v8/test/cctest/test-migrations.cc
rmcilroy d02f62484e Move SmartPointer to base.
Review URL: https://codereview.chromium.org/1221433021

Cr-Commit-Position: refs/heads/master@{#29604}
2015-07-13 12:38:17 +00:00

2187 lines
77 KiB
C++

// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stdlib.h>
#include <utility>
#include "src/v8.h"
#include "src/code-stubs.h"
#include "src/compilation-cache.h"
#include "src/execution.h"
#include "src/factory.h"
#include "src/global-handles.h"
#include "src/ic/stub-cache.h"
#include "src/macro-assembler.h"
#include "test/cctest/cctest.h"
using namespace v8::internal;
// TODO(ishell): fix this once TransitionToPrototype stops generalizing
// all field representations (similar to crbug/448711 where elements kind
// and observed transitions caused generalization of all field representations).
const bool IS_PROTO_TRANS_ISSUE_FIXED = false;
// TODO(ishell): fix this once TransitionToAccessorProperty is able to always
// keep map in fast mode.
const bool IS_ACCESSOR_FIELD_SUPPORTED = false;
// Number of properties used in the tests.
const int kPropCount = 7;
//
// Helper functions.
//
static Handle<String> MakeString(const char* str) {
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
return factory->InternalizeUtf8String(str);
}
static Handle<String> MakeName(const char* str, int suffix) {
EmbeddedVector<char, 128> buffer;
SNPrintF(buffer, "%s%d", str, suffix);
return MakeString(buffer.start());
}
static Handle<AccessorPair> CreateAccessorPair(bool with_getter,
bool with_setter) {
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Handle<AccessorPair> pair = factory->NewAccessorPair();
Handle<String> empty_string = factory->empty_string();
if (with_getter) {
Handle<JSFunction> func = factory->NewFunction(empty_string);
pair->set_getter(*func);
}
if (with_setter) {
Handle<JSFunction> func = factory->NewFunction(empty_string);
pair->set_setter(*func);
}
return pair;
}
static bool EqualDetails(DescriptorArray* descriptors, int descriptor,
PropertyType type, PropertyAttributes attributes,
Representation representation, int field_index = -1) {
PropertyDetails details = descriptors->GetDetails(descriptor);
if (details.type() != type) return false;
if (details.attributes() != attributes) return false;
if (!details.representation().Equals(representation)) return false;
if (field_index >= 0 && details.field_index() != field_index) return false;
return true;
}
class Expectations {
static const int MAX_PROPERTIES = 10;
Isolate* isolate_;
PropertyType types_[MAX_PROPERTIES];
PropertyAttributes attributes_[MAX_PROPERTIES];
Representation representations_[MAX_PROPERTIES];
// HeapType for kField, value for DATA_CONSTANT and getter for
// ACCESSOR_CONSTANT.
Handle<Object> values_[MAX_PROPERTIES];
// Setter for ACCESSOR_CONSTANT.
Handle<Object> setter_values_[MAX_PROPERTIES];
int number_of_properties_;
public:
explicit Expectations(Isolate* isolate)
: isolate_(isolate), number_of_properties_(0) {}
void Init(int index, PropertyType type, PropertyAttributes attributes,
Representation representation, Handle<Object> value) {
DCHECK(index < MAX_PROPERTIES);
types_[index] = type;
attributes_[index] = attributes;
representations_[index] = representation;
values_[index] = value;
}
void Print() const {
OFStream os(stdout);
os << "Expectations: #" << number_of_properties_ << "\n";
for (int i = 0; i < number_of_properties_; i++) {
os << " " << i << ": ";
os << "Descriptor @ ";
if (types_[i] == ACCESSOR_CONSTANT) {
os << "(get: " << Brief(*values_[i])
<< ", set: " << Brief(*setter_values_[i]) << ") ";
} else {
os << Brief(*values_[i]);
}
os << " (";
switch (types_[i]) {
case DATA_CONSTANT:
os << "immutable ";
// Fall through.
case DATA:
os << "data";
break;
case ACCESSOR_CONSTANT:
os << "immutable ";
// Fall through.
case ACCESSOR:
os << "accessor";
break;
}
os << ": " << representations_[i].Mnemonic();
os << ", attrs: " << attributes_[i] << ")\n";
}
os << "\n";
}
Handle<HeapType> GetFieldType(int index) {
CHECK(index < MAX_PROPERTIES);
CHECK(types_[index] == DATA || types_[index] == ACCESSOR);
return Handle<HeapType>::cast(values_[index]);
}
void SetDataField(int index, PropertyAttributes attrs,
Representation representation, Handle<HeapType> value) {
Init(index, DATA, attrs, representation, value);
}
void SetDataField(int index, Representation representation,
Handle<HeapType> value) {
SetDataField(index, attributes_[index], representation, value);
}
void SetAccessorField(int index, PropertyAttributes attrs) {
Init(index, ACCESSOR, attrs, Representation::Tagged(),
HeapType::Any(isolate_));
}
void SetAccessorField(int index) {
SetAccessorField(index, attributes_[index]);
}
void SetDataConstant(int index, PropertyAttributes attrs,
Handle<JSFunction> value) {
Init(index, DATA_CONSTANT, attrs, Representation::HeapObject(), value);
}
void SetDataConstant(int index, Handle<JSFunction> value) {
SetDataConstant(index, attributes_[index], value);
}
void SetAccessorConstant(int index, PropertyAttributes attrs,
Handle<Object> getter, Handle<Object> setter) {
Init(index, ACCESSOR_CONSTANT, attrs, Representation::Tagged(), getter);
setter_values_[index] = setter;
}
void SetAccessorConstantComponent(int index, PropertyAttributes attrs,
AccessorComponent component,
Handle<Object> accessor) {
CHECK_EQ(ACCESSOR_CONSTANT, types_[index]);
CHECK(index < number_of_properties_);
if (component == ACCESSOR_GETTER) {
values_[index] = accessor;
} else {
setter_values_[index] = accessor;
}
}
void SetAccessorConstant(int index, PropertyAttributes attrs,
Handle<AccessorPair> pair) {
Handle<Object> getter = handle(pair->getter(), isolate_);
Handle<Object> setter = handle(pair->setter(), isolate_);
SetAccessorConstant(index, attrs, getter, setter);
}
void SetAccessorConstant(int index, Handle<Object> getter,
Handle<Object> setter) {
SetAccessorConstant(index, attributes_[index], getter, setter);
}
void SetAccessorConstant(int index, Handle<AccessorPair> pair) {
Handle<Object> getter = handle(pair->getter(), isolate_);
Handle<Object> setter = handle(pair->setter(), isolate_);
SetAccessorConstant(index, getter, setter);
}
void GeneralizeRepresentation(int index) {
CHECK(index < number_of_properties_);
representations_[index] = Representation::Tagged();
if (types_[index] == DATA || types_[index] == ACCESSOR) {
values_[index] = HeapType::Any(isolate_);
}
}
bool Check(DescriptorArray* descriptors, int descriptor) const {
PropertyType type = types_[descriptor];
if (!EqualDetails(descriptors, descriptor, type, attributes_[descriptor],
representations_[descriptor])) {
return false;
}
Object* value = descriptors->GetValue(descriptor);
Object* expected_value = *values_[descriptor];
switch (type) {
case DATA:
case ACCESSOR: {
HeapType* type = descriptors->GetFieldType(descriptor);
return HeapType::cast(expected_value)->Equals(type);
}
case DATA_CONSTANT:
return value == expected_value;
case ACCESSOR_CONSTANT: {
if (value == expected_value) return true;
if (!value->IsAccessorPair()) return false;
AccessorPair* pair = AccessorPair::cast(value);
return pair->Equals(expected_value, *setter_values_[descriptor]);
}
}
UNREACHABLE();
return false;
}
bool Check(Map* map, int expected_nof) const {
CHECK(number_of_properties_ <= MAX_PROPERTIES);
CHECK_EQ(expected_nof, map->NumberOfOwnDescriptors());
CHECK(!map->is_dictionary_map());
DescriptorArray* descriptors = map->instance_descriptors();
CHECK(expected_nof <= number_of_properties_);
for (int i = 0; i < expected_nof; i++) {
if (!Check(descriptors, i)) {
Print();
#ifdef OBJECT_PRINT
descriptors->Print();
#endif
Check(descriptors, i);
return false;
}
}
return true;
}
bool Check(Map* map) const { return Check(map, number_of_properties_); }
//
// Helper methods for initializing expectations and adding properties to
// given |map|.
