0600afddd3
This includes the following changes: - Limit code space to 128 MB. - Use direct branches wherever possible. - Where not possible, continue using load literal followed by an indirect branch. - Sort RelocInfo by target_address_address for the serializer, since mixing load literal instructions and branch instructions messes up that order. - Ensure we always wipe out targets in the serializer (not just for the snapshot) in order to be able to distinguish between constant pool entries and branch instructions. Change-Id: I1a1029ce2a5f72a3a94802daf267d14a42c7c790 Reviewed-on: https://chromium-review.googlesource.com/939175 Reviewed-by: Clemens Hammacher <clemensh@chromium.org> Reviewed-by: Jaroslav Sevcik <jarin@chromium.org> Reviewed-by: Leszek Swirski <leszeks@chromium.org> Reviewed-by: Yang Guo <yangguo@chromium.org> Commit-Queue: Georgia Kouveli <georgia.kouveli@arm.com> Cr-Commit-Position: refs/heads/master@{#52885}
1551 lines
48 KiB
C++
1551 lines
48 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#ifndef V8_GLOBALS_H_
|
|
#define V8_GLOBALS_H_
|
|
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
|
|
#include <limits>
|
|
#include <ostream>
|
|
|
|
#include "include/v8.h"
|
|
#include "src/base/build_config.h"
|
|
#include "src/base/flags.h"
|
|
#include "src/base/logging.h"
|
|
#include "src/base/macros.h"
|
|
|
|
#ifdef V8_OS_WIN
|
|
|
|
// Setup for Windows shared library export.
|
|
#ifdef BUILDING_V8_SHARED
|
|
#define V8_EXPORT_PRIVATE __declspec(dllexport)
|
|
#elif USING_V8_SHARED
|
|
#define V8_EXPORT_PRIVATE __declspec(dllimport)
|
|
#else
|
|
#define V8_EXPORT_PRIVATE
|
|
#endif // BUILDING_V8_SHARED
|
|
|
|
#else // V8_OS_WIN
|
|
|
|
// Setup for Linux shared library export.
|
|
#if V8_HAS_ATTRIBUTE_VISIBILITY
|
|
#ifdef BUILDING_V8_SHARED
|
|
#define V8_EXPORT_PRIVATE __attribute__((visibility("default")))
|
|
#else
|
|
#define V8_EXPORT_PRIVATE
|
|
#endif
|
|
#else
|
|
#define V8_EXPORT_PRIVATE
|
|
#endif
|
|
|
|
#endif // V8_OS_WIN
|
|
|
|
#define V8_INFINITY std::numeric_limits<double>::infinity()
|
|
|
|
namespace v8 {
|
|
|
|
namespace base {
|
|
class Mutex;
|
|
class RecursiveMutex;
|
|
}
|
|
|
|
namespace internal {
|
|
|
|
// Determine whether we are running in a simulated environment.
|
|
// Setting USE_SIMULATOR explicitly from the build script will force
|
|
// the use of a simulated environment.
|
|
#if !defined(USE_SIMULATOR)
|
|
#if (V8_TARGET_ARCH_ARM64 && !V8_HOST_ARCH_ARM64)
|
|
#define USE_SIMULATOR 1
|
|
#endif
|
|
#if (V8_TARGET_ARCH_ARM && !V8_HOST_ARCH_ARM)
|
|
#define USE_SIMULATOR 1
|
|
#endif
|
|
#if (V8_TARGET_ARCH_PPC && !V8_HOST_ARCH_PPC)
|
|
#define USE_SIMULATOR 1
|
|
#endif
|
|
#if (V8_TARGET_ARCH_MIPS && !V8_HOST_ARCH_MIPS)
|
|
#define USE_SIMULATOR 1
|
|
#endif
|
|
#if (V8_TARGET_ARCH_MIPS64 && !V8_HOST_ARCH_MIPS64)
|
|
#define USE_SIMULATOR 1
|
|
#endif
|
|
#if (V8_TARGET_ARCH_S390 && !V8_HOST_ARCH_S390)
|
|
#define USE_SIMULATOR 1
|
|
#endif
|
|
#endif
|
|
|
|
// Determine whether the architecture uses an embedded constant pool
|
|
// (contiguous constant pool embedded in code object).
|
|
#if V8_TARGET_ARCH_PPC
|
|
#define V8_EMBEDDED_CONSTANT_POOL 1
|
|
#else
|
|
#define V8_EMBEDDED_CONSTANT_POOL 0
|
|
#endif
|
|
|
|
#ifdef V8_TARGET_ARCH_ARM
|
|
// Set stack limit lower for ARM than for other architectures because
|
|
// stack allocating MacroAssembler takes 120K bytes.
|
|
// See issue crbug.com/405338
|
|
#define V8_DEFAULT_STACK_SIZE_KB 864
|
|
#else
|
|
// Slightly less than 1MB, since Windows' default stack size for
|
|
// the main execution thread is 1MB for both 32 and 64-bit.
|
|
#define V8_DEFAULT_STACK_SIZE_KB 984
|
|
#endif
|
|
|
|
// Minimum stack size in KB required by compilers.
|
|
constexpr int kStackSpaceRequiredForCompilation = 40;
|
|
|
|
// Determine whether double field unboxing feature is enabled.
|
|
#if V8_TARGET_ARCH_64_BIT
|
|
#define V8_DOUBLE_FIELDS_UNBOXING 1
|
|
#else
|
|
#define V8_DOUBLE_FIELDS_UNBOXING 0
|
|
#endif
|
|
|
|
// Some types of tracing require the SFI to store a unique ID.
|
|
#if defined(V8_TRACE_MAPS) || defined(V8_TRACE_IGNITION)
|
|
#define V8_SFI_HAS_UNIQUE_ID 1
|
|
#endif
|
|
|
|
// Superclass for classes only using static method functions.
|
|
// The subclass of AllStatic cannot be instantiated at all.
|
|
class AllStatic {
|
|
#ifdef DEBUG
|
|
public:
|
|
AllStatic() = delete;
|
|
#endif
|
|
};
|
|
|
|
// DEPRECATED
|
|
// TODO(leszeks): Delete this during a quiet period
|
|
#define BASE_EMBEDDED
|
|
|
|
typedef uint8_t byte;
|
|
typedef uintptr_t Address;
|
|
static const Address kNullAddress = 0;
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Constants
|
|
|
|
constexpr int KB = 1024;
|
|
constexpr int MB = KB * KB;
|
|
constexpr int GB = KB * KB * KB;
|
|
constexpr int kMaxInt = 0x7FFFFFFF;
|
|
constexpr int kMinInt = -kMaxInt - 1;
|
|
constexpr int kMaxInt8 = (1 << 7) - 1;
|
|
constexpr int kMinInt8 = -(1 << 7);
|
|
constexpr int kMaxUInt8 = (1 << 8) - 1;
|
|
constexpr int kMinUInt8 = 0;
|
|
constexpr int kMaxInt16 = (1 << 15) - 1;
|
|
constexpr int kMinInt16 = -(1 << 15);
|
|
constexpr int kMaxUInt16 = (1 << 16) - 1;
|
|
constexpr int kMinUInt16 = 0;
|
|
|
|
constexpr uint32_t kMaxUInt32 = 0xFFFFFFFFu;
|
|
constexpr int kMinUInt32 = 0;
|
|
|
|
constexpr int kUInt8Size = sizeof(uint8_t);
|
|
constexpr int kCharSize = sizeof(char);
|
|
constexpr int kShortSize = sizeof(short); // NOLINT
|
|
constexpr int kUInt16Size = sizeof(uint16_t);
|
|
constexpr int kIntSize = sizeof(int);
|
|
constexpr int kInt32Size = sizeof(int32_t);
|
|
constexpr int kInt64Size = sizeof(int64_t);
|
|
constexpr int kUInt32Size = sizeof(uint32_t);
|
|
constexpr int kSizetSize = sizeof(size_t);
|
|
constexpr int kFloatSize = sizeof(float);
|
|
constexpr int kDoubleSize = sizeof(double);
|
|
constexpr int kIntptrSize = sizeof(intptr_t);
|
|
constexpr int kUIntptrSize = sizeof(uintptr_t);
|
|
constexpr int kPointerSize = sizeof(void*);
|
|
constexpr int kPointerHexDigits = kPointerSize == 4 ? 8 : 12;
|
|
#if V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT
|
|
constexpr int kRegisterSize = kPointerSize + kPointerSize;
|
|
#else
|
|
constexpr int kRegisterSize = kPointerSize;
|
|
#endif
|
|
constexpr int kPCOnStackSize = kRegisterSize;
|
|
constexpr int kFPOnStackSize = kRegisterSize;
|
|
|
|
#if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_IA32
|
|
constexpr int kElidedFrameSlots = kPCOnStackSize / kPointerSize;
|
|
#else
|
|
constexpr int kElidedFrameSlots = 0;
|
|
#endif
|
|
|
|
constexpr int kDoubleSizeLog2 = 3;
|
|
constexpr size_t kMaxWasmCodeMemory = 256 * MB;
|
|
|
|
#if V8_HOST_ARCH_64_BIT
|
|
constexpr int kPointerSizeLog2 = 3;
|
|
constexpr intptr_t kIntptrSignBit =
|
|
static_cast<intptr_t>(uintptr_t{0x8000000000000000});
|
|
constexpr uintptr_t kUintptrAllBitsSet = uintptr_t{0xFFFFFFFFFFFFFFFF};
|
|
constexpr bool kRequiresCodeRange = true;
|
|
#if V8_TARGET_ARCH_MIPS64
|
|
// To use pseudo-relative jumps such as j/jal instructions which have 28-bit
|
|
// encoded immediate, the addresses have to be in range of 256MB aligned
|
|
// region. Used only for large object space.
