} else {
__ ret(0);
}
__ bind(&skip_to_incremental_noncompacting);
GenerateIncremental(masm, INCREMENTAL);
__ bind(&skip_to_incremental_compacting);
GenerateIncremental(masm, INCREMENTAL_COMPACTION);
// Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
// Will be checked in IncrementalMarking::ActivateGeneratedStub.
masm->set_byte_at(0, kTwoByteNopInstruction);
masm->set_byte_at(2, kFiveByteNopInstruction);
}
void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
regs_.Save(masm);
if (remembered_set_action() == EMIT_REMEMBERED_SET) {
Label dont_need_remembered_set;
__ mov(regs_.scratch0(), Operand(regs_.address(), 0));
__ JumpIfNotInNewSpace(regs_.scratch0(), // Value.
regs_.scratch0(),
&dont_need_remembered_set);
__ JumpIfInNewSpace(regs_.object(), regs_.scratch0(),
&dont_need_remembered_set);
// First notify the incremental marker if necessary, then update the
// remembered set.
CheckNeedsToInformIncrementalMarker(
masm,
kUpdateRememberedSetOnNoNeedToInformIncrementalMarker,
mode);
InformIncrementalMarker(masm);
regs_.Restore(masm);
__ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
MacroAssembler::kReturnAtEnd);
__ bind(&dont_need_remembered_set);
}
CheckNeedsToInformIncrementalMarker(
masm,
kReturnOnNoNeedToInformIncrementalMarker,
mode);
InformIncrementalMarker(masm);
regs_.Restore(masm);
__ ret(0);
}
void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
int argument_count = 3;
__ PrepareCallCFunction(argument_count, regs_.scratch0());
__ mov(Operand(esp, 0 * kPointerSize), regs_.object());
__ mov(Operand(esp, 1 * kPointerSize), regs_.address()); // Slot.
__ mov(Operand(esp, 2 * kPointerSize),
Immediate(ExternalReference::isolate_address(isolate())));
AllowExternalCallThatCantCauseGC scope(masm);
__ CallCFunction(
ExternalReference::incremental_marking_record_write_function(isolate()),
argument_count);
regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
}
void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
MacroAssembler* masm,
OnNoNeedToInformIncrementalMarker on_no_need,
Mode mode) {
Label object_is_black, need_incremental, need_incremental_pop_object;
// Let's look at the color of the object: If it is not black we don't have
// to inform the incremental marker.
__ JumpIfBlack(regs_.object(),
regs_.scratch0(),
regs_.scratch1(),
&object_is_black,
Label::kNear);
regs_.Restore(masm);
if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
__ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
MacroAssembler::kReturnAtEnd);
} else {
__ ret(0);
}
__ bind(&object_is_black);
// Get the value from the slot.
__ mov(regs_.scratch0(), Operand(regs_.address(), 0));
if (mode == INCREMENTAL_COMPACTION) {
Label ensure_not_white;
__ CheckPageFlag(regs_.scratch0(), // Contains value.
regs_.scratch1(), // Scratch.
MemoryChunk::kEvacuationCandidateMask,
zero,
&ensure_not_white,
Label::kNear);
__ CheckPageFlag(regs_.object(),
regs_.scratch1(), // Scratch.
MemoryChunk::kSkipEvacuationSlotsRecordingMask,
not_zero,
&ensure_not_white,
Label::kNear);
__ jmp(&need_incremental);
__ bind(&ensure_not_white);
}
// We need an extra register for this, so we push the object register
// temporarily.
__ push(regs_.object());
__ JumpIfWhite(regs_.scratch0(), // The value.
regs_.scratch1(), // Scratch.
regs_.object(), // Scratch.
&need_incremental_pop_object, Label::kNear);
__ pop(regs_.object());
regs_.Restore(masm);
if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
__ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
MacroAssembler::kReturnAtEnd);
} else {
__ ret(0);
}
__ bind(&need_incremental_pop_object);
__ pop(regs_.object());
__ bind(&need_incremental);
// Fall through when we need to inform the incremental marker.
}
void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
CEntryStub ces(isolate(), 1, kSaveFPRegs);
__ call(ces.GetCode(), RelocInfo::CODE_TARGET);
int parameter_count_offset =
StubFailureTrampolineFrameConstants::kArgumentsLengthOffset;
__ mov(ebx, MemOperand(ebp, parameter_count_offset));
masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
__ pop(ecx);
int additional_offset =
function_mode() == JS_FUNCTION_STUB_MODE ? kPointerSize : 0;
__ lea(esp, MemOperand(esp, ebx, times_pointer_size, additional_offset));
__ jmp(ecx); // Return to IC Miss stub, continuation still on stack.
}
void CallICTrampolineStub::Generate(MacroAssembler* masm) {
__ EmitLoadTypeFeedbackVector(ebx);
CallICStub stub(isolate(), state());
__ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
}
void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
if (masm->isolate()->function_entry_hook() != NULL) {
ProfileEntryHookStub stub(masm->isolate());
masm->CallStub(&stub);
}
}
void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
// Save volatile registers.
const int kNumSavedRegisters = 3;
__ push(eax);
__ push(ecx);
__ push(edx);
// Calculate and push the original stack pointer.
__ lea(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize));
__ push(eax);
// Retrieve our return address and use it to calculate the calling
// function's address.
__ mov(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize));
__ sub(eax, Immediate(Assembler::kCallInstructionLength));
__ push(eax);
// Call the entry hook.
DCHECK(isolate()->function_entry_hook() != NULL);
__ call(FUNCTION_ADDR(isolate()->function_entry_hook()),
RelocInfo::RUNTIME_ENTRY);
__ add(esp, Immediate(2 * kPointerSize));
// Restore ecx.
__ pop(edx);
__ pop(ecx);
__ pop(eax);
__ ret(0);
}
template<class T>
static void CreateArrayDispatch(MacroAssembler* masm,
AllocationSiteOverrideMode mode) {
if (mode == DISABLE_ALLOCATION_SITES) {
T stub(masm->isolate(),
GetInitialFastElementsKind(),
mode);
__ TailCallStub(&stub);
} else if (mode == DONT_OVERRIDE) {
int last_index = GetSequenceIndexFromFastElementsKind(
TERMINAL_FAST_ELEMENTS_KIND);
for (int i = 0; i <= last_index; ++i) {
Label next;
ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
__ cmp(edx, kind);
__ j(not_equal, &next);
T stub(masm->isolate(), kind);
__ TailCallStub(&stub);
__ bind(&next);
}
// If we reached this point there is a problem.
__ Abort(kUnexpectedElementsKindInArrayConstructor);
} else {
UNREACHABLE();
}
}
static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
AllocationSiteOverrideMode mode) {
// ebx - allocation site (if mode != DISABLE_ALLOCATION_SITES)
// edx - kind (if mode != DISABLE_ALLOCATION_SITES)
// eax - number of arguments
// edi - constructor?
