v8/test/unittests/interpreter/bytecode-array-builder-unittest.cc
rmcilroy 76368d0854 [Interpreter] Add a simple dead-code elimination bytecode optimizer.
Adds back simple dead code elimination to the bytecode pipeline.

BUG=v8:4280,chromium:616064

Review-Url: https://codereview.chromium.org/2038083002
Cr-Commit-Position: refs/heads/master@{#37147}
2016-06-21 15:29:24 +00:00

827 lines
28 KiB
C++

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#include "src/interpreter/bytecode-array-builder.h"
#include "src/interpreter/bytecode-array-iterator.h"
#include "src/interpreter/bytecode-label.h"
#include "src/interpreter/bytecode-register-allocator.h"
#include "test/unittests/test-utils.h"
namespace v8 {
namespace internal {
namespace interpreter {
class BytecodeArrayBuilderTest : public TestWithIsolateAndZone {
public:
BytecodeArrayBuilderTest() {}
~BytecodeArrayBuilderTest() override {}
};
TEST_F(BytecodeArrayBuilderTest, AllBytecodesGenerated) {
BytecodeArrayBuilder builder(isolate(), zone(), 0, 1, 131);
Factory* factory = isolate()->factory();
CHECK_EQ(builder.locals_count(), 131);
CHECK_EQ(builder.context_count(), 1);
CHECK_EQ(builder.fixed_register_count(), 132);
Register reg(0);
Register other(reg.index() + 1);
Register wide(128);
// Emit argument creation operations.
builder.CreateArguments(CreateArgumentsType::kMappedArguments)
.CreateArguments(CreateArgumentsType::kUnmappedArguments)
.CreateArguments(CreateArgumentsType::kRestParameter);
// Emit constant loads.
builder.LoadLiteral(Smi::FromInt(0))
.StoreAccumulatorInRegister(reg)
.LoadLiteral(Smi::FromInt(8))
.StoreAccumulatorInRegister(reg)
.LoadLiteral(Smi::FromInt(10000000))
.StoreAccumulatorInRegister(reg)
.LoadLiteral(factory->NewStringFromStaticChars("A constant"))
.StoreAccumulatorInRegister(reg)
.LoadUndefined()
.Debugger() // Prevent peephole optimization LdaNull, Star -> LdrNull.
.LoadNull()
.StoreAccumulatorInRegister(reg)
.LoadTheHole()
.StoreAccumulatorInRegister(reg)
.LoadTrue()
.StoreAccumulatorInRegister(reg)
.LoadFalse()
.StoreAccumulatorInRegister(wide);
// Emit Ldar and Star taking care to foil the register optimizer.
builder.StackCheck(0)
.LoadAccumulatorWithRegister(other)
.BinaryOperation(Token::ADD, reg)
.StoreAccumulatorInRegister(reg)
.LoadNull();
// Emit register-register transfer.
builder.MoveRegister(reg, other);
builder.MoveRegister(reg, wide);
// Emit global load / store operations.
Handle<String> name = factory->NewStringFromStaticChars("var_name");
builder.LoadGlobal(name, 1, TypeofMode::NOT_INSIDE_TYPEOF)
.LoadGlobal(name, 1, TypeofMode::INSIDE_TYPEOF)
.StoreGlobal(name, 1, LanguageMode::SLOPPY)
.StoreGlobal(name, 1, LanguageMode::STRICT);
// Emit context operations.
builder.PushContext(reg)
.PopContext(reg)
.LoadContextSlot(reg, 1)
.StoreContextSlot(reg, 1);
// Emit load / store property operations.
builder.LoadNamedProperty(reg, name, 0)
.LoadKeyedProperty(reg, 0)
.StoreNamedProperty(reg, name, 0, LanguageMode::SLOPPY)
.StoreKeyedProperty(reg, reg, 0, LanguageMode::SLOPPY)
.StoreNamedProperty(reg, name, 0, LanguageMode::STRICT)
.StoreKeyedProperty(reg, reg, 0, LanguageMode::STRICT);
// Emit load / store lookup slots.
builder.LoadLookupSlot(name, TypeofMode::NOT_INSIDE_TYPEOF)
.LoadLookupSlot(name, TypeofMode::INSIDE_TYPEOF)
.StoreLookupSlot(name, LanguageMode::SLOPPY)
.StoreLookupSlot(name, LanguageMode::STRICT);
// Emit closure operations.
