v8/test/cctest/wasm/test-run-wasm-simd.cc
bbudge 04568c5216 [Turbofan] Add more integer SIMD operations for ARM.
- Adds logical and arithmetic shifts for all integer types.
- Adds min and max for all integer types.
- Adds saturating add and subtract for small integer types.
- Removes lane operations from the MachineOperatorCache.

LOG=N
BUG=v8:4124

Review-Url: https://codereview.chromium.org/2668013003
Cr-Commit-Position: refs/heads/master@{#43005}
2017-02-07 17:33:37 +00:00

1097 lines
43 KiB
C++

// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/wasm/wasm-macro-gen.h"
#include "test/cctest/cctest.h"
#include "test/cctest/compiler/value-helper.h"
#include "test/cctest/wasm/wasm-run-utils.h"
using namespace v8::base;
using namespace v8::internal;
using namespace v8::internal::compiler;
using namespace v8::internal::wasm;
namespace {
typedef float (*FloatUnOp)(float);
typedef float (*FloatBinOp)(float, float);
typedef int32_t (*FloatCompareOp)(float, float);
typedef int32_t (*Int32UnOp)(int32_t);
typedef int32_t (*Int32BinOp)(int32_t, int32_t);
typedef int32_t (*Int32ShiftOp)(int32_t, int);
typedef int16_t (*Int16UnOp)(int16_t);
typedef int16_t (*Int16BinOp)(int16_t, int16_t);
typedef int16_t (*Int16ShiftOp)(int16_t, int);
typedef int8_t (*Int8UnOp)(int8_t);
typedef int8_t (*Int8BinOp)(int8_t, int8_t);
typedef int8_t (*Int8ShiftOp)(int8_t, int);
#if V8_TARGET_ARCH_ARM
// Floating point specific value functions.
int32_t Equal(float a, float b) { return a == b ? -1 : 0; }
int32_t NotEqual(float a, float b) { return a != b ? -1 : 0; }
#endif // V8_TARGET_ARCH_ARM
// Generic expected value functions.
template <typename T>
T Negate(T a) {
return -a;
}
template <typename T>
T Add(T a, T b) {
return a + b;
}
template <typename T>
T Sub(T a, T b) {
return a - b;
}
template <typename T>
T Mul(T a, T b) {
return a * b;
}
template <typename T>
T Minimum(T a, T b) {
return a <= b ? a : b;
}
template <typename T>
T Maximum(T a, T b) {
return a >= b ? a : b;
}
template <typename T>
T UnsignedMinimum(T a, T b) {
using UnsignedT = typename std::make_unsigned<T>::type;
return static_cast<UnsignedT>(a) <= static_cast<UnsignedT>(b) ? a : b;
}
template <typename T>
T UnsignedMaximum(T a, T b) {
using UnsignedT = typename std::make_unsigned<T>::type;
return static_cast<UnsignedT>(a) >= static_cast<UnsignedT>(b) ? a : b;
}
template <typename T>
T Equal(T a, T b) {
return a == b ? -1 : 0;
}
template <typename T>
T NotEqual(T a, T b) {
return a != b ? -1 : 0;
}
template <typename T>
T Greater(T a, T b) {
return a > b ? -1 : 0;
}
template <typename T>
T GreaterEqual(T a, T b) {
return a >= b ? -1 : 0;
}
template <typename T>
T Less(T a, T b) {
return a < b ? -1 : 0;
}
template <typename T>
T LessEqual(T a, T b) {
return a <= b ? -1 : 0;
}
template <typename T>
T UnsignedGreater(T a, T b) {
using UnsignedT = typename std::make_unsigned<T>::type;
return static_cast<UnsignedT>(a) > static_cast<UnsignedT>(b) ? -1 : 0;
}
template <typename T>
T UnsignedGreaterEqual(T a, T b) {
using UnsignedT = typename std::make_unsigned<T>::type;
return static_cast<UnsignedT>(a) >= static_cast<UnsignedT>(b) ? -1 : 0;
}
template <typename T>
T UnsignedLess(T a, T b) {
using UnsignedT = typename std::make_unsigned<T>::type;
return static_cast<UnsignedT>(a) < static_cast<UnsignedT>(b) ? -1 : 0;
}
template <typename T>
T UnsignedLessEqual(T a, T b) {
using UnsignedT = typename std::make_unsigned<T>::type;
return static_cast<UnsignedT>(a) <= static_cast<UnsignedT>(b) ? -1 : 0;
}
template <typename T>
T LogicalShiftLeft(T a, int shift) {
return a << shift;
}
template <typename T>
T LogicalShiftRight(T a, int shift) {
using UnsignedT = typename std::make_unsigned<T>::type;
return static_cast<UnsignedT>(a) >> shift;
}
template <typename T>
int64_t Widen(T value) {
static_assert(sizeof(int64_t) > sizeof(T), "T must be int32_t or smaller");
return static_cast<int64_t>(value);
}
template <typename T>
int64_t UnsignedWiden(T value) {
static_assert(sizeof(int64_t) > sizeof(T), "T must be int32_t or smaller");
using UnsignedT = typename std::make_unsigned<T>::type;
return static_cast<int64_t>(static_cast<UnsignedT>(value));
}
template <typename T>
T Clamp(int64_t value) {
static_assert(sizeof(int64_t) > sizeof(T), "T must be int32_t or smaller");
int64_t min = static_cast<int64_t>(std::numeric_limits<T>::min());
int64_t max = static_cast<int64_t>(std::numeric_limits<T>::max());
int64_t clamped = std::max(min, std::min(max, value));
return static_cast<T>(clamped);
}
template <typename T>
T AddSaturate(T a, T b) {
return Clamp<T>(Widen(a) + Widen(b));
}
template <typename T>
T SubSaturate(T a, T b) {
return Clamp<T>(Widen(a) - Widen(b));
}
template <typename T>
T UnsignedAddSaturate(T a, T b) {
using UnsignedT = typename std::make_unsigned<T>::type;
return Clamp<UnsignedT>(UnsignedWiden(a) + UnsignedWiden(b));
}
template <typename T>
T UnsignedSubSaturate(T a, T b) {
using UnsignedT = typename std::make_unsigned<T>::type;
return Clamp<UnsignedT>(UnsignedWiden(a) - UnsignedWiden(b));
}
} // namespace
// TODO(gdeepti): These are tests using sample values to verify functional
// correctness of opcodes, add more tests for a range of values and macroize
// tests.