// esp[0] - return address
// esp[4] - last argument
Label normal_sequence;
if (mode == DONT_OVERRIDE) {
STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
STATIC_ASSERT(FAST_ELEMENTS == 2);
STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4);
STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
// is the low bit set? If so, we are holey and that is good.
__ test_b(edx, Immediate(1));
__ j(not_zero, &normal_sequence);
}
// look at the first argument
__ mov(ecx, Operand(esp, kPointerSize));
__ test(ecx, ecx);
__ j(zero, &normal_sequence);
if (mode == DISABLE_ALLOCATION_SITES) {
ElementsKind initial = GetInitialFastElementsKind();
ElementsKind holey_initial = GetHoleyElementsKind(initial);
ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
holey_initial,
DISABLE_ALLOCATION_SITES);
__ TailCallStub(&stub_holey);
__ bind(&normal_sequence);
ArraySingleArgumentConstructorStub stub(masm->isolate(),
initial,
DISABLE_ALLOCATION_SITES);
__ TailCallStub(&stub);
} else if (mode == DONT_OVERRIDE) {
// We are going to create a holey array, but our kind is non-holey.
// Fix kind and retry.
__ inc(edx);
if (FLAG_debug_code) {
Handle<Map> allocation_site_map =
masm->isolate()->factory()->allocation_site_map();
__ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map));
__ Assert(equal, kExpectedAllocationSite);
}
// Save the resulting elements kind in type info. We can't just store r3
// in the AllocationSite::transition_info field because elements kind is
// restricted to a portion of the field...upper bits need to be left alone.
STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
__ add(FieldOperand(ebx, AllocationSite::kTransitionInfoOffset),
Immediate(Smi::FromInt(kFastElementsKindPackedToHoley)));
__ bind(&normal_sequence);
int last_index = GetSequenceIndexFromFastElementsKind(
TERMINAL_FAST_ELEMENTS_KIND);
for (int i = 0; i <= last_index; ++i) {
Label next;
ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
__ cmp(edx, kind);
__ j(not_equal, &next);
ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
__ TailCallStub(&stub);
__ bind(&next);
}
// If we reached this point there is a problem.
__ Abort(kUnexpectedElementsKindInArrayConstructor);
} else {
UNREACHABLE();
}
}
template<class T>
static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
int to_index = GetSequenceIndexFromFastElementsKind(
TERMINAL_FAST_ELEMENTS_KIND);
for (int i = 0; i <= to_index; ++i) {
ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
T stub(isolate, kind);
stub.GetCode();
if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
stub1.GetCode();
}
}
}
void CommonArrayConstructorStub::GenerateStubsAheadOfTime(Isolate* isolate) {
ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
isolate);
ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
isolate);
ArrayNArgumentsConstructorStub stub(isolate);
stub.GetCode();
ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
for (int i = 0; i < 2; i++) {
// For internal arrays we only need a few things
InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
stubh1.GetCode();
InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
stubh2.GetCode();
}
}
void ArrayConstructorStub::GenerateDispatchToArrayStub(
MacroAssembler* masm, AllocationSiteOverrideMode mode) {
Label not_zero_case, not_one_case;
__ test(eax, eax);
__ j(not_zero, &not_zero_case);
CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
__ bind(&not_zero_case);
__ cmp(eax, 1);
__ j(greater, &not_one_case);
CreateArrayDispatchOneArgument(masm, mode);
__ bind(&not_one_case);
ArrayNArgumentsConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
}
void ArrayConstructorStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : argc (only if argument_count() is ANY or MORE_THAN_ONE)
// -- ebx : AllocationSite or undefined
// -- edi : constructor
// -- edx : Original constructor
// -- esp[0] : return address
// -- esp[4] : last argument
// -----------------------------------
if (FLAG_debug_code) {
// The array construct code is only set for the global and natives
// builtin Array functions which always have maps.
// Initial map for the builtin Array function should be a map.
__ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
__ test(ecx, Immediate(kSmiTagMask));
__ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
__ CmpObjectType(ecx, MAP_TYPE, ecx);
__ Assert(equal, kUnexpectedInitialMapForArrayFunction);
// We should either have undefined in ebx or a valid AllocationSite
__ AssertUndefinedOrAllocationSite(ebx);
}
Label subclassing;
// Enter the context of the Array function.
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
__ cmp(edx, edi);
__ j(not_equal, &subclassing);
Label no_info;
// If the feedback vector is the undefined value call an array constructor
// that doesn't use AllocationSites.
__ cmp(ebx, isolate()->factory()->undefined_value());
__ j(equal, &no_info);
// Only look at the lower 16 bits of the transition info.
__ mov(edx, FieldOperand(ebx, AllocationSite::kTransitionInfoOffset));
__ SmiUntag(edx);
STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
__ and_(edx, Immediate(AllocationSite::ElementsKindBits::kMask));
GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
__ bind(&no_info);
GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
// Subclassing.
__ bind(&subclassing);
__ mov(Operand(esp, eax, times_pointer_size, kPointerSize), edi);
__ add(eax, Immediate(3));
__ PopReturnAddressTo(ecx);
__ Push(edx);
__ Push(ebx);
__ PushReturnAddressFrom(ecx);
__ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate()));
}
void InternalArrayConstructorStub::GenerateCase(
MacroAssembler* masm, ElementsKind kind) {
Label not_zero_case, not_one_case;
Label normal_sequence;
__ test(eax, eax);
__ j(not_zero, &not_zero_case);
InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
__ TailCallStub(&stub0);
__ bind(&not_zero_case);
__ cmp(eax, 1);
__ j(greater, &not_one_case);
if (IsFastPackedElementsKind(kind)) {
// We might need to create a holey array
// look at the first argument
__ mov(ecx, Operand(esp, kPointerSize));
__ test(ecx, ecx);
__ j(zero, &normal_sequence);
InternalArraySingleArgumentConstructorStub
stub1_holey(isolate(), GetHoleyElementsKind(kind));
__ TailCallStub(&stub1_holey);
}
__ bind(&normal_sequence);
InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
__ TailCallStub(&stub1);
__ bind(&not_one_case);
ArrayNArgumentsConstructorStub stubN(isolate());
__ TailCallStub(&stubN);
}
void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : argc
// -- edi : constructor
// -- esp[0] : return address
// -- esp[4] : last argument
// -----------------------------------
if (FLAG_debug_code) {
// The array construct code is only set for the global and natives
// builtin Array functions which always have maps.
// Initial map for the builtin Array function should be a map.
__ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
__ test(ecx, Immediate(kSmiTagMask));
__ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
__ CmpObjectType(ecx, MAP_TYPE, ecx);
__ Assert(equal, kUnexpectedInitialMapForArrayFunction);
}
// Figure out the right elements kind
__ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
// Load the map's "bit field 2" into |result|. We only need the first byte,
// but the following masking takes care of that anyway.