//
Handle<Map> AddDataField(Handle<Map> map, PropertyAttributes attributes,
Representation representation,
Handle<HeapType> heap_type) {
CHECK_EQ(number_of_properties_, map->NumberOfOwnDescriptors());
int property_index = number_of_properties_++;
SetDataField(property_index, attributes, representation, heap_type);
Handle<String> name = MakeName("prop", property_index);
return Map::CopyWithField(map, name, heap_type, attributes, representation,
INSERT_TRANSITION).ToHandleChecked();
}
Handle<Map> AddDataConstant(Handle<Map> map, PropertyAttributes attributes,
Handle<JSFunction> value) {
CHECK_EQ(number_of_properties_, map->NumberOfOwnDescriptors());
int property_index = number_of_properties_++;
SetDataConstant(property_index, attributes, value);
Handle<String> name = MakeName("prop", property_index);
return Map::CopyWithConstant(map, name, value, attributes,
INSERT_TRANSITION).ToHandleChecked();
}
Handle<Map> TransitionToDataField(Handle<Map> map,
PropertyAttributes attributes,
Representation representation,
Handle<HeapType> heap_type,
Handle<Object> value) {
CHECK_EQ(number_of_properties_, map->NumberOfOwnDescriptors());
int property_index = number_of_properties_++;
SetDataField(property_index, attributes, representation, heap_type);
Handle<String> name = MakeName("prop", property_index);
return Map::TransitionToDataProperty(
map, name, value, attributes, Object::CERTAINLY_NOT_STORE_FROM_KEYED);
}
Handle<Map> TransitionToDataConstant(Handle<Map> map,
PropertyAttributes attributes,
Handle<JSFunction> value) {
CHECK_EQ(number_of_properties_, map->NumberOfOwnDescriptors());
int property_index = number_of_properties_++;
SetDataConstant(property_index, attributes, value);
Handle<String> name = MakeName("prop", property_index);
return Map::TransitionToDataProperty(
map, name, value, attributes, Object::CERTAINLY_NOT_STORE_FROM_KEYED);
}
Handle<Map> FollowDataTransition(Handle<Map> map,
PropertyAttributes attributes,
Representation representation,
Handle<HeapType> heap_type) {
CHECK_EQ(number_of_properties_, map->NumberOfOwnDescriptors());
int property_index = number_of_properties_++;
SetDataField(property_index, attributes, representation, heap_type);
Handle<String> name = MakeName("prop", property_index);
Map* target =
TransitionArray::SearchTransition(*map, kData, *name, attributes);
CHECK(target != NULL);
return handle(target);
}
Handle<Map> AddAccessorConstant(Handle<Map> map,
PropertyAttributes attributes,
Handle<AccessorPair> pair) {
CHECK_EQ(number_of_properties_, map->NumberOfOwnDescriptors());
int property_index = number_of_properties_++;
SetAccessorConstant(property_index, attributes, pair);
Handle<String> name = MakeName("prop", property_index);
AccessorConstantDescriptor new_desc(name, pair, attributes);
return Map::CopyInsertDescriptor(map, &new_desc, INSERT_TRANSITION);
}
Handle<Map> AddAccessorConstant(Handle<Map> map,
PropertyAttributes attributes,
Handle<Object> getter,
Handle<Object> setter) {
CHECK_EQ(number_of_properties_, map->NumberOfOwnDescriptors());
int property_index = number_of_properties_++;
SetAccessorConstant(property_index, attributes, getter, setter);
Handle<String> name = MakeName("prop", property_index);
CHECK(!getter->IsNull() || !setter->IsNull());
Factory* factory = isolate_->factory();
if (!getter->IsNull()) {
Handle<AccessorPair> pair = factory->NewAccessorPair();
pair->SetComponents(*getter, *factory->null_value());
AccessorConstantDescriptor new_desc(name, pair, attributes);
map = Map::CopyInsertDescriptor(map, &new_desc, INSERT_TRANSITION);
}
if (!setter->IsNull()) {
Handle<AccessorPair> pair = factory->NewAccessorPair();
pair->SetComponents(*getter, *setter);
AccessorConstantDescriptor new_desc(name, pair, attributes);
map = Map::CopyInsertDescriptor(map, &new_desc, INSERT_TRANSITION);
}
return map;
}
Handle<Map> TransitionToAccessorConstant(Handle<Map> map,
PropertyAttributes attributes,
Handle<AccessorPair> pair) {
CHECK_EQ(number_of_properties_, map->NumberOfOwnDescriptors());
int property_index = number_of_properties_++;
SetAccessorConstant(property_index, attributes, pair);
Handle<String> name = MakeName("prop", property_index);
Isolate* isolate = CcTest::i_isolate();
Handle<Object> getter(pair->getter(), isolate);
Handle<Object> setter(pair->setter(), isolate);
map = Map::TransitionToAccessorProperty(map, name, ACCESSOR_GETTER, getter,
attributes);
CHECK(!map->is_deprecated());
CHECK(!map->is_dictionary_map());
map = Map::TransitionToAccessorProperty(map, name, ACCESSOR_SETTER, setter,
attributes);
CHECK(!map->is_deprecated());
CHECK(!map->is_dictionary_map());
return map;
}
};
////////////////////////////////////////////////////////////////////////////////
// A set of tests for property reconfiguration that makes new transition tree
// branch.
//
TEST(ReconfigureAccessorToNonExistingDataField) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Handle<HeapType> any_type = HeapType::Any(isolate);
Handle<HeapType> none_type = HeapType::None(isolate);
Handle<AccessorPair> pair = CreateAccessorPair(true, true);
Expectations expectations(isolate);
// Create a map, add required properties to it and initialize expectations.
Handle<Map> initial_map = Map::Create(isolate, 0);
Handle<Map> map = initial_map;
map = expectations.AddAccessorConstant(map, NONE, pair);
CHECK(!map->is_deprecated());
CHECK(map->is_stable());
CHECK(expectations.Check(*map));
Handle<Map> new_map = Map::ReconfigureProperty(
map, 0, kData, NONE, Representation::None(), none_type, FORCE_FIELD);
// |map| did not change except marked unstable.
CHECK(!map->is_deprecated());
CHECK(!map->is_stable());
CHECK(expectations.Check(*map));
expectations.SetDataField(0, NONE, Representation::None(), none_type);
CHECK(!new_map->is_deprecated());
CHECK(new_map->is_stable());
CHECK(expectations.Check(*new_map));
Handle<Map> new_map2 = Map::ReconfigureProperty(
map, 0, kData, NONE, Representation::None(), none_type, FORCE_FIELD);
CHECK_EQ(*new_map, *new_map2);
Handle<Object> value(Smi::FromInt(0), isolate);
Handle<Map> prepared_map = Map::PrepareForDataProperty(new_map, 0, value);
// None to Smi generalization is trivial, map does not change.
CHECK_EQ(*new_map, *prepared_map);
expectations.SetDataField(0, NONE, Representation::Smi(), any_type);
CHECK(prepared_map->is_stable());
CHECK(expectations.Check(*prepared_map));
// Now create an object with |map|, migrate it to |prepared_map| and ensure
// that the data property is uninitialized.
Factory* factory = isolate->factory();
Handle<JSObject> obj = factory->NewJSObjectFromMap(map);
JSObject::MigrateToMap(obj, prepared_map);
FieldIndex index = FieldIndex::ForDescriptor(*prepared_map, 0);
CHECK(obj->RawFastPropertyAt(index)->IsUninitialized());
#ifdef VERIFY_HEAP
obj->ObjectVerify();
#endif
}
// This test checks that the LookupIterator machinery involved in
// JSObject::SetOwnPropertyIgnoreAttributes() does not try to migrate object
// to a map with a property with None representation.
TEST(ReconfigureAccessorToNonExistingDataFieldHeavy) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
v8::HandleScope scope(CcTest::isolate());
CompileRun(
"function getter() { return 1; };"
"function setter() {};"
"var o = {};"
"Object.defineProperty(o, 'foo', "
" { get: getter, set: setter, "
" configurable: true, enumerable: true});");
Handle<String> foo_str = factory->InternalizeUtf8String("foo");
Handle<String> obj_name = factory->InternalizeUtf8String("o");
Handle<Object> obj_value =
Object::GetProperty(isolate->global_object(), obj_name).ToHandleChecked();
CHECK(obj_value->IsJSObject());
Handle<JSObject> obj = Handle<JSObject>::cast(obj_value);
CHECK_EQ(1, obj->map()->NumberOfOwnDescriptors());
CHECK(obj->map()->instance_descriptors()->GetValue(0)->IsAccessorPair());
Handle<Object> value(Smi::FromInt(42), isolate);
JSObject::SetOwnPropertyIgnoreAttributes(obj, foo_str, value, NONE).Check();
// Check that the property contains |value|.
CHECK_EQ(1, obj->map()->NumberOfOwnDescriptors());
FieldIndex index = FieldIndex::ForDescriptor(obj->map(), 0);
Object* the_value = obj->RawFastPropertyAt(index);
CHECK(the_value->IsSmi());
CHECK_EQ(42, Smi::cast(the_value)->value());
}
////////////////////////////////////////////////////////////////////////////////
// A set of tests for representation generalization case.
//
// This test ensures that representation/field type generalization at
// |property_index| is done correctly independently of the fact that the |map|
// is detached from transition tree or not.
//
// {} - p0 - p1 - p2: |detach_point_map|
// |
// X - detached at |detach_property_at_index|
// |
// + - p3 - p4: |map|
//
// Detaching does not happen if |detach_property_at_index| is -1.