// TODO(bbudge) Figure out how to compare floats in Wasm code that can handle
// NaNs. For now, our tests avoid using NaNs.
#define WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lane_value, lane_index) \
WASM_IF(WASM_##LANE_TYPE##_NE(WASM_GET_LOCAL(lane_value), \
WASM_SIMD_##TYPE##_EXTRACT_LANE( \
lane_index, WASM_GET_LOCAL(value))), \
WASM_RETURN1(WASM_ZERO))
#define WASM_SIMD_CHECK4(TYPE, value, LANE_TYPE, lv0, lv1, lv2, lv3) \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv0, 0) \
, WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv1, 1), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv2, 2), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv3, 3)
#define WASM_SIMD_CHECK_SPLAT4(TYPE, value, LANE_TYPE, lv) \
WASM_SIMD_CHECK4(TYPE, value, LANE_TYPE, lv, lv, lv, lv)
#define WASM_SIMD_CHECK8(TYPE, value, LANE_TYPE, lv0, lv1, lv2, lv3, lv4, lv5, \
lv6, lv7) \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv0, 0) \
, WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv1, 1), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv2, 2), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv3, 3), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv4, 4), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv5, 5), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv6, 6), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv7, 7)
#define WASM_SIMD_CHECK_SPLAT8(TYPE, value, LANE_TYPE, lv) \
WASM_SIMD_CHECK8(TYPE, value, LANE_TYPE, lv, lv, lv, lv, lv, lv, lv, lv)
#define WASM_SIMD_CHECK16(TYPE, value, LANE_TYPE, lv0, lv1, lv2, lv3, lv4, \
lv5, lv6, lv7, lv8, lv9, lv10, lv11, lv12, lv13, \
lv14, lv15) \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv0, 0) \
, WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv1, 1), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv2, 2), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv3, 3), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv4, 4), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv5, 5), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv6, 6), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv7, 7), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv8, 8), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv9, 9), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv10, 10), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv11, 11), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv12, 12), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv13, 13), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv14, 14), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv15, 15)
#define WASM_SIMD_CHECK_SPLAT16(TYPE, value, LANE_TYPE, lv) \
WASM_SIMD_CHECK16(TYPE, value, LANE_TYPE, lv, lv, lv, lv, lv, lv, lv, lv, \
lv, lv, lv, lv, lv, lv, lv, lv)
#define WASM_SIMD_CHECK_F32_LANE(TYPE, value, lane_value, lane_index) \
WASM_IF( \
WASM_I32_NE(WASM_I32_REINTERPRET_F32(WASM_GET_LOCAL(lane_value)), \
WASM_I32_REINTERPRET_F32(WASM_SIMD_##TYPE##_EXTRACT_LANE( \
lane_index, WASM_GET_LOCAL(value)))), \
WASM_RETURN1(WASM_ZERO))
#define WASM_SIMD_CHECK4_F32(TYPE, value, lv0, lv1, lv2, lv3) \
WASM_SIMD_CHECK_F32_LANE(TYPE, value, lv0, 0) \
, WASM_SIMD_CHECK_F32_LANE(TYPE, value, lv1, 1), \
WASM_SIMD_CHECK_F32_LANE(TYPE, value, lv2, 2), \
WASM_SIMD_CHECK_F32_LANE(TYPE, value, lv3, 3)
#define WASM_SIMD_CHECK_SPLAT4_F32(TYPE, value, lv) \
WASM_SIMD_CHECK4_F32(TYPE, value, lv, lv, lv, lv)
#define WASM_SIMD_UNOP(opcode, x) x, kSimdPrefix, static_cast<byte>(opcode)
#define WASM_SIMD_BINOP(opcode, x, y) \
x, y, kSimdPrefix, static_cast<byte>(opcode)
#define WASM_SIMD_SHIFT_OP(opcode, x, shift) \
x, kSimdPrefix, static_cast<byte>(opcode), static_cast<byte>(shift)
#if V8_TARGET_ARCH_ARM
WASM_EXEC_TEST(F32x4Splat) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, float> r(kExecuteCompiled);
byte lane_val = 0;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r,
WASM_SET_LOCAL(simd, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(lane_val))),
WASM_SIMD_CHECK_SPLAT4_F32(F32x4, simd, lane_val), WASM_ONE);
FOR_FLOAT32_INPUTS(i) { CHECK_EQ(1, r.Call(*i)); }
}
WASM_EXEC_TEST(F32x4ReplaceLane) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, float, float> r(kExecuteCompiled);
byte old_val = 0;
byte new_val = 1;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(old_val))),
WASM_SET_LOCAL(simd,
WASM_SIMD_F32x4_REPLACE_LANE(0, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK4(F32x4, simd, F32, new_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_F32x4_REPLACE_LANE(1, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK4(F32x4, simd, F32, new_val, new_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_F32x4_REPLACE_LANE(2, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK4(F32x4, simd, F32, new_val, new_val, new_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_F32x4_REPLACE_LANE(3, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK_SPLAT4(F32x4, simd, F32, new_val), WASM_ONE);
CHECK_EQ(1, r.Call(3.14159, -1.5));
}
// Tests both signed and unsigned conversion.