__ mov(ecx, FieldOperand(ecx, Map::kBitField2Offset));
// Retrieve elements_kind from bit field 2.
__ DecodeField<Map::ElementsKindBits>(ecx);
if (FLAG_debug_code) {
Label done;
__ cmp(ecx, Immediate(FAST_ELEMENTS));
__ j(equal, &done);
__ cmp(ecx, Immediate(FAST_HOLEY_ELEMENTS));
__ Assert(equal,
kInvalidElementsKindForInternalArrayOrInternalPackedArray);
__ bind(&done);
}
Label fast_elements_case;
__ cmp(ecx, Immediate(FAST_ELEMENTS));
__ j(equal, &fast_elements_case);
GenerateCase(masm, FAST_HOLEY_ELEMENTS);
__ bind(&fast_elements_case);
GenerateCase(masm, FAST_ELEMENTS);
}
void FastNewObjectStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- edi : target
// -- edx : new target
// -- esi : context
// -- esp[0] : return address
// -----------------------------------
__ AssertFunction(edi);
__ AssertReceiver(edx);
// Verify that the new target is a JSFunction.
Label new_object;
__ CmpObjectType(edx, JS_FUNCTION_TYPE, ebx);
__ j(not_equal, &new_object);
// Load the initial map and verify that it's in fact a map.
__ mov(ecx, FieldOperand(edx, JSFunction::kPrototypeOrInitialMapOffset));
__ JumpIfSmi(ecx, &new_object);
__ CmpObjectType(ecx, MAP_TYPE, ebx);
__ j(not_equal, &new_object);
// Fall back to runtime if the target differs from the new target's
// initial map constructor.
__ cmp(edi, FieldOperand(ecx, Map::kConstructorOrBackPointerOffset));
__ j(not_equal, &new_object);
// Allocate the JSObject on the heap.
Label allocate, done_allocate;
__ movzx_b(ebx, FieldOperand(ecx, Map::kInstanceSizeOffset));
__ lea(ebx, Operand(ebx, times_pointer_size, 0));
__ Allocate(ebx, eax, edi, no_reg, &allocate, NO_ALLOCATION_FLAGS);
__ bind(&done_allocate);
// Initialize the JSObject fields.
__ mov(FieldOperand(eax, JSObject::kMapOffset), ecx);
__ mov(FieldOperand(eax, JSObject::kPropertiesOffset),
masm->isolate()->factory()->empty_fixed_array());
__ mov(FieldOperand(eax, JSObject::kElementsOffset),
masm->isolate()->factory()->empty_fixed_array());
STATIC_ASSERT(JSObject::kHeaderSize == 3 * kPointerSize);
__ lea(ebx, FieldOperand(eax, JSObject::kHeaderSize));
// ----------- S t a t e -------------
// -- eax : result (tagged)
// -- ebx : result fields (untagged)
// -- edi : result end (untagged)
// -- ecx : initial map
// -- esi : context
// -- esp[0] : return address
// -----------------------------------
// Perform in-object slack tracking if requested.
Label slack_tracking;
STATIC_ASSERT(Map::kNoSlackTracking == 0);
__ test(FieldOperand(ecx, Map::kBitField3Offset),
Immediate(Map::ConstructionCounter::kMask));
__ j(not_zero, &slack_tracking, Label::kNear);
{
// Initialize all in-object fields with undefined.
__ LoadRoot(edx, Heap::kUndefinedValueRootIndex);
__ InitializeFieldsWithFiller(ebx, edi, edx);
__ Ret();
}
__ bind(&slack_tracking);
{
// Decrease generous allocation count.
STATIC_ASSERT(Map::ConstructionCounter::kNext == 32);
__ sub(FieldOperand(ecx, Map::kBitField3Offset),
Immediate(1 << Map::ConstructionCounter::kShift));
// Initialize the in-object fields with undefined.
__ movzx_b(edx, FieldOperand(ecx, Map::kUnusedPropertyFieldsOffset));
__ neg(edx);
__ lea(edx, Operand(edi, edx, times_pointer_size, 0));
__ LoadRoot(edi, Heap::kUndefinedValueRootIndex);
__ InitializeFieldsWithFiller(ebx, edx, edi);
// Initialize the remaining (reserved) fields with one pointer filler map.
__ movzx_b(edx, FieldOperand(ecx, Map::kUnusedPropertyFieldsOffset));
__ lea(edx, Operand(ebx, edx, times_pointer_size, 0));
__ LoadRoot(edi, Heap::kOnePointerFillerMapRootIndex);
__ InitializeFieldsWithFiller(ebx, edx, edi);
// Check if we can finalize the instance size.
Label finalize;
STATIC_ASSERT(Map::kSlackTrackingCounterEnd == 1);
__ test(FieldOperand(ecx, Map::kBitField3Offset),
Immediate(Map::ConstructionCounter::kMask));
__ j(zero, &finalize, Label::kNear);
__ Ret();
// Finalize the instance size.
__ bind(&finalize);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(eax);
__ Push(ecx);
__ CallRuntime(Runtime::kFinalizeInstanceSize);
__ Pop(eax);
}
__ Ret();
}
// Fall back to %AllocateInNewSpace.
__ bind(&allocate);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ SmiTag(ebx);
__ Push(ecx);
__ Push(ebx);
__ CallRuntime(Runtime::kAllocateInNewSpace);
__ Pop(ecx);
}
__ movzx_b(ebx, FieldOperand(ecx, Map::kInstanceSizeOffset));
__ lea(edi, Operand(eax, ebx, times_pointer_size, 0));
STATIC_ASSERT(kHeapObjectTag == 1);
__ dec(edi);
__ jmp(&done_allocate);
// Fall back to %NewObject.
__ bind(&new_object);
__ PopReturnAddressTo(ecx);
__ Push(edi);
__ Push(edx);
__ PushReturnAddressFrom(ecx);
__ TailCallRuntime(Runtime::kNewObject);
}
void FastNewRestParameterStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- edi : function
// -- esi : context
// -- ebp : frame pointer
// -- esp[0] : return address
// -----------------------------------
__ AssertFunction(edi);
// Make edx point to the JavaScript frame.
__ mov(edx, ebp);
if (skip_stub_frame()) {
// For Ignition we need to skip the handler/stub frame to reach the
// JavaScript frame for the function.
__ mov(edx, Operand(edx, StandardFrameConstants::kCallerFPOffset));
}
if (FLAG_debug_code) {
Label ok;
__ cmp(edi, Operand(edx, StandardFrameConstants::kFunctionOffset));
__ j(equal, &ok);
__ Abort(kInvalidFrameForFastNewRestArgumentsStub);
__ bind(&ok);
}
// Check if we have rest parameters (only possible if we have an
// arguments adaptor frame below the function frame).