|
|
constexpr size_t kMaximalCodeRangeSize = 256 * MB;
|
|
constexpr size_t kCodeRangeAreaAlignment = 256 * MB;
|
|
#elif V8_HOST_ARCH_PPC && V8_TARGET_ARCH_PPC && V8_OS_LINUX
|
|
constexpr size_t kMaximalCodeRangeSize = 512 * MB;
|
|
constexpr size_t kCodeRangeAreaAlignment = 64 * KB; // OS page on PPC Linux
|
|
#elif V8_TARGET_ARCH_ARM64
|
|
constexpr size_t kMaximalCodeRangeSize = 128 * MB;
|
|
constexpr size_t kCodeRangeAreaAlignment = 4 * KB; // OS page.
|
|
#else
|
|
constexpr size_t kMaximalCodeRangeSize = 512 * MB;
|
|
constexpr size_t kCodeRangeAreaAlignment = 4 * KB; // OS page.
|
|
#endif
|
|
#if V8_OS_WIN
|
|
constexpr size_t kMinimumCodeRangeSize = 4 * MB;
|
|
constexpr size_t kReservedCodeRangePages = 1;
|
|
#else
|
|
constexpr size_t kMinimumCodeRangeSize = 3 * MB;
|
|
constexpr size_t kReservedCodeRangePages = 0;
|
|
#endif
|
|
#else
|
|
constexpr int kPointerSizeLog2 = 2;
|
|
constexpr intptr_t kIntptrSignBit = 0x80000000;
|
|
constexpr uintptr_t kUintptrAllBitsSet = 0xFFFFFFFFu;
|
|
#if V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT
|
|
// x32 port also requires code range.
|
|
constexpr bool kRequiresCodeRange = true;
|
|
constexpr size_t kMaximalCodeRangeSize = 256 * MB;
|
|
constexpr size_t kMinimumCodeRangeSize = 3 * MB;
|
|
constexpr size_t kCodeRangeAreaAlignment = 4 * KB; // OS page.
|
|
#elif V8_HOST_ARCH_PPC && V8_TARGET_ARCH_PPC && V8_OS_LINUX
|
|
constexpr bool kRequiresCodeRange = false;
|
|
constexpr size_t kMaximalCodeRangeSize = 0 * MB;
|
|
constexpr size_t kMinimumCodeRangeSize = 0 * MB;
|
|
constexpr size_t kCodeRangeAreaAlignment = 64 * KB; // OS page on PPC Linux
|
|
#else
|
|
constexpr bool kRequiresCodeRange = false;
|
|
constexpr size_t kMaximalCodeRangeSize = 0 * MB;
|
|
constexpr size_t kMinimumCodeRangeSize = 0 * MB;
|
|
constexpr size_t kCodeRangeAreaAlignment = 4 * KB; // OS page.
|
|
#endif
|
|
constexpr size_t kReservedCodeRangePages = 0;
|
|
#endif
|
|
|
|
// Trigger an incremental GCs once the external memory reaches this limit.
|
|
constexpr int kExternalAllocationSoftLimit = 64 * MB;
|
|
|
|
// Maximum object size that gets allocated into regular pages. Objects larger
|
|
// than that size are allocated in large object space and are never moved in
|
|
// memory. This also applies to new space allocation, since objects are never
|
|
// migrated from new space to large object space. Takes double alignment into
|
|
// account.
|
|
//
|
|
// Current value: Page::kAllocatableMemory (on 32-bit arch) - 512 (slack).
|
|
constexpr int kMaxRegularHeapObjectSize = 507136;
|
|
|
|
STATIC_ASSERT(kPointerSize == (1 << kPointerSizeLog2));
|
|
|
|
constexpr int kBitsPerByte = 8;
|
|
constexpr int kBitsPerByteLog2 = 3;
|
|
constexpr int kBitsPerPointer = kPointerSize * kBitsPerByte;
|
|
constexpr int kBitsPerInt = kIntSize * kBitsPerByte;
|
|
|
|
// IEEE 754 single precision floating point number bit layout.
|
|
constexpr uint32_t kBinary32SignMask = 0x80000000u;
|
|
constexpr uint32_t kBinary32ExponentMask = 0x7f800000u;
|
|
constexpr uint32_t kBinary32MantissaMask = 0x007fffffu;
|
|
constexpr int kBinary32ExponentBias = 127;
|
|
constexpr int kBinary32MaxExponent = 0xFE;
|
|
constexpr int kBinary32MinExponent = 0x01;
|
|
constexpr int kBinary32MantissaBits = 23;
|
|
constexpr int kBinary32ExponentShift = 23;
|
|
|
|
// Quiet NaNs have bits 51 to 62 set, possibly the sign bit, and no
|
|
// other bits set.
|
|
constexpr uint64_t kQuietNaNMask = static_cast<uint64_t>(0xfff) << 51;
|
|
|
|
// Latin1/UTF-16 constants
|
|
// Code-point values in Unicode 4.0 are 21 bits wide.
|
|
// Code units in UTF-16 are 16 bits wide.
|
|
typedef uint16_t uc16;
|
|
typedef int32_t uc32;
|
|
constexpr int kOneByteSize = kCharSize;
|
|
constexpr int kUC16Size = sizeof(uc16); // NOLINT
|
|
|
|
// 128 bit SIMD value size.
|
|
constexpr int kSimd128Size = 16;
|
|
|
|
// FUNCTION_ADDR(f) gets the address of a C function f.
|
|
#define FUNCTION_ADDR(f) (reinterpret_cast<v8::internal::Address>(f))
|
|
|
|
// FUNCTION_CAST<F>(addr) casts an address into a function
|
|
// of type F. Used to invoke generated code from within C.
|
|
template <typename F>
|
|
F FUNCTION_CAST(byte* addr) {
|
|
return reinterpret_cast<F>(reinterpret_cast<Address>(addr));
|
|
}
|
|
|
|
template <typename F>
|
|
F FUNCTION_CAST(Address addr) {
|
|
return reinterpret_cast<F>(addr);
|
|
}
|
|
|
|
|
|
// Determine whether the architecture uses function descriptors
|
|
// which provide a level of indirection between the function pointer
|
|
// and the function entrypoint.
|
|
#if V8_HOST_ARCH_PPC && \
|
|
(V8_OS_AIX || (V8_TARGET_ARCH_PPC64 && V8_TARGET_BIG_ENDIAN))
|
|
#define USES_FUNCTION_DESCRIPTORS 1
|
|
#define FUNCTION_ENTRYPOINT_ADDRESS(f) \
|
|
(reinterpret_cast<v8::internal::Address*>( \
|
|
&(reinterpret_cast<intptr_t*>(f)[0])))
|
|
#else
|
|
#define USES_FUNCTION_DESCRIPTORS 0
|
|
#endif
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Declarations for use in both the preparser and the rest of V8.
|
|
|
|
// The Strict Mode (ECMA-262 5th edition, 4.2.2).
|
|
|
|
enum class LanguageMode : bool { kSloppy, kStrict };
|
|
static const size_t LanguageModeSize = 2;
|
|
|
|
inline size_t hash_value(LanguageMode mode) {
|
|
return static_cast<size_t>(mode);
|
|
}
|
|
|
|
inline std::ostream& operator<<(std::ostream& os, const LanguageMode& mode) {
|
|
switch (mode) {
|
|
case LanguageMode::kSloppy:
|
|
return os << "sloppy";
|
|
case LanguageMode::kStrict:
|
|
return os << "strict";
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
inline bool is_sloppy(LanguageMode language_mode) {
|
|
return language_mode == LanguageMode::kSloppy;
|
|
}
|
|
|
|
inline bool is_strict(LanguageMode language_mode) {
|
|
return language_mode != LanguageMode::kSloppy;
|
|
}
|
|
|
|
inline bool is_valid_language_mode(int language_mode) {
|
|
return language_mode == static_cast<int>(LanguageMode::kSloppy) ||
|
|
language_mode == static_cast<int>(LanguageMode::kStrict);
|
|
}
|
|
|
|
inline LanguageMode construct_language_mode(bool strict_bit) {
|
|
return static_cast<LanguageMode>(strict_bit);
|
|
}
|
|
|
|
// Return kStrict if either of the language modes is kStrict, or kSloppy
|
|
// otherwise.