Handle<SharedFunctionInfo> shared_info = factory->NewSharedFunctionInfo(
factory->NewStringFromStaticChars("function_a"), MaybeHandle<Code>(),
false);
builder.CreateClosure(shared_info, NOT_TENURED);
// Emit literal creation operations.
builder.CreateRegExpLiteral(factory->NewStringFromStaticChars("a"), 0, 0)
.CreateArrayLiteral(factory->NewFixedArray(1), 0, 0)
.CreateObjectLiteral(factory->NewFixedArray(1), 0, 0);
// Call operations.
builder.Call(reg, other, 1, 0)
.Call(reg, wide, 1, 0)
.TailCall(reg, other, 1, 0)
.TailCall(reg, wide, 1, 0)
.CallRuntime(Runtime::kIsArray, reg, 1)
.CallRuntime(Runtime::kIsArray, wide, 1)
.CallRuntimeForPair(Runtime::kLoadLookupSlotForCall, reg, 1, other)
.CallRuntimeForPair(Runtime::kLoadLookupSlotForCall, wide, 1, other)
.CallJSRuntime(Context::SPREAD_ITERABLE_INDEX, reg, 1)
.CallJSRuntime(Context::SPREAD_ITERABLE_INDEX, wide, 1);
// Emit binary operator invocations.
builder.BinaryOperation(Token::Value::ADD, reg)
.BinaryOperation(Token::Value::SUB, reg)
.BinaryOperation(Token::Value::MUL, reg)
.BinaryOperation(Token::Value::DIV, reg)
.BinaryOperation(Token::Value::MOD, reg);
// Emit bitwise operator invocations
builder.BinaryOperation(Token::Value::BIT_OR, reg)
.BinaryOperation(Token::Value::BIT_XOR, reg)
.BinaryOperation(Token::Value::BIT_AND, reg);
// Emit shift operator invocations
builder.BinaryOperation(Token::Value::SHL, reg)
.BinaryOperation(Token::Value::SAR, reg)
.BinaryOperation(Token::Value::SHR, reg);
// Emit count operatior invocations
builder.CountOperation(Token::Value::ADD).CountOperation(Token::Value::SUB);
// Emit unary operator invocations.
builder
.LogicalNot() // ToBooleanLogicalNot
.LogicalNot() // non-ToBoolean LogicalNot
.TypeOf();
// Emit delete
builder.Delete(reg, LanguageMode::SLOPPY).Delete(reg, LanguageMode::STRICT);
// Emit new.
builder.New(reg, reg, 0);
builder.New(wide, wide, 0);
// Emit test operator invocations.
builder.CompareOperation(Token::Value::EQ, reg)
.CompareOperation(Token::Value::NE, reg)
.CompareOperation(Token::Value::EQ_STRICT, reg)
.CompareOperation(Token::Value::LT, reg)
.CompareOperation(Token::Value::GT, reg)
.CompareOperation(Token::Value::LTE, reg)
.CompareOperation(Token::Value::GTE, reg)
.CompareOperation(Token::Value::INSTANCEOF, reg)
.CompareOperation(Token::Value::IN, reg);
// Emit cast operator invocations.
builder.CastAccumulatorToNumber()
.CastAccumulatorToJSObject()
.CastAccumulatorToName();
// Emit control flow. Return must be the last instruction.
BytecodeLabel start;
builder.Bind(&start);
{
// Short jumps with Imm8 operands
BytecodeLabel after_jump;
builder.Jump(&start)
.Bind(&after_jump)
.JumpIfNull(&start)
.JumpIfUndefined(&start)
.JumpIfNotHole(&start);
}
// Longer jumps with constant operands
BytecodeLabel end[8];
{
BytecodeLabel after_jump;
builder.Jump(&end[0])
.Bind(&after_jump)
.LoadTrue()
.JumpIfTrue(&end[1])
.LoadTrue()
.JumpIfFalse(&end[2])
.LoadLiteral(Smi::FromInt(0))
.JumpIfTrue(&end[3])
.LoadLiteral(Smi::FromInt(0))
.JumpIfFalse(&end[4])
.JumpIfNull(&end[5])
.JumpIfUndefined(&end[6])
.JumpIfNotHole(&end[7]);
}
// Perform an operation that returns boolean value to
// generate JumpIfTrue/False
builder.CompareOperation(Token::Value::EQ, reg)
.JumpIfTrue(&start)
.CompareOperation(Token::Value::EQ, reg)
.JumpIfFalse(&start);
// Perform an operation that returns a non-boolean operation to
// generate JumpIfToBooleanTrue/False.