//
static void TestGeneralizeRepresentation(
int detach_property_at_index, int property_index,
Representation from_representation, Handle<HeapType> from_type,
Representation to_representation, Handle<HeapType> to_type,
Representation expected_representation, Handle<HeapType> expected_type,
bool expected_deprecation, bool expected_field_type_dependency) {
Isolate* isolate = CcTest::i_isolate();
Handle<HeapType> any_type = HeapType::Any(isolate);
CHECK(detach_property_at_index >= -1 &&
detach_property_at_index < kPropCount);
CHECK(property_index < kPropCount);
CHECK_NE(detach_property_at_index, property_index);
const bool is_detached_map = detach_property_at_index >= 0;
Expectations expectations(isolate);
// Create a map, add required properties to it and initialize expectations.
Handle<Map> initial_map = Map::Create(isolate, 0);
Handle<Map> map = initial_map;
Handle<Map> detach_point_map;
for (int i = 0; i < kPropCount; i++) {
if (i == property_index) {
map =
expectations.AddDataField(map, NONE, from_representation, from_type);
} else {
map =
expectations.AddDataField(map, NONE, Representation::Smi(), any_type);
if (i == detach_property_at_index) {
detach_point_map = map;
}
}
}
CHECK(!map->is_deprecated());
CHECK(map->is_stable());
CHECK(expectations.Check(*map));
Zone zone;
FakeStubForTesting stub(isolate);
if (is_detached_map) {
detach_point_map = Map::ReconfigureProperty(
detach_point_map, detach_property_at_index, kData, NONE,
Representation::Tagged(), any_type, FORCE_FIELD);
expectations.SetDataField(detach_property_at_index,
Representation::Tagged(), any_type);
CHECK(map->is_deprecated());
CHECK(expectations.Check(*detach_point_map,
detach_point_map->NumberOfOwnDescriptors()));
}
// Create new maps by generalizing representation of propX field.
Handle<Map> field_owner(map->FindFieldOwner(property_index), isolate);
CompilationInfo info(&stub, isolate, &zone);
CHECK(!info.dependencies()->HasAborted());
info.dependencies()->AssumeFieldType(field_owner);
Handle<Map> new_map =
Map::ReconfigureProperty(map, property_index, kData, NONE,
to_representation, to_type, FORCE_FIELD);
expectations.SetDataField(property_index, expected_representation,
expected_type);
CHECK(!new_map->is_deprecated());
CHECK(expectations.Check(*new_map));
if (is_detached_map) {
CHECK(!map->is_stable());
CHECK(map->is_deprecated());
CHECK_NE(*map, *new_map);
CHECK_EQ(expected_field_type_dependency && !field_owner->is_deprecated(),
info.dependencies()->HasAborted());
} else if (expected_deprecation) {
CHECK(!map->is_stable());
CHECK(map->is_deprecated());
CHECK(field_owner->is_deprecated());
CHECK_NE(*map, *new_map);
CHECK(!info.dependencies()->HasAborted());
} else {
CHECK(!field_owner->is_deprecated());
CHECK(map->is_stable()); // Map did not change, must be left stable.
CHECK_EQ(*map, *new_map);
CHECK_EQ(expected_field_type_dependency, info.dependencies()->HasAborted());
}
info.dependencies()->Rollback(); // Properly cleanup compilation info.
// Update all deprecated maps and check that they are now the same.
Handle<Map> updated_map = Map::Update(map);
CHECK_EQ(*new_map, *updated_map);
}
static void TestGeneralizeRepresentation(
Representation from_representation, Handle<HeapType> from_type,
Representation to_representation, Handle<HeapType> to_type,
Representation expected_representation, Handle<HeapType> expected_type,
bool expected_deprecation, bool expected_field_type_dependency) {
// Check the cases when the map being reconfigured is a part of the
// transition tree.
STATIC_ASSERT(kPropCount > 4);
int indices[] = {0, 2, kPropCount - 1};
for (int i = 0; i < static_cast<int>(arraysize(indices)); i++) {
TestGeneralizeRepresentation(
-1, indices[i], from_representation, from_type, to_representation,
to_type, expected_representation, expected_type, expected_deprecation,
expected_field_type_dependency);
}
if (!from_representation.IsNone()) {
// Check the cases when the map being reconfigured is NOT a part of the
// transition tree. "None -> anything" representation changes make sense
// only for "attached" maps.
int indices[] = {0, kPropCount - 1};
for (int i = 0; i < static_cast<int>(arraysize(indices)); i++) {
TestGeneralizeRepresentation(
indices[i], 2, from_representation, from_type, to_representation,
to_type, expected_representation, expected_type, expected_deprecation,
expected_field_type_dependency);
}
// Check that reconfiguration to the very same field works correctly.
Representation representation = from_representation;
Handle<HeapType> type = from_type;
TestGeneralizeRepresentation(-1, 2, representation, type, representation,
type, representation, type, false, false);
}
}
static void TestGeneralizeRepresentation(Representation from_representation,
Handle<HeapType> from_type,
Representation to_representation,
Handle<HeapType> to_type,
Representation expected_representation,
Handle<HeapType> expected_type) {
const bool expected_deprecation = true;
const bool expected_field_type_dependency = false;
TestGeneralizeRepresentation(
from_representation, from_type, to_representation, to_type,
expected_representation, expected_type, expected_deprecation,
expected_field_type_dependency);
}
static void TestGeneralizeRepresentationTrivial(
Representation from_representation, Handle<HeapType> from_type,
Representation to_representation, Handle<HeapType> to_type,
Representation expected_representation, Handle<HeapType> expected_type,
bool expected_field_type_dependency = true) {
const bool expected_deprecation = false;
TestGeneralizeRepresentation(
from_representation, from_type, to_representation, to_type,
expected_representation, expected_type, expected_deprecation,
expected_field_type_dependency);
}
TEST(GeneralizeRepresentationSmiToDouble) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Handle<HeapType> any_type = HeapType::Any(isolate);
TestGeneralizeRepresentation(Representation::Smi(), any_type,
Representation::Double(), any_type,
Representation::Double(), any_type);
}
TEST(GeneralizeRepresentationSmiToTagged) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Handle<HeapType> any_type = HeapType::Any(isolate);
Handle<HeapType> value_type =
HeapType::Class(Map::Create(isolate, 0), isolate);
TestGeneralizeRepresentation(Representation::Smi(), any_type,
Representation::HeapObject(), value_type,
Representation::Tagged(), any_type);
}
TEST(GeneralizeRepresentationDoubleToTagged) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Handle<HeapType> any_type = HeapType::Any(isolate);
Handle<HeapType> value_type =
HeapType::Class(Map::Create(isolate, 0), isolate);
TestGeneralizeRepresentation(Representation::Double(), any_type,
Representation::HeapObject(), value_type,
Representation::Tagged(), any_type);
}
TEST(GeneralizeRepresentationHeapObjectToTagged) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Handle<HeapType> any_type = HeapType::Any(isolate);
Handle<HeapType> value_type =
HeapType::Class(Map::Create(isolate, 0), isolate);
TestGeneralizeRepresentation(Representation::HeapObject(), value_type,
Representation::Smi(), any_type,
Representation::Tagged(), any_type);
}
TEST(GeneralizeRepresentationHeapObjectToHeapObject) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Handle<HeapType> any_type = HeapType::Any(isolate);
const int kMaxClassesPerFieldType = 1;
Handle<HeapType> current_type =
HeapType::Class(Map::Create(isolate, 0), isolate);
for (int i = 0; i < kMaxClassesPerFieldType; i++) {
Handle<HeapType> new_type =
HeapType::Class(Map::Create(isolate, 0), isolate);
Handle<HeapType> expected_type =
(i < kMaxClassesPerFieldType - 1)
? HeapType::Union(current_type, new_type, isolate)
: any_type;
TestGeneralizeRepresentationTrivial(
Representation::HeapObject(), current_type,
Representation::HeapObject(), new_type, Representation::HeapObject(),
expected_type);
current_type = expected_type;
}
Handle<HeapType> new_type = HeapType::Class(Map::Create(isolate, 0), isolate);
TestGeneralizeRepresentationTrivial(
Representation::HeapObject(), any_type, Representation::HeapObject(),
new_type, Representation::HeapObject(), any_type, false);
}
TEST(GeneralizeRepresentationNoneToSmi) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Handle<HeapType> none_type = HeapType::None(isolate);
Handle<HeapType> any_type = HeapType::Any(isolate);
// None -> Smi representation change is trivial.
TestGeneralizeRepresentationTrivial(Representation::None(), none_type,
Representation::Smi(), any_type,
Representation::Smi(), any_type);
}
TEST(GeneralizeRepresentationNoneToDouble) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Handle<HeapType> none_type = HeapType::None(isolate);
Handle<HeapType> any_type = HeapType::Any(isolate);
// None -> Double representation change is NOT trivial.
TestGeneralizeRepresentation(Representation::None(), none_type,
Representation::Double(), any_type,
Representation::Double(), any_type);
}
TEST(GeneralizeRepresentationNoneToHeapObject) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Handle<HeapType> none_type = HeapType::None(isolate);
Handle<HeapType> value_type =
HeapType::Class(Map::Create(isolate, 0), isolate);
// None -> HeapObject representation change is trivial.