|
|
inline LanguageMode stricter_language_mode(LanguageMode mode1,
|
|
LanguageMode mode2) {
|
|
STATIC_ASSERT(LanguageModeSize == 2);
|
|
return static_cast<LanguageMode>(static_cast<int>(mode1) |
|
|
static_cast<int>(mode2));
|
|
}
|
|
|
|
enum TypeofMode : int { INSIDE_TYPEOF, NOT_INSIDE_TYPEOF };
|
|
|
|
// This constant is used as an undefined value when passing source positions.
|
|
constexpr int kNoSourcePosition = -1;
|
|
|
|
// This constant is used to indicate missing deoptimization information.
|
|
constexpr int kNoDeoptimizationId = -1;
|
|
|
|
// Deoptimize bailout kind.
|
|
enum class DeoptimizeKind : uint8_t { kEager, kSoft, kLazy };
|
|
inline size_t hash_value(DeoptimizeKind kind) {
|
|
return static_cast<size_t>(kind);
|
|
}
|
|
inline std::ostream& operator<<(std::ostream& os, DeoptimizeKind kind) {
|
|
switch (kind) {
|
|
case DeoptimizeKind::kEager:
|
|
return os << "Eager";
|
|
case DeoptimizeKind::kSoft:
|
|
return os << "Soft";
|
|
case DeoptimizeKind::kLazy:
|
|
return os << "Lazy";
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
// Indicates whether the lookup is related to sloppy-mode block-scoped
|
|
// function hoisting, and is a synthetic assignment for that.
|
|
enum class LookupHoistingMode { kNormal, kLegacySloppy };
|
|
|
|
inline std::ostream& operator<<(std::ostream& os,
|
|
const LookupHoistingMode& mode) {
|
|
switch (mode) {
|
|
case LookupHoistingMode::kNormal:
|
|
return os << "normal hoisting";
|
|
case LookupHoistingMode::kLegacySloppy:
|
|
return os << "legacy sloppy hoisting";
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
// Mask for the sign bit in a smi.
|
|
constexpr intptr_t kSmiSignMask = kIntptrSignBit;
|
|
|
|
constexpr int kObjectAlignmentBits = kPointerSizeLog2;
|
|
constexpr intptr_t kObjectAlignment = 1 << kObjectAlignmentBits;
|
|
constexpr intptr_t kObjectAlignmentMask = kObjectAlignment - 1;
|
|
|
|
// Desired alignment for pointers.
|
|
constexpr intptr_t kPointerAlignment = (1 << kPointerSizeLog2);
|
|
constexpr intptr_t kPointerAlignmentMask = kPointerAlignment - 1;
|
|
|
|
// Desired alignment for double values.
|
|
constexpr intptr_t kDoubleAlignment = 8;
|
|
constexpr intptr_t kDoubleAlignmentMask = kDoubleAlignment - 1;
|
|
|
|
// Desired alignment for generated code is 32 bytes (to improve cache line
|
|
// utilization).
|
|
constexpr int kCodeAlignmentBits = 5;
|
|
constexpr intptr_t kCodeAlignment = 1 << kCodeAlignmentBits;
|
|
constexpr intptr_t kCodeAlignmentMask = kCodeAlignment - 1;
|
|
|
|
const intptr_t kWeakHeapObjectMask = 1 << 1;
|
|
const intptr_t kClearedWeakHeapObject = 3;
|
|
|
|
// Zap-value: The value used for zapping dead objects.
|
|
// Should be a recognizable hex value tagged as a failure.
|
|
#ifdef V8_HOST_ARCH_64_BIT
|
|
constexpr uint64_t kClearedFreeMemoryValue = 0;
|
|
constexpr uint64_t kZapValue = uint64_t{0xdeadbeedbeadbeef};
|
|
constexpr uint64_t kHandleZapValue = uint64_t{0x1baddead0baddeaf};
|
|
constexpr uint64_t kGlobalHandleZapValue = uint64_t{0x1baffed00baffedf};
|
|
constexpr uint64_t kFromSpaceZapValue = uint64_t{0x1beefdad0beefdaf};
|
|
constexpr uint64_t kDebugZapValue = uint64_t{0xbadbaddbbadbaddb};
|
|
constexpr uint64_t kSlotsZapValue = uint64_t{0xbeefdeadbeefdeef};
|
|
constexpr uint64_t kFreeListZapValue = 0xfeed1eaffeed1eaf;
|
|
#else
|
|
constexpr uint32_t kClearedFreeMemoryValue = 0;
|
|
constexpr uint32_t kZapValue = 0xdeadbeef;
|
|
constexpr uint32_t kHandleZapValue = 0xbaddeaf;
|
|
constexpr uint32_t kGlobalHandleZapValue = 0xbaffedf;
|
|
constexpr uint32_t kFromSpaceZapValue = 0xbeefdaf;
|
|
constexpr uint32_t kSlotsZapValue = 0xbeefdeef;
|
|
constexpr uint32_t kDebugZapValue = 0xbadbaddb;
|
|
constexpr uint32_t kFreeListZapValue = 0xfeed1eaf;
|
|
#endif
|
|
|
|
constexpr int kCodeZapValue = 0xbadc0de;
|
|
constexpr uint32_t kPhantomReferenceZap = 0xca11bac;
|
|
|
|
// On Intel architecture, cache line size is 64 bytes.
|
|
// On ARM it may be less (32 bytes), but as far this constant is
|
|
// used for aligning data, it doesn't hurt to align on a greater value.
|
|
#define PROCESSOR_CACHE_LINE_SIZE 64
|
|
|
|
// Constants relevant to double precision floating point numbers.
|
|
// If looking only at the top 32 bits, the QNaN mask is bits 19 to 30.
|
|
constexpr uint32_t kQuietNaNHighBitsMask = 0xfff << (51 - 32);
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Forward declarations for frequently used classes
|
|
|
|
class AccessorInfo;
|
|
class Arguments;
|
|
class Assembler;
|
|
class Code;
|
|
class CodeStub;
|
|
class Context;
|
|
class Debug;
|
|
class DebugInfo;
|
|
class Descriptor;
|
|
class DescriptorArray;
|
|
class TransitionArray;
|
|
class ExternalReference;
|
|
class FixedArray;
|
|
class FreeStoreAllocationPolicy;
|
|
class FunctionTemplateInfo;
|
|
class MemoryChunk;
|
|
class NumberDictionary;
|
|
class SimpleNumberDictionary;
|
|
class NameDictionary;
|
|
class GlobalDictionary;
|
|
template <typename T> class MaybeHandle;
|
|
template <typename T> class Handle;
|
|
class Heap;
|
|
class HeapObject;
|
|
class HeapObjectReference;
|
|
class IC;
|
|
class InterceptorInfo;
|
|
class Isolate;
|
|
class JSReceiver;
|
|
class JSArray;
|
|
class JSFunction;
|
|
class JSObject;
|
|
class LargeObjectSpace;
|
|
class MacroAssembler;
|
|
class Map;
|
|
class MapSpace;
|
|
class MarkCompactCollector;
|
|
class MaybeObject;
|
|
class NewSpace;
|
|
class Object;
|
|
class OldSpace;
|
|
class ParameterCount;
|
|
class ReadOnlySpace;
|
|
class Foreign;
|
|
class Scope;
|
|
class DeclarationScope;
|
|
class ModuleScope;
|
|
class ScopeInfo;
|
|
class Script;
|
|
class Smi;
|
|
template <typename Config, class Allocator = FreeStoreAllocationPolicy>
|
|
class SplayTree;
|
|
class String;
|
|
class Symbol;
|
|
class Name;
|
|
class Struct;
|
|
class FeedbackVector;
|
|
class Variable;
|
|
class RelocInfo;
|
|
class MessageLocation;
|
|
|
|
typedef bool (*WeakSlotCallback)(Object** pointer);
|
|
|
|
typedef bool (*WeakSlotCallbackWithHeap)(Heap* heap, Object** pointer);
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Miscellaneous
|
|
|
|
// NOTE: SpaceIterator depends on AllocationSpace enumeration values being
|
|
// consecutive.
|
|
enum AllocationSpace {
|
|
// TODO(v8:7464): Actually map this space's memory as read-only.