builder.BinaryOperation(Token::Value::ADD, reg)
.JumpIfTrue(&start)
.BinaryOperation(Token::Value::ADD, reg)
.JumpIfFalse(&start);
// Insert dummy ops to force longer jumps
for (int i = 0; i < 128; i++) {
builder.LoadTrue();
}
// Longer jumps requiring Constant operand
{
BytecodeLabel after_jump;
builder.Jump(&start)
.Bind(&after_jump)
.JumpIfNull(&start)
.JumpIfUndefined(&start)
.JumpIfNotHole(&start);
// Perform an operation that returns boolean value to
// generate JumpIfTrue/False
builder.CompareOperation(Token::Value::EQ, reg)
.JumpIfTrue(&start)
.CompareOperation(Token::Value::EQ, reg)
.JumpIfFalse(&start);
// Perform an operation that returns a non-boolean operation to
// generate JumpIfToBooleanTrue/False.
builder.BinaryOperation(Token::Value::ADD, reg)
.JumpIfTrue(&start)
.BinaryOperation(Token::Value::ADD, reg)
.JumpIfFalse(&start);
}
// Emit stack check bytecode.
builder.StackCheck(0);
// Emit throw and re-throw in it's own basic block so that the rest of the
// code isn't omitted due to being dead.
BytecodeLabel after_throw;
builder.Throw().Bind(&after_throw);
BytecodeLabel after_rethrow;
builder.ReThrow().Bind(&after_rethrow);
builder.ForInPrepare(reg)
.ForInDone(reg, reg)
.ForInNext(reg, reg, reg, 1)
.ForInStep(reg);
builder.ForInPrepare(wide)
.ForInDone(reg, other)
.ForInNext(wide, wide, wide, 1024)
.ForInStep(reg);
// Wide constant pool loads
for (int i = 0; i < 256; i++) {
// Emit junk in constant pool to force wide constant pool index.
builder.LoadLiteral(factory->NewNumber(2.5321 + i));
}
builder.LoadLiteral(Smi::FromInt(20000000));
Handle<String> wide_name = factory->NewStringFromStaticChars("var_wide_name");
// Emit wide global load / store operations.
builder.LoadGlobal(name, 1024, TypeofMode::NOT_INSIDE_TYPEOF)
.LoadGlobal(name, 1024, TypeofMode::INSIDE_TYPEOF)
.LoadGlobal(name, 1024, TypeofMode::INSIDE_TYPEOF)
.StoreGlobal(name, 1024, LanguageMode::SLOPPY)
.StoreGlobal(wide_name, 1, LanguageMode::STRICT);
// Emit extra wide global load.
builder.LoadGlobal(name, 1024 * 1024, TypeofMode::NOT_INSIDE_TYPEOF);
// Emit wide load / store property operations.
builder.LoadNamedProperty(reg, wide_name, 0)
.LoadKeyedProperty(reg, 2056)
.StoreNamedProperty(reg, wide_name, 0, LanguageMode::SLOPPY)
.StoreKeyedProperty(reg, reg, 2056, LanguageMode::SLOPPY)
.StoreNamedProperty(reg, wide_name, 0, LanguageMode::STRICT)
.StoreKeyedProperty(reg, reg, 2056, LanguageMode::STRICT);
// Emit wide context operations.
builder.LoadContextSlot(reg, 1024).StoreContextSlot(reg, 1024);
// Emit wide load / store lookup slots.