WASM_EXEC_TEST(F32x4FromInt32x4) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, float, float> r(kExecuteCompiled);
byte a = 0;
byte expected_signed = 1;
byte expected_unsigned = 2;
byte simd0 = r.AllocateLocal(kWasmS128);
byte simd1 = r.AllocateLocal(kWasmS128);
byte simd2 = r.AllocateLocal(kWasmS128);
BUILD(
r, WASM_SET_LOCAL(simd0, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(simd1, WASM_SIMD_F32x4_FROM_I32x4(WASM_GET_LOCAL(simd0))),
WASM_SIMD_CHECK_SPLAT4_F32(F32x4, simd1, expected_signed),
WASM_SET_LOCAL(simd2, WASM_SIMD_F32x4_FROM_U32x4(WASM_GET_LOCAL(simd0))),
WASM_SIMD_CHECK_SPLAT4_F32(F32x4, simd2, expected_unsigned), WASM_ONE);
FOR_INT32_INPUTS(i) {
CHECK_EQ(1, r.Call(*i, static_cast<float>(*i),
static_cast<float>(static_cast<uint32_t>(*i))));
}
}
WASM_EXEC_TEST(S32x4Select) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte val1 = 0;
byte val2 = 1;
byte mask = r.AllocateLocal(kWasmS128);
byte src1 = r.AllocateLocal(kWasmS128);
byte src2 = r.AllocateLocal(kWasmS128);
BUILD(r,
WASM_SET_LOCAL(mask, WASM_SIMD_I32x4_SPLAT(WASM_ZERO)),
WASM_SET_LOCAL(src1, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(val1))),
WASM_SET_LOCAL(src2, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(val2))),
WASM_SET_LOCAL(mask, WASM_SIMD_I32x4_REPLACE_LANE(
1, WASM_GET_LOCAL(mask), WASM_I32V(-1))),
WASM_SET_LOCAL(mask, WASM_SIMD_I32x4_REPLACE_LANE(
2, WASM_GET_LOCAL(mask), WASM_I32V(-1))),
WASM_SET_LOCAL(mask, WASM_SIMD_S32x4_SELECT(WASM_GET_LOCAL(mask),
WASM_GET_LOCAL(src1),
WASM_GET_LOCAL(src2))),
WASM_SIMD_CHECK_LANE(I32x4, mask, I32, val2, 0),
WASM_SIMD_CHECK_LANE(I32x4, mask, I32, val1, 1),
WASM_SIMD_CHECK_LANE(I32x4, mask, I32, val1, 2),
WASM_SIMD_CHECK_LANE(I32x4, mask, I32, val2, 3), WASM_ONE);
CHECK_EQ(1, r.Call(0x1234, 0x5678));
}
void RunF32x4UnOpTest(WasmOpcode simd_op, FloatUnOp expected_op) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, float, float> r(kExecuteCompiled);
byte a = 0;
byte expected = 1;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(simd, WASM_SIMD_UNOP(simd_op, WASM_GET_LOCAL(simd))),
WASM_SIMD_CHECK_SPLAT4_F32(F32x4, simd, expected), WASM_ONE);
FOR_FLOAT32_INPUTS(i) {
if (std::isnan(*i)) continue;
CHECK_EQ(1, r.Call(*i, expected_op(*i)));
}
}
WASM_EXEC_TEST(F32x4Abs) { RunF32x4UnOpTest(kExprF32x4Abs, std::abs); }
WASM_EXEC_TEST(F32x4Neg) { RunF32x4UnOpTest(kExprF32x4Neg, Negate); }
void RunF32x4BinOpTest(WasmOpcode simd_op, FloatBinOp expected_op) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, float, float, float> r(kExecuteCompiled);
byte a = 0;
byte b = 1;
byte expected = 2;
byte simd0 = r.AllocateLocal(kWasmS128);
byte simd1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd0, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(simd1, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(b))),
WASM_SET_LOCAL(simd1, WASM_SIMD_BINOP(simd_op, WASM_GET_LOCAL(simd0),
WASM_GET_LOCAL(simd1))),
WASM_SIMD_CHECK_SPLAT4_F32(F32x4, simd1, expected), WASM_ONE);
FOR_FLOAT32_INPUTS(i) {
if (std::isnan(*i)) continue;
FOR_FLOAT32_INPUTS(j) {
if (std::isnan(*j)) continue;
float expected = expected_op(*i, *j);
// SIMD on some platforms may handle denormalized numbers differently.