TestGeneralizeRepresentationTrivial(Representation::None(), none_type,
Representation::HeapObject(), value_type,
Representation::HeapObject(), value_type);
}
TEST(GeneralizeRepresentationNoneToTagged) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Handle<HeapType> none_type = HeapType::None(isolate);
Handle<HeapType> any_type = HeapType::Any(isolate);
// None -> HeapObject representation change is trivial.
TestGeneralizeRepresentationTrivial(Representation::None(), none_type,
Representation::Tagged(), any_type,
Representation::Tagged(), any_type);
}
////////////////////////////////////////////////////////////////////////////////
// A set of tests for representation generalization case with kAccessor
// properties.
//
TEST(GeneralizeRepresentationWithAccessorProperties) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Handle<HeapType> any_type = HeapType::Any(isolate);
Handle<AccessorPair> pair = CreateAccessorPair(true, true);
const int kAccessorProp = kPropCount / 2;
Expectations expectations(isolate);
// Create a map, add required properties to it and initialize expectations.
Handle<Map> initial_map = Map::Create(isolate, 0);
Handle<Map> map = initial_map;
for (int i = 0; i < kPropCount; i++) {
if (i == kAccessorProp) {
map = expectations.AddAccessorConstant(map, NONE, pair);
} else {
map =
expectations.AddDataField(map, NONE, Representation::Smi(), any_type);
}
}
CHECK(!map->is_deprecated());
CHECK(map->is_stable());
CHECK(expectations.Check(*map));
// Create new maps by generalizing representation of propX field.
Handle<Map> maps[kPropCount];
for (int i = 0; i < kPropCount; i++) {
if (i == kAccessorProp) {
// Skip accessor property reconfiguration.
maps[i] = maps[i - 1];
continue;
}
Handle<Map> new_map = Map::ReconfigureProperty(
map, i, kData, NONE, Representation::Double(), any_type, FORCE_FIELD);
maps[i] = new_map;
expectations.SetDataField(i, Representation::Double(), any_type);
CHECK(!map->is_stable());
CHECK(map->is_deprecated());
CHECK_NE(*map, *new_map);
CHECK(i == 0 || maps[i - 1]->is_deprecated());
CHECK(!new_map->is_deprecated());
CHECK(expectations.Check(*new_map));
}
Handle<Map> active_map = maps[kPropCount - 1];
CHECK(!active_map->is_deprecated());
// Update all deprecated maps and check that they are now the same.
Handle<Map> updated_map = Map::Update(map);
CHECK_EQ(*active_map, *updated_map);
for (int i = 0; i < kPropCount; i++) {
updated_map = Map::Update(maps[i]);
CHECK_EQ(*active_map, *updated_map);
}
}
////////////////////////////////////////////////////////////////////////////////
// A set of tests for attribute reconfiguration case.
//
// This test ensures that representation/field type generalization is correctly
// propagated from one branch of transition tree (|map2|) to another (|map|).
//
// + - p2B - p3 - p4: |map2|
// |
// {} - p0 - p1 - p2A - p3 - p4: |map|
//
// where "p2A" and "p2B" differ only in the attributes.
//
static void TestReconfigureDataFieldAttribute_GeneralizeRepresentation(
Representation from_representation, Handle<HeapType> from_type,
Representation to_representation, Handle<HeapType> to_type,
Representation expected_representation, Handle<HeapType> expected_type) {
Isolate* isolate = CcTest::i_isolate();
Expectations expectations(isolate);
// Create a map, add required properties to it and initialize expectations.
Handle<Map> initial_map = Map::Create(isolate, 0);
Handle<Map> map = initial_map;
for (int i = 0; i < kPropCount; i++) {
map = expectations.AddDataField(map, NONE, from_representation, from_type);
}
CHECK(!map->is_deprecated());
CHECK(map->is_stable());
CHECK(expectations.Check(*map));
// Create another branch in transition tree (property at index |kSplitProp|
// has different attributes), initialize expectations.
const int kSplitProp = kPropCount / 2;
Expectations expectations2(isolate);
Handle<Map> map2 = initial_map;
for (int i = 0; i < kSplitProp; i++) {
map2 = expectations2.FollowDataTransition(map2, NONE, from_representation,
from_type);
}
map2 =
expectations2.AddDataField(map2, READ_ONLY, to_representation, to_type);
for (int i = kSplitProp + 1; i < kPropCount; i++) {
map2 = expectations2.AddDataField(map2, NONE, to_representation, to_type);
}
CHECK(!map2->is_deprecated());
CHECK(map2->is_stable());
CHECK(expectations2.Check(*map2));
Zone zone;
FakeStubForTesting stub(isolate);
Handle<Map> field_owner(map->FindFieldOwner(kSplitProp), isolate);
CompilationInfo info(&stub, isolate, &zone);
CHECK(!info.dependencies()->HasAborted());
info.dependencies()->AssumeFieldType(field_owner);
// Reconfigure attributes of property |kSplitProp| of |map2| to NONE, which
// should generalize representations in |map1|.
Handle<Map> new_map =
Map::ReconfigureExistingProperty(map2, kSplitProp, kData, NONE);
// |map2| should be left unchanged but marked unstable.
CHECK(!map2->is_stable());
CHECK(!map2->is_deprecated());
CHECK_NE(*map2, *new_map);
CHECK(expectations2.Check(*map2));
// |map| should be deprecated and |new_map| should match new expectations.
for (int i = kSplitProp; i < kPropCount; i++) {
expectations.SetDataField(i, expected_representation, expected_type);
}
CHECK(map->is_deprecated());
CHECK(!info.dependencies()->HasAborted());
info.dependencies()->Rollback(); // Properly cleanup compilation info.
CHECK_NE(*map, *new_map);
CHECK(!new_map->is_deprecated());
CHECK(expectations.Check(*new_map));
// Update deprecated |map|, it should become |new_map|.
Handle<Map> updated_map = Map::Update(map);
CHECK_EQ(*new_map, *updated_map);
}
// This test ensures that trivial representation/field type generalization
// (from HeapObject to HeapObject) is correctly propagated from one branch of
// transition tree (|map2|) to another (|map|).
//
// + - p2B - p3 - p4: |map2|
// |
// {} - p0 - p1 - p2A - p3 - p4: |map|
//
// where "p2A" and "p2B" differ only in the attributes.
//
static void TestReconfigureDataFieldAttribute_GeneralizeRepresentationTrivial(
Representation from_representation, Handle<HeapType> from_type,
Representation to_representation, Handle<HeapType> to_type,
Representation expected_representation, Handle<HeapType> expected_type,
bool expected_field_type_dependency = true) {
Isolate* isolate = CcTest::i_isolate();
Expectations expectations(isolate);
// Create a map, add required properties to it and initialize expectations.
Handle<Map> initial_map = Map::Create(isolate, 0);
Handle<Map> map = initial_map;
for (int i = 0; i < kPropCount; i++) {
map = expectations.AddDataField(map, NONE, from_representation, from_type);
}
CHECK(!map->is_deprecated());
CHECK(map->is_stable());
CHECK(expectations.Check(*map));
// Create another branch in transition tree (property at index |kSplitProp|
// has different attributes), initialize expectations.
const int kSplitProp = kPropCount / 2;
Expectations expectations2(isolate);
Handle<Map> map2 = initial_map;
for (int i = 0; i < kSplitProp; i++) {
map2 = expectations2.FollowDataTransition(map2, NONE, from_representation,
from_type);
}
map2 =
expectations2.AddDataField(map2, READ_ONLY, to_representation, to_type);
for (int i = kSplitProp + 1; i < kPropCount; i++) {
map2 = expectations2.AddDataField(map2, NONE, to_representation, to_type);
}
CHECK(!map2->is_deprecated());
CHECK(map2->is_stable());
CHECK(expectations2.Check(*map2));
Zone zone;
FakeStubForTesting stub(isolate);
Handle<Map> field_owner(map->FindFieldOwner(kSplitProp), isolate);
CompilationInfo info(&stub, isolate, &zone);
CHECK(!info.dependencies()->HasAborted());
info.dependencies()->AssumeFieldType(field_owner);
// Reconfigure attributes of property |kSplitProp| of |map2| to NONE, which
// should generalize representations in |map1|.
Handle<Map> new_map =
Map::ReconfigureExistingProperty(map2, kSplitProp, kData, NONE);
// |map2| should be left unchanged but marked unstable.
CHECK(!map2->is_stable());
CHECK(!map2->is_deprecated());
CHECK_NE(*map2, *new_map);
CHECK(expectations2.Check(*map2));
// In trivial case |map| should be returned as a result of the property
// reconfiguration, respective field types should be generalized and
// respective code dependencies should be invalidated. |map| should be NOT
// deprecated and it should match new expectations.
for (int i = kSplitProp; i < kPropCount; i++) {
expectations.SetDataField(i, expected_representation, expected_type);
}
CHECK(!map->is_deprecated());
CHECK_EQ(*map, *new_map);
CHECK_EQ(expected_field_type_dependency, info.dependencies()->HasAborted());
info.dependencies()->Rollback(); // Properly cleanup compilation info.
