v8/src/compilation-cache.cc
keuchel@chromium.org 1e9a7267ab Introduce extended mode.
This CL introduces a third mode next to the non-strict
(henceforth called 'classic mode') and 'strict mode'
which is called 'extended mode' as in the current
ES.next specification drafts. The extended mode is based on
the 'strict mode' and adds new functionality to it. This
means that most of the semantics of these two modes
coincide.

The 'extended mode' is entered instead of the 'strict mode'
during parsing when using the 'strict mode' directive
"use strict" and when the the harmony-scoping flag is
active. This should be changed once it is fully specified how the 'extended mode' is entered.

This change introduces a new 3 valued enum LanguageMode
(see globals.h) corresponding to the modes which is mostly
used by the frontend code. This includes the following
components:
* (Pre)Parser
* Compiler
* SharedFunctionInfo, Scope and ScopeInfo
* runtime functions: StoreContextSlot,
  ResolvePossiblyDirectEval, InitializeVarGlobal,
  DeclareGlobals

The old enum StrictModeFlag is still used in the backend
when the distinction between the 'strict mode' and the 'extended mode' does not matter. This includes:
* SetProperty runtime function, Delete builtin
* StoreIC and KeyedStoreIC
* StubCache

Review URL: http://codereview.chromium.org/8417035

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@10062 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2011-11-24 15:17:04 +00:00

