v8/src/compiler/raw-machine-assembler.h
Benedikt Meurer 1ec1f5957f [turbofan] Cleanup use of virtual, OVERRIDE, FINAL.
Following the Google/Chromium coding style wrt. virtual, OVERRIDE and
FINAL specifications.

TEST=unittests
R=jochen@chromium.org

Review URL: https://codereview.chromium.org/816453005

Cr-Commit-Position: refs/heads/master@{#25924}
2014-12-22 13:48:10 +00:00

465 lines
15 KiB
C++

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_COMPILER_RAW_MACHINE_ASSEMBLER_H_
#define V8_COMPILER_RAW_MACHINE_ASSEMBLER_H_
#include "src/v8.h"
#include "src/compiler/common-operator.h"
#include "src/compiler/graph-builder.h"
#include "src/compiler/linkage.h"
#include "src/compiler/machine-operator.h"
#include "src/compiler/node.h"
#include "src/compiler/operator.h"
namespace v8 {
namespace internal {
namespace compiler {
class BasicBlock;
class Schedule;
class RawMachineAssembler : public GraphBuilder {
public:
class Label {
public:
Label() : block_(NULL), used_(false), bound_(false) {}
~Label() { DCHECK(bound_ || !used_); }
BasicBlock* block() { return block_; }
private:
// Private constructor for exit label.
explicit Label(BasicBlock* block)
: block_(block), used_(false), bound_(false) {}
BasicBlock* block_;
bool used_;
bool bound_;
friend class RawMachineAssembler;
DISALLOW_COPY_AND_ASSIGN(Label);
};
RawMachineAssembler(Graph* graph, MachineSignature* machine_sig,
MachineType word = kMachPtr,
MachineOperatorBuilder::Flags flags =
MachineOperatorBuilder::Flag::kNoFlags);
~RawMachineAssembler() OVERRIDE {}
Isolate* isolate() const { return zone()->isolate(); }
Zone* zone() const { return graph()->zone(); }
MachineOperatorBuilder* machine() { return &machine_; }
CommonOperatorBuilder* common() { return &common_; }
CallDescriptor* call_descriptor() const { return call_descriptor_; }
size_t parameter_count() const { return machine_sig_->parameter_count(); }
MachineSignature* machine_sig() const { return machine_sig_; }
Node* UndefinedConstant() {
Unique<HeapObject> unique = Unique<HeapObject>::CreateImmovable(
isolate()->factory()->undefined_value());
return NewNode(common()->HeapConstant(unique));
}
// Constants.
Node* PointerConstant(void* value) {
return IntPtrConstant(reinterpret_cast<intptr_t>(value));
}
Node* IntPtrConstant(intptr_t value) {
// TODO(dcarney): mark generated code as unserializable if value != 0.
return kPointerSize == 8 ? Int64Constant(value)
: Int32Constant(static_cast<int>(value));
}
Node* Int32Constant(int32_t value) {
return NewNode(common()->Int32Constant(value));
}
Node* Int64Constant(int64_t value) {
return NewNode(common()->Int64Constant(value));
}
Node* NumberConstant(double value) {
return NewNode(common()->NumberConstant(value));
}
Node* Float32Constant(float value) {
return NewNode(common()->Float32Constant(value));
}
Node* Float64Constant(double value) {
return NewNode(common()->Float64Constant(value));
}
Node* HeapConstant(Handle<HeapObject> object) {
Unique<HeapObject> val = Unique<HeapObject>::CreateUninitialized(object);
return NewNode(common()->HeapConstant(val));
}
Node* Projection(int index, Node* a) {
return NewNode(common()->Projection(index), a);
}
// Memory Operations.
Node* Load(MachineType rep, Node* base) {
return Load(rep, base, Int32Constant(0));
}
Node* Load(MachineType rep, Node* base, Node* index) {
return NewNode(machine()->Load(rep), base, index, graph()->start(),
graph()->start());
}
void Store(MachineType rep, Node* base, Node* value) {
Store(rep, base, Int32Constant(0), value);
}
void Store(MachineType rep, Node* base, Node* index, Node* value) {
NewNode(machine()->Store(StoreRepresentation(rep, kNoWriteBarrier)), base,
index, value, graph()->start(), graph()->start());
}
// Arithmetic Operations.