builder.LoadLookupSlot(wide_name, TypeofMode::NOT_INSIDE_TYPEOF)
.LoadLookupSlot(wide_name, TypeofMode::INSIDE_TYPEOF)
.StoreLookupSlot(wide_name, LanguageMode::SLOPPY)
.StoreLookupSlot(wide_name, LanguageMode::STRICT);
// Emit loads which will be transformed to Ldr equivalents by the peephole
// optimizer.
builder.LoadNamedProperty(reg, name, 0)
.StoreAccumulatorInRegister(reg)
.LoadKeyedProperty(reg, 0)
.StoreAccumulatorInRegister(reg)
.LoadContextSlot(reg, 1)
.StoreAccumulatorInRegister(reg)
.LoadGlobal(name, 0, TypeofMode::NOT_INSIDE_TYPEOF)
.StoreAccumulatorInRegister(reg)
.LoadUndefined()
.StoreAccumulatorInRegister(reg);
// CreateClosureWide
Handle<SharedFunctionInfo> shared_info2 = factory->NewSharedFunctionInfo(
factory->NewStringFromStaticChars("function_b"), MaybeHandle<Code>(),
false);
builder.CreateClosure(shared_info2, NOT_TENURED);
// Emit wide variant of literal creation operations.
builder.CreateRegExpLiteral(factory->NewStringFromStaticChars("wide_literal"),
0, 0)
.CreateArrayLiteral(factory->NewFixedArray(2), 0, 0)
.CreateObjectLiteral(factory->NewFixedArray(2), 0, 0);
// Longer jumps requiring ConstantWide operand
{
BytecodeLabel after_jump;
builder.Jump(&start)
.Bind(&after_jump)
.JumpIfNull(&start)
.JumpIfUndefined(&start)
.JumpIfNotHole(&start);
}
// Perform an operation that returns boolean value to
// generate JumpIfTrue/False
builder.CompareOperation(Token::Value::EQ, reg)
.JumpIfTrue(&start)
.CompareOperation(Token::Value::EQ, reg)
.JumpIfFalse(&start);
// Perform an operation that returns a non-boolean operation to
// generate JumpIfToBooleanTrue/False.
builder.BinaryOperation(Token::Value::ADD, reg)
.JumpIfTrue(&start)
.BinaryOperation(Token::Value::ADD, reg)
.JumpIfFalse(&start);
// Emit generator operations
builder.SuspendGenerator(reg)
.ResumeGenerator(reg);
// Intrinsics handled by the interpreter.
builder.CallRuntime(Runtime::kInlineIsArray, reg, 1)
.CallRuntime(Runtime::kInlineIsArray, wide, 1);
builder.Debugger();
for (size_t i = 0; i < arraysize(end); i++) {
builder.Bind(&end[i]);
}
builder.Return();
// Generate BytecodeArray.
Handle<BytecodeArray> the_array = builder.ToBytecodeArray();
CHECK_EQ(the_array->frame_size(),
builder.fixed_and_temporary_register_count() * kPointerSize);
// Build scorecard of bytecodes encountered in the BytecodeArray.
std::vector<int> scorecard(Bytecodes::ToByte(Bytecode::kLast) + 1);
Bytecode final_bytecode = Bytecode::kLdaZero;
int i = 0;
while (i < the_array->length()) {
uint8_t code = the_array->get(i);
scorecard[code] += 1;
final_bytecode = Bytecodes::FromByte(code);
OperandScale operand_scale = OperandScale::kSingle;
int prefix_offset = 0;
if (Bytecodes::IsPrefixScalingBytecode(final_bytecode)) {
operand_scale = Bytecodes::PrefixBytecodeToOperandScale(final_bytecode);
prefix_offset = 1;
code = the_array->get(i + 1);
final_bytecode = Bytecodes::FromByte(code);
}
i += prefix_offset + Bytecodes::Size(final_bytecode, operand_scale);
}
// Insert entry for illegal bytecode as this is never willingly emitted.
scorecard[Bytecodes::ToByte(Bytecode::kIllegal)] = 1;
// Insert entry for nop bytecode as this often gets optimized out.
scorecard[Bytecodes::ToByte(Bytecode::kNop)] = 1;
if (!FLAG_ignition_peephole) {
// Insert entries for bytecodes only emitted by peephole optimizer.