|
|
RO_SPACE, // Immortal, immovable and immutable objects,
|
|
NEW_SPACE, // Semispaces collected with copying collector.
|
|
OLD_SPACE, // May contain pointers to new space.
|
|
CODE_SPACE, // No pointers to new space, marked executable.
|
|
MAP_SPACE, // Only and all map objects.
|
|
LO_SPACE, // Promoted large objects.
|
|
|
|
FIRST_SPACE = RO_SPACE,
|
|
LAST_SPACE = LO_SPACE,
|
|
FIRST_GROWABLE_PAGED_SPACE = OLD_SPACE,
|
|
LAST_GROWABLE_PAGED_SPACE = MAP_SPACE
|
|
};
|
|
constexpr int kSpaceTagSize = 4;
|
|
STATIC_ASSERT(FIRST_SPACE == 0);
|
|
|
|
enum AllocationAlignment { kWordAligned, kDoubleAligned, kDoubleUnaligned };
|
|
|
|
enum class AccessMode { ATOMIC, NON_ATOMIC };
|
|
|
|
// Supported write barrier modes.
|
|
enum WriteBarrierKind : uint8_t {
|
|
kNoWriteBarrier,
|
|
kMapWriteBarrier,
|
|
kPointerWriteBarrier,
|
|
kFullWriteBarrier
|
|
};
|
|
|
|
inline size_t hash_value(WriteBarrierKind kind) {
|
|
return static_cast<uint8_t>(kind);
|
|
}
|
|
|
|
inline std::ostream& operator<<(std::ostream& os, WriteBarrierKind kind) {
|
|
switch (kind) {
|
|
case kNoWriteBarrier:
|
|
return os << "NoWriteBarrier";
|
|
case kMapWriteBarrier:
|
|
return os << "MapWriteBarrier";
|
|
case kPointerWriteBarrier:
|
|
return os << "PointerWriteBarrier";
|
|
case kFullWriteBarrier:
|
|
return os << "FullWriteBarrier";
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
// A flag that indicates whether objects should be pretenured when
|
|
// allocated (allocated directly into either the old generation or read-only
|
|
// space), or not (allocated in the young generation if the object size and type
|
|
// allows).
|
|
enum PretenureFlag { NOT_TENURED, TENURED, TENURED_READ_ONLY };
|
|
|
|
inline std::ostream& operator<<(std::ostream& os, const PretenureFlag& flag) {
|
|
switch (flag) {
|
|
case NOT_TENURED:
|
|
return os << "NotTenured";
|
|
case TENURED:
|
|
return os << "Tenured";
|
|
case TENURED_READ_ONLY:
|
|
return os << "TenuredReadOnly";
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
enum MinimumCapacity {
|
|
USE_DEFAULT_MINIMUM_CAPACITY,
|
|
USE_CUSTOM_MINIMUM_CAPACITY
|
|
};
|
|
|
|
enum GarbageCollector { SCAVENGER, MARK_COMPACTOR, MINOR_MARK_COMPACTOR };
|
|
|
|
enum Executability { NOT_EXECUTABLE, EXECUTABLE };
|
|
|
|
enum Movability { kMovable, kImmovable };
|
|
|
|
enum VisitMode {
|
|
VISIT_ALL,
|
|
VISIT_ALL_IN_MINOR_MC_MARK,
|
|
VISIT_ALL_IN_MINOR_MC_UPDATE,
|
|
VISIT_ALL_IN_SCAVENGE,
|
|
VISIT_ALL_IN_SWEEP_NEWSPACE,
|
|
VISIT_ONLY_STRONG,
|
|
VISIT_FOR_SERIALIZATION,
|
|
};
|
|
|
|
// Flag indicating whether code is built into the VM (one of the natives files).
|
|
enum NativesFlag {
|
|
NOT_NATIVES_CODE,
|
|
EXTENSION_CODE,
|
|
NATIVES_CODE,
|
|
INSPECTOR_CODE
|
|
};
|
|
|
|
// ParseRestriction is used to restrict the set of valid statements in a
|
|
// unit of compilation. Restriction violations cause a syntax error.
|
|
enum ParseRestriction {
|
|
NO_PARSE_RESTRICTION, // All expressions are allowed.
|
|
ONLY_SINGLE_FUNCTION_LITERAL // Only a single FunctionLiteral expression.
|
|
};
|
|
|
|
// A CodeDesc describes a buffer holding instructions and relocation
|
|
// information. The instructions start at the beginning of the buffer
|
|
// and grow forward, the relocation information starts at the end of
|
|
// the buffer and grows backward. A constant pool may exist at the
|
|
// end of the instructions.
|
|
//
|
|
// |<--------------- buffer_size ----------------------------------->|
|
|
// |<------------- instr_size ---------->| |<-- reloc_size -->|
|
|
// | |<- const_pool_size ->| |
|
|
// +=====================================+========+==================+
|
|
// | instructions | data | free | reloc info |
|
|
// +=====================================+========+==================+
|
|
// ^
|
|
// |
|
|
// buffer
|
|
|
|
struct CodeDesc {
|
|
byte* buffer;
|
|
int buffer_size;
|
|
int instr_size;
|
|
int reloc_size;
|
|
int constant_pool_size;
|
|
byte* unwinding_info;
|
|
int unwinding_info_size;
|
|
Assembler* origin;
|
|
};
|
|
|
|
|
|
// Callback function used for checking constraints when copying/relocating
|
|
// objects. Returns true if an object can be copied/relocated from its
|
|
// old_addr to a new_addr.
|
|
typedef bool (*ConstraintCallback)(Address new_addr, Address old_addr);
|
|
|
|
|
|
// Callback function on inline caches, used for iterating over inline caches
|
|
// in compiled code.
|
|
typedef void (*InlineCacheCallback)(Code* code, Address ic);
|
|
|
|
|
|
// State for inline cache call sites. Aliased as IC::State.
|
|
enum InlineCacheState {
|
|
// Has never been executed.
|
|
UNINITIALIZED,
|
|
// Has been executed but monomorhic state has been delayed.
|
|
PREMONOMORPHIC,
|
|
// Has been executed and only one receiver type has been seen.
|
|
MONOMORPHIC,
|
|
// Check failed due to prototype (or map deprecation).
|
|
RECOMPUTE_HANDLER,
|
|
// Multiple receiver types have been seen.
|
|
POLYMORPHIC,
|
|
// Many receiver types have been seen.
|
|
MEGAMORPHIC,
|
|
// A generic handler is installed and no extra typefeedback is recorded.
|
|
GENERIC,
|
|
};
|
|
|
|
enum WhereToStart { kStartAtReceiver, kStartAtPrototype };
|
|
|
|
enum ResultSentinel { kNotFound = -1, kUnsupported = -2 };
|
|
|
|
enum ShouldThrow { kThrowOnError, kDontThrow };
|
|
|
|
// The Store Buffer (GC).
|
|
typedef enum {
|
|
kStoreBufferFullEvent,
|
|
kStoreBufferStartScanningPagesEvent,
|
|
kStoreBufferScanningPageEvent
|
|
} StoreBufferEvent;
|
|
|
|
|
|
typedef void (*StoreBufferCallback)(Heap* heap,
|
|
MemoryChunk* page,
|
|
StoreBufferEvent event);
|
|
|
|
// Union used for customized checking of the IEEE double types
|
|
// inlined within v8 runtime, rather than going to the underlying
|
|
// platform headers and libraries
|
|
union IeeeDoubleLittleEndianArchType {
|
|
double d;
|
|
struct {
|
|
unsigned int man_low :32;
|
|
unsigned int man_high :20;
|
|
unsigned int exp :11;
|
|
unsigned int sign :1;
|
|
} bits;
|
|
};
|
|
|
|
|
|
union IeeeDoubleBigEndianArchType {
|
|
double d;
|
|
struct {
|
|
unsigned int sign :1;
|
|
unsigned int exp :11;
|
|
unsigned int man_high :20;
|
|
unsigned int man_low :32;
|
|
} bits;
|
|
};
|
|
|
|
#if V8_TARGET_LITTLE_ENDIAN
|
|
typedef IeeeDoubleLittleEndianArchType IeeeDoubleArchType;
|
|
constexpr int kIeeeDoubleMantissaWordOffset = 0;
|
|
constexpr int kIeeeDoubleExponentWordOffset = 4;
|
|
#else
|
|
typedef IeeeDoubleBigEndianArchType IeeeDoubleArchType;
|
|
constexpr int kIeeeDoubleMantissaWordOffset = 4;
|
|
constexpr int kIeeeDoubleExponentWordOffset = 0;
|
|
#endif
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Macros
|
|
|
|
// Testers for test.
