061b6538d6
This reverts commit 39d387bb72
.
Reason for revert: causes DCHECKS, timeouts, TSAN failures under stress
Original change's description:
> [heap] Invoke allocation observers before limiting the LAB
>
> Currently whenever we reach a step we get a small LAB the same size as
> the allocated object. This is becuase the remaining step size is smaller
> then the current allocation.
> Invoking observers before limiting the LAB, and thus updating step
> sizes, should eliminate the small LAB we get whenever we reach a step.
>
> Drive-by: remove redundant method arguments.
>
> Bug: v8:12612
> Change-Id: Ied92a947308368d3b289e246fdb4f40ac5e5981f
> Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/4013683
> Reviewed-by: Dominik Inführ <dinfuehr@chromium.org>
> Reviewed-by: Michael Lippautz <mlippautz@chromium.org>
> Commit-Queue: Omer Katz <omerkatz@chromium.org>
> Cr-Commit-Position: refs/heads/main@{#84157}
Bug: v8:12612, v8:13465
Change-Id: I74b412dc41bfc86ea7fb190ce3284349a9022057
No-Presubmit: true
No-Tree-Checks: true
No-Try: true
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/4018913
Auto-Submit: Adam Klein <adamk@chromium.org>
Commit-Queue: Rubber Stamper <rubber-stamper@appspot.gserviceaccount.com>
Bot-Commit: Rubber Stamper <rubber-stamper@appspot.gserviceaccount.com>
Cr-Commit-Position: refs/heads/main@{#84162}
386 lines
14 KiB
C++
386 lines
14 KiB
C++
// Copyright 2016 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "test/cctest/heap/heap-utils.h"
|
|
|
|
#include "src/base/platform/mutex.h"
|
|
#include "src/common/assert-scope.h"
|
|
#include "src/common/globals.h"
|
|
#include "src/execution/isolate.h"
|
|
#include "src/heap/factory.h"
|
|
#include "src/heap/free-list.h"
|
|
#include "src/heap/gc-tracer-inl.h"
|
|
#include "src/heap/heap-inl.h"
|
|
#include "src/heap/incremental-marking.h"
|
|
#include "src/heap/mark-compact.h"
|
|
#include "src/heap/marking-barrier.h"
|
|
#include "src/heap/memory-chunk.h"
|
|
#include "src/heap/safepoint.h"
|
|
#include "src/heap/spaces.h"
|
|
#include "src/objects/free-space-inl.h"
|
|
#include "test/cctest/cctest.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
namespace heap {
|
|
|
|
void InvokeScavenge(Isolate* isolate) {
|
|
CcTest::CollectGarbage(i::NEW_SPACE, isolate);
|
|
}
|
|
|
|
void InvokeMarkSweep(Isolate* isolate) { CcTest::CollectAllGarbage(isolate); }
|
|
|
|
void SealCurrentObjects(Heap* heap) {
|
|
// If you see this check failing, disable the flag at the start of your test:
|
|
// v8_flags.stress_concurrent_allocation = false;
|
|
// Background thread allocating concurrently interferes with this function.
|
|
CHECK(!v8_flags.stress_concurrent_allocation);
|
|
CcTest::CollectAllGarbage();
|
|
CcTest::CollectAllGarbage();
|
|
heap->EnsureSweepingCompleted(Heap::SweepingForcedFinalizationMode::kV8Only);
|
|
heap->old_space()->FreeLinearAllocationArea();
|
|
for (Page* page : *heap->old_space()) {
|
|
page->MarkNeverAllocateForTesting();
|
|
}
|
|
}
|
|
|
|
int FixedArrayLenFromSize(int size) {
|
|
return std::min({(size - FixedArray::kHeaderSize) / kTaggedSize,
|
|
FixedArray::kMaxRegularLength});
|
|
}
|
|
|
|
std::vector<Handle<FixedArray>> FillOldSpacePageWithFixedArrays(Heap* heap,
|
|
int remainder) {
|
|
PauseAllocationObserversScope pause_observers(heap);
|
|
std::vector<Handle<FixedArray>> handles;
|
|
Isolate* isolate = heap->isolate();
|
|
const int kArraySize = 128;
|
|
const int kArrayLen = heap::FixedArrayLenFromSize(kArraySize);
|
|
Handle<FixedArray> array;
|
|
int allocated = 0;
|
|
do {
|
|
if (allocated + kArraySize * 2 >
|
|
static_cast<int>(MemoryChunkLayout::AllocatableMemoryInDataPage())) {
|
|
int size =
|
|
kArraySize * 2 -
|
|
((allocated + kArraySize * 2) -
|
|
static_cast<int>(MemoryChunkLayout::AllocatableMemoryInDataPage())) -
|
|
remainder;
|
|
int last_array_len = heap::FixedArrayLenFromSize(size);
|
|
array = isolate->factory()->NewFixedArray(last_array_len,
|
|
AllocationType::kOld);
|
|
CHECK_EQ(size, array->Size());
|
|
allocated += array->Size() + remainder;
|
|
} else {
|
|
array =
|
|
isolate->factory()->NewFixedArray(kArrayLen, AllocationType::kOld);
|
|
allocated += array->Size();
|
|
CHECK_EQ(kArraySize, array->Size());
|
|
}
|
|
if (handles.empty()) {
|
|
// Check that allocations started on a new page.
