05beab6b1f
Review URL: http://codereview.chromium.org/1102002 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@4191 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
205 lines
7.8 KiB
C++
205 lines
7.8 KiB
C++
// Copyright 2006-2008 the V8 project authors. All rights reserved.
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include "v8.h"
|
|
|
|
#include "platform.h"
|
|
#include "cctest.h"
|
|
#include "diy-fp.h"
|
|
#include "double.h"
|
|
|
|
|
|
using namespace v8::internal;
|
|
|
|
|
|
TEST(Uint64Conversions) {
|
|
// Start by checking the byte-order.
|
|
uint64_t ordered = V8_2PART_UINT64_C(0x01234567, 89ABCDEF);
|
|
CHECK_EQ(3512700564088504e-318, Double(ordered).value());
|
|
|
|
uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001);
|
|
CHECK_EQ(5e-324, Double(min_double64).value());
|
|
|
|
uint64_t max_double64 = V8_2PART_UINT64_C(0x7fefffff, ffffffff);
|
|
CHECK_EQ(1.7976931348623157e308, Double(max_double64).value());
|
|
}
|
|
|
|
TEST(AsDiyFp) {
|
|
uint64_t ordered = V8_2PART_UINT64_C(0x01234567, 89ABCDEF);
|
|
DiyFp diy_fp = Double(ordered).AsDiyFp();
|
|
CHECK_EQ(0x12 - 0x3FF - 52, diy_fp.e());
|
|
// The 52 mantissa bits, plus the implicit 1 in bit 52 as a UINT64.
|
|
CHECK(V8_2PART_UINT64_C(0x00134567, 89ABCDEF) == diy_fp.f()); // NOLINT
|
|
|
|
uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001);
|
|
diy_fp = Double(min_double64).AsDiyFp();
|
|
CHECK_EQ(-0x3FF - 52 + 1, diy_fp.e());
|
|
// This is a denormal; so no hidden bit.
|
|
CHECK(1 == diy_fp.f()); // NOLINT
|
|
|
|
uint64_t max_double64 = V8_2PART_UINT64_C(0x7fefffff, ffffffff);
|
|
diy_fp = Double(max_double64).AsDiyFp();
|
|
CHECK_EQ(0x7FE - 0x3FF - 52, diy_fp.e());
|
|
CHECK(V8_2PART_UINT64_C(0x001fffff, ffffffff) == diy_fp.f()); // NOLINT
|
|
}
|
|
|
|
|
|
TEST(AsNormalizedDiyFp) {
|
|
uint64_t ordered = V8_2PART_UINT64_C(0x01234567, 89ABCDEF);
|
|
DiyFp diy_fp = Double(ordered).AsNormalizedDiyFp();
|
|
CHECK_EQ(0x12 - 0x3FF - 52 - 11, diy_fp.e());
|
|
CHECK((V8_2PART_UINT64_C(0x00134567, 89ABCDEF) << 11) ==
|
|
diy_fp.f()); // NOLINT
|
|
|
|
uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001);
|
|
diy_fp = Double(min_double64).AsNormalizedDiyFp();
|
|
CHECK_EQ(-0x3FF - 52 + 1 - 63, diy_fp.e());
|
|
// This is a denormal; so no hidden bit.