|
|
|
|
#define HAS_SMI_TAG(value) \
|
|
((reinterpret_cast<intptr_t>(value) & ::i::kSmiTagMask) == ::i::kSmiTag)
|
|
|
|
#define HAS_HEAP_OBJECT_TAG(value) \
|
|
(((reinterpret_cast<intptr_t>(value) & ::i::kHeapObjectTagMask) == \
|
|
::i::kHeapObjectTag))
|
|
|
|
// OBJECT_POINTER_ALIGN returns the value aligned as a HeapObject pointer
|
|
#define OBJECT_POINTER_ALIGN(value) \
|
|
(((value) + kObjectAlignmentMask) & ~kObjectAlignmentMask)
|
|
|
|
// POINTER_SIZE_ALIGN returns the value aligned as a pointer.
|
|
#define POINTER_SIZE_ALIGN(value) \
|
|
(((value) + kPointerAlignmentMask) & ~kPointerAlignmentMask)
|
|
|
|
// CODE_POINTER_ALIGN returns the value aligned as a generated code segment.
|
|
#define CODE_POINTER_ALIGN(value) \
|
|
(((value) + kCodeAlignmentMask) & ~kCodeAlignmentMask)
|
|
|
|
// DOUBLE_POINTER_ALIGN returns the value algined for double pointers.
|
|
#define DOUBLE_POINTER_ALIGN(value) \
|
|
(((value) + kDoubleAlignmentMask) & ~kDoubleAlignmentMask)
|
|
|
|
|
|
// CPU feature flags.
|
|
enum CpuFeature {
|
|
// x86
|
|
SSE4_1,
|
|
SSSE3,
|
|
SSE3,
|
|
SAHF,
|
|
AVX,
|
|
FMA3,
|
|
BMI1,
|
|
BMI2,
|
|
LZCNT,
|
|
POPCNT,
|
|
ATOM,
|
|
// ARM
|
|
// - Standard configurations. The baseline is ARMv6+VFPv2.
|
|
ARMv7, // ARMv7-A + VFPv3-D32 + NEON
|
|
ARMv7_SUDIV, // ARMv7-A + VFPv4-D32 + NEON + SUDIV
|
|
ARMv8, // ARMv8-A (+ all of the above)
|
|
// MIPS, MIPS64
|
|
FPU,
|
|
FP64FPU,
|
|
MIPSr1,
|
|
MIPSr2,
|
|
MIPSr6,
|
|
MIPS_SIMD, // MSA instructions
|
|
// PPC
|
|
FPR_GPR_MOV,
|
|
LWSYNC,
|
|
ISELECT,
|
|
VSX,
|
|
MODULO,
|
|
// S390
|
|
DISTINCT_OPS,
|
|
GENERAL_INSTR_EXT,
|
|
FLOATING_POINT_EXT,
|
|
VECTOR_FACILITY,
|
|
MISC_INSTR_EXT2,
|
|
|
|
NUMBER_OF_CPU_FEATURES,
|
|
|
|
// ARM feature aliases (based on the standard configurations above).
|
|
VFPv3 = ARMv7,
|
|
NEON = ARMv7,
|
|
VFP32DREGS = ARMv7,
|
|
SUDIV = ARMv7_SUDIV
|
|
};
|
|
|
|
// Defines hints about receiver values based on structural knowledge.
|
|
enum class ConvertReceiverMode : unsigned {
|
|
kNullOrUndefined, // Guaranteed to be null or undefined.
|
|
kNotNullOrUndefined, // Guaranteed to never be null or undefined.
|
|
kAny // No specific knowledge about receiver.
|
|
};
|
|
|
|
inline size_t hash_value(ConvertReceiverMode mode) {
|
|
return bit_cast<unsigned>(mode);
|
|
}
|
|
|
|
inline std::ostream& operator<<(std::ostream& os, ConvertReceiverMode mode) {
|
|
switch (mode) {
|
|
case ConvertReceiverMode::kNullOrUndefined:
|
|
return os << "NULL_OR_UNDEFINED";
|
|
case ConvertReceiverMode::kNotNullOrUndefined:
|
|
return os << "NOT_NULL_OR_UNDEFINED";
|
|
case ConvertReceiverMode::kAny:
|
|
return os << "ANY";
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
// Valid hints for the abstract operation OrdinaryToPrimitive,
|
|
// implemented according to ES6, section 7.1.1.
|
|
enum class OrdinaryToPrimitiveHint { kNumber, kString };
|
|
|
|
// Valid hints for the abstract operation ToPrimitive,
|
|
// implemented according to ES6, section 7.1.1.
|
|
enum class ToPrimitiveHint { kDefault, kNumber, kString };
|
|
|
|
// Defines specifics about arguments object or rest parameter creation.
|
|
enum class CreateArgumentsType : uint8_t {
|
|
kMappedArguments,
|
|
kUnmappedArguments,
|
|
kRestParameter
|
|
};
|
|
|
|
inline size_t hash_value(CreateArgumentsType type) {
|
|
return bit_cast<uint8_t>(type);
|
|
}
|
|
|
|
inline std::ostream& operator<<(std::ostream& os, CreateArgumentsType type) {
|
|
switch (type) {
|
|
case CreateArgumentsType::kMappedArguments:
|
|
return os << "MAPPED_ARGUMENTS";
|
|
case CreateArgumentsType::kUnmappedArguments:
|
|
return os << "UNMAPPED_ARGUMENTS";
|
|
case CreateArgumentsType::kRestParameter:
|
|
return os << "REST_PARAMETER";
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
enum ScopeType : uint8_t {
|
|
EVAL_SCOPE, // The top-level scope for an eval source.
|
|
FUNCTION_SCOPE, // The top-level scope for a function.
|
|
MODULE_SCOPE, // The scope introduced by a module literal
|
|
SCRIPT_SCOPE, // The top-level scope for a script or a top-level eval.
|
|
CATCH_SCOPE, // The scope introduced by catch.
|
|
BLOCK_SCOPE, // The scope introduced by a new block.
|
|
WITH_SCOPE // The scope introduced by with.
|
|
};
|
|
|
|
inline std::ostream& operator<<(std::ostream& os, ScopeType type) {
|
|
switch (type) {
|
|
case ScopeType::EVAL_SCOPE:
|
|
return os << "EVAL_SCOPE";
|
|
case ScopeType::FUNCTION_SCOPE:
|
|
return os << "FUNCTION_SCOPE";
|
|
case ScopeType::MODULE_SCOPE:
|
|
return os << "MODULE_SCOPE";
|
|
case ScopeType::SCRIPT_SCOPE:
|
|
return os << "SCRIPT_SCOPE";
|
|
case ScopeType::CATCH_SCOPE:
|
|
return os << "CATCH_SCOPE";
|
|
case ScopeType::BLOCK_SCOPE:
|
|
return os << "BLOCK_SCOPE";
|
|
case ScopeType::WITH_SCOPE:
|
|
return os << "WITH_SCOPE";
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
// AllocationSiteMode controls whether allocations are tracked by an allocation
|
|
// site.
|
|
enum AllocationSiteMode {
|
|
DONT_TRACK_ALLOCATION_SITE,
|
|
TRACK_ALLOCATION_SITE,
|
|
LAST_ALLOCATION_SITE_MODE = TRACK_ALLOCATION_SITE
|
|
};
|
|
|
|
// The mips architecture prior to revision 5 has inverted encoding for sNaN.
|
|
#if (V8_TARGET_ARCH_MIPS && !defined(_MIPS_ARCH_MIPS32R6) && \
|
|
(!defined(USE_SIMULATOR) || !defined(_MIPS_TARGET_SIMULATOR))) || \
|
|
(V8_TARGET_ARCH_MIPS64 && !defined(_MIPS_ARCH_MIPS64R6) && \
|
|
(!defined(USE_SIMULATOR) || !defined(_MIPS_TARGET_SIMULATOR)))
|
|
constexpr uint32_t kHoleNanUpper32 = 0xFFFF7FFF;
|
|
constexpr uint32_t kHoleNanLower32 = 0xFFFF7FFF;
|
|
#else
|
|
constexpr uint32_t kHoleNanUpper32 = 0xFFF7FFFF;
|
|
constexpr uint32_t kHoleNanLower32 = 0xFFF7FFFF;
|
|
#endif
|
|
|
|
constexpr uint64_t kHoleNanInt64 =
|
|
(static_cast<uint64_t>(kHoleNanUpper32) << 32) | kHoleNanLower32;
|
|
|
|
// ES6 section 20.1.2.6 Number.MAX_SAFE_INTEGER
|
|
constexpr double kMaxSafeInteger = 9007199254740991.0; // 2^53-1
|
|
|
|
// The order of this enum has to be kept in sync with the predicates below.