CHECK(!new_map->is_deprecated());
CHECK(expectations.Check(*new_map));
Handle<Map> updated_map = Map::Update(map);
CHECK_EQ(*new_map, *updated_map);
}
TEST(ReconfigureDataFieldAttribute_GeneralizeRepresentationSmiToDouble) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Handle<HeapType> any_type = HeapType::Any(isolate);
TestReconfigureDataFieldAttribute_GeneralizeRepresentation(
Representation::Smi(), any_type, Representation::Double(), any_type,
Representation::Double(), any_type);
}
TEST(ReconfigureDataFieldAttribute_GeneralizeRepresentationSmiToTagged) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Handle<HeapType> any_type = HeapType::Any(isolate);
Handle<HeapType> value_type =
HeapType::Class(Map::Create(isolate, 0), isolate);
TestReconfigureDataFieldAttribute_GeneralizeRepresentation(
Representation::Smi(), any_type, Representation::HeapObject(), value_type,
Representation::Tagged(), any_type);
}
TEST(ReconfigureDataFieldAttribute_GeneralizeRepresentationDoubleToTagged) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Handle<HeapType> any_type = HeapType::Any(isolate);
Handle<HeapType> value_type =
HeapType::Class(Map::Create(isolate, 0), isolate);
TestReconfigureDataFieldAttribute_GeneralizeRepresentation(
Representation::Double(), any_type, Representation::HeapObject(),
value_type, Representation::Tagged(), any_type);
}
TEST(ReconfigureDataFieldAttribute_GeneralizeRepresentationHeapObjToHeapObj) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Handle<HeapType> any_type = HeapType::Any(isolate);
const int kMaxClassesPerFieldType = 1;
Handle<HeapType> current_type =
HeapType::Class(Map::Create(isolate, 0), isolate);
for (int i = 0; i < kMaxClassesPerFieldType; i++) {
Handle<HeapType> new_type =
HeapType::Class(Map::Create(isolate, 0), isolate);
Handle<HeapType> expected_type =
(i < kMaxClassesPerFieldType - 1)
? HeapType::Union(current_type, new_type, isolate)
: any_type;
TestReconfigureDataFieldAttribute_GeneralizeRepresentationTrivial(
Representation::HeapObject(), current_type,
Representation::HeapObject(), new_type, Representation::HeapObject(),
expected_type);
current_type = expected_type;
}
Handle<HeapType> new_type = HeapType::Class(Map::Create(isolate, 0), isolate);
TestReconfigureDataFieldAttribute_GeneralizeRepresentationTrivial(
Representation::HeapObject(), any_type, Representation::HeapObject(),
new_type, Representation::HeapObject(), any_type, false);
}
TEST(ReconfigureDataFieldAttribute_GeneralizeRepresentationHeapObjectToTagged) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Handle<HeapType> any_type = HeapType::Any(isolate);
Handle<HeapType> value_type =
HeapType::Class(Map::Create(isolate, 0), isolate);
TestReconfigureDataFieldAttribute_GeneralizeRepresentation(
Representation::HeapObject(), value_type, Representation::Smi(), any_type,
Representation::Tagged(), any_type);
}
// Checks that given |map| is deprecated and that it updates to given |new_map|
// which in turn should match expectations.
struct CheckDeprecated {
void Check(Handle<Map> map, Handle<Map> new_map,
const Expectations& expectations) {
CHECK(map->is_deprecated());
CHECK_NE(*map, *new_map);
CHECK(!new_map->is_deprecated());
CHECK(expectations.Check(*new_map));
// Update deprecated |map|, it should become |new_map|.
Handle<Map> updated_map = Map::Update(map);
CHECK_EQ(*new_map, *updated_map);
}
};
// Checks that given |map| is NOT deprecated, equals to given |new_map| and
// matches expectations.
struct CheckSameMap {
void Check(Handle<Map> map, Handle<Map> new_map,
const Expectations& expectations) {
// |map| was not reconfigured, therefore it should stay stable.
CHECK(map->is_stable());
CHECK(!map->is_deprecated());
CHECK_EQ(*map, *new_map);
CHECK(!new_map->is_deprecated());
CHECK(expectations.Check(*new_map));
// Update deprecated |map|, it should become |new_map|.
Handle<Map> updated_map = Map::Update(map);
CHECK_EQ(*new_map, *updated_map);
}
};
// Checks that given |map| is NOT deprecated and matches expectations.
// |new_map| is unrelated to |map|.
struct CheckUnrelated {
void Check(Handle<Map> map, Handle<Map> new_map,
const Expectations& expectations) {
CHECK(!map->is_deprecated());
CHECK_NE(*map, *new_map);
CHECK(expectations.Check(*map));
CHECK(new_map->is_stable());
CHECK(!new_map->is_deprecated());
}
};
// Checks that given |map| is NOT deprecated, and |new_map| is a result of
// copy-generalize-all-representations.
struct CheckCopyGeneralizeAllRepresentations {
void Check(Handle<Map> map, Handle<Map> new_map, Expectations& expectations) {
CHECK(!map->is_deprecated());
CHECK_NE(*map, *new_map);
CHECK(new_map->GetBackPointer()->IsUndefined());
for (int i = 0; i < kPropCount; i++) {
expectations.GeneralizeRepresentation(i);
}
CHECK(!new_map->is_deprecated());
CHECK(expectations.Check(*new_map));
}
};
// This test ensures that representation/field type generalization is correctly
// propagated from one branch of transition tree (|map2|) to another (|map1|).
//
// + - p2B - p3 - p4: |map2|
// |
// {} - p0 - p1: |map|
// |
// + - p2A - p3 - p4: |map1|
// |
// + - the property customized by the TestConfig provided
//
// where "p2A" and "p2B" differ only in the attributes.
//
template <typename TestConfig, typename Checker>
static void TestReconfigureProperty_CustomPropertyAfterTargetMap(
TestConfig& config, Checker& checker) {
Isolate* isolate = CcTest::i_isolate();
Handle<HeapType> any_type = HeapType::Any(isolate);
const int kCustomPropIndex = kPropCount - 2;
Expectations expectations(isolate);
const int kSplitProp = 2;
CHECK(kSplitProp < kCustomPropIndex);
const Representation representation = Representation::Smi();
// Create common part of transition tree.
Handle<Map> initial_map = Map::Create(isolate, 0);
Handle<Map> map = initial_map;
for (int i = 0; i < kSplitProp; i++) {
map = expectations.AddDataField(map, NONE, representation, any_type);
}
CHECK(!map->is_deprecated());
CHECK(map->is_stable());
CHECK(expectations.Check(*map));
// Create branch to |map1|.
Handle<Map> map1 = map;
Expectations expectations1 = expectations;
for (int i = kSplitProp; i < kCustomPropIndex; i++) {
map1 = expectations1.AddDataField(map1, NONE, representation, any_type);
}
map1 = config.AddPropertyAtBranch(1, expectations1, map1);
for (int i = kCustomPropIndex + 1; i < kPropCount; i++) {
map1 = expectations1.AddDataField(map1, NONE, representation, any_type);
}
CHECK(!map1->is_deprecated());
CHECK(map1->is_stable());
CHECK(expectations1.Check(*map1));
// Create another branch in transition tree (property at index |kSplitProp|
// has different attributes), initialize expectations.
Handle<Map> map2 = map;
Expectations expectations2 = expectations;
map2 = expectations2.AddDataField(map2, READ_ONLY, representation, any_type);
for (int i = kSplitProp + 1; i < kCustomPropIndex; i++) {
map2 = expectations2.AddDataField(map2, NONE, representation, any_type);
}
map2 = config.AddPropertyAtBranch(2, expectations2, map2);
for (int i = kCustomPropIndex + 1; i < kPropCount; i++) {
map2 = expectations2.AddDataField(map2, NONE, representation, any_type);
}
CHECK(!map2->is_deprecated());
CHECK(map2->is_stable());
CHECK(expectations2.Check(*map2));
// Reconfigure attributes of property |kSplitProp| of |map2| to NONE, which
// should generalize representations in |map1|.
Handle<Map> new_map =
Map::ReconfigureExistingProperty(map2, kSplitProp, kData, NONE);
// |map2| should be left unchanged but marked unstable.
CHECK(!map2->is_stable());
CHECK(!map2->is_deprecated());
CHECK_NE(*map2, *new_map);
CHECK(expectations2.Check(*map2));
config.UpdateExpectations(kCustomPropIndex, expectations1);
checker.Check(map1, new_map, expectations1);
}
TEST(ReconfigureDataFieldAttribute_SameDataConstantAfterTargetMap) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
struct TestConfig {
Handle<JSFunction> js_func_;
TestConfig() {
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
js_func_ = factory->NewFunction(factory->empty_string());
}
Handle<Map> AddPropertyAtBranch(int branch_id, Expectations& expectations,
Handle<Map> map) {
CHECK(branch_id == 1 || branch_id == 2);
// Add the same data constant property at both transition tree branches.
return expectations.AddDataConstant(map, NONE, js_func_);
}
void UpdateExpectations(int property_index, Expectations& expectations) {
// Expectations stay the same.