scorecard[Bytecodes::ToByte(Bytecode::kLdrNamedProperty)] = 1;
scorecard[Bytecodes::ToByte(Bytecode::kLdrKeyedProperty)] = 1;
scorecard[Bytecodes::ToByte(Bytecode::kLdrGlobal)] = 1;
scorecard[Bytecodes::ToByte(Bytecode::kLdrContextSlot)] = 1;
scorecard[Bytecodes::ToByte(Bytecode::kLdrUndefined)] = 1;
scorecard[Bytecodes::ToByte(Bytecode::kLogicalNot)] = 1;
scorecard[Bytecodes::ToByte(Bytecode::kJump)] = 1;
scorecard[Bytecodes::ToByte(Bytecode::kJumpIfTrue)] = 1;
scorecard[Bytecodes::ToByte(Bytecode::kJumpIfFalse)] = 1;
scorecard[Bytecodes::ToByte(Bytecode::kJumpIfTrueConstant)] = 1;
scorecard[Bytecodes::ToByte(Bytecode::kJumpIfFalseConstant)] = 1;
}
// Check return occurs at the end and only once in the BytecodeArray.
CHECK_EQ(final_bytecode, Bytecode::kReturn);
CHECK_EQ(scorecard[Bytecodes::ToByte(final_bytecode)], 1);
#define CHECK_BYTECODE_PRESENT(Name, ...) \
/* Check Bytecode is marked in scorecard, unless it's a debug break */ \
if (!Bytecodes::IsDebugBreak(Bytecode::k##Name)) { \
CHECK_GE(scorecard[Bytecodes::ToByte(Bytecode::k##Name)], 1); \
}
BYTECODE_LIST(CHECK_BYTECODE_PRESENT)
#undef CHECK_BYTECODE_PRESENT
}
TEST_F(BytecodeArrayBuilderTest, FrameSizesLookGood) {
for (int locals = 0; locals < 5; locals++) {
for (int contexts = 0; contexts < 4; contexts++) {
for (int temps = 0; temps < 3; temps++) {
BytecodeArrayBuilder builder(isolate(), zone(), 0, contexts, locals);
BytecodeRegisterAllocator temporaries(
zone(), builder.temporary_register_allocator());
for (int i = 0; i < locals + contexts; i++) {
builder.LoadLiteral(Smi::FromInt(0));
builder.StoreAccumulatorInRegister(Register(i));
}
for (int i = 0; i < temps; i++) {
builder.LoadLiteral(Smi::FromInt(0));
builder.StoreAccumulatorInRegister(temporaries.NewRegister());
}
if (temps > 0) {
// Ensure temporaries are used so not optimized away by the
// register optimizer.
builder.New(Register(locals + contexts), Register(locals + contexts),
static_cast<size_t>(temps));
}
builder.Return();
Handle<BytecodeArray> the_array = builder.ToBytecodeArray();
int total_registers = locals + contexts + temps;
CHECK_EQ(the_array->frame_size(), total_registers * kPointerSize);
}
}
}
}
TEST_F(BytecodeArrayBuilderTest, RegisterValues) {
int index = 1;
Register the_register(index);
CHECK_EQ(the_register.index(), index);
int actual_operand = the_register.ToOperand();
int actual_index = Register::FromOperand(actual_operand).index();
CHECK_EQ(actual_index, index);
}
TEST_F(BytecodeArrayBuilderTest, Parameters) {
BytecodeArrayBuilder builder(isolate(), zone(), 10, 0, 0);
Register param0(builder.Parameter(0));
Register param9(builder.Parameter(9));
CHECK_EQ(param9.index() - param0.index(), 9);
}
TEST_F(BytecodeArrayBuilderTest, RegisterType) {
BytecodeArrayBuilder builder(isolate(), zone(), 10, 0, 3);
BytecodeRegisterAllocator register_allocator(
zone(), builder.temporary_register_allocator());
Register temp0 = register_allocator.NewRegister();
Register param0(builder.Parameter(0));
Register param9(builder.Parameter(9));
Register temp1 = register_allocator.NewRegister();