Node* WordAnd(Node* a, Node* b) {
return NewNode(machine()->WordAnd(), a, b);
}
Node* WordOr(Node* a, Node* b) { return NewNode(machine()->WordOr(), a, b); }
Node* WordXor(Node* a, Node* b) {
return NewNode(machine()->WordXor(), a, b);
}
Node* WordShl(Node* a, Node* b) {
return NewNode(machine()->WordShl(), a, b);
}
Node* WordShr(Node* a, Node* b) {
return NewNode(machine()->WordShr(), a, b);
}
Node* WordSar(Node* a, Node* b) {
return NewNode(machine()->WordSar(), a, b);
}
Node* WordRor(Node* a, Node* b) {
return NewNode(machine()->WordRor(), a, b);
}
Node* WordEqual(Node* a, Node* b) {
return NewNode(machine()->WordEqual(), a, b);
}
Node* WordNotEqual(Node* a, Node* b) {
return WordBinaryNot(WordEqual(a, b));
}
Node* WordNot(Node* a) {
if (machine()->Is32()) {
return Word32Not(a);
} else {
return Word64Not(a);
}
}
Node* WordBinaryNot(Node* a) {
if (machine()->Is32()) {
return Word32BinaryNot(a);
} else {
return Word64BinaryNot(a);
}
}
Node* Word32And(Node* a, Node* b) {
return NewNode(machine()->Word32And(), a, b);
}
Node* Word32Or(Node* a, Node* b) {
return NewNode(machine()->Word32Or(), a, b);
}
Node* Word32Xor(Node* a, Node* b) {
return NewNode(machine()->Word32Xor(), a, b);
}
Node* Word32Shl(Node* a, Node* b) {
return NewNode(machine()->Word32Shl(), a, b);
}
Node* Word32Shr(Node* a, Node* b) {
return NewNode(machine()->Word32Shr(), a, b);
}
Node* Word32Sar(Node* a, Node* b) {
return NewNode(machine()->Word32Sar(), a, b);
}
Node* Word32Ror(Node* a, Node* b) {
return NewNode(machine()->Word32Ror(), a, b);
}
Node* Word32Equal(Node* a, Node* b) {
return NewNode(machine()->Word32Equal(), a, b);
}
Node* Word32NotEqual(Node* a, Node* b) {
return Word32BinaryNot(Word32Equal(a, b));
}
Node* Word32Not(Node* a) { return Word32Xor(a, Int32Constant(-1)); }
Node* Word32BinaryNot(Node* a) { return Word32Equal(a, Int32Constant(0)); }
Node* Word64And(Node* a, Node* b) {
return NewNode(machine()->Word64And(), a, b);
}
Node* Word64Or(Node* a, Node* b) {
return NewNode(machine()->Word64Or(), a, b);
}
Node* Word64Xor(Node* a, Node* b) {
return NewNode(machine()->Word64Xor(), a, b);
}
Node* Word64Shl(Node* a, Node* b) {
return NewNode(machine()->Word64Shl(), a, b);
}
Node* Word64Shr(Node* a, Node* b) {
return NewNode(machine()->Word64Shr(), a, b);
}
Node* Word64Sar(Node* a, Node* b) {
return NewNode(machine()->Word64Sar(), a, b);
}
Node* Word64Ror(Node* a, Node* b) {
return NewNode(machine()->Word64Ror(), a, b);
}
Node* Word64Equal(Node* a, Node* b) {
return NewNode(machine()->Word64Equal(), a, b);
}
Node* Word64NotEqual(Node* a, Node* b) {
return Word64BinaryNot(Word64Equal(a, b));
}
Node* Word64Not(Node* a) { return Word64Xor(a, Int64Constant(-1)); }
Node* Word64BinaryNot(Node* a) { return Word64Equal(a, Int64Constant(0)); }
Node* Int32Add(Node* a, Node* b) {
return NewNode(machine()->Int32Add(), a, b);
}
Node* Int32AddWithOverflow(Node* a, Node* b) {
return NewNode(machine()->Int32AddWithOverflow(), a, b);
}
Node* Int32Sub(Node* a, Node* b) {
return NewNode(machine()->Int32Sub(), a, b);
}
Node* Int32SubWithOverflow(Node* a, Node* b) {
return NewNode(machine()->Int32SubWithOverflow(), a, b);
}
Node* Int32Mul(Node* a, Node* b) {
return NewNode(machine()->Int32Mul(), a, b);
}
Node* Int32MulHigh(Node* a, Node* b) {
return NewNode(machine()->Int32MulHigh(), a, b);
}
Node* Int32Div(Node* a, Node* b) {
return NewNode(machine()->Int32Div(), a, b, graph()->start());
}
Node* Int32Mod(Node* a, Node* b) {
return NewNode(machine()->Int32Mod(), a, b, graph()->start());
}
Node* Int32LessThan(Node* a, Node* b) {