// TODO(bbudge) On platforms that flush denorms to zero, test with
// expected == 0.
if (std::fpclassify(expected) == FP_SUBNORMAL) continue;
CHECK_EQ(1, r.Call(*i, *j, expected));
}
}
}
WASM_EXEC_TEST(F32x4Add) { RunF32x4BinOpTest(kExprF32x4Add, Add); }
WASM_EXEC_TEST(F32x4Sub) { RunF32x4BinOpTest(kExprF32x4Sub, Sub); }
void RunF32x4CompareOpTest(WasmOpcode simd_op, FloatCompareOp expected_op) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, float, float, int32_t> r(kExecuteCompiled);
byte a = 0;
byte b = 1;
byte expected = 2;
byte simd0 = r.AllocateLocal(kWasmS128);
byte simd1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd0, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(simd1, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(b))),
WASM_SET_LOCAL(simd1, WASM_SIMD_BINOP(simd_op, WASM_GET_LOCAL(simd0),
WASM_GET_LOCAL(simd1))),
WASM_SIMD_CHECK_SPLAT4(I32x4, simd1, I32, expected), WASM_ONE);
FOR_FLOAT32_INPUTS(i) {
if (std::isnan(*i)) continue;
FOR_FLOAT32_INPUTS(j) {
if (std::isnan(*j)) continue;
// SIMD on some platforms may handle denormalized numbers differently.
// Check for number pairs that are very close together.
if (std::fpclassify(*i - *j) == FP_SUBNORMAL) continue;
CHECK_EQ(1, r.Call(*i, *j, expected_op(*i, *j)));
}
}
}
WASM_EXEC_TEST(F32x4Equal) { RunF32x4CompareOpTest(kExprF32x4Eq, Equal); }
WASM_EXEC_TEST(F32x4NotEqual) { RunF32x4CompareOpTest(kExprF32x4Ne, NotEqual); }
#endif // V8_TARGET_ARCH_ARM
WASM_EXEC_TEST(I32x4Splat) {
FLAG_wasm_simd_prototype = true;
// Store SIMD value in a local variable, use extract lane to check lane values
// This test is not a test for ExtractLane as Splat does not create
// interesting SIMD values.
//
// SetLocal(1, I32x4Splat(Local(0)));
// For each lane index
// if(Local(0) != I32x4ExtractLane(Local(1), index)
// return 0
//
// return 1
WasmRunner<int32_t, int32_t> r(kExecuteCompiled);
byte lane_val = 0;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r,
WASM_SET_LOCAL(simd, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(lane_val))),
WASM_SIMD_CHECK_SPLAT4(I32x4, simd, I32, lane_val), WASM_ONE);
FOR_INT32_INPUTS(i) { CHECK_EQ(1, r.Call(*i)); }
}
WASM_EXEC_TEST(I32x4ReplaceLane) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte old_val = 0;
byte new_val = 1;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(old_val))),
WASM_SET_LOCAL(simd,
WASM_SIMD_I32x4_REPLACE_LANE(0, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK4(I32x4, simd, I32, new_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I32x4_REPLACE_LANE(1, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK4(I32x4, simd, I32, new_val, new_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I32x4_REPLACE_LANE(2, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK4(I32x4, simd, I32, new_val, new_val, new_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I32x4_REPLACE_LANE(3, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK_SPLAT4(I32x4, simd, I32, new_val), WASM_ONE);
CHECK_EQ(1, r.Call(1, 2));
}
#if V8_TARGET_ARCH_ARM
WASM_EXEC_TEST(I16x8Splat) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t> r(kExecuteCompiled);
byte lane_val = 0;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r,
WASM_SET_LOCAL(simd, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(lane_val))),
WASM_SIMD_CHECK_SPLAT8(I16x8, simd, I32, lane_val), WASM_ONE);
FOR_INT16_INPUTS(i) { CHECK_EQ(1, r.Call(*i)); }
}
WASM_EXEC_TEST(I16x8ReplaceLane) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte old_val = 0;
byte new_val = 1;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(old_val))),
WASM_SET_LOCAL(simd,
WASM_SIMD_I16x8_REPLACE_LANE(0, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK8(I16x8, simd, I32, new_val, old_val, old_val, old_val,
old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I16x8_REPLACE_LANE(1, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK8(I16x8, simd, I32, new_val, new_val, old_val, old_val,
old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I16x8_REPLACE_LANE(2, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK8(I16x8, simd, I32, new_val, new_val, new_val, old_val,
old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I16x8_REPLACE_LANE(3, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK8(I16x8, simd, I32, new_val, new_val, new_val, new_val,
old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I16x8_REPLACE_LANE(4, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK8(I16x8, simd, I32, new_val, new_val, new_val, new_val,
new_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I16x8_REPLACE_LANE(5, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK8(I16x8, simd, I32, new_val, new_val, new_val, new_val,
new_val, new_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I16x8_REPLACE_LANE(6, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK8(I16x8, simd, I32, new_val, new_val, new_val, new_val,