Register reg0(0);
Register reg1(1);
Register reg2(2);
Register temp2 = register_allocator.NewRegister();
CHECK_EQ(builder.RegisterIsParameterOrLocal(temp0), false);
CHECK_EQ(builder.RegisterIsParameterOrLocal(temp1), false);
CHECK_EQ(builder.RegisterIsParameterOrLocal(temp2), false);
CHECK_EQ(builder.RegisterIsParameterOrLocal(param0), true);
CHECK_EQ(builder.RegisterIsParameterOrLocal(param9), true);
CHECK_EQ(builder.RegisterIsParameterOrLocal(reg0), true);
CHECK_EQ(builder.RegisterIsParameterOrLocal(reg1), true);
CHECK_EQ(builder.RegisterIsParameterOrLocal(reg2), true);
}
TEST_F(BytecodeArrayBuilderTest, Constants) {
BytecodeArrayBuilder builder(isolate(), zone(), 0, 0, 0);
Factory* factory = isolate()->factory();
Handle<HeapObject> heap_num_1 = factory->NewHeapNumber(3.14);
Handle<HeapObject> heap_num_2 = factory->NewHeapNumber(5.2);
Handle<Object> large_smi(Smi::FromInt(0x12345678), isolate());
Handle<HeapObject> heap_num_2_copy(*heap_num_2);
builder.LoadLiteral(heap_num_1)
.LoadLiteral(heap_num_2)
.LoadLiteral(large_smi)
.LoadLiteral(heap_num_1)
.LoadLiteral(heap_num_1)
.LoadLiteral(heap_num_2_copy)
.Return();
Handle<BytecodeArray> array = builder.ToBytecodeArray();
// Should only have one entry for each identical constant.
CHECK_EQ(array->constant_pool()->length(), 3);
}
static Bytecode PeepholeToBoolean(Bytecode jump_bytecode) {
return FLAG_ignition_peephole
? Bytecodes::GetJumpWithoutToBoolean(jump_bytecode)
: jump_bytecode;
}
TEST_F(BytecodeArrayBuilderTest, ForwardJumps) {
static const int kFarJumpDistance = 256;
BytecodeArrayBuilder builder(isolate(), zone(), 0, 0, 1);
Register reg(0);
BytecodeLabel far0, far1, far2, far3, far4;
BytecodeLabel near0, near1, near2, near3, near4;
BytecodeLabel after_jump0, after_jump1;
builder.Jump(&near0)
.Bind(&after_jump0)
.CompareOperation(Token::Value::EQ, reg)
.JumpIfTrue(&near1)
.CompareOperation(Token::Value::EQ, reg)
.JumpIfFalse(&near2)
.BinaryOperation(Token::Value::ADD, reg)
.JumpIfTrue(&near3)
.BinaryOperation(Token::Value::ADD, reg)
.JumpIfFalse(&near4)
.Bind(&near0)
.Bind(&near1)
.Bind(&near2)
.Bind(&near3)
.Bind(&near4)
.Jump(&far0)
.Bind(&after_jump1)
.CompareOperation(Token::Value::EQ, reg)
.JumpIfTrue(&far1)
.CompareOperation(Token::Value::EQ, reg)
.JumpIfFalse(&far2)
.BinaryOperation(Token::Value::ADD, reg)
.JumpIfTrue(&far3)
.BinaryOperation(Token::Value::ADD, reg)
.JumpIfFalse(&far4);
for (int i = 0; i < kFarJumpDistance - 18; i++) {
builder.Debugger();
}
builder.Bind(&far0).Bind(&far1).Bind(&far2).Bind(&far3).Bind(&far4);
builder.Return();
Handle<BytecodeArray> array = builder.ToBytecodeArray();
DCHECK_EQ(array->length(), 36 + kFarJumpDistance - 18 + 1);
BytecodeArrayIterator iterator(array);
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJump);
CHECK_EQ(iterator.GetImmediateOperand(0), 18);
iterator.Advance();
// Ignore compare operation.
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(),
PeepholeToBoolean(Bytecode::kJumpIfToBooleanTrue));
CHECK_EQ(iterator.GetImmediateOperand(0), 14);
iterator.Advance();
// Ignore compare operation.