}
};
TestConfig config;
// Two branches are "compatible" so the |map1| should NOT be deprecated.
CheckSameMap checker;
TestReconfigureProperty_CustomPropertyAfterTargetMap(config, checker);
}
TEST(ReconfigureDataFieldAttribute_DataConstantToDataFieldAfterTargetMap) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
struct TestConfig {
Handle<JSFunction> js_func1_;
Handle<JSFunction> js_func2_;
TestConfig() {
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
js_func1_ = factory->NewFunction(factory->empty_string());
js_func2_ = factory->NewFunction(factory->empty_string());
}
Handle<Map> AddPropertyAtBranch(int branch_id, Expectations& expectations,
Handle<Map> map) {
CHECK(branch_id == 1 || branch_id == 2);
Handle<JSFunction> js_func = branch_id == 1 ? js_func1_ : js_func2_;
return expectations.AddDataConstant(map, NONE, js_func);
}
void UpdateExpectations(int property_index, Expectations& expectations) {
Isolate* isolate = CcTest::i_isolate();
Handle<HeapType> any_type = HeapType::Any(isolate);
expectations.SetDataField(property_index, Representation::HeapObject(),
any_type);
}
};
TestConfig config;
// Two branches are "incompatible" so the |map1| should be deprecated.
CheckDeprecated checker;
TestReconfigureProperty_CustomPropertyAfterTargetMap(config, checker);
}
TEST(ReconfigureDataFieldAttribute_DataConstantToAccConstantAfterTargetMap) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
struct TestConfig {
Handle<JSFunction> js_func_;
Handle<AccessorPair> pair_;
TestConfig() {
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
js_func_ = factory->NewFunction(factory->empty_string());
pair_ = CreateAccessorPair(true, true);
}
Handle<Map> AddPropertyAtBranch(int branch_id, Expectations& expectations,
Handle<Map> map) {
CHECK(branch_id == 1 || branch_id == 2);
if (branch_id == 1) {
return expectations.AddDataConstant(map, NONE, js_func_);
} else {
return expectations.AddAccessorConstant(map, NONE, pair_);
}
}
void UpdateExpectations(int property_index, Expectations& expectations) {}
};
TestConfig config;
// These are completely separate branches in transition tree.
CheckUnrelated checker;
TestReconfigureProperty_CustomPropertyAfterTargetMap(config, checker);
}
TEST(ReconfigureDataFieldAttribute_SameAccessorConstantAfterTargetMap) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
struct TestConfig {
Handle<AccessorPair> pair_;
TestConfig() { pair_ = CreateAccessorPair(true, true); }
Handle<Map> AddPropertyAtBranch(int branch_id, Expectations& expectations,
Handle<Map> map) {
CHECK(branch_id == 1 || branch_id == 2);
// Add the same accessor constant property at both transition tree
// branches.
return expectations.AddAccessorConstant(map, NONE, pair_);
}
void UpdateExpectations(int property_index, Expectations& expectations) {
// Two branches are "compatible" so the |map1| should NOT be deprecated.
}
};
TestConfig config;
CheckSameMap checker;
TestReconfigureProperty_CustomPropertyAfterTargetMap(config, checker);
}
TEST(ReconfigureDataFieldAttribute_AccConstantToAccFieldAfterTargetMap) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
struct TestConfig {
Handle<AccessorPair> pair1_;
Handle<AccessorPair> pair2_;
TestConfig() {
pair1_ = CreateAccessorPair(true, true);
pair2_ = CreateAccessorPair(true, true);
}
Handle<Map> AddPropertyAtBranch(int branch_id, Expectations& expectations,
Handle<Map> map) {
CHECK(branch_id == 1 || branch_id == 2);
Handle<AccessorPair> pair = branch_id == 1 ? pair1_ : pair2_;
return expectations.AddAccessorConstant(map, NONE, pair);
}
void UpdateExpectations(int property_index, Expectations& expectations) {
if (IS_ACCESSOR_FIELD_SUPPORTED) {
expectations.SetAccessorField(property_index);
} else {
// Currently we have a copy-generalize-all-representations case and
// ACCESSOR property becomes ACCESSOR_CONSTANT.
expectations.SetAccessorConstant(property_index, pair2_);
}
}
};
TestConfig config;
if (IS_ACCESSOR_FIELD_SUPPORTED) {
CheckCopyGeneralizeAllRepresentations checker;
TestReconfigureProperty_CustomPropertyAfterTargetMap(config, checker);
} else {
// Currently we have a copy-generalize-all-representations case.
CheckCopyGeneralizeAllRepresentations checker;
TestReconfigureProperty_CustomPropertyAfterTargetMap(config, checker);
}
}
TEST(ReconfigureDataFieldAttribute_AccConstantToDataFieldAfterTargetMap) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
struct TestConfig {
Handle<AccessorPair> pair_;
TestConfig() { pair_ = CreateAccessorPair(true, true); }
Handle<Map> AddPropertyAtBranch(int branch_id, Expectations& expectations,
Handle<Map> map) {
CHECK(branch_id == 1 || branch_id == 2);
if (branch_id == 1) {
return expectations.AddAccessorConstant(map, NONE, pair_);
} else {
Isolate* isolate = CcTest::i_isolate();
Handle<HeapType> any_type = HeapType::Any(isolate);
return expectations.AddDataField(map, NONE, Representation::Smi(),
any_type);
}
}
void UpdateExpectations(int property_index, Expectations& expectations) {}
};
TestConfig config;
// These are completely separate branches in transition tree.
CheckUnrelated checker;
TestReconfigureProperty_CustomPropertyAfterTargetMap(config, checker);
}
////////////////////////////////////////////////////////////////////////////////
// A set of tests checking split map deprecation.
//
TEST(ReconfigurePropertySplitMapTransitionsOverflow) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Handle<HeapType> any_type = HeapType::Any(isolate);
Expectations expectations(isolate);
// Create a map, add required properties to it and initialize expectations.
Handle<Map> initial_map = Map::Create(isolate, 0);
Handle<Map> map = initial_map;
for (int i = 0; i < kPropCount; i++) {
map = expectations.AddDataField(map, NONE, Representation::Smi(), any_type);
}
CHECK(!map->is_deprecated());
CHECK(map->is_stable());
// Generalize representation of property at index |kSplitProp|.
const int kSplitProp = kPropCount / 2;
Handle<Map> split_map;
Handle<Map> map2 = initial_map;
{
for (int i = 0; i < kSplitProp + 1; i++) {
if (i == kSplitProp) {
split_map = map2;
}
Handle<String> name = MakeName("prop", i);
Map* target =
TransitionArray::SearchTransition(*map2, kData, *name, NONE);
CHECK(target != NULL);
map2 = handle(target);
}
map2 = Map::ReconfigureProperty(map2, kSplitProp, kData, NONE,
Representation::Double(), any_type,
FORCE_FIELD);
expectations.SetDataField(kSplitProp, Representation::Double(), any_type);
CHECK(expectations.Check(*split_map, kSplitProp));
CHECK(expectations.Check(*map2, kSplitProp + 1));
}
// At this point |map| should be deprecated and disconnected from the
// transition tree.
CHECK(map->is_deprecated());
CHECK(!split_map->is_deprecated());
CHECK(map2->is_stable());
CHECK(!map2->is_deprecated());
// Fill in transition tree of |map2| so that it can't have more transitions.
for (int i = 0; i < TransitionArray::kMaxNumberOfTransitions; i++) {
CHECK(TransitionArray::CanHaveMoreTransitions(map2));
Handle<String> name = MakeName("foo", i);
Map::CopyWithField(map2, name, any_type, NONE, Representation::Smi(),
INSERT_TRANSITION).ToHandleChecked();
}
CHECK(!TransitionArray::CanHaveMoreTransitions(map2));
// Try to update |map|, since there is no place for propX transition at |map2|
// |map| should become "copy-generalized".
Handle<Map> updated_map = Map::Update(map);
CHECK(updated_map->GetBackPointer()->IsUndefined());
for (int i = 0; i < kPropCount; i++) {
expectations.SetDataField(i, Representation::Tagged(), any_type);
}
CHECK(expectations.Check(*updated_map));
}
////////////////////////////////////////////////////////////////////////////////
// A set of tests involving special transitions (such as elements kind
// transition, observed transition or prototype transition).
//
// This test ensures that representation/field type generalization is correctly
// propagated from one branch of transition tree (|map2|) to another (|map|).
//
// p4B: |map2|
// |
// * - special transition
// |
// {} - p0 - p1 - p2A - p3 - p4A: |map|
//
// where "p4A" and "p4B" are exactly the same properties.