new_val, new_val, new_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I16x8_REPLACE_LANE(7, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK_SPLAT8(I16x8, simd, I32, new_val), WASM_ONE);
CHECK_EQ(1, r.Call(1, 2));
}
WASM_EXEC_TEST(I8x16Splat) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t> r(kExecuteCompiled);
byte lane_val = 0;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r,
WASM_SET_LOCAL(simd, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(lane_val))),
WASM_SIMD_CHECK_SPLAT8(I8x16, simd, I32, lane_val), WASM_ONE);
FOR_INT8_INPUTS(i) { CHECK_EQ(1, r.Call(*i)); }
}
WASM_EXEC_TEST(I8x16ReplaceLane) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte old_val = 0;
byte new_val = 1;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(old_val))),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(0, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, old_val, old_val, old_val,
old_val, old_val, old_val, old_val, old_val, old_val,
old_val, old_val, old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(1, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, old_val, old_val,
old_val, old_val, old_val, old_val, old_val, old_val,
old_val, old_val, old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(2, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, old_val,
old_val, old_val, old_val, old_val, old_val, old_val,
old_val, old_val, old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(3, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val,
old_val, old_val, old_val, old_val, old_val, old_val,
old_val, old_val, old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(4, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val,
new_val, old_val, old_val, old_val, old_val, old_val,
old_val, old_val, old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(5, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val,
new_val, new_val, old_val, old_val, old_val, old_val,
old_val, old_val, old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(6, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val,
new_val, new_val, new_val, old_val, old_val, old_val,
old_val, old_val, old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(7, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val,
new_val, new_val, new_val, new_val, old_val, old_val,
old_val, old_val, old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(8, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val,
new_val, new_val, new_val, new_val, new_val, old_val,
old_val, old_val, old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(9, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val,
new_val, new_val, new_val, new_val, new_val, new_val,
old_val, old_val, old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(10, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val,
new_val, new_val, new_val, new_val, new_val, new_val,
new_val, old_val, old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(11, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val,
new_val, new_val, new_val, new_val, new_val, new_val,
new_val, new_val, old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(12, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val,
new_val, new_val, new_val, new_val, new_val, new_val,
new_val, new_val, new_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(13, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val,
new_val, new_val, new_val, new_val, new_val, new_val,
new_val, new_val, new_val, new_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(14, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val,
new_val, new_val, new_val, new_val, new_val, new_val,
new_val, new_val, new_val, new_val, new_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(15, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK_SPLAT16(I8x16, simd, I32, new_val), WASM_ONE);
CHECK_EQ(1, r.Call(1, 2));
}
// Determines if conversion from float to int will be valid.
bool CanRoundToZeroAndConvert(double val, bool unsigned_integer) {
const double max_uint = static_cast<double>(0xffffffffu);
const double max_int = static_cast<double>(kMaxInt);
const double min_int = static_cast<double>(kMinInt);
// Check for NaN.
if (val != val) {
return false;
}
// Round to zero and check for overflow. This code works because 32 bit
// integers can be exactly represented by ieee-754 64bit floating-point
// values.
return unsigned_integer ? (val < (max_uint + 1.0)) && (val > -1)
: (val < (max_int + 1.0)) && (val > (min_int - 1.0));
}
int ConvertInvalidValue(double val, bool unsigned_integer) {
if (val != val) {
return 0;
} else {
if (unsigned_integer) {
return (val < 0) ? 0 : 0xffffffffu;
} else {
return (val < 0) ? kMinInt : kMaxInt;
}
}
}
int32_t ConvertToInt(double val, bool unsigned_integer) {
int32_t result =
unsigned_integer ? static_cast<uint32_t>(val) : static_cast<int32_t>(val);
if (!CanRoundToZeroAndConvert(val, unsigned_integer)) {
result = ConvertInvalidValue(val, unsigned_integer);
}
return result;
}
// Tests both signed and unsigned conversion.