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(),
PeepholeToBoolean(Bytecode::kJumpIfToBooleanFalse));
CHECK_EQ(iterator.GetImmediateOperand(0), 10);
iterator.Advance();
// Ignore add operation.
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJumpIfToBooleanTrue);
CHECK_EQ(iterator.GetImmediateOperand(0), 6);
iterator.Advance();
// Ignore add operation.
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJumpIfToBooleanFalse);
CHECK_EQ(iterator.GetImmediateOperand(0), 2);
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJumpConstant);
CHECK_EQ(*iterator.GetConstantForIndexOperand(0),
Smi::FromInt(kFarJumpDistance));
iterator.Advance();
// Ignore compare operation.
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(),
PeepholeToBoolean(Bytecode::kJumpIfToBooleanTrueConstant));
CHECK_EQ(*iterator.GetConstantForIndexOperand(0),
Smi::FromInt(kFarJumpDistance - 4));
iterator.Advance();
// Ignore compare operation.
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(),
PeepholeToBoolean(Bytecode::kJumpIfToBooleanFalseConstant));
CHECK_EQ(*iterator.GetConstantForIndexOperand(0),
Smi::FromInt(kFarJumpDistance - 8));
iterator.Advance();
// Ignore add operation.
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJumpIfToBooleanTrueConstant);
CHECK_EQ(*iterator.GetConstantForIndexOperand(0),
Smi::FromInt(kFarJumpDistance - 12));
iterator.Advance();
// Ignore add operation.
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(),
Bytecode::kJumpIfToBooleanFalseConstant);
CHECK_EQ(*iterator.GetConstantForIndexOperand(0),
Smi::FromInt(kFarJumpDistance - 16));
iterator.Advance();
}
TEST_F(BytecodeArrayBuilderTest, BackwardJumps) {
BytecodeArrayBuilder builder(isolate(), zone(), 0, 0, 1);
Register reg(0);
BytecodeLabel label0, label1, label2, label3, label4;
builder.Bind(&label0)
.Jump(&label0)
.Bind(&label1)
.CompareOperation(Token::Value::EQ, reg)
.JumpIfTrue(&label1)
.Bind(&label2)
.CompareOperation(Token::Value::EQ, reg)
.JumpIfFalse(&label2)
.Bind(&label3)
.BinaryOperation(Token::Value::ADD, reg)
.JumpIfTrue(&label3)
.Bind(&label4)
.BinaryOperation(Token::Value::ADD, reg)
.JumpIfFalse(&label4);
for (int i = 0; i < 63; i++) {
BytecodeLabel after_jump;
builder.Jump(&label4).Bind(&after_jump);
}
// Add padding to force wide backwards jumps.
for (int i = 0; i < 256; i++) {
builder.Debugger();
}
builder.BinaryOperation(Token::Value::ADD, reg).JumpIfFalse(&label4);
builder.BinaryOperation(Token::Value::ADD, reg).JumpIfTrue(&label3);
builder.CompareOperation(Token::Value::EQ, reg).JumpIfFalse(&label2);
builder.CompareOperation(Token::Value::EQ, reg).JumpIfTrue(&label1);
builder.Jump(&label0);
BytecodeLabel end;
builder.Bind(&end);
builder.Return();
Handle<BytecodeArray> array = builder.ToBytecodeArray();
BytecodeArrayIterator iterator(array);
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJump);
CHECK_EQ(iterator.GetImmediateOperand(0), 0);
iterator.Advance();
// Ignore compare operation.
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(),
PeepholeToBoolean(Bytecode::kJumpIfToBooleanTrue));
CHECK_EQ(iterator.current_operand_scale(), OperandScale::kSingle);
CHECK_EQ(iterator.GetImmediateOperand(0), -2);
iterator.Advance();
// Ignore compare operation.
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(),
PeepholeToBoolean(Bytecode::kJumpIfToBooleanFalse));
CHECK_EQ(iterator.current_operand_scale(), OperandScale::kSingle);
CHECK_EQ(iterator.GetImmediateOperand(0), -2);
iterator.Advance();
// Ignore binary operation.
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJumpIfToBooleanTrue);
CHECK_EQ(iterator.current_operand_scale(), OperandScale::kSingle);
CHECK_EQ(iterator.GetImmediateOperand(0), -2);
iterator.Advance();
// Ignore binary operation.