|
|
enum VariableMode : uint8_t {
|
|
// User declared variables:
|
|
LET, // declared via 'let' declarations (first lexical)
|
|
|
|
CONST, // declared via 'const' declarations (last lexical)
|
|
|
|
VAR, // declared via 'var', and 'function' declarations
|
|
|
|
// Variables introduced by the compiler:
|
|
TEMPORARY, // temporary variables (not user-visible), stack-allocated
|
|
// unless the scope as a whole has forced context allocation
|
|
|
|
DYNAMIC, // always require dynamic lookup (we don't know
|
|
// the declaration)
|
|
|
|
DYNAMIC_GLOBAL, // requires dynamic lookup, but we know that the
|
|
// variable is global unless it has been shadowed
|
|
// by an eval-introduced variable
|
|
|
|
DYNAMIC_LOCAL // requires dynamic lookup, but we know that the
|
|
// variable is local and where it is unless it
|
|
// has been shadowed by an eval-introduced
|
|
// variable
|
|
};
|
|
|
|
// Printing support
|
|
#ifdef DEBUG
|
|
inline const char* VariableMode2String(VariableMode mode) {
|
|
switch (mode) {
|
|
case VAR:
|
|
return "VAR";
|
|
case LET:
|
|
return "LET";
|
|
case CONST:
|
|
return "CONST";
|
|
case DYNAMIC:
|
|
return "DYNAMIC";
|
|
case DYNAMIC_GLOBAL:
|
|
return "DYNAMIC_GLOBAL";
|
|
case DYNAMIC_LOCAL:
|
|
return "DYNAMIC_LOCAL";
|
|
case TEMPORARY:
|
|
return "TEMPORARY";
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
#endif
|
|
|
|
enum VariableKind : uint8_t {
|
|
NORMAL_VARIABLE,
|
|
FUNCTION_VARIABLE,
|
|
THIS_VARIABLE,
|
|
SLOPPY_FUNCTION_NAME_VARIABLE
|
|
};
|
|
|
|
inline bool IsDynamicVariableMode(VariableMode mode) {
|
|
return mode >= DYNAMIC && mode <= DYNAMIC_LOCAL;
|
|
}
|
|
|
|
|
|
inline bool IsDeclaredVariableMode(VariableMode mode) {
|
|
STATIC_ASSERT(LET == 0); // Implies that mode >= LET.
|
|
return mode <= VAR;
|
|
}
|
|
|
|
|
|
inline bool IsLexicalVariableMode(VariableMode mode) {
|
|
STATIC_ASSERT(LET == 0); // Implies that mode >= LET.
|
|
return mode <= CONST;
|
|
}
|
|
|
|
enum VariableLocation : uint8_t {
|
|
// Before and during variable allocation, a variable whose location is
|
|
// not yet determined. After allocation, a variable looked up as a
|
|
// property on the global object (and possibly absent). name() is the
|
|
// variable name, index() is invalid.
|
|
UNALLOCATED,
|
|
|
|
// A slot in the parameter section on the stack. index() is the
|
|
// parameter index, counting left-to-right. The receiver is index -1;
|
|
// the first parameter is index 0.
|
|
PARAMETER,
|
|
|
|
// A slot in the local section on the stack. index() is the variable
|
|
// index in the stack frame, starting at 0.
|
|
LOCAL,
|
|
|
|
// An indexed slot in a heap context. index() is the variable index in
|
|
// the context object on the heap, starting at 0. scope() is the
|
|
// corresponding scope.
|
|
CONTEXT,
|
|
|
|
// A named slot in a heap context. name() is the variable name in the
|
|
// context object on the heap, with lookup starting at the current
|
|
// context. index() is invalid.
|
|
LOOKUP,
|
|
|
|
// A named slot in a module's export table.
|
|
MODULE,
|
|
|
|
kLastVariableLocation = MODULE
|
|
};
|
|
|
|
// ES6 specifies declarative environment records with mutable and immutable
|
|
// bindings that can be in two states: initialized and uninitialized.
|
|
// When accessing a binding, it needs to be checked for initialization.
|
|
// However in the following cases the binding is initialized immediately
|
|
// after creation so the initialization check can always be skipped:
|
|
//
|
|
// 1. Var declared local variables.
|
|
// var foo;
|
|
// 2. A local variable introduced by a function declaration.
|
|
// function foo() {}
|
|
// 3. Parameters
|
|
// function x(foo) {}
|
|
// 4. Catch bound variables.
|
|
// try {} catch (foo) {}
|
|
// 6. Function name variables of named function expressions.
|
|
// var x = function foo() {}
|
|
// 7. Implicit binding of 'this'.
|
|
// 8. Implicit binding of 'arguments' in functions.
|
|
//
|
|
// The following enum specifies a flag that indicates if the binding needs a
|
|
// distinct initialization step (kNeedsInitialization) or if the binding is
|
|
// immediately initialized upon creation (kCreatedInitialized).
|
|
enum InitializationFlag : uint8_t { kNeedsInitialization, kCreatedInitialized };
|
|
|
|
enum MaybeAssignedFlag : uint8_t { kNotAssigned, kMaybeAssigned };
|
|
|
|
// Serialized in PreparseData, so numeric values should not be changed.
|
|
enum ParseErrorType { kSyntaxError = 0, kReferenceError = 1 };
|
|
|
|
enum FunctionKind : uint8_t {
|
|
kNormalFunction,
|
|
kArrowFunction,
|
|
kGeneratorFunction,
|
|
kConciseMethod,
|
|
kDerivedConstructor,
|
|
kBaseConstructor,
|
|
kGetterFunction,
|
|
kSetterFunction,
|
|
kAsyncFunction,
|
|
kModule,
|
|
kClassFieldsInitializerFunction,
|
|
|
|
kDefaultBaseConstructor,
|
|
kDefaultDerivedConstructor,
|
|
kAsyncArrowFunction,
|
|
kAsyncConciseMethod,
|
|
|
|
kConciseGeneratorMethod,
|
|
kAsyncConciseGeneratorMethod,
|
|
kAsyncGeneratorFunction,
|
|
kLastFunctionKind = kAsyncGeneratorFunction,
|
|
};
|
|
|
|
inline bool IsArrowFunction(FunctionKind kind) {
|
|
return kind == FunctionKind::kArrowFunction ||
|
|
kind == FunctionKind::kAsyncArrowFunction;
|
|
}
|
|
|
|
inline bool IsModule(FunctionKind kind) {
|
|
return kind == FunctionKind::kModule;
|
|
}
|
|
|
|
inline bool IsAsyncGeneratorFunction(FunctionKind kind) {
|
|
return kind == FunctionKind::kAsyncGeneratorFunction ||
|
|
kind == FunctionKind::kAsyncConciseGeneratorMethod;
|
|
}
|
|
|
|
inline bool IsGeneratorFunction(FunctionKind kind) {
|
|
return kind == FunctionKind::kGeneratorFunction ||
|
|
kind == FunctionKind::kConciseGeneratorMethod ||
|
|
IsAsyncGeneratorFunction(kind);
|
|
}
|
|
|
|
inline bool IsAsyncFunction(FunctionKind kind) {
|
|
return kind == FunctionKind::kAsyncFunction ||
|
|
kind == FunctionKind::kAsyncArrowFunction ||
|
|
kind == FunctionKind::kAsyncConciseMethod ||
|
|
IsAsyncGeneratorFunction(kind);
|
|
}
|
|
|
|
inline bool IsResumableFunction(FunctionKind kind) {
|
|
return IsGeneratorFunction(kind) || IsAsyncFunction(kind) || IsModule(kind);
|
|
}
|
|
|
|
inline bool IsConciseMethod(FunctionKind kind) {
|
|
return kind == FunctionKind::kConciseMethod ||
|
|
kind == FunctionKind::kConciseGeneratorMethod ||
|
|
kind == FunctionKind::kAsyncConciseMethod ||
|
|
kind == FunctionKind::kAsyncConciseGeneratorMethod ||
|
|
kind == FunctionKind::kClassFieldsInitializerFunction;
|
|
}
|
|
|
|
inline bool IsGetterFunction(FunctionKind kind) {
|
|