return NewNode(machine()->Int32LessThan(), a, b);
}
Node* Int32LessThanOrEqual(Node* a, Node* b) {
return NewNode(machine()->Int32LessThanOrEqual(), a, b);
}
Node* Uint32Div(Node* a, Node* b) {
return NewNode(machine()->Uint32Div(), a, b, graph()->start());
}
Node* Uint32LessThan(Node* a, Node* b) {
return NewNode(machine()->Uint32LessThan(), a, b);
}
Node* Uint32LessThanOrEqual(Node* a, Node* b) {
return NewNode(machine()->Uint32LessThanOrEqual(), a, b);
}
Node* Uint32Mod(Node* a, Node* b) {
return NewNode(machine()->Uint32Mod(), a, b, graph()->start());
}
Node* Uint32MulHigh(Node* a, Node* b) {
return NewNode(machine()->Uint32MulHigh(), a, b);
}
Node* Int32GreaterThan(Node* a, Node* b) { return Int32LessThan(b, a); }
Node* Int32GreaterThanOrEqual(Node* a, Node* b) {
return Int32LessThanOrEqual(b, a);
}
Node* Int32Neg(Node* a) { return Int32Sub(Int32Constant(0), a); }
Node* Int64Add(Node* a, Node* b) {
return NewNode(machine()->Int64Add(), a, b);
}
Node* Int64Sub(Node* a, Node* b) {
return NewNode(machine()->Int64Sub(), a, b);
}
Node* Int64Mul(Node* a, Node* b) {
return NewNode(machine()->Int64Mul(), a, b);
}
Node* Int64Div(Node* a, Node* b) {
return NewNode(machine()->Int64Div(), a, b);
}
Node* Int64Mod(Node* a, Node* b) {
return NewNode(machine()->Int64Mod(), a, b);
}
Node* Int64Neg(Node* a) { return Int64Sub(Int64Constant(0), a); }
Node* Int64LessThan(Node* a, Node* b) {
return NewNode(machine()->Int64LessThan(), a, b);
}
Node* Int64LessThanOrEqual(Node* a, Node* b) {
return NewNode(machine()->Int64LessThanOrEqual(), a, b);
}
Node* Int64GreaterThan(Node* a, Node* b) { return Int64LessThan(b, a); }
Node* Int64GreaterThanOrEqual(Node* a, Node* b) {
return Int64LessThanOrEqual(b, a);
}
Node* Uint64Div(Node* a, Node* b) {
return NewNode(machine()->Uint64Div(), a, b);
}
Node* Uint64Mod(Node* a, Node* b) {
return NewNode(machine()->Uint64Mod(), a, b);
}
// TODO(turbofan): What is this used for?
Node* ConvertIntPtrToInt32(Node* a) {
return kPointerSize == 8 ? NewNode(machine()->TruncateInt64ToInt32(), a)
: a;
}
Node* ConvertInt32ToIntPtr(Node* a) {
return kPointerSize == 8 ? NewNode(machine()->ChangeInt32ToInt64(), a) : a;
}
#define INTPTR_BINOP(prefix, name) \
Node* IntPtr##name(Node* a, Node* b) { \
return kPointerSize == 8 ? prefix##64##name(a, b) \
: prefix##32##name(a, b); \
}
INTPTR_BINOP(Int, Add);
INTPTR_BINOP(Int, Sub);
INTPTR_BINOP(Int, LessThan);
INTPTR_BINOP(Int, LessThanOrEqual);
INTPTR_BINOP(Word, Equal);
INTPTR_BINOP(Word, NotEqual);
INTPTR_BINOP(Int, GreaterThanOrEqual);
INTPTR_BINOP(Int, GreaterThan);
#undef INTPTR_BINOP
Node* Float64Add(Node* a, Node* b) {
return NewNode(machine()->Float64Add(), a, b);
}
Node* Float64Sub(Node* a, Node* b) {
return NewNode(machine()->Float64Sub(), a, b);
}
Node* Float64Mul(Node* a, Node* b) {
return NewNode(machine()->Float64Mul(), a, b);
}
Node* Float64Div(Node* a, Node* b) {
return NewNode(machine()->Float64Div(), a, b);
}
Node* Float64Mod(Node* a, Node* b) {
return NewNode(machine()->Float64Mod(), a, b);
}
Node* Float64Equal(Node* a, Node* b) {
return NewNode(machine()->Float64Equal(), a, b);
}
Node* Float64NotEqual(Node* a, Node* b) {
return WordBinaryNot(Float64Equal(a, b));
}
Node* Float64LessThan(Node* a, Node* b) {
return NewNode(machine()->Float64LessThan(), a, b);
}
Node* Float64LessThanOrEqual(Node* a, Node* b) {
return NewNode(machine()->Float64LessThanOrEqual(), a, b);
}
Node* Float64GreaterThan(Node* a, Node* b) { return Float64LessThan(b, a); }
Node* Float64GreaterThanOrEqual(Node* a, Node* b) {
return Float64LessThanOrEqual(b, a);
}
// Conversions.