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJumpIfToBooleanFalse);
CHECK_EQ(iterator.current_operand_scale(), OperandScale::kSingle);
CHECK_EQ(iterator.GetImmediateOperand(0), -2);
iterator.Advance();
for (int i = 0; i < 63; i++) {
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJump);
CHECK_EQ(iterator.current_operand_scale(), OperandScale::kSingle);
CHECK_EQ(iterator.GetImmediateOperand(0), -i * 2 - 4);
iterator.Advance();
}
// Check padding to force wide backwards jumps.
for (int i = 0; i < 256; i++) {
CHECK_EQ(iterator.current_bytecode(), Bytecode::kDebugger);
iterator.Advance();
}
// Ignore binary operation.
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJumpIfToBooleanFalse);
CHECK_EQ(iterator.current_operand_scale(), OperandScale::kDouble);
CHECK_EQ(iterator.GetImmediateOperand(0), -389);
iterator.Advance();
// Ignore binary operation.
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJumpIfToBooleanTrue);
CHECK_EQ(iterator.current_operand_scale(), OperandScale::kDouble);
CHECK_EQ(iterator.GetImmediateOperand(0), -399);
iterator.Advance();
// Ignore compare operation.
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(),
PeepholeToBoolean(Bytecode::kJumpIfToBooleanFalse));
CHECK_EQ(iterator.current_operand_scale(), OperandScale::kDouble);
CHECK_EQ(iterator.GetImmediateOperand(0), -409);
iterator.Advance();
// Ignore compare operation.
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(),
PeepholeToBoolean(Bytecode::kJumpIfToBooleanTrue));
CHECK_EQ(iterator.current_operand_scale(), OperandScale::kDouble);
CHECK_EQ(iterator.GetImmediateOperand(0), -419);
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJump);
CHECK_EQ(iterator.current_operand_scale(), OperandScale::kDouble);
CHECK_EQ(iterator.GetImmediateOperand(0), -425);
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kReturn);
iterator.Advance();
CHECK(iterator.done());
}
TEST_F(BytecodeArrayBuilderTest, LabelReuse) {
BytecodeArrayBuilder builder(isolate(), zone(), 0, 0, 0);
// Labels can only have 1 forward reference, but
// can be referred to mulitple times once bound.
BytecodeLabel label, after_jump0, after_jump1;
builder.Jump(&label)
.Bind(&label)
.Jump(&label)
.Bind(&after_jump0)
.Jump(&label)
.Bind(&after_jump1)
.Return();
Handle<BytecodeArray> array = builder.ToBytecodeArray();
BytecodeArrayIterator iterator(array);
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJump);
CHECK_EQ(iterator.GetImmediateOperand(0), 2);
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJump);
CHECK_EQ(iterator.GetImmediateOperand(0), 0);
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJump);
CHECK_EQ(iterator.GetImmediateOperand(0), -2);
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kReturn);
iterator.Advance();
CHECK(iterator.done());
}
TEST_F(BytecodeArrayBuilderTest, LabelAddressReuse) {
static const int kRepeats = 3;
BytecodeArrayBuilder builder(isolate(), zone(), 0, 0, 0);
for (int i = 0; i < kRepeats; i++) {
BytecodeLabel label, after_jump0, after_jump1;
builder.Jump(&label)
.Bind(&label)
.Jump(&label)
.Bind(&after_jump0)
.Jump(&label)
.Bind(&after_jump1);
}
builder.Return();
Handle<BytecodeArray> array = builder.ToBytecodeArray();
BytecodeArrayIterator iterator(array);
for (int i = 0; i < kRepeats; i++) {
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJump);
CHECK_EQ(iterator.GetImmediateOperand(0), 2);
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJump);
CHECK_EQ(iterator.GetImmediateOperand(0), 0);
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJump);
CHECK_EQ(iterator.GetImmediateOperand(0), -2);
iterator.Advance();
}
CHECK_EQ(iterator.current_bytecode(), Bytecode::kReturn);
iterator.Advance();
CHECK(iterator.done());
}
} // namespace interpreter
} // namespace internal
} // namespace v8