//
// TODO(ishell): unify this test template with
// TestReconfigureDataFieldAttribute_GeneralizeRepresentation once
// IS_PROTO_TRANS_ISSUE_FIXED and IS_NON_EQUIVALENT_TRANSITION_SUPPORTED are
// fixed.
template <typename TestConfig>
static void TestGeneralizeRepresentationWithSpecialTransition(
TestConfig& config, Representation from_representation,
Handle<HeapType> from_type, Representation to_representation,
Handle<HeapType> to_type, Representation expected_representation,
Handle<HeapType> expected_type) {
Isolate* isolate = CcTest::i_isolate();
Expectations expectations(isolate);
// Create a map, add required properties to it and initialize expectations.
Handle<Map> initial_map = Map::Create(isolate, 0);
Handle<Map> map = initial_map;
for (int i = 0; i < kPropCount; i++) {
map = expectations.AddDataField(map, NONE, from_representation, from_type);
}
CHECK(!map->is_deprecated());
CHECK(map->is_stable());
CHECK(expectations.Check(*map));
// Apply some special transition to |map|.
CHECK(map->owns_descriptors());
Handle<Map> map2 = config.Transition(map);
// |map| should still match expectations.
CHECK(!map->is_deprecated());
CHECK(expectations.Check(*map));
Expectations expectations2 = expectations;
if (config.generalizes_representations()) {
for (int i = 0; i < kPropCount; i++) {
expectations2.GeneralizeRepresentation(i);
}
}
CHECK(!map2->is_deprecated());
CHECK(map2->is_stable());
CHECK(expectations2.Check(*map2));
// Create new maps by generalizing representation of propX field.
Handle<Map> maps[kPropCount];
for (int i = 0; i < kPropCount; i++) {
Handle<Map> new_map = Map::ReconfigureProperty(
map, i, kData, NONE, to_representation, to_type, FORCE_FIELD);
maps[i] = new_map;
expectations.SetDataField(i, expected_representation, expected_type);
CHECK(map->is_deprecated());
CHECK_NE(*map, *new_map);
CHECK(i == 0 || maps[i - 1]->is_deprecated());
CHECK(expectations.Check(*new_map));
Handle<Map> new_map2 = Map::Update(map2);
CHECK(!new_map2->is_deprecated());
CHECK(!new_map2->is_dictionary_map());
Handle<Map> tmp_map;
if (Map::TryUpdate(map2).ToHandle(&tmp_map)) {
// If Map::TryUpdate() manages to succeed the result must match the result
// of Map::Update().
CHECK_EQ(*new_map2, *tmp_map);
}
if (config.is_non_equevalent_transition()) {
// In case of non-equivalent transition currently we generalize all
// representations.
for (int i = 0; i < kPropCount; i++) {
expectations2.GeneralizeRepresentation(i);
}
CHECK(new_map2->GetBackPointer()->IsUndefined());
CHECK(expectations2.Check(*new_map2));
} else {
CHECK(!new_map2->GetBackPointer()->IsUndefined());
CHECK(expectations2.Check(*new_map2));
}
}
Handle<Map> active_map = maps[kPropCount - 1];
CHECK(!active_map->is_deprecated());
// Update all deprecated maps and check that they are now the same.
Handle<Map> updated_map = Map::Update(map);
CHECK_EQ(*active_map, *updated_map);
for (int i = 0; i < kPropCount; i++) {
updated_map = Map::Update(maps[i]);
CHECK_EQ(*active_map, *updated_map);
}
}
TEST(ElementsKindTransitionFromMapOwningDescriptor) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Handle<HeapType> any_type = HeapType::Any(isolate);
Handle<HeapType> value_type =
HeapType::Class(Map::Create(isolate, 0), isolate);
struct TestConfig {
Handle<Map> Transition(Handle<Map> map) {
return Map::CopyAsElementsKind(map, DICTIONARY_ELEMENTS,
INSERT_TRANSITION);
}
// TODO(ishell): remove once IS_PROTO_TRANS_ISSUE_FIXED is removed.
bool generalizes_representations() const { return false; }
bool is_non_equevalent_transition() const { return false; }
};
TestConfig config;
TestGeneralizeRepresentationWithSpecialTransition(
config, Representation::Smi(), any_type, Representation::HeapObject(),
value_type, Representation::Tagged(), any_type);
}
TEST(ElementsKindTransitionFromMapNotOwningDescriptor) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Handle<HeapType> any_type = HeapType::Any(isolate);
Handle<HeapType> value_type =
HeapType::Class(Map::Create(isolate, 0), isolate);
struct TestConfig {
Handle<Map> Transition(Handle<Map> map) {
Isolate* isolate = CcTest::i_isolate();
Handle<HeapType> any_type = HeapType::Any(isolate);
// Add one more transition to |map| in order to prevent descriptors
// ownership.
CHECK(map->owns_descriptors());
Map::CopyWithField(map, MakeString("foo"), any_type, NONE,
Representation::Smi(),
INSERT_TRANSITION).ToHandleChecked();
CHECK(!map->owns_descriptors());
return Map::CopyAsElementsKind(map, DICTIONARY_ELEMENTS,
INSERT_TRANSITION);
}
// TODO(ishell): remove once IS_PROTO_TRANS_ISSUE_FIXED is removed.
bool generalizes_representations() const { return false; }
bool is_non_equevalent_transition() const { return false; }
};
TestConfig config;
TestGeneralizeRepresentationWithSpecialTransition(
config, Representation::Smi(), any_type, Representation::HeapObject(),
value_type, Representation::Tagged(), any_type);
}
TEST(ForObservedTransitionFromMapOwningDescriptor) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Handle<HeapType> any_type = HeapType::Any(isolate);
Handle<HeapType> value_type =
HeapType::Class(Map::Create(isolate, 0), isolate);
struct TestConfig {
Handle<Map> Transition(Handle<Map> map) {
return Map::CopyForObserved(map);
}
// TODO(ishell): remove once IS_PROTO_TRANS_ISSUE_FIXED is removed.
bool generalizes_representations() const { return false; }
bool is_non_equevalent_transition() const { return true; }
};
TestConfig config;
TestGeneralizeRepresentationWithSpecialTransition(
config, Representation::Smi(), any_type, Representation::HeapObject(),
value_type, Representation::Tagged(), any_type);
}
TEST(ForObservedTransitionFromMapNotOwningDescriptor) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Handle<HeapType> any_type = HeapType::Any(isolate);
Handle<HeapType> value_type =
HeapType::Class(Map::Create(isolate, 0), isolate);
struct TestConfig {
Handle<Map> Transition(Handle<Map> map) {
Isolate* isolate = CcTest::i_isolate();
Handle<HeapType> any_type = HeapType::Any(isolate);
// Add one more transition to |map| in order to prevent descriptors
// ownership.
CHECK(map->owns_descriptors());
Map::CopyWithField(map, MakeString("foo"), any_type, NONE,
Representation::Smi(),
INSERT_TRANSITION).ToHandleChecked();
CHECK(!map->owns_descriptors());
return Map::CopyForObserved(map);
}
// TODO(ishell): remove once IS_PROTO_TRANS_ISSUE_FIXED is removed.
bool generalizes_representations() const { return false; }
bool is_non_equevalent_transition() const { return true; }
};
TestConfig config;
TestGeneralizeRepresentationWithSpecialTransition(
config, Representation::Smi(), any_type, Representation::HeapObject(),
value_type, Representation::Tagged(), any_type);
}
TEST(PrototypeTransitionFromMapOwningDescriptor) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Handle<HeapType> any_type = HeapType::Any(isolate);
Handle<HeapType> value_type =
HeapType::Class(Map::Create(isolate, 0), isolate);
struct TestConfig {
Handle<JSObject> prototype_;
TestConfig() {
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
prototype_ = factory->NewJSObjectFromMap(Map::Create(isolate, 0));
}
Handle<Map> Transition(Handle<Map> map) {
return Map::TransitionToPrototype(map, prototype_, REGULAR_PROTOTYPE);
}
// TODO(ishell): remove once IS_PROTO_TRANS_ISSUE_FIXED is removed.
bool generalizes_representations() const {
return !IS_PROTO_TRANS_ISSUE_FIXED;
}
bool is_non_equevalent_transition() const { return true; }
};
TestConfig config;
TestGeneralizeRepresentationWithSpecialTransition(
config, Representation::Smi(), any_type, Representation::HeapObject(),
value_type, Representation::Tagged(), any_type);
}
TEST(PrototypeTransitionFromMapNotOwningDescriptor) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Handle<HeapType> any_type = HeapType::Any(isolate);
Handle<HeapType> value_type =
HeapType::Class(Map::Create(isolate, 0), isolate);
struct TestConfig {
Handle<JSObject> prototype_;
TestConfig() {
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
prototype_ = factory->NewJSObjectFromMap(Map::Create(isolate, 0));
}
Handle<Map> Transition(Handle<Map> map) {
Isolate* isolate = CcTest::i_isolate();
Handle<HeapType> any_type = HeapType::Any(isolate);
// Add one more transition to |map| in order to prevent descriptors
// ownership.