WASM_EXEC_TEST(I32x4FromFloat32x4) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, float, int32_t, int32_t> r(kExecuteCompiled);
byte a = 0;
byte expected_signed = 1;
byte expected_unsigned = 2;
byte simd0 = r.AllocateLocal(kWasmS128);
byte simd1 = r.AllocateLocal(kWasmS128);
byte simd2 = r.AllocateLocal(kWasmS128);
BUILD(
r, WASM_SET_LOCAL(simd0, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(simd1, WASM_SIMD_I32x4_FROM_F32x4(WASM_GET_LOCAL(simd0))),
WASM_SIMD_CHECK_SPLAT4(I32x4, simd1, I32, expected_signed),
WASM_SET_LOCAL(simd2, WASM_SIMD_U32x4_FROM_F32x4(WASM_GET_LOCAL(simd0))),
WASM_SIMD_CHECK_SPLAT4(I32x4, simd2, I32, expected_unsigned), WASM_ONE);
FOR_FLOAT32_INPUTS(i) {
int32_t signed_value = ConvertToInt(*i, false);
int32_t unsigned_value = ConvertToInt(*i, true);
CHECK_EQ(1, r.Call(*i, signed_value, unsigned_value));
}
}
void RunI32x4UnOpTest(WasmOpcode simd_op, Int32UnOp expected_op) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte a = 0;
byte expected = 1;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(simd, WASM_SIMD_UNOP(simd_op, WASM_GET_LOCAL(simd))),
WASM_SIMD_CHECK_SPLAT4(I32x4, simd, I32, expected), WASM_ONE);
FOR_INT32_INPUTS(i) { CHECK_EQ(1, r.Call(*i, expected_op(*i))); }
}
WASM_EXEC_TEST(I32x4Neg) { RunI32x4UnOpTest(kExprI32x4Neg, Negate); }
#endif // V8_TARGET_ARCH_ARM
void RunI32x4BinOpTest(WasmOpcode simd_op, Int32BinOp expected_op) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte a = 0;
byte b = 1;
byte expected = 2;
byte simd0 = r.AllocateLocal(kWasmS128);
byte simd1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd0, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(simd1, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(b))),
WASM_SET_LOCAL(simd1, WASM_SIMD_BINOP(simd_op, WASM_GET_LOCAL(simd0),
WASM_GET_LOCAL(simd1))),
WASM_SIMD_CHECK_SPLAT4(I32x4, simd1, I32, expected), WASM_ONE);
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) { CHECK_EQ(1, r.Call(*i, *j, expected_op(*i, *j))); }
}
}
WASM_EXEC_TEST(I32x4Add) { RunI32x4BinOpTest(kExprI32x4Add, Add); }
WASM_EXEC_TEST(I32x4Sub) { RunI32x4BinOpTest(kExprI32x4Sub, Sub); }
#if V8_TARGET_ARCH_ARM
WASM_EXEC_TEST(I32x4Mul) { RunI32x4BinOpTest(kExprI32x4Mul, Mul); }
WASM_EXEC_TEST(I32x4Min) { RunI32x4BinOpTest(kExprI32x4MinS, Minimum); }
WASM_EXEC_TEST(I32x4Max) { RunI32x4BinOpTest(kExprI32x4MaxS, Maximum); }
WASM_EXEC_TEST(I32x4Equal) { RunI32x4BinOpTest(kExprI32x4Eq, Equal); }
WASM_EXEC_TEST(I32x4NotEqual) { RunI32x4BinOpTest(kExprI32x4Ne, NotEqual); }
WASM_EXEC_TEST(I32x4Greater) { RunI32x4BinOpTest(kExprI32x4GtS, Greater); }
WASM_EXEC_TEST(I32x4GreaterEqual) {
RunI32x4BinOpTest(kExprI32x4GeS, GreaterEqual);
}
WASM_EXEC_TEST(I32x4Less) { RunI32x4BinOpTest(kExprI32x4LtS, Less); }
WASM_EXEC_TEST(I32x4LessEqual) { RunI32x4BinOpTest(kExprI32x4LeS, LessEqual); }
WASM_EXEC_TEST(Ui32x4Min) {
RunI32x4BinOpTest(kExprI32x4MinU, UnsignedMinimum);
}
WASM_EXEC_TEST(Ui32x4Max) {
RunI32x4BinOpTest(kExprI32x4MaxU, UnsignedMaximum);
}
WASM_EXEC_TEST(Ui32x4Greater) {
RunI32x4BinOpTest(kExprI32x4GtU, UnsignedGreater);
}
WASM_EXEC_TEST(Ui32x4GreaterEqual) {
RunI32x4BinOpTest(kExprI32x4GeU, UnsignedGreaterEqual);
}
WASM_EXEC_TEST(Ui32x4Less) { RunI32x4BinOpTest(kExprI32x4LtU, UnsignedLess); }
WASM_EXEC_TEST(Ui32x4LessEqual) {
RunI32x4BinOpTest(kExprI32x4LeU, UnsignedLessEqual);
}
void RunI32x4ShiftOpTest(WasmOpcode simd_op, Int32ShiftOp expected_op,
int shift) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte a = 0;
byte expected = 1;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(
simd, WASM_SIMD_SHIFT_OP(simd_op, WASM_GET_LOCAL(simd), shift)),
WASM_SIMD_CHECK_SPLAT4(I32x4, simd, I32, expected), WASM_ONE);