|
|
CHECK(V8_2PART_UINT64_C(0x80000000, 00000000) == diy_fp.f()); // NOLINT
|
|
|
|
uint64_t max_double64 = V8_2PART_UINT64_C(0x7fefffff, ffffffff);
|
|
diy_fp = Double(max_double64).AsNormalizedDiyFp();
|
|
CHECK_EQ(0x7FE - 0x3FF - 52 - 11, diy_fp.e());
|
|
CHECK((V8_2PART_UINT64_C(0x001fffff, ffffffff) << 11) ==
|
|
diy_fp.f()); // NOLINT
|
|
}
|
|
|
|
|
|
TEST(IsDenormal) {
|
|
uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001);
|
|
CHECK(Double(min_double64).IsDenormal());
|
|
uint64_t bits = V8_2PART_UINT64_C(0x000FFFFF, FFFFFFFF);
|
|
CHECK(Double(bits).IsDenormal());
|
|
bits = V8_2PART_UINT64_C(0x00100000, 00000000);
|
|
CHECK(!Double(bits).IsDenormal());
|
|
}
|
|
|
|
|
|
TEST(IsSpecial) {
|
|
CHECK(Double(V8_INFINITY).IsSpecial());
|
|
CHECK(Double(-V8_INFINITY).IsSpecial());
|
|
CHECK(Double(OS::nan_value()).IsSpecial());
|
|
uint64_t bits = V8_2PART_UINT64_C(0xFFF12345, 00000000);
|
|
CHECK(Double(bits).IsSpecial());
|
|
// Denormals are not special:
|
|
CHECK(!Double(5e-324).IsSpecial());
|
|
CHECK(!Double(-5e-324).IsSpecial());
|
|
// And some random numbers:
|
|
CHECK(!Double(0.0).IsSpecial());
|
|
CHECK(!Double(-0.0).IsSpecial());
|
|
CHECK(!Double(1.0).IsSpecial());
|
|
CHECK(!Double(-1.0).IsSpecial());
|
|
CHECK(!Double(1000000.0).IsSpecial());
|
|
CHECK(!Double(-1000000.0).IsSpecial());
|
|
CHECK(!Double(1e23).IsSpecial());
|
|
CHECK(!Double(-1e23).IsSpecial());
|
|
CHECK(!Double(1.7976931348623157e308).IsSpecial());
|
|
CHECK(!Double(-1.7976931348623157e308).IsSpecial());
|
|
}
|
|
|
|
|
|
TEST(IsInfinite) {
|
|
CHECK(Double(V8_INFINITY).IsInfinite());
|
|
CHECK(Double(-V8_INFINITY).IsInfinite());
|
|
CHECK(!Double(OS::nan_value()).IsInfinite());
|
|
CHECK(!Double(0.0).IsInfinite());
|
|
CHECK(!Double(-0.0).IsInfinite());
|
|
CHECK(!Double(1.0).IsInfinite());
|
|
CHECK(!Double(-1.0).IsInfinite());
|
|
uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001);
|
|
CHECK(!Double(min_double64).IsInfinite());
|
|
}
|
|
|
|
|
|
TEST(IsNan) {
|
|
CHECK(Double(OS::nan_value()).IsNan());
|
|
uint64_t other_nan = V8_2PART_UINT64_C(0xFFFFFFFF, 00000001);
|
|
CHECK(Double(other_nan).IsNan());
|
|
CHECK(!Double(V8_INFINITY).IsNan());
|
|
CHECK(!Double(-V8_INFINITY).IsNan());
|
|
CHECK(!Double(0.0).IsNan());
|
|
CHECK(!Double(-0.0).IsNan());
|
|
CHECK(!Double(1.0).IsNan());
|
|
CHECK(!Double(-1.0).IsNan());
|
|
uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001);
|
|
CHECK(!Double(min_double64).IsNan());
|
|
}
|
|
|
|
|
|
TEST(Sign) {
|
|
CHECK_EQ(1, Double(1.0).Sign());
|
|
CHECK_EQ(1, Double(V8_INFINITY).Sign());
|
|
CHECK_EQ(-1, Double(-V8_INFINITY).Sign());
|
|
CHECK_EQ(1, Double(0.0).Sign());
|
|
CHECK_EQ(-1, Double(-0.0).Sign());
|
|
uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001);
|
|
CHECK_EQ(1, Double(min_double64).Sign());
|
|
}
|
|
|
|
|
|
TEST(NormalizedBoundaries) {
|
|
DiyFp boundary_plus;
|
|
DiyFp boundary_minus;
|
|
DiyFp diy_fp = Double(1.5).AsNormalizedDiyFp();
|
|
Double(1.5).NormalizedBoundaries(&boundary_minus, &boundary_plus);
|
|
CHECK_EQ(diy_fp.e(), boundary_minus.e());
|
|
CHECK_EQ(diy_fp.e(), boundary_plus.e());
|
|
// 1.5 does not have a significand of the form 2^p (for some p).