Label no_rest_parameters;
__ mov(ebx, Operand(edx, StandardFrameConstants::kCallerFPOffset));
__ cmp(Operand(ebx, CommonFrameConstants::kContextOrFrameTypeOffset),
Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
__ j(not_equal, &no_rest_parameters, Label::kNear);
// Check if the arguments adaptor frame contains more arguments than
// specified by the function's internal formal parameter count.
Label rest_parameters;
__ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ mov(eax, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ sub(eax,
FieldOperand(ecx, SharedFunctionInfo::kFormalParameterCountOffset));
__ j(greater, &rest_parameters);
// Return an empty rest parameter array.
__ bind(&no_rest_parameters);
{
// ----------- S t a t e -------------
// -- esi : context
// -- esp[0] : return address
// -----------------------------------
// Allocate an empty rest parameter array.
Label allocate, done_allocate;
__ Allocate(JSArray::kSize, eax, edx, ecx, &allocate, NO_ALLOCATION_FLAGS);
__ bind(&done_allocate);
// Setup the rest parameter array in rax.
__ LoadGlobalFunction(Context::JS_ARRAY_FAST_ELEMENTS_MAP_INDEX, ecx);
__ mov(FieldOperand(eax, JSArray::kMapOffset), ecx);
__ mov(ecx, isolate()->factory()->empty_fixed_array());
__ mov(FieldOperand(eax, JSArray::kPropertiesOffset), ecx);
__ mov(FieldOperand(eax, JSArray::kElementsOffset), ecx);
__ mov(FieldOperand(eax, JSArray::kLengthOffset), Immediate(Smi::kZero));
STATIC_ASSERT(JSArray::kSize == 4 * kPointerSize);
__ Ret();
// Fall back to %AllocateInNewSpace.
__ bind(&allocate);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(Smi::FromInt(JSArray::kSize));
__ CallRuntime(Runtime::kAllocateInNewSpace);
}
__ jmp(&done_allocate);
}
__ bind(&rest_parameters);
{
// Compute the pointer to the first rest parameter (skippping the receiver).
__ lea(ebx,
Operand(ebx, eax, times_half_pointer_size,
StandardFrameConstants::kCallerSPOffset - 1 * kPointerSize));
// ----------- S t a t e -------------
// -- esi : context
// -- eax : number of rest parameters (tagged)
// -- ebx : pointer to first rest parameters
// -- esp[0] : return address
// -----------------------------------
// Allocate space for the rest parameter array plus the backing store.
Label allocate, done_allocate;
__ lea(ecx, Operand(eax, times_half_pointer_size,
JSArray::kSize + FixedArray::kHeaderSize));
__ Allocate(ecx, edx, edi, no_reg, &allocate, NO_ALLOCATION_FLAGS);
__ bind(&done_allocate);
// Setup the elements array in edx.
__ mov(FieldOperand(edx, FixedArray::kMapOffset),
isolate()->factory()->fixed_array_map());
__ mov(FieldOperand(edx, FixedArray::kLengthOffset), eax);
{
Label loop, done_loop;
__ Move(ecx, Smi::kZero);
__ bind(&loop);
__ cmp(ecx, eax);
__ j(equal, &done_loop, Label::kNear);
__ mov(edi, Operand(ebx, 0 * kPointerSize));
__ mov(FieldOperand(edx, ecx, times_half_pointer_size,
FixedArray::kHeaderSize),
edi);
__ sub(ebx, Immediate(1 * kPointerSize));
__ add(ecx, Immediate(Smi::FromInt(1)));
__ jmp(&loop);
__ bind(&done_loop);
}
// Setup the rest parameter array in edi.
__ lea(edi,
Operand(edx, eax, times_half_pointer_size, FixedArray::kHeaderSize));
__ LoadGlobalFunction(Context::JS_ARRAY_FAST_ELEMENTS_MAP_INDEX, ecx);
__ mov(FieldOperand(edi, JSArray::kMapOffset), ecx);
__ mov(FieldOperand(edi, JSArray::kPropertiesOffset),
isolate()->factory()->empty_fixed_array());
__ mov(FieldOperand(edi, JSArray::kElementsOffset), edx);
__ mov(FieldOperand(edi, JSArray::kLengthOffset), eax);
STATIC_ASSERT(JSArray::kSize == 4 * kPointerSize);
__ mov(eax, edi);
__ Ret();
// Fall back to %AllocateInNewSpace (if not too big).
Label too_big_for_new_space;
__ bind(&allocate);
__ cmp(ecx, Immediate(kMaxRegularHeapObjectSize));
__ j(greater, &too_big_for_new_space);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ SmiTag(ecx);
__ Push(eax);
__ Push(ebx);
__ Push(ecx);
__ CallRuntime(Runtime::kAllocateInNewSpace);
__ mov(edx, eax);
__ Pop(ebx);
__ Pop(eax);
}
__ jmp(&done_allocate);
// Fall back to %NewRestParameter.
__ bind(&too_big_for_new_space);
__ PopReturnAddressTo(ecx);
// We reload the function from the caller frame due to register pressure
// within this stub. This is the slow path, hence reloading is preferable.
if (skip_stub_frame()) {
// For Ignition we need to skip the handler/stub frame to reach the
// JavaScript frame for the function.
__ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
__ Push(Operand(edx, StandardFrameConstants::kFunctionOffset));
} else {
__ Push(Operand(ebp, StandardFrameConstants::kFunctionOffset));
}
__ PushReturnAddressFrom(ecx);
__ TailCallRuntime(Runtime::kNewRestParameter);
}
}
void FastNewSloppyArgumentsStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- edi : function
// -- esi : context
// -- ebp : frame pointer
// -- esp[0] : return address
// -----------------------------------
__ AssertFunction(edi);
// Make ecx point to the JavaScript frame.
__ mov(ecx, ebp);
if (skip_stub_frame()) {
// For Ignition we need to skip the handler/stub frame to reach the
// JavaScript frame for the function.
__ mov(ecx, Operand(ecx, StandardFrameConstants::kCallerFPOffset));
}
if (FLAG_debug_code) {
Label ok;
__ cmp(edi, Operand(ecx, StandardFrameConstants::kFunctionOffset));
__ j(equal, &ok);
__ Abort(kInvalidFrameForFastNewSloppyArgumentsStub);
__ bind(&ok);
}
// TODO(bmeurer): Cleanup to match the FastNewStrictArgumentsStub.
__ mov(ebx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ mov(ebx,
FieldOperand(ebx, SharedFunctionInfo::kFormalParameterCountOffset));
__ lea(edx, Operand(ecx, ebx, times_half_pointer_size,
StandardFrameConstants::kCallerSPOffset));
// ebx : number of parameters (tagged)
// edx : parameters pointer
// edi : function
// ecx : JavaScript frame pointer.
// esp[0] : return address
// Check if the calling frame is an arguments adaptor frame.