return kind == FunctionKind::kGetterFunction;
|
|
}
|
|
|
|
inline bool IsSetterFunction(FunctionKind kind) {
|
|
return kind == FunctionKind::kSetterFunction;
|
|
}
|
|
|
|
inline bool IsAccessorFunction(FunctionKind kind) {
|
|
return kind == FunctionKind::kGetterFunction ||
|
|
kind == FunctionKind::kSetterFunction;
|
|
}
|
|
|
|
inline bool IsDefaultConstructor(FunctionKind kind) {
|
|
return kind == FunctionKind::kDefaultBaseConstructor ||
|
|
kind == FunctionKind::kDefaultDerivedConstructor;
|
|
}
|
|
|
|
inline bool IsBaseConstructor(FunctionKind kind) {
|
|
return kind == FunctionKind::kBaseConstructor ||
|
|
kind == FunctionKind::kDefaultBaseConstructor;
|
|
}
|
|
|
|
inline bool IsDerivedConstructor(FunctionKind kind) {
|
|
return kind == FunctionKind::kDerivedConstructor ||
|
|
kind == FunctionKind::kDefaultDerivedConstructor;
|
|
}
|
|
|
|
|
|
inline bool IsClassConstructor(FunctionKind kind) {
|
|
return IsBaseConstructor(kind) || IsDerivedConstructor(kind);
|
|
}
|
|
|
|
inline bool IsClassFieldsInitializerFunction(FunctionKind kind) {
|
|
return kind == FunctionKind::kClassFieldsInitializerFunction;
|
|
}
|
|
|
|
inline bool IsConstructable(FunctionKind kind) {
|
|
if (IsAccessorFunction(kind)) return false;
|
|
if (IsConciseMethod(kind)) return false;
|
|
if (IsArrowFunction(kind)) return false;
|
|
if (IsGeneratorFunction(kind)) return false;
|
|
if (IsAsyncFunction(kind)) return false;
|
|
return true;
|
|
}
|
|
|
|
inline std::ostream& operator<<(std::ostream& os, FunctionKind kind) {
|
|
switch (kind) {
|
|
case FunctionKind::kNormalFunction:
|
|
return os << "NormalFunction";
|
|
case FunctionKind::kArrowFunction:
|
|
return os << "ArrowFunction";
|
|
case FunctionKind::kGeneratorFunction:
|
|
return os << "GeneratorFunction";
|
|
case FunctionKind::kConciseMethod:
|
|
return os << "ConciseMethod";
|
|
case FunctionKind::kDerivedConstructor:
|
|
return os << "DerivedConstructor";
|
|
case FunctionKind::kBaseConstructor:
|
|
return os << "BaseConstructor";
|
|
case FunctionKind::kGetterFunction:
|
|
return os << "GetterFunction";
|
|
case FunctionKind::kSetterFunction:
|
|
return os << "SetterFunction";
|
|
case FunctionKind::kAsyncFunction:
|
|
return os << "AsyncFunction";
|
|
case FunctionKind::kModule:
|
|
return os << "Module";
|
|
case FunctionKind::kClassFieldsInitializerFunction:
|
|
return os << "ClassFieldsInitializerFunction";
|
|
case FunctionKind::kDefaultBaseConstructor:
|
|
return os << "DefaultBaseConstructor";
|
|
case FunctionKind::kDefaultDerivedConstructor:
|
|
return os << "DefaultDerivedConstructor";
|
|
case FunctionKind::kAsyncArrowFunction:
|
|
return os << "AsyncArrowFunction";
|
|
case FunctionKind::kAsyncConciseMethod:
|
|
return os << "AsyncConciseMethod";
|
|
case FunctionKind::kConciseGeneratorMethod:
|
|
return os << "ConciseGeneratorMethod";
|
|
case FunctionKind::kAsyncConciseGeneratorMethod:
|
|
return os << "AsyncConciseGeneratorMethod";
|
|
case FunctionKind::kAsyncGeneratorFunction:
|
|
return os << "AsyncGeneratorFunction";
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
enum class InterpreterPushArgsMode : unsigned {
|
|
kArrayFunction,
|
|
kWithFinalSpread,
|
|
kOther
|
|
};
|
|
|
|
inline size_t hash_value(InterpreterPushArgsMode mode) {
|
|
return bit_cast<unsigned>(mode);
|
|
}
|
|
|
|
inline std::ostream& operator<<(std::ostream& os,
|
|
InterpreterPushArgsMode mode) {
|
|
switch (mode) {
|
|
case InterpreterPushArgsMode::kArrayFunction:
|
|
return os << "ArrayFunction";
|
|
case InterpreterPushArgsMode::kWithFinalSpread:
|
|
return os << "WithFinalSpread";
|
|
case InterpreterPushArgsMode::kOther:
|
|
return os << "Other";
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
inline uint32_t ObjectHash(Address address) {
|
|
// All objects are at least pointer aligned, so we can remove the trailing
|
|
// zeros.
|
|
return static_cast<uint32_t>(address >> kPointerSizeLog2);
|
|
}
|
|
|
|
// Type feedback is encoded in such a way that, we can combine the feedback
|
|
// at different points by performing an 'OR' operation. Type feedback moves
|
|
// to a more generic type when we combine feedback.
|
|
//
|
|
// kSignedSmall -> kSignedSmallInputs -> kNumber -> kNumberOrOddball -> kAny
|
|
// kString -> kAny
|
|
// kBigInt -> kAny
|
|
//
|
|
// Technically we wouldn't need the separation between the kNumber and the
|
|
// kNumberOrOddball values here, since for binary operations, we always
|
|
// truncate oddballs to numbers. In practice though it causes TurboFan to
|
|
// generate quite a lot of unused code though if we always handle numbers
|
|
// and oddballs everywhere, although in 99% of the use sites they are only
|
|
// used with numbers.
|
|
class BinaryOperationFeedback {
|
|
public:
|
|
enum {
|
|
kNone = 0x0,
|
|
kSignedSmall = 0x1,
|
|
kSignedSmallInputs = 0x3,
|
|
kNumber = 0x7,
|
|
kNumberOrOddball = 0xF,
|
|
kString = 0x10,
|
|
kBigInt = 0x20,
|
|
kAny = 0x7F
|
|
};
|
|
};
|
|
|
|
// Type feedback is encoded in such a way that, we can combine the feedback
|
|
// at different points by performing an 'OR' operation. Type feedback moves
|
|
// to a more generic type when we combine feedback.
|
|
//
|
|
// kSignedSmall -> kNumber -> kNumberOrOddball -> kAny
|
|
// kInternalizedString -> kString -> kAny
|
|
// kSymbol -> kAny
|
|
// kBigInt -> kAny
|
|
// kReceiver -> kAny
|
|
//
|
|
// This is distinct from BinaryOperationFeedback on purpose, because the
|
|
// feedback that matters differs greatly as well as the way it is consumed.
|
|
class CompareOperationFeedback {
|
|
public:
|
|
enum {
|
|
kNone = 0x00,
|
|
kSignedSmall = 0x01,
|
|
kNumber = 0x3,
|
|
kNumberOrOddball = 0x7,
|
|
kInternalizedString = 0x8,
|
|
kString = 0x18,
|
|
kSymbol = 0x20,
|
|
kBigInt = 0x30,
|
|
kReceiver = 0x40,
|
|
kAny = 0xff
|
|
};
|
|
};
|
|
|
|
enum class Operation {
|
|
// Binary operations.
|
|
kAdd,
|
|
kSubtract,
|
|
kMultiply,
|
|
kDivide,
|
|
kModulus,
|
|
kExponentiate,
|
|
kBitwiseAnd,
|
|
kBitwiseOr,
|
|
kBitwiseXor,
|
|
kShiftLeft,
|
|
kShiftRight,
|
|
kShiftRightLogical,
|
|
// Unary operations.
|
|
kBitwiseNot,
|
|
kNegate,
|
|
kIncrement,
|
|
kDecrement,
|
|
// Compare operations.
|
|
kEqual,
|
|
kStrictEqual,
|
|
kLessThan,
|
|
kLessThanOrEqual,
|
|
kGreaterThan,
|
|
kGreaterThanOrEqual,
|
|
};
|
|
|
|
// Type feedback is encoded in such a way that, we can combine the feedback
|
|
// at different points by performing an 'OR' operation. Type feedback moves
|
|
// to a more generic type when we combine feedback.