Node* ChangeFloat32ToFloat64(Node* a) {
return NewNode(machine()->ChangeFloat32ToFloat64(), a);
}
Node* ChangeInt32ToFloat64(Node* a) {
return NewNode(machine()->ChangeInt32ToFloat64(), a);
}
Node* ChangeUint32ToFloat64(Node* a) {
return NewNode(machine()->ChangeUint32ToFloat64(), a);
}
Node* ChangeFloat64ToInt32(Node* a) {
return NewNode(machine()->ChangeFloat64ToInt32(), a);
}
Node* ChangeFloat64ToUint32(Node* a) {
return NewNode(machine()->ChangeFloat64ToUint32(), a);
}
Node* ChangeInt32ToInt64(Node* a) {
return NewNode(machine()->ChangeInt32ToInt64(), a);
}
Node* ChangeUint32ToUint64(Node* a) {
return NewNode(machine()->ChangeUint32ToUint64(), a);
}
Node* TruncateFloat64ToFloat32(Node* a) {
return NewNode(machine()->TruncateFloat64ToFloat32(), a);
}
Node* TruncateFloat64ToInt32(Node* a) {
return NewNode(machine()->TruncateFloat64ToInt32(), a);
}
Node* TruncateInt64ToInt32(Node* a) {
return NewNode(machine()->TruncateInt64ToInt32(), a);
}
Node* Float64Floor(Node* a) { return NewNode(machine()->Float64Floor(), a); }
Node* Float64Ceil(Node* a) { return NewNode(machine()->Float64Ceil(), a); }
Node* Float64RoundTruncate(Node* a) {
return NewNode(machine()->Float64RoundTruncate(), a);
}
Node* Float64RoundTiesAway(Node* a) {
return NewNode(machine()->Float64RoundTiesAway(), a);
}
// Parameters.
Node* Parameter(size_t index);
// Control flow.
Label* Exit();
void Goto(Label* label);
void Branch(Node* condition, Label* true_val, Label* false_val);
// Call through CallFunctionStub with lazy deopt and frame-state.
Node* CallFunctionStub0(Node* function, Node* receiver, Node* context,
Node* frame_state, CallFunctionFlags flags);
// Call to a JS function with zero parameters.
Node* CallJS0(Node* function, Node* receiver, Node* context,
Node* frame_state);
// Call to a runtime function with zero parameters.
Node* CallRuntime1(Runtime::FunctionId function, Node* arg0, Node* context,
Node* frame_state);
void Return(Node* value);
void Bind(Label* label);
void Deoptimize(Node* state);
// Variables.
Node* Phi(MachineType type, Node* n1, Node* n2) {
return NewNode(common()->Phi(type, 2), n1, n2);
}
Node* Phi(MachineType type, Node* n1, Node* n2, Node* n3) {
return NewNode(common()->Phi(type, 3), n1, n2, n3);
}
Node* Phi(MachineType type, Node* n1, Node* n2, Node* n3, Node* n4) {
return NewNode(common()->Phi(type, 4), n1, n2, n3, n4);
}
// MachineAssembler is invalid after export.
Schedule* Export();
protected:
Node* MakeNode(const Operator* op, int input_count, Node** inputs,
bool incomplete) FINAL;
bool ScheduleValid() { return schedule_ != NULL; }
Schedule* schedule() {
DCHECK(ScheduleValid());
return schedule_;
}
private:
BasicBlock* Use(Label* label);
BasicBlock* EnsureBlock(Label* label);
BasicBlock* CurrentBlock();
Schedule* schedule_;
MachineOperatorBuilder machine_;
CommonOperatorBuilder common_;
MachineSignature* machine_sig_;
CallDescriptor* call_descriptor_;
Node** parameters_;
Label exit_label_;
BasicBlock* current_block_;
DISALLOW_COPY_AND_ASSIGN(RawMachineAssembler);
};
} // namespace compiler
} // namespace internal
} // namespace v8
#endif // V8_COMPILER_RAW_MACHINE_ASSEMBLER_H_