Label adaptor_frame, try_allocate, runtime;
__ mov(eax, Operand(ecx, StandardFrameConstants::kCallerFPOffset));
__ mov(eax, Operand(eax, CommonFrameConstants::kContextOrFrameTypeOffset));
__ cmp(eax, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
__ j(equal, &adaptor_frame, Label::kNear);
// No adaptor, parameter count = argument count.
__ mov(ecx, ebx);
__ push(ebx);
__ jmp(&try_allocate, Label::kNear);
// We have an adaptor frame. Patch the parameters pointer.
__ bind(&adaptor_frame);
__ push(ebx);
__ mov(edx, Operand(ecx, StandardFrameConstants::kCallerFPOffset));
__ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ lea(edx, Operand(edx, ecx, times_2,
StandardFrameConstants::kCallerSPOffset));
// ebx = parameter count (tagged)
// ecx = argument count (smi-tagged)
// Compute the mapped parameter count = min(ebx, ecx) in ebx.
__ cmp(ebx, ecx);
__ j(less_equal, &try_allocate, Label::kNear);
__ mov(ebx, ecx);
// Save mapped parameter count and function.
__ bind(&try_allocate);
__ push(edi);
__ push(ebx);
// Compute the sizes of backing store, parameter map, and arguments object.
// 1. Parameter map, has 2 extra words containing context and backing store.
const int kParameterMapHeaderSize =
FixedArray::kHeaderSize + 2 * kPointerSize;
Label no_parameter_map;
__ test(ebx, ebx);
__ j(zero, &no_parameter_map, Label::kNear);
__ lea(ebx, Operand(ebx, times_2, kParameterMapHeaderSize));
__ bind(&no_parameter_map);
// 2. Backing store.
__ lea(ebx, Operand(ebx, ecx, times_2, FixedArray::kHeaderSize));
// 3. Arguments object.
__ add(ebx, Immediate(JSSloppyArgumentsObject::kSize));
// Do the allocation of all three objects in one go.
__ Allocate(ebx, eax, edi, no_reg, &runtime, NO_ALLOCATION_FLAGS);
// eax = address of new object(s) (tagged)
// ecx = argument count (smi-tagged)
// esp[0] = mapped parameter count (tagged)
// esp[4] = function
// esp[8] = parameter count (tagged)
// Get the arguments map from the current native context into edi.
Label has_mapped_parameters, instantiate;
__ mov(edi, NativeContextOperand());
__ mov(ebx, Operand(esp, 0 * kPointerSize));
__ test(ebx, ebx);
__ j(not_zero, &has_mapped_parameters, Label::kNear);
__ mov(
edi,
Operand(edi, Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX)));
__ jmp(&instantiate, Label::kNear);
__ bind(&has_mapped_parameters);
__ mov(edi, Operand(edi, Context::SlotOffset(
Context::FAST_ALIASED_ARGUMENTS_MAP_INDEX)));
__ bind(&instantiate);
// eax = address of new object (tagged)
// ebx = mapped parameter count (tagged)
// ecx = argument count (smi-tagged)
// edi = address of arguments map (tagged)
// esp[0] = mapped parameter count (tagged)
// esp[4] = function
// esp[8] = parameter count (tagged)
// Copy the JS object part.
__ mov(FieldOperand(eax, JSObject::kMapOffset), edi);
__ mov(FieldOperand(eax, JSObject::kPropertiesOffset),
masm->isolate()->factory()->empty_fixed_array());
__ mov(FieldOperand(eax, JSObject::kElementsOffset),
masm->isolate()->factory()->empty_fixed_array());
// Set up the callee in-object property.
STATIC_ASSERT(JSSloppyArgumentsObject::kCalleeIndex == 1);
__ mov(edi, Operand(esp, 1 * kPointerSize));
__ AssertNotSmi(edi);
__ mov(FieldOperand(eax, JSSloppyArgumentsObject::kCalleeOffset), edi);
// Use the length (smi tagged) and set that as an in-object property too.
__ AssertSmi(ecx);
__ mov(FieldOperand(eax, JSSloppyArgumentsObject::kLengthOffset), ecx);
// Set up the elements pointer in the allocated arguments object.
// If we allocated a parameter map, edi will point there, otherwise to the
// backing store.
__ lea(edi, Operand(eax, JSSloppyArgumentsObject::kSize));
__ mov(FieldOperand(eax, JSObject::kElementsOffset), edi);
// eax = address of new object (tagged)
// ebx = mapped parameter count (tagged)
// ecx = argument count (tagged)
// edx = address of receiver argument
// edi = address of parameter map or backing store (tagged)
// esp[0] = mapped parameter count (tagged)
// esp[4] = function
// esp[8] = parameter count (tagged)
// Free two registers.
__ push(edx);
__ push(eax);
// Initialize parameter map. If there are no mapped arguments, we're done.
Label skip_parameter_map;
__ test(ebx, ebx);
__ j(zero, &skip_parameter_map);
__ mov(FieldOperand(edi, FixedArray::kMapOffset),
Immediate(isolate()->factory()->sloppy_arguments_elements_map()));
__ lea(eax, Operand(ebx, reinterpret_cast<intptr_t>(Smi::FromInt(2))));
__ mov(FieldOperand(edi, FixedArray::kLengthOffset), eax);
__ mov(FieldOperand(edi, FixedArray::kHeaderSize + 0 * kPointerSize), esi);
__ lea(eax, Operand(edi, ebx, times_2, kParameterMapHeaderSize));
__ mov(FieldOperand(edi, FixedArray::kHeaderSize + 1 * kPointerSize), eax);
// Copy the parameter slots and the holes in the arguments.
// We need to fill in mapped_parameter_count slots. They index the context,
// where parameters are stored in reverse order, at
// MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
// The mapped parameter thus need to get indices
// MIN_CONTEXT_SLOTS+parameter_count-1 ..
// MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
// We loop from right to left.
Label parameters_loop, parameters_test;
__ push(ecx);
__ mov(eax, Operand(esp, 3 * kPointerSize));
__ mov(ebx, Immediate(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
__ add(ebx, Operand(esp, 5 * kPointerSize));
__ sub(ebx, eax);
__ mov(ecx, isolate()->factory()->the_hole_value());
__ mov(edx, edi);
__ lea(edi, Operand(edi, eax, times_2, kParameterMapHeaderSize));
// eax = loop variable (tagged)
// ebx = mapping index (tagged)
// ecx = the hole value
// edx = address of parameter map (tagged)
// edi = address of backing store (tagged)
// esp[0] = argument count (tagged)
// esp[4] = address of new object (tagged)
// esp[8] = address of receiver argument
// esp[12] = mapped parameter count (tagged)
// esp[16] = function
// esp[20] = parameter count (tagged)
__ jmp(&parameters_test, Label::kNear);
__ bind(&parameters_loop);
__ sub(eax, Immediate(Smi::FromInt(1)));
__ mov(FieldOperand(edx, eax, times_2, kParameterMapHeaderSize), ebx);
__ mov(FieldOperand(edi, eax, times_2, FixedArray::kHeaderSize), ecx);
__ add(ebx, Immediate(Smi::FromInt(1)));
__ bind(&parameters_test);
__ test(eax, eax);
__ j(not_zero, &parameters_loop, Label::kNear);
__ pop(ecx);
__ bind(&skip_parameter_map);
// ecx = argument count (tagged)
// edi = address of backing store (tagged)
// esp[0] = address of new object (tagged)
// esp[4] = address of receiver argument
// esp[8] = mapped parameter count (tagged)
// esp[12] = function
// esp[16] = parameter count (tagged)
// Copy arguments header and remaining slots (if there are any).