FOR_INT32_INPUTS(i) { CHECK_EQ(1, r.Call(*i, expected_op(*i, shift))); }
}
WASM_EXEC_TEST(I32x4Shl) {
RunI32x4ShiftOpTest(kExprI32x4Shl, LogicalShiftLeft, 1);
}
WASM_EXEC_TEST(I32x4ShrS) {
RunI32x4ShiftOpTest(kExprI32x4ShrS, ArithmeticShiftRight, 1);
}
WASM_EXEC_TEST(I32x4ShrU) {
RunI32x4ShiftOpTest(kExprI32x4ShrU, LogicalShiftRight, 1);
}
void RunI16x8UnOpTest(WasmOpcode simd_op, Int16UnOp expected_op) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte a = 0;
byte expected = 1;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(simd, WASM_SIMD_UNOP(simd_op, WASM_GET_LOCAL(simd))),
WASM_SIMD_CHECK_SPLAT8(I16x8, simd, I32, expected), WASM_ONE);
FOR_INT16_INPUTS(i) { CHECK_EQ(1, r.Call(*i, expected_op(*i))); }
}
WASM_EXEC_TEST(I16x8Neg) { RunI16x8UnOpTest(kExprI16x8Neg, Negate); }
void RunI16x8BinOpTest(WasmOpcode simd_op, Int16BinOp expected_op) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte a = 0;
byte b = 1;
byte expected = 2;
byte simd0 = r.AllocateLocal(kWasmS128);
byte simd1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd0, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(simd1, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(b))),
WASM_SET_LOCAL(simd1, WASM_SIMD_BINOP(simd_op, WASM_GET_LOCAL(simd0),
WASM_GET_LOCAL(simd1))),
WASM_SIMD_CHECK_SPLAT8(I16x8, simd1, I32, expected), WASM_ONE);
FOR_INT16_INPUTS(i) {
FOR_INT16_INPUTS(j) { CHECK_EQ(1, r.Call(*i, *j, expected_op(*i, *j))); }
}
}
WASM_EXEC_TEST(I16x8Add) { RunI16x8BinOpTest(kExprI16x8Add, Add); }
WASM_EXEC_TEST(I16x8AddSaturate) {
RunI16x8BinOpTest(kExprI16x8AddSaturateS, AddSaturate);
}
WASM_EXEC_TEST(I16x8Sub) { RunI16x8BinOpTest(kExprI16x8Sub, Sub); }
WASM_EXEC_TEST(I16x8SubSaturate) {
RunI16x8BinOpTest(kExprI16x8SubSaturateS, SubSaturate);
}
WASM_EXEC_TEST(I16x8Mul) { RunI16x8BinOpTest(kExprI16x8Mul, Mul); }
WASM_EXEC_TEST(I16x8Min) { RunI16x8BinOpTest(kExprI16x8MinS, Minimum); }
WASM_EXEC_TEST(I16x8Max) { RunI16x8BinOpTest(kExprI16x8MaxS, Maximum); }
WASM_EXEC_TEST(I16x8Equal) { RunI16x8BinOpTest(kExprI16x8Eq, Equal); }
WASM_EXEC_TEST(I16x8NotEqual) { RunI16x8BinOpTest(kExprI16x8Ne, NotEqual); }
WASM_EXEC_TEST(I16x8Greater) { RunI16x8BinOpTest(kExprI16x8GtS, Greater); }
WASM_EXEC_TEST(I16x8GreaterEqual) {
RunI16x8BinOpTest(kExprI16x8GeS, GreaterEqual);
}
WASM_EXEC_TEST(I16x8Less) { RunI16x8BinOpTest(kExprI16x8LtS, Less); }
WASM_EXEC_TEST(I16x8LessEqual) { RunI16x8BinOpTest(kExprI16x8LeS, LessEqual); }
WASM_EXEC_TEST(Ui16x8AddSaturate) {
RunI16x8BinOpTest(kExprI16x8AddSaturateU, UnsignedAddSaturate);
}
WASM_EXEC_TEST(Ui16x8SubSaturate) {
RunI16x8BinOpTest(kExprI16x8SubSaturateU, UnsignedSubSaturate);
}
WASM_EXEC_TEST(Ui16x8Min) {
RunI16x8BinOpTest(kExprI16x8MinU, UnsignedMinimum);
}
WASM_EXEC_TEST(Ui16x8Max) {
RunI16x8BinOpTest(kExprI16x8MaxU, UnsignedMaximum);
}
WASM_EXEC_TEST(Ui16x8Greater) {
RunI16x8BinOpTest(kExprI16x8GtU, UnsignedGreater);
}
WASM_EXEC_TEST(Ui16x8GreaterEqual) {
RunI16x8BinOpTest(kExprI16x8GeU, UnsignedGreaterEqual);
}
WASM_EXEC_TEST(Ui16x8Less) { RunI16x8BinOpTest(kExprI16x8LtU, UnsignedLess); }
WASM_EXEC_TEST(Ui16x8LessEqual) {
RunI16x8BinOpTest(kExprI16x8LeU, UnsignedLessEqual);
}
void RunI16x8ShiftOpTest(WasmOpcode simd_op, Int16ShiftOp expected_op,
int shift) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte a = 0;
byte expected = 1;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(
simd, WASM_SIMD_SHIFT_OP(simd_op, WASM_GET_LOCAL(simd), shift)),
WASM_SIMD_CHECK_SPLAT8(I16x8, simd, I32, expected), WASM_ONE);
FOR_INT16_INPUTS(i) { CHECK_EQ(1, r.Call(*i, expected_op(*i, shift))); }
}
WASM_EXEC_TEST(I16x8Shl) {
RunI16x8ShiftOpTest(kExprI16x8Shl, LogicalShiftLeft, 1);
}
WASM_EXEC_TEST(I16x8ShrS) {