509 lines
16 KiB
C++

// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "assembler.h"
#include "compilation-cache.h"
#include "serialize.h"
namespace v8 {
namespace internal {
// The number of generations for each sub cache.
// The number of ScriptGenerations is carefully chosen based on histograms.
// See issue 458: http://code.google.com/p/v8/issues/detail?id=458
static const int kScriptGenerations = 5;
static const int kEvalGlobalGenerations = 2;
static const int kEvalContextualGenerations = 2;
static const int kRegExpGenerations = 2;
// Initial size of each compilation cache table allocated.
static const int kInitialCacheSize = 64;
CompilationCache::CompilationCache(Isolate* isolate)
: isolate_(isolate),
script_(isolate, kScriptGenerations),
eval_global_(isolate, kEvalGlobalGenerations),
eval_contextual_(isolate, kEvalContextualGenerations),
reg_exp_(isolate, kRegExpGenerations),
enabled_(true) {
CompilationSubCache* subcaches[kSubCacheCount] =
{&script_, &eval_global_, &eval_contextual_, &reg_exp_};
for (int i = 0; i < kSubCacheCount; ++i) {
subcaches_[i] = subcaches[i];
}
}
CompilationCache::~CompilationCache() {}
static Handle<CompilationCacheTable> AllocateTable(Isolate* isolate, int size) {
CALL_HEAP_FUNCTION(isolate,
CompilationCacheTable::Allocate(size),
CompilationCacheTable);
}
Handle<CompilationCacheTable> CompilationSubCache::GetTable(int generation) {
ASSERT(generation < generations_);
Handle<CompilationCacheTable> result;
if (tables_[generation]->IsUndefined()) {
result = AllocateTable(isolate(), kInitialCacheSize);
tables_[generation] = *result;
} else {
CompilationCacheTable* table =
CompilationCacheTable::cast(tables_[generation]);
result = Handle<CompilationCacheTable>(table, isolate());
}
return result;
}
void CompilationSubCache::Age() {
// Age the generations implicitly killing off the oldest.
for (int i = generations_ - 1; i > 0; i--) {
tables_[i] = tables_[i - 1];
}
// Set the first generation as unborn.
tables_[0] = isolate()->heap()->undefined_value();
}
void CompilationSubCache::IterateFunctions(ObjectVisitor* v) {
Object* undefined = isolate()->heap()->raw_unchecked_undefined_value();
for (int i = 0; i < generations_; i++) {
if (tables_[i] != undefined) {
reinterpret_cast<CompilationCacheTable*>(tables_[i])->IterateElements(v);
}
}
}
void CompilationSubCache::Iterate(ObjectVisitor* v) {
v->VisitPointers(&tables_[0], &tables_[generations_]);
}
void CompilationSubCache::Clear() {
MemsetPointer(tables_, isolate()->heap()->undefined_value(), generations_);
}
void CompilationSubCache::Remove(Handle<SharedFunctionInfo> function_info) {
// Probe the script generation tables. Make sure not to leak handles
// into the caller's handle scope.
{ HandleScope scope(isolate());
for (int generation = 0; generation < generations(); generation++) {
Handle<CompilationCacheTable> table = GetTable(generation);
table->Remove(*function_info);
}
}
}
CompilationCacheScript::CompilationCacheScript(Isolate* isolate,
int generations)
: CompilationSubCache(isolate, generations),
script_histogram_(NULL),
script_histogram_initialized_(false) { }
// We only re-use a cached function for some script source code if the
// script originates from the same place. This is to avoid issues
// when reporting errors, etc.
bool CompilationCacheScript::HasOrigin(
Handle<SharedFunctionInfo> function_info,
Handle<Object> name,
int line_offset,
int column_offset) {
Handle<Script> script =
Handle<Script>(Script::cast(function_info->script()), isolate());
// If the script name isn't set, the boilerplate script should have
// an undefined name to have the same origin.
if (name.is_null()) {
return script->name()->IsUndefined();
}
// Do the fast bailout checks first.
if (line_offset != script->line_offset()->value()) return false;
if (column_offset != script->column_offset()->value()) return false;
// Check that both names are strings. If not, no match.
if (!name->IsString() || !script->name()->IsString()) return false;
// Compare the two name strings for equality.
return String::cast(*name)->Equals(String::cast(script->name()));
}
// TODO(245): Need to allow identical code from different contexts to
// be cached in the same script generation. Currently the first use
// will be cached, but subsequent code from different source / line
// won't.
Handle<SharedFunctionInfo> CompilationCacheScript::Lookup(Handle<String> source,
Handle<Object> name,
int line_offset,
int column_offset) {
Object* result = NULL;
int generation;
// Probe the script generation tables. Make sure not to leak handles
// into the caller's handle scope.
{ HandleScope scope(isolate());
for (generation = 0; generation < generations(); generation++) {
Handle<CompilationCacheTable> table = GetTable(generation);
Handle<Object> probe(table->Lookup(*source), isolate());
if (probe->IsSharedFunctionInfo()) {
Handle<SharedFunctionInfo> function_info =
Handle<SharedFunctionInfo>::cast(probe);
// Break when we've found a suitable shared function info that
// matches the origin.
if (HasOrigin(function_info, name, line_offset, column_offset)) {
result = *function_info;
break;
}
}
}
}
if (!script_histogram_initialized_) {
script_histogram_ = isolate()->stats_table()->CreateHistogram(
"V8.ScriptCache",
0,
kScriptGenerations,
kScriptGenerations + 1);
script_histogram_initialized_ = true;
}
if (script_histogram_ != NULL) {
// The level NUMBER_OF_SCRIPT_GENERATIONS is equivalent to a cache miss.
isolate()->stats_table()->AddHistogramSample(script_histogram_, generation);
}
// Once outside the manacles of the handle scope, we need to recheck
// to see if we actually found a cached script. If so, we return a
// handle created in the caller's handle scope.
if (result != NULL) {
Handle<SharedFunctionInfo> shared(SharedFunctionInfo::cast(result),
isolate());
ASSERT(HasOrigin(shared, name, line_offset, column_offset));
// If the script was found in a later generation, we promote it to
// the first generation to let it survive longer in the cache.
if (generation != 0) Put(source, shared);
isolate()->counters()->compilation_cache_hits()->Increment();
return shared;
} else {
isolate()->counters()->compilation_cache_misses()->Increment();
return Handle<SharedFunctionInfo>::null();
}
}
MaybeObject* CompilationCacheScript::TryTablePut(
Handle<String> source,
Handle<SharedFunctionInfo> function_info) {
Handle<CompilationCacheTable> table = GetFirstTable();
return table->Put(*source, *function_info);