__ mov(FieldOperand(edi, FixedArray::kMapOffset),
Immediate(isolate()->factory()->fixed_array_map()));
__ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx);
Label arguments_loop, arguments_test;
__ mov(ebx, Operand(esp, 2 * kPointerSize));
__ mov(edx, Operand(esp, 1 * kPointerSize));
__ sub(edx, ebx); // Is there a smarter way to do negative scaling?
__ sub(edx, ebx);
__ jmp(&arguments_test, Label::kNear);
__ bind(&arguments_loop);
__ sub(edx, Immediate(kPointerSize));
__ mov(eax, Operand(edx, 0));
__ mov(FieldOperand(edi, ebx, times_2, FixedArray::kHeaderSize), eax);
__ add(ebx, Immediate(Smi::FromInt(1)));
__ bind(&arguments_test);
__ cmp(ebx, ecx);
__ j(less, &arguments_loop, Label::kNear);
// Restore.
__ pop(eax); // Address of arguments object.
__ Drop(4);
// Return.
__ ret(0);
// Do the runtime call to allocate the arguments object.
__ bind(&runtime);
__ pop(eax); // Remove saved mapped parameter count.
__ pop(edi); // Pop saved function.
__ pop(eax); // Remove saved parameter count.
__ pop(eax); // Pop return address.
__ push(edi); // Push function.
__ push(edx); // Push parameters pointer.
__ push(ecx); // Push parameter count.
__ push(eax); // Push return address.
__ TailCallRuntime(Runtime::kNewSloppyArguments);
}
void FastNewStrictArgumentsStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- edi : function
// -- esi : context
// -- ebp : frame pointer
// -- esp[0] : return address
// -----------------------------------
__ AssertFunction(edi);
// Make edx point to the JavaScript frame.
__ mov(edx, ebp);
if (skip_stub_frame()) {
// For Ignition we need to skip the handler/stub frame to reach the
// JavaScript frame for the function.
__ mov(edx, Operand(edx, StandardFrameConstants::kCallerFPOffset));
}
if (FLAG_debug_code) {
Label ok;
__ cmp(edi, Operand(edx, StandardFrameConstants::kFunctionOffset));
__ j(equal, &ok);
__ Abort(kInvalidFrameForFastNewStrictArgumentsStub);
__ bind(&ok);
}
// Check if we have an arguments adaptor frame below the function frame.
Label arguments_adaptor, arguments_done;
__ mov(ebx, Operand(edx, StandardFrameConstants::kCallerFPOffset));
__ cmp(Operand(ebx, CommonFrameConstants::kContextOrFrameTypeOffset),
Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
__ j(equal, &arguments_adaptor, Label::kNear);
{
__ mov(eax, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ mov(eax,
FieldOperand(eax, SharedFunctionInfo::kFormalParameterCountOffset));
__ lea(ebx,
Operand(edx, eax, times_half_pointer_size,
StandardFrameConstants::kCallerSPOffset - 1 * kPointerSize));
}
__ jmp(&arguments_done, Label::kNear);
__ bind(&arguments_adaptor);
{
__ mov(eax, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ lea(ebx,
Operand(ebx, eax, times_half_pointer_size,
StandardFrameConstants::kCallerSPOffset - 1 * kPointerSize));
}
__ bind(&arguments_done);
// ----------- S t a t e -------------
// -- eax : number of arguments (tagged)
// -- ebx : pointer to the first argument
// -- esi : context
// -- esp[0] : return address
// -----------------------------------
// Allocate space for the strict arguments object plus the backing store.
Label allocate, done_allocate;
__ lea(ecx,
Operand(eax, times_half_pointer_size,
JSStrictArgumentsObject::kSize + FixedArray::kHeaderSize));
__ Allocate(ecx, edx, edi, no_reg, &allocate, NO_ALLOCATION_FLAGS);
__ bind(&done_allocate);
// Setup the elements array in edx.
__ mov(FieldOperand(edx, FixedArray::kMapOffset),
isolate()->factory()->fixed_array_map());
__ mov(FieldOperand(edx, FixedArray::kLengthOffset), eax);
{
Label loop, done_loop;
__ Move(ecx, Smi::kZero);
__ bind(&loop);
__ cmp(ecx, eax);
__ j(equal, &done_loop, Label::kNear);
__ mov(edi, Operand(ebx, 0 * kPointerSize));
__ mov(FieldOperand(edx, ecx, times_half_pointer_size,
FixedArray::kHeaderSize),
edi);
__ sub(ebx, Immediate(1 * kPointerSize));
__ add(ecx, Immediate(Smi::FromInt(1)));
__ jmp(&loop);
__ bind(&done_loop);
}
// Setup the rest parameter array in edi.
__ lea(edi,
Operand(edx, eax, times_half_pointer_size, FixedArray::kHeaderSize));
__ LoadGlobalFunction(Context::STRICT_ARGUMENTS_MAP_INDEX, ecx);
__ mov(FieldOperand(edi, JSStrictArgumentsObject::kMapOffset), ecx);
__ mov(FieldOperand(edi, JSStrictArgumentsObject::kPropertiesOffset),
isolate()->factory()->empty_fixed_array());
__ mov(FieldOperand(edi, JSStrictArgumentsObject::kElementsOffset), edx);
__ mov(FieldOperand(edi, JSStrictArgumentsObject::kLengthOffset), eax);
STATIC_ASSERT(JSStrictArgumentsObject::kSize == 4 * kPointerSize);
__ mov(eax, edi);
__ Ret();
// Fall back to %AllocateInNewSpace (if not too big).
Label too_big_for_new_space;
__ bind(&allocate);
__ cmp(ecx, Immediate(kMaxRegularHeapObjectSize));
__ j(greater, &too_big_for_new_space);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ SmiTag(ecx);
__ Push(eax);
__ Push(ebx);
__ Push(ecx);
__ CallRuntime(Runtime::kAllocateInNewSpace);
__ mov(edx, eax);
__ Pop(ebx);
__ Pop(eax);
}
__ jmp(&done_allocate);
// Fall back to %NewStrictArguments.