RunI16x8ShiftOpTest(kExprI16x8ShrS, ArithmeticShiftRight, 1);
}
WASM_EXEC_TEST(I16x8ShrU) {
RunI16x8ShiftOpTest(kExprI16x8ShrU, LogicalShiftRight, 1);
}
void RunI8x16UnOpTest(WasmOpcode simd_op, Int8UnOp expected_op) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte a = 0;
byte expected = 1;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(simd, WASM_SIMD_UNOP(simd_op, WASM_GET_LOCAL(simd))),
WASM_SIMD_CHECK_SPLAT16(I8x16, simd, I32, expected), WASM_ONE);
FOR_INT8_INPUTS(i) { CHECK_EQ(1, r.Call(*i, expected_op(*i))); }
}
WASM_EXEC_TEST(I8x16Neg) { RunI8x16UnOpTest(kExprI8x16Neg, Negate); }
void RunI8x16BinOpTest(WasmOpcode simd_op, Int8BinOp expected_op) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte a = 0;
byte b = 1;
byte expected = 2;
byte simd0 = r.AllocateLocal(kWasmS128);
byte simd1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd0, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(simd1, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(b))),
WASM_SET_LOCAL(simd1, WASM_SIMD_BINOP(simd_op, WASM_GET_LOCAL(simd0),
WASM_GET_LOCAL(simd1))),
WASM_SIMD_CHECK_SPLAT16(I8x16, simd1, I32, expected), WASM_ONE);
FOR_INT8_INPUTS(i) {
FOR_INT8_INPUTS(j) { CHECK_EQ(1, r.Call(*i, *j, expected_op(*i, *j))); }
}
}
WASM_EXEC_TEST(I8x16Add) { RunI8x16BinOpTest(kExprI8x16Add, Add); }
WASM_EXEC_TEST(I8x16AddSaturate) {
RunI8x16BinOpTest(kExprI8x16AddSaturateS, AddSaturate);
}
WASM_EXEC_TEST(I8x16Sub) { RunI8x16BinOpTest(kExprI8x16Sub, Sub); }
WASM_EXEC_TEST(I8x16SubSaturate) {
RunI8x16BinOpTest(kExprI8x16SubSaturateS, SubSaturate);
}
WASM_EXEC_TEST(I8x16Mul) { RunI8x16BinOpTest(kExprI8x16Mul, Mul); }
WASM_EXEC_TEST(I8x16Min) { RunI8x16BinOpTest(kExprI8x16MinS, Minimum); }
WASM_EXEC_TEST(I8x16Max) { RunI8x16BinOpTest(kExprI8x16MaxS, Maximum); }
WASM_EXEC_TEST(I8x16Equal) { RunI8x16BinOpTest(kExprI8x16Eq, Equal); }
WASM_EXEC_TEST(I8x16NotEqual) { RunI8x16BinOpTest(kExprI8x16Ne, NotEqual); }
WASM_EXEC_TEST(I8x16Greater) { RunI8x16BinOpTest(kExprI8x16GtS, Greater); }
WASM_EXEC_TEST(I8x16GreaterEqual) {
RunI8x16BinOpTest(kExprI8x16GeS, GreaterEqual);
}
WASM_EXEC_TEST(I8x16Less) { RunI8x16BinOpTest(kExprI8x16LtS, Less); }
WASM_EXEC_TEST(I8x16LessEqual) { RunI8x16BinOpTest(kExprI8x16LeS, LessEqual); }
WASM_EXEC_TEST(Ui8x16AddSaturate) {
RunI8x16BinOpTest(kExprI8x16AddSaturateU, UnsignedAddSaturate);
}
WASM_EXEC_TEST(Ui8x16SubSaturate) {
RunI8x16BinOpTest(kExprI8x16SubSaturateU, UnsignedSubSaturate);
}
WASM_EXEC_TEST(Ui8x16Min) {
RunI8x16BinOpTest(kExprI8x16MinU, UnsignedMinimum);
}
WASM_EXEC_TEST(Ui8x16Max) {
RunI8x16BinOpTest(kExprI8x16MaxU, UnsignedMaximum);
}
WASM_EXEC_TEST(Ui8x16Greater) {
RunI8x16BinOpTest(kExprI8x16GtU, UnsignedGreater);
}
WASM_EXEC_TEST(Ui8x16GreaterEqual) {
RunI8x16BinOpTest(kExprI8x16GeU, UnsignedGreaterEqual);
}
WASM_EXEC_TEST(Ui8x16Less) { RunI8x16BinOpTest(kExprI8x16LtU, UnsignedLess); }
WASM_EXEC_TEST(Ui8x16LessEqual) {
RunI8x16BinOpTest(kExprI8x16LeU, UnsignedLessEqual);
}
void RunI8x16ShiftOpTest(WasmOpcode simd_op, Int8ShiftOp expected_op,
int shift) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte a = 0;
byte expected = 1;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(
simd, WASM_SIMD_SHIFT_OP(simd_op, WASM_GET_LOCAL(simd), shift)),
WASM_SIMD_CHECK_SPLAT16(I8x16, simd, I32, expected), WASM_ONE);
FOR_INT8_INPUTS(i) { CHECK_EQ(1, r.Call(*i, expected_op(*i, shift))); }
}
WASM_EXEC_TEST(I8x16Shl) {
RunI8x16ShiftOpTest(kExprI8x16Shl, LogicalShiftLeft, 1);
}
WASM_EXEC_TEST(I8x16ShrS) {
RunI8x16ShiftOpTest(kExprI8x16ShrS, ArithmeticShiftRight, 1);
}
WASM_EXEC_TEST(I8x16ShrU) {
RunI8x16ShiftOpTest(kExprI8x16ShrU, LogicalShiftRight, 1);
}
#endif // V8_TARGET_ARCH_ARM