|
|
// Therefore its boundaries are at the same distance.
|
|
CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
|
|
CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); // NOLINT
|
|
|
|
diy_fp = Double(1.0).AsNormalizedDiyFp();
|
|
Double(1.0).NormalizedBoundaries(&boundary_minus, &boundary_plus);
|
|
CHECK_EQ(diy_fp.e(), boundary_minus.e());
|
|
CHECK_EQ(diy_fp.e(), boundary_plus.e());
|
|
// 1.0 does have a significand of the form 2^p (for some p).
|
|
// Therefore its lower boundary is twice as close as the upper boundary.
|
|
CHECK_GT(boundary_plus.f() - diy_fp.f(), diy_fp.f() - boundary_minus.f());
|
|
CHECK((1 << 9) == diy_fp.f() - boundary_minus.f()); // NOLINT
|
|
CHECK((1 << 10) == boundary_plus.f() - diy_fp.f()); // NOLINT
|
|
|
|
uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001);
|
|
diy_fp = Double(min_double64).AsNormalizedDiyFp();
|
|
Double(min_double64).NormalizedBoundaries(&boundary_minus, &boundary_plus);
|
|
CHECK_EQ(diy_fp.e(), boundary_minus.e());
|
|
CHECK_EQ(diy_fp.e(), boundary_plus.e());
|
|
// min-value does not have a significand of the form 2^p (for some p).
|
|
// Therefore its boundaries are at the same distance.
|
|
CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
|
|
// Denormals have their boundaries much closer.
|
|
CHECK((static_cast<uint64_t>(1) << 62) ==
|
|
diy_fp.f() - boundary_minus.f()); // NOLINT
|
|
|
|
uint64_t smallest_normal64 = V8_2PART_UINT64_C(0x00100000, 00000000);
|
|
diy_fp = Double(smallest_normal64).AsNormalizedDiyFp();
|
|
Double(smallest_normal64).NormalizedBoundaries(&boundary_minus,
|
|
&boundary_plus);
|
|
CHECK_EQ(diy_fp.e(), boundary_minus.e());
|
|
CHECK_EQ(diy_fp.e(), boundary_plus.e());
|
|
// Even though the significand is of the form 2^p (for some p), its boundaries
|
|
// are at the same distance. (This is the only exception).
|
|
CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
|
|
CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); // NOLINT
|
|
|
|
uint64_t largest_denormal64 = V8_2PART_UINT64_C(0x000FFFFF, FFFFFFFF);
|
|
diy_fp = Double(largest_denormal64).AsNormalizedDiyFp();
|
|
Double(largest_denormal64).NormalizedBoundaries(&boundary_minus,
|
|
&boundary_plus);
|
|
CHECK_EQ(diy_fp.e(), boundary_minus.e());
|
|
CHECK_EQ(diy_fp.e(), boundary_plus.e());
|
|
CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
|
|
CHECK((1 << 11) == diy_fp.f() - boundary_minus.f()); // NOLINT
|
|
|
|
uint64_t max_double64 = V8_2PART_UINT64_C(0x7fefffff, ffffffff);
|
|
diy_fp = Double(max_double64).AsNormalizedDiyFp();
|
|
Double(max_double64).NormalizedBoundaries(&boundary_minus, &boundary_plus);
|
|
CHECK_EQ(diy_fp.e(), boundary_minus.e());
|
|
CHECK_EQ(diy_fp.e(), boundary_plus.e());
|
|
// max-value does not have a significand of the form 2^p (for some p).
|
|
// Therefore its boundaries are at the same distance.
|
|
CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
|
|
CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); // NOLINT
|
|
}
|