__ bind(&too_big_for_new_space);
__ PopReturnAddressTo(ecx);
// We reload the function from the caller frame due to register pressure
// within this stub. This is the slow path, hence reloading is preferable.
if (skip_stub_frame()) {
// For Ignition we need to skip the handler/stub frame to reach the
// JavaScript frame for the function.
__ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
__ Push(Operand(edx, StandardFrameConstants::kFunctionOffset));
} else {
__ Push(Operand(ebp, StandardFrameConstants::kFunctionOffset));
}
__ PushReturnAddressFrom(ecx);
__ TailCallRuntime(Runtime::kNewStrictArguments);
}
// Generates an Operand for saving parameters after PrepareCallApiFunction.
static Operand ApiParameterOperand(int index) {
return Operand(esp, index * kPointerSize);
}
// Prepares stack to put arguments (aligns and so on). Reserves
// space for return value if needed (assumes the return value is a handle).
// Arguments must be stored in ApiParameterOperand(0), ApiParameterOperand(1)
// etc. Saves context (esi). If space was reserved for return value then
// stores the pointer to the reserved slot into esi.
static void PrepareCallApiFunction(MacroAssembler* masm, int argc) {
__ EnterApiExitFrame(argc);
if (__ emit_debug_code()) {
__ mov(esi, Immediate(bit_cast<int32_t>(kZapValue)));
}
}
// Calls an API function. Allocates HandleScope, extracts returned value
// from handle and propagates exceptions. Clobbers ebx, edi and
// caller-save registers. Restores context. On return removes
// stack_space * kPointerSize (GCed).
static void CallApiFunctionAndReturn(MacroAssembler* masm,
Register function_address,
ExternalReference thunk_ref,
Operand thunk_last_arg, int stack_space,
Operand* stack_space_operand,
Operand return_value_operand,
Operand* context_restore_operand) {
Isolate* isolate = masm->isolate();
ExternalReference next_address =
ExternalReference::handle_scope_next_address(isolate);
ExternalReference limit_address =
ExternalReference::handle_scope_limit_address(isolate);
ExternalReference level_address =
ExternalReference::handle_scope_level_address(isolate);
DCHECK(edx.is(function_address));
// Allocate HandleScope in callee-save registers.
__ mov(ebx, Operand::StaticVariable(next_address));
__ mov(edi, Operand::StaticVariable(limit_address));
__ add(Operand::StaticVariable(level_address), Immediate(1));
if (FLAG_log_timer_events) {
FrameScope frame(masm, StackFrame::MANUAL);
__ PushSafepointRegisters();
__ PrepareCallCFunction(1, eax);
__ mov(Operand(esp, 0),
Immediate(ExternalReference::isolate_address(isolate)));
__ CallCFunction(ExternalReference::log_enter_external_function(isolate),
1);
__ PopSafepointRegisters();
}
Label profiler_disabled;
Label end_profiler_check;
__ mov(eax, Immediate(ExternalReference::is_profiling_address(isolate)));
__ cmpb(Operand(eax, 0), Immediate(0));
__ j(zero, &profiler_disabled);
// Additional parameter is the address of the actual getter function.
__ mov(thunk_last_arg, function_address);
// Call the api function.
__ mov(eax, Immediate(thunk_ref));
__ call(eax);
__ jmp(&end_profiler_check);
__ bind(&profiler_disabled);
// Call the api function.
__ call(function_address);
__ bind(&end_profiler_check);
if (FLAG_log_timer_events) {
FrameScope frame(masm, StackFrame::MANUAL);
__ PushSafepointRegisters();
__ PrepareCallCFunction(1, eax);
__ mov(Operand(esp, 0),
Immediate(ExternalReference::isolate_address(isolate)));
__ CallCFunction(ExternalReference::log_leave_external_function(isolate),
1);
__ PopSafepointRegisters();
}
Label prologue;
// Load the value from ReturnValue
__ mov(eax, return_value_operand);
Label promote_scheduled_exception;
Label delete_allocated_handles;
Label leave_exit_frame;
__ bind(&prologue);
// No more valid handles (the result handle was the last one). Restore
// previous handle scope.
__ mov(Operand::StaticVariable(next_address), ebx);
__ sub(Operand::StaticVariable(level_address), Immediate(1));
__ Assert(above_equal, kInvalidHandleScopeLevel);
__ cmp(edi, Operand::StaticVariable(limit_address));
__ j(not_equal, &delete_allocated_handles);
// Leave the API exit frame.
__ bind(&leave_exit_frame);
bool restore_context = context_restore_operand != NULL;
if (restore_context) {
__ mov(esi, *context_restore_operand);
}
if (stack_space_operand != nullptr) {
__ mov(ebx, *stack_space_operand);
}
__ LeaveApiExitFrame(!restore_context);
// Check if the function scheduled an exception.
ExternalReference scheduled_exception_address =
ExternalReference::scheduled_exception_address(isolate);
__ cmp(Operand::StaticVariable(scheduled_exception_address),
Immediate(isolate->factory()->the_hole_value()));
__ j(not_equal, &promote_scheduled_exception);
#if DEBUG
// Check if the function returned a valid JavaScript value.
Label ok;
Register return_value = eax;
Register map = ecx;
__ JumpIfSmi(return_value, &ok, Label::kNear);
__ mov(map, FieldOperand(return_value, HeapObject::kMapOffset));
__ CmpInstanceType(map, LAST_NAME_TYPE);
__ j(below_equal, &ok, Label::kNear);
__ CmpInstanceType(map, FIRST_JS_RECEIVER_TYPE);
__ j(above_equal, &ok, Label::kNear);
__ cmp(map, isolate->factory()->heap_number_map());
__ j(equal, &ok, Label::kNear);
__ cmp(return_value, isolate->factory()->undefined_value());
__ j(equal, &ok, Label::kNear);
__ cmp(return_value, isolate->factory()->true_value());
__ j(equal, &ok, Label::kNear);
__ cmp(return_value, isolate->factory()->false_value());
__ j(equal, &ok, Label::kNear);
__ cmp(return_value, isolate->factory()->null_value());
__ j(equal, &ok, Label::kNear);
__ Abort(kAPICallReturnedInvalidObject);
__ bind(&ok);
#endif
if (stack_space_operand != nullptr) {
DCHECK_EQ(0, stack_space);
__ pop(ecx);
__ add(esp, ebx);
__ jmp(ecx);
} else {
__ ret(stack_space * kPointerSize);
}
// Re-throw by promoting a scheduled exception.
__ bind(&promote_scheduled_exception);
__ TailCallRuntime(Runtime::kPromoteScheduledException);
// HandleScope limit has changed. Delete allocated extensions.