CHECK(map->owns_descriptors());
Map::CopyWithField(map, MakeString("foo"), any_type, NONE,
Representation::Smi(),
INSERT_TRANSITION).ToHandleChecked();
CHECK(!map->owns_descriptors());
return Map::TransitionToPrototype(map, prototype_, REGULAR_PROTOTYPE);
}
// TODO(ishell): remove once IS_PROTO_TRANS_ISSUE_FIXED is removed.
bool generalizes_representations() const {
return !IS_PROTO_TRANS_ISSUE_FIXED;
}
bool is_non_equevalent_transition() const { return true; }
};
TestConfig config;
TestGeneralizeRepresentationWithSpecialTransition(
config, Representation::Smi(), any_type, Representation::HeapObject(),
value_type, Representation::Tagged(), any_type);
}
////////////////////////////////////////////////////////////////////////////////
// A set of tests for higher level transitioning mechanics.
//
struct TransitionToDataFieldOperator {
Representation representation_;
PropertyAttributes attributes_;
Handle<HeapType> heap_type_;
Handle<Object> value_;
TransitionToDataFieldOperator(Representation representation,
Handle<HeapType> heap_type,
Handle<Object> value,
PropertyAttributes attributes = NONE)
: representation_(representation),
attributes_(attributes),
heap_type_(heap_type),
value_(value) {}
Handle<Map> DoTransition(Expectations& expectations, Handle<Map> map) {
return expectations.TransitionToDataField(map, attributes_, representation_,
heap_type_, value_);
}
};
struct TransitionToDataConstantOperator {
PropertyAttributes attributes_;
Handle<JSFunction> value_;
TransitionToDataConstantOperator(Handle<JSFunction> value,
PropertyAttributes attributes = NONE)
: attributes_(attributes), value_(value) {}
Handle<Map> DoTransition(Expectations& expectations, Handle<Map> map) {
return expectations.TransitionToDataConstant(map, attributes_, value_);
}
};
struct TransitionToAccessorConstantOperator {
PropertyAttributes attributes_;
Handle<AccessorPair> pair_;
TransitionToAccessorConstantOperator(Handle<AccessorPair> pair,
PropertyAttributes attributes = NONE)
: attributes_(attributes), pair_(pair) {}
Handle<Map> DoTransition(Expectations& expectations, Handle<Map> map) {
return expectations.TransitionToAccessorConstant(map, attributes_, pair_);
}
};
struct ReconfigureAsDataPropertyOperator {
int descriptor_;
Representation representation_;
PropertyAttributes attributes_;
Handle<HeapType> heap_type_;
ReconfigureAsDataPropertyOperator(int descriptor,
Representation representation,
Handle<HeapType> heap_type,
PropertyAttributes attributes = NONE)
: descriptor_(descriptor),
representation_(representation),
attributes_(attributes),
heap_type_(heap_type) {}
Handle<Map> DoTransition(Expectations& expectations, Handle<Map> map) {
expectations.SetDataField(descriptor_, representation_, heap_type_);
return Map::ReconfigureExistingProperty(map, descriptor_, kData,
attributes_);
}
};
struct ReconfigureAsAccessorPropertyOperator {
int descriptor_;
PropertyAttributes attributes_;
ReconfigureAsAccessorPropertyOperator(int descriptor,
PropertyAttributes attributes = NONE)
: descriptor_(descriptor), attributes_(attributes) {}
Handle<Map> DoTransition(Expectations& expectations, Handle<Map> map) {
expectations.SetAccessorField(descriptor_);
return Map::ReconfigureExistingProperty(map, descriptor_, kAccessor,
attributes_);
}
};
// Checks that representation/field type generalization happened.
struct FieldGeneralizationChecker {
int descriptor_;
Representation representation_;
PropertyAttributes attributes_;
Handle<HeapType> heap_type_;
FieldGeneralizationChecker(int descriptor, Representation representation,
Handle<HeapType> heap_type,
PropertyAttributes attributes = NONE)
: descriptor_(descriptor),
representation_(representation),
attributes_(attributes),
heap_type_(heap_type) {}
void Check(Expectations& expectations2, Handle<Map> map1, Handle<Map> map2) {
CHECK(!map2->is_deprecated());
CHECK(map1->is_deprecated());
CHECK_NE(*map1, *map2);
Handle<Map> updated_map = Map::Update(map1);
CHECK_EQ(*map2, *updated_map);
expectations2.SetDataField(descriptor_, attributes_, representation_,
heap_type_);
CHECK(expectations2.Check(*map2));
}
};
// Checks that existing transition was taken as is.
struct SameMapChecker {
void Check(Expectations& expectations, Handle<Map> map1, Handle<Map> map2) {
CHECK(!map2->is_deprecated());
CHECK_EQ(*map1, *map2);
CHECK(expectations.Check(*map2));
}
};
// Checks that both |map1| and |map2| should stays non-deprecated, this is
// the case when property kind is change.
struct PropertyKindReconfigurationChecker {
void Check(Expectations& expectations, Handle<Map> map1, Handle<Map> map2) {
CHECK(!map1->is_deprecated());
CHECK(!map2->is_deprecated());
CHECK_NE(*map1, *map2);
CHECK(expectations.Check(*map2));
}
};
// This test transitions to various property types under different
// circumstances.
// Plan:
// 1) create a |map| with p0..p3 properties.
// 2) create |map1| by adding "p4" to |map0|.
// 3) create |map2| by transition to "p4" from |map0|.
//
// + - p4B: |map2|
// |
// {} - p0 - p1 - pA - p3: |map|
// |
// + - p4A: |map1|
//
// where "p4A" and "p4B" differ only in the attributes.
//
template <typename TransitionOp1, typename TransitionOp2, typename Checker>
static void TestTransitionTo(TransitionOp1& transition_op1,
TransitionOp2& transition_op2, Checker& checker) {
Isolate* isolate = CcTest::i_isolate();
Handle<HeapType> any_type = HeapType::Any(isolate);
Expectations expectations(isolate);
// Create a map, add required properties to it and initialize expectations.
Handle<Map> initial_map = Map::Create(isolate, 0);
Handle<Map> map = initial_map;
for (int i = 0; i < kPropCount - 1; i++) {
map = expectations.AddDataField(map, NONE, Representation::Smi(), any_type);
}
CHECK(expectations.Check(*map));
Expectations expectations1 = expectations;
Handle<Map> map1 = transition_op1.DoTransition(expectations1, map);
CHECK(expectations1.Check(*map1));
Expectations expectations2 = expectations;
Handle<Map> map2 = transition_op2.DoTransition(expectations2, map);
// Let the test customization do the check.
checker.Check(expectations2, map1, map2);
}
TEST(TransitionDataFieldToDataField) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Handle<HeapType> any_type = HeapType::Any(isolate);
Handle<Object> value1 = handle(Smi::FromInt(0), isolate);
TransitionToDataFieldOperator transition_op1(Representation::Smi(), any_type,
value1);
Handle<Object> value2 = isolate->factory()->NewHeapNumber(0);
TransitionToDataFieldOperator transition_op2(Representation::Double(),
any_type, value2);
FieldGeneralizationChecker checker(kPropCount - 1, Representation::Double(),
any_type);
TestTransitionTo(transition_op1, transition_op2, checker);
}
TEST(TransitionDataConstantToSameDataConstant) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Handle<JSFunction> js_func = factory->NewFunction(factory->empty_string());
TransitionToDataConstantOperator transition_op(js_func);
SameMapChecker checker;
TestTransitionTo(transition_op, transition_op, checker);
}
TEST(TransitionDataConstantToAnotherDataConstant) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Handle<HeapType> any_type = HeapType::Any(isolate);
Handle<JSFunction> js_func1 = factory->NewFunction(factory->empty_string());
TransitionToDataConstantOperator transition_op1(js_func1);
Handle<JSFunction> js_func2 = factory->NewFunction(factory->empty_string());
TransitionToDataConstantOperator transition_op2(js_func2);
FieldGeneralizationChecker checker(kPropCount - 1,
Representation::HeapObject(), any_type);
TestTransitionTo(transition_op1, transition_op2, checker);
}
TEST(TransitionDataConstantToDataField) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Handle<HeapType> any_type = HeapType::Any(isolate);
Handle<JSFunction> js_func1 = factory->NewFunction(factory->empty_string());
TransitionToDataConstantOperator transition_op1(js_func1);
Handle<Object> value2 = isolate->factory()->NewHeapNumber(0);
TransitionToDataFieldOperator transition_op2(Representation::Double(),
any_type, value2);
FieldGeneralizationChecker checker(kPropCount - 1, Representation::Tagged(),
any_type);
TestTransitionTo(transition_op1, transition_op2, checker);
}
TEST(TransitionAccessorConstantToSameAccessorConstant) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Handle<AccessorPair> pair = CreateAccessorPair(true, true);
TransitionToAccessorConstantOperator transition_op(pair);
SameMapChecker checker;
TestTransitionTo(transition_op, transition_op, checker);
}
// TODO(ishell): add this test once IS_ACCESSOR_FIELD_SUPPORTED is supported.
// TEST(TransitionAccessorConstantToAnotherAccessorConstant)