}
Handle<CompilationCacheTable> CompilationCacheScript::TablePut(
Handle<String> source,
Handle<SharedFunctionInfo> function_info) {
CALL_HEAP_FUNCTION(isolate(),
TryTablePut(source, function_info),
CompilationCacheTable);
}
void CompilationCacheScript::Put(Handle<String> source,
Handle<SharedFunctionInfo> function_info) {
HandleScope scope(isolate());
SetFirstTable(TablePut(source, function_info));
}
Handle<SharedFunctionInfo> CompilationCacheEval::Lookup(
Handle<String> source,
Handle<Context> context,
LanguageMode language_mode,
int scope_position) {
// Make sure not to leak the table into the surrounding handle
// scope. Otherwise, we risk keeping old tables around even after
// having cleared the cache.
Object* result = NULL;
int generation;
{ HandleScope scope(isolate());
for (generation = 0; generation < generations(); generation++) {
Handle<CompilationCacheTable> table = GetTable(generation);
result = table->LookupEval(
*source, *context, language_mode, scope_position);
if (result->IsSharedFunctionInfo()) {
break;
}
}
}
if (result->IsSharedFunctionInfo()) {
Handle<SharedFunctionInfo>
function_info(SharedFunctionInfo::cast(result), isolate());
if (generation != 0) {
Put(source, context, function_info, scope_position);
}
isolate()->counters()->compilation_cache_hits()->Increment();
return function_info;
} else {
isolate()->counters()->compilation_cache_misses()->Increment();
return Handle<SharedFunctionInfo>::null();
}
}
MaybeObject* CompilationCacheEval::TryTablePut(
Handle<String> source,
Handle<Context> context,
Handle<SharedFunctionInfo> function_info,
int scope_position) {
Handle<CompilationCacheTable> table = GetFirstTable();
return table->PutEval(*source, *context, *function_info, scope_position);
}
Handle<CompilationCacheTable> CompilationCacheEval::TablePut(
Handle<String> source,
Handle<Context> context,
Handle<SharedFunctionInfo> function_info,
int scope_position) {
CALL_HEAP_FUNCTION(isolate(),
TryTablePut(
source, context, function_info, scope_position),
CompilationCacheTable);
}
void CompilationCacheEval::Put(Handle<String> source,
Handle<Context> context,
Handle<SharedFunctionInfo> function_info,
int scope_position) {
HandleScope scope(isolate());
SetFirstTable(TablePut(source, context, function_info, scope_position));
}
Handle<FixedArray> CompilationCacheRegExp::Lookup(Handle<String> source,
JSRegExp::Flags flags) {
// Make sure not to leak the table into the surrounding handle
// scope. Otherwise, we risk keeping old tables around even after
// having cleared the cache.
Object* result = NULL;
int generation;
{ HandleScope scope(isolate());
for (generation = 0; generation < generations(); generation++) {
Handle<CompilationCacheTable> table = GetTable(generation);
result = table->LookupRegExp(*source, flags);
if (result->IsFixedArray()) {
break;
}
}
}
if (result->IsFixedArray()) {
Handle<FixedArray> data(FixedArray::cast(result), isolate());
if (generation != 0) {
Put(source, flags, data);
}
isolate()->counters()->compilation_cache_hits()->Increment();
return data;
} else {
isolate()->counters()->compilation_cache_misses()->Increment();
return Handle<FixedArray>::null();
}
}
MaybeObject* CompilationCacheRegExp::TryTablePut(
Handle<String> source,
JSRegExp::Flags flags,
Handle<FixedArray> data) {
Handle<CompilationCacheTable> table = GetFirstTable();
return table->PutRegExp(*source, flags, *data);
}
Handle<CompilationCacheTable> CompilationCacheRegExp::TablePut(
Handle<String> source,
JSRegExp::Flags flags,
Handle<FixedArray> data) {
CALL_HEAP_FUNCTION(isolate(),
TryTablePut(source, flags, data),
CompilationCacheTable);
}
void CompilationCacheRegExp::Put(Handle<String> source,
JSRegExp::Flags flags,
Handle<FixedArray> data) {
HandleScope scope(isolate());
SetFirstTable(TablePut(source, flags, data));
}
void CompilationCache::Remove(Handle<SharedFunctionInfo> function_info) {
if (!IsEnabled()) return;
eval_global_.Remove(function_info);
eval_contextual_.Remove(function_info);
script_.Remove(function_info);
}
Handle<SharedFunctionInfo> CompilationCache::LookupScript(Handle<String> source,
Handle<Object> name,
int line_offset,
int column_offset) {
if (!IsEnabled()) {
return Handle<SharedFunctionInfo>::null();
}
return script_.Lookup(source, name, line_offset, column_offset);
}
Handle<SharedFunctionInfo> CompilationCache::LookupEval(
Handle<String> source,
Handle<Context> context,
bool is_global,
LanguageMode language_mode,
int scope_position) {
if (!IsEnabled()) {
return Handle<SharedFunctionInfo>::null();
}
Handle<SharedFunctionInfo> result;
if (is_global) {
result = eval_global_.Lookup(
source, context, language_mode, scope_position);
} else {
ASSERT(scope_position != RelocInfo::kNoPosition);
result = eval_contextual_.Lookup(
source, context, language_mode, scope_position);
}
return result;
}
Handle<FixedArray> CompilationCache::LookupRegExp(Handle<String> source,
JSRegExp::Flags flags) {
if (!IsEnabled()) {
return Handle<FixedArray>::null();
}
return reg_exp_.Lookup(source, flags);
}
void CompilationCache::PutScript(Handle<String> source,
Handle<SharedFunctionInfo> function_info) {
if (!IsEnabled()) {
return;
}
script_.Put(source, function_info);
}
void CompilationCache::PutEval(Handle<String> source,
Handle<Context> context,
bool is_global,
Handle<SharedFunctionInfo> function_info,
int scope_position) {
if (!IsEnabled()) {
return;
}
HandleScope scope(isolate());
if (is_global) {
eval_global_.Put(source, context, function_info, scope_position);
} else {
ASSERT(scope_position != RelocInfo::kNoPosition);
eval_contextual_.Put(source, context, function_info, scope_position);
}
}
void CompilationCache::PutRegExp(Handle<String> source,
JSRegExp::Flags flags,
Handle<FixedArray> data) {
if (!IsEnabled()) {
return;
}
reg_exp_.Put(source, flags, data);
}
void CompilationCache::Clear() {
for (int i = 0; i < kSubCacheCount; i++) {
subcaches_[i]->Clear();
}
}
void CompilationCache::Iterate(ObjectVisitor* v) {
for (int i = 0; i < kSubCacheCount; i++) {
subcaches_[i]->Iterate(v);
}
}
void CompilationCache::IterateFunctions(ObjectVisitor* v) {
for (int i = 0; i < kSubCacheCount; i++) {
subcaches_[i]->IterateFunctions(v);
}
}
void CompilationCache::MarkCompactPrologue() {
for (int i = 0; i < kSubCacheCount; i++) {
subcaches_[i]->Age();
}
}
void CompilationCache::Enable() {
enabled_ = true;
}
void CompilationCache::Disable() {
enabled_ = false;
Clear();
}
} } // namespace v8::internal