ExternalReference delete_extensions =
ExternalReference::delete_handle_scope_extensions(isolate);
__ bind(&delete_allocated_handles);
__ mov(Operand::StaticVariable(limit_address), edi);
__ mov(edi, eax);
__ mov(Operand(esp, 0),
Immediate(ExternalReference::isolate_address(isolate)));
__ mov(eax, Immediate(delete_extensions));
__ call(eax);
__ mov(eax, edi);
__ jmp(&leave_exit_frame);
}
void CallApiCallbackStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- edi : callee
// -- ebx : call_data
// -- ecx : holder
// -- edx : api_function_address
// -- esi : context
// --
// -- esp[0] : return address
// -- esp[4] : last argument
// -- ...
// -- esp[argc * 4] : first argument
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
Register callee = edi;
Register call_data = ebx;
Register holder = ecx;
Register api_function_address = edx;
Register context = esi;
Register return_address = eax;
typedef FunctionCallbackArguments FCA;
STATIC_ASSERT(FCA::kContextSaveIndex == 6);
STATIC_ASSERT(FCA::kCalleeIndex == 5);
STATIC_ASSERT(FCA::kDataIndex == 4);
STATIC_ASSERT(FCA::kReturnValueOffset == 3);
STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
STATIC_ASSERT(FCA::kIsolateIndex == 1);
STATIC_ASSERT(FCA::kHolderIndex == 0);
STATIC_ASSERT(FCA::kNewTargetIndex == 7);
STATIC_ASSERT(FCA::kArgsLength == 8);
__ pop(return_address);
// new target
__ PushRoot(Heap::kUndefinedValueRootIndex);
// context save.
__ push(context);
// callee
__ push(callee);
// call data
__ push(call_data);
Register scratch = call_data;
if (!call_data_undefined()) {
// return value
__ push(Immediate(masm->isolate()->factory()->undefined_value()));
// return value default
__ push(Immediate(masm->isolate()->factory()->undefined_value()));
} else {
// return value
__ push(scratch);
// return value default
__ push(scratch);
}
// isolate
__ push(Immediate(reinterpret_cast<int>(masm->isolate())));
// holder
__ push(holder);
__ mov(scratch, esp);
// push return address
__ push(return_address);
if (!is_lazy()) {
// load context from callee
__ mov(context, FieldOperand(callee, JSFunction::kContextOffset));
}
// API function gets reference to the v8::Arguments. If CPU profiler
// is enabled wrapper function will be called and we need to pass
// address of the callback as additional parameter, always allocate
// space for it.
const int kApiArgc = 1 + 1;
// Allocate the v8::Arguments structure in the arguments' space since
// it's not controlled by GC.
const int kApiStackSpace = 3;
PrepareCallApiFunction(masm, kApiArgc + kApiStackSpace);
// FunctionCallbackInfo::implicit_args_.
__ mov(ApiParameterOperand(2), scratch);
__ add(scratch, Immediate((argc() + FCA::kArgsLength - 1) * kPointerSize));
// FunctionCallbackInfo::values_.
__ mov(ApiParameterOperand(3), scratch);
// FunctionCallbackInfo::length_.
__ Move(ApiParameterOperand(4), Immediate(argc()));
// v8::InvocationCallback's argument.
__ lea(scratch, ApiParameterOperand(2));
__ mov(ApiParameterOperand(0), scratch);
ExternalReference thunk_ref =
ExternalReference::invoke_function_callback(masm->isolate());
Operand context_restore_operand(ebp,
(2 + FCA::kContextSaveIndex) * kPointerSize);
// Stores return the first js argument
int return_value_offset = 0;
if (is_store()) {
return_value_offset = 2 + FCA::kArgsLength;
} else {
return_value_offset = 2 + FCA::kReturnValueOffset;
}
Operand return_value_operand(ebp, return_value_offset * kPointerSize);
int stack_space = 0;
Operand length_operand = ApiParameterOperand(4);
Operand* stack_space_operand = &length_operand;
stack_space = argc() + FCA::kArgsLength + 1;
stack_space_operand = nullptr;
CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
ApiParameterOperand(1), stack_space,
stack_space_operand, return_value_operand,
&context_restore_operand);
}
void CallApiGetterStub::Generate(MacroAssembler* masm) {
// Build v8::PropertyCallbackInfo::args_ array on the stack and push property
// name below the exit frame to make GC aware of them.
STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1);
STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2);
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4);
STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5);
STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6);
STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7);
Register receiver = ApiGetterDescriptor::ReceiverRegister();
Register holder = ApiGetterDescriptor::HolderRegister();
Register callback = ApiGetterDescriptor::CallbackRegister();
Register scratch = ebx;
DCHECK(!AreAliased(receiver, holder, callback, scratch));
__ pop(scratch); // Pop return address to extend the frame.
__ push(receiver);
__ push(FieldOperand(callback, AccessorInfo::kDataOffset));
__ PushRoot(Heap::kUndefinedValueRootIndex); // ReturnValue
// ReturnValue default value
__ PushRoot(Heap::kUndefinedValueRootIndex);
__ push(Immediate(ExternalReference::isolate_address(isolate())));
__ push(holder);
__ push(Immediate(Smi::kZero)); // should_throw_on_error -> false
__ push(FieldOperand(callback, AccessorInfo::kNameOffset));
__ push(scratch); // Restore return address.
// v8::PropertyCallbackInfo::args_ array and name handle.
const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
// Allocate v8::PropertyCallbackInfo object, arguments for callback and
// space for optional callback address parameter (in case CPU profiler is
// active) in non-GCed stack space.
const int kApiArgc = 3 + 1;
// Load address of v8::PropertyAccessorInfo::args_ array.
__ lea(scratch, Operand(esp, 2 * kPointerSize));
PrepareCallApiFunction(masm, kApiArgc);
// Create v8::PropertyCallbackInfo object on the stack and initialize
// it's args_ field.
Operand info_object = ApiParameterOperand(3);
__ mov(info_object, scratch);
// Name as handle.
__ sub(scratch, Immediate(kPointerSize));
__ mov(ApiParameterOperand(0), scratch);
// Arguments pointer.
__ lea(scratch, info_object);
__ mov(ApiParameterOperand(1), scratch);
// Reserve space for optional callback address parameter.
Operand thunk_last_arg = ApiParameterOperand(2);
ExternalReference thunk_ref =
ExternalReference::invoke_accessor_getter_callback(isolate());
__ mov(scratch, FieldOperand(callback, AccessorInfo::kJsGetterOffset));
Register function_address = edx;
__ mov(function_address,
FieldOperand(scratch, Foreign::kForeignAddressOffset));
// +3 is to skip prolog, return address and name handle.
Operand return_value_operand(
ebp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize);
CallApiFunctionAndReturn(masm, function_address, thunk_ref, thunk_last_arg,
kStackUnwindSpace, nullptr, return_value_operand,
NULL);
}
#undef __
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_IA32