|
|
// kNone -> kEnumCacheKeysAndIndices -> kEnumCacheKeys -> kAny
|
|
class ForInFeedback {
|
|
public:
|
|
enum {
|
|
kNone = 0x0,
|
|
kEnumCacheKeysAndIndices = 0x1,
|
|
kEnumCacheKeys = 0x3,
|
|
kAny = 0x7
|
|
};
|
|
};
|
|
STATIC_ASSERT((ForInFeedback::kNone |
|
|
ForInFeedback::kEnumCacheKeysAndIndices) ==
|
|
ForInFeedback::kEnumCacheKeysAndIndices);
|
|
STATIC_ASSERT((ForInFeedback::kEnumCacheKeysAndIndices |
|
|
ForInFeedback::kEnumCacheKeys) == ForInFeedback::kEnumCacheKeys);
|
|
STATIC_ASSERT((ForInFeedback::kEnumCacheKeys | ForInFeedback::kAny) ==
|
|
ForInFeedback::kAny);
|
|
|
|
enum class UnicodeEncoding : uint8_t {
|
|
// Different unicode encodings in a |word32|:
|
|
UTF16, // hi 16bits -> trailing surrogate or 0, low 16bits -> lead surrogate
|
|
UTF32, // full UTF32 code unit / Unicode codepoint
|
|
};
|
|
|
|
inline size_t hash_value(UnicodeEncoding encoding) {
|
|
return static_cast<uint8_t>(encoding);
|
|
}
|
|
|
|
inline std::ostream& operator<<(std::ostream& os, UnicodeEncoding encoding) {
|
|
switch (encoding) {
|
|
case UnicodeEncoding::UTF16:
|
|
return os << "UTF16";
|
|
case UnicodeEncoding::UTF32:
|
|
return os << "UTF32";
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
enum class IterationKind { kKeys, kValues, kEntries };
|
|
|
|
inline std::ostream& operator<<(std::ostream& os, IterationKind kind) {
|
|
switch (kind) {
|
|
case IterationKind::kKeys:
|
|
return os << "IterationKind::kKeys";
|
|
case IterationKind::kValues:
|
|
return os << "IterationKind::kValues";
|
|
case IterationKind::kEntries:
|
|
return os << "IterationKind::kEntries";
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
enum class CollectionKind { kMap, kSet };
|
|
|
|
inline std::ostream& operator<<(std::ostream& os, CollectionKind kind) {
|
|
switch (kind) {
|
|
case CollectionKind::kMap:
|
|
return os << "CollectionKind::kMap";
|
|
case CollectionKind::kSet:
|
|
return os << "CollectionKind::kSet";
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
// Flags for the runtime function kDefineDataPropertyInLiteral. A property can
|
|
// be enumerable or not, and, in case of functions, the function name
|
|
// can be set or not.
|
|
enum class DataPropertyInLiteralFlag {
|
|
kNoFlags = 0,
|
|
kDontEnum = 1 << 0,
|
|
kSetFunctionName = 1 << 1
|
|
};
|
|
typedef base::Flags<DataPropertyInLiteralFlag> DataPropertyInLiteralFlags;
|
|
DEFINE_OPERATORS_FOR_FLAGS(DataPropertyInLiteralFlags)
|
|
|
|
enum ExternalArrayType {
|
|
kExternalInt8Array = 1,
|
|
kExternalUint8Array,
|
|
kExternalInt16Array,
|
|
kExternalUint16Array,
|
|
kExternalInt32Array,
|
|
kExternalUint32Array,
|
|
kExternalFloat32Array,
|
|
kExternalFloat64Array,
|
|
kExternalUint8ClampedArray,
|
|
kExternalBigInt64Array,
|
|
kExternalBigUint64Array,
|
|
};
|
|
|
|
struct AssemblerDebugInfo {
|
|
AssemblerDebugInfo(const char* name, const char* file, int line)
|
|
: name(name), file(file), line(line) {}
|
|
const char* name;
|
|
const char* file;
|
|
int line;
|
|
};
|
|
|
|
inline std::ostream& operator<<(std::ostream& os,
|
|
const AssemblerDebugInfo& info) {
|
|
os << "(" << info.name << ":" << info.file << ":" << info.line << ")";
|
|
return os;
|
|
}
|
|
|
|
enum class OptimizationMarker {
|
|
kLogFirstExecution,
|
|
kNone,
|
|
kCompileOptimized,
|
|
kCompileOptimizedConcurrent,
|
|
kInOptimizationQueue
|
|
};
|
|
|
|
inline std::ostream& operator<<(std::ostream& os,
|
|
const OptimizationMarker& marker) {
|
|
switch (marker) {
|
|
case OptimizationMarker::kLogFirstExecution:
|
|
return os << "OptimizationMarker::kLogFirstExecution";
|
|
case OptimizationMarker::kNone:
|
|
return os << "OptimizationMarker::kNone";
|
|
case OptimizationMarker::kCompileOptimized:
|
|
return os << "OptimizationMarker::kCompileOptimized";
|
|
case OptimizationMarker::kCompileOptimizedConcurrent:
|
|
return os << "OptimizationMarker::kCompileOptimizedConcurrent";
|
|
case OptimizationMarker::kInOptimizationQueue:
|
|
return os << "OptimizationMarker::kInOptimizationQueue";
|
|
}
|
|
UNREACHABLE();
|
|
return os;
|
|
}
|
|
|
|
enum class SpeculationMode { kAllowSpeculation, kDisallowSpeculation };
|
|
|
|
inline std::ostream& operator<<(std::ostream& os,
|
|
SpeculationMode speculation_mode) {
|
|
switch (speculation_mode) {
|
|
case SpeculationMode::kAllowSpeculation:
|
|
return os << "SpeculationMode::kAllowSpeculation";
|
|
case SpeculationMode::kDisallowSpeculation:
|
|
return os << "SpeculationMode::kDisallowSpeculation";
|
|
}
|
|
UNREACHABLE();
|
|
return os;
|
|
}
|
|
|
|
enum class BlockingBehavior { kBlock, kDontBlock };
|
|
|
|
enum class ConcurrencyMode { kNotConcurrent, kConcurrent };
|
|
|
|
#define FOR_EACH_ISOLATE_ADDRESS_NAME(C) \
|
|
C(Handler, handler) \
|
|
C(CEntryFP, c_entry_fp) \
|
|
C(CFunction, c_function) \
|
|
C(Context, context) \
|
|
C(PendingException, pending_exception) \
|
|
C(PendingHandlerContext, pending_handler_context) \
|
|
C(PendingHandlerEntrypoint, pending_handler_entrypoint) \
|
|
C(PendingHandlerConstantPool, pending_handler_constant_pool) \
|
|
C(PendingHandlerFP, pending_handler_fp) \
|
|
C(PendingHandlerSP, pending_handler_sp) \
|
|
C(ExternalCaughtException, external_caught_exception) \
|
|
C(JSEntrySP, js_entry_sp)
|
|
|
|
enum IsolateAddressId {
|
|
#define DECLARE_ENUM(CamelName, hacker_name) k##CamelName##Address,
|
|
FOR_EACH_ISOLATE_ADDRESS_NAME(DECLARE_ENUM)
|
|
#undef DECLARE_ENUM
|
|
kIsolateAddressCount
|
|
};
|
|
|
|
V8_INLINE static bool HasWeakHeapObjectTag(const internal::MaybeObject* value) {
|
|
return ((reinterpret_cast<intptr_t>(value) & kHeapObjectTagMask) ==
|
|
kWeakHeapObjectTag);
|
|
}
|
|
|
|
// Object* should never have the weak tag; this variant is for overzealous
|
|
// checking.
|
|
V8_INLINE static bool HasWeakHeapObjectTag(const Object* value) {
|
|
return ((reinterpret_cast<intptr_t>(value) & kHeapObjectTagMask) ==
|
|
kWeakHeapObjectTag);
|
|
}
|
|
|
|
V8_INLINE static bool IsClearedWeakHeapObject(MaybeObject* value) {
|
|
return reinterpret_cast<intptr_t>(value) == kClearedWeakHeapObject;
|
|
}
|
|
|
|
V8_INLINE static HeapObject* RemoveWeakHeapObjectMask(
|
|
HeapObjectReference* value) {
|
|
return reinterpret_cast<HeapObject*>(reinterpret_cast<intptr_t>(value) &
|
|
~kWeakHeapObjectMask);
|
|
}
|
|
|
|
V8_INLINE static HeapObjectReference* AddWeakHeapObjectMask(HeapObject* value) {
|
|
return reinterpret_cast<HeapObjectReference*>(
|
|
reinterpret_cast<intptr_t>(value) | kWeakHeapObjectMask);
|
|
}
|
|
|
|
V8_INLINE static MaybeObject* AddWeakHeapObjectMask(MaybeObject* value) {
|
|
return reinterpret_cast<MaybeObject*>(reinterpret_cast<intptr_t>(value) |
|
|
kWeakHeapObjectMask);
|
|
}
|
|
|
|
enum class HeapObjectReferenceType {
|
|
WEAK,
|
|
STRONG,
|
|
};
|
|
|
|
enum class PoisoningMitigationLevel {
|
|
kPoisonAll,
|
|
kDontPoison,
|
|
kPoisonCriticalOnly
|
|
};
|
|
enum class LoadSensitivity {
|
|
kCritical, // Critical loads are poisoned whenever we can run untrusted
|
|
// code (i.e., when --untrusted-code-mitigations is on).
|
|
kUnsafe, // Unsafe loads are poisoned when full poisoning is on
|
|
// (--branch-load-poisoning).
|
|
kSafe // Safe loads are never poisoned.
|
|
};
|
|
|
|
} // namespace internal
|
|
} // namespace v8
|
|
|
|
namespace i = v8::internal;
|
|
|
|
#endif // V8_GLOBALS_H_
|