|
|
CHECK_EQ(array->address(), Page::FromHeapObject(*array)->area_start());
|
|
}
|
|
handles.push_back(array);
|
|
} while (allocated <
|
|
static_cast<int>(MemoryChunkLayout::AllocatableMemoryInDataPage()));
|
|
return handles;
|
|
}
|
|
|
|
std::vector<Handle<FixedArray>> CreatePadding(Heap* heap, int padding_size,
|
|
AllocationType allocation,
|
|
int object_size) {
|
|
std::vector<Handle<FixedArray>> handles;
|
|
Isolate* isolate = heap->isolate();
|
|
int allocate_memory;
|
|
int length;
|
|
int free_memory = padding_size;
|
|
if (allocation == i::AllocationType::kOld) {
|
|
heap->old_space()->FreeLinearAllocationArea();
|
|
int overall_free_memory = static_cast<int>(heap->old_space()->Available());
|
|
CHECK(padding_size <= overall_free_memory || overall_free_memory == 0);
|
|
} else {
|
|
int overall_free_memory = static_cast<int>(heap->new_space()->Available());
|
|
CHECK(padding_size <= overall_free_memory || overall_free_memory == 0);
|
|
}
|
|
while (free_memory > 0) {
|
|
if (free_memory > object_size) {
|
|
allocate_memory = object_size;
|
|
length = FixedArrayLenFromSize(allocate_memory);
|
|
} else {
|
|
allocate_memory = free_memory;
|
|
length = FixedArrayLenFromSize(allocate_memory);
|
|
if (length <= 0) {
|
|
// Not enough room to create another FixedArray, so create a filler.
|
|
if (allocation == i::AllocationType::kOld) {
|
|
heap->CreateFillerObjectAt(
|
|
*heap->old_space()->allocation_top_address(), free_memory);
|
|
} else {
|
|
heap->CreateFillerObjectAt(
|
|
*heap->new_space()->allocation_top_address(), free_memory);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
handles.push_back(isolate->factory()->NewFixedArray(length, allocation));
|
|
CHECK((allocation == AllocationType::kYoung &&
|
|
heap->new_space()->Contains(*handles.back())) ||
|
|
(allocation == AllocationType::kOld &&
|
|
heap->InOldSpace(*handles.back())) ||
|
|
v8_flags.single_generation);
|
|
free_memory -= handles.back()->Size();
|
|
}
|
|
return handles;
|
|
}
|
|
|
|
namespace {
|
|
void FillPageInPagedSpace(Page* page,
|
|
std::vector<Handle<FixedArray>>* out_handles) {
|
|
Heap* heap = page->heap();
|
|
DCHECK(page->SweepingDone());
|
|
PagedSpaceBase* paged_space = static_cast<PagedSpaceBase*>(page->owner());
|
|
// Make sure the LAB is empty to guarantee that all free space is accounted
|
|
// for in the freelist.
|
|
DCHECK_EQ(paged_space->limit(), paged_space->top());
|
|
|
|
PauseAllocationObserversScope no_observers_scope(heap);
|
|
|
|
CollectionEpoch full_epoch =
|
|
heap->tracer()->CurrentEpoch(GCTracer::Scope::ScopeId::MARK_COMPACTOR);
|
|
CollectionEpoch young_epoch = heap->tracer()->CurrentEpoch(
|
|
GCTracer::Scope::ScopeId::MINOR_MARK_COMPACTOR);
|
|
|
|
for (Page* p : *paged_space) {
|
|
if (p != page) paged_space->UnlinkFreeListCategories(p);
|
|
}
|
|
|
|
// If min_block_size is larger than FixedArray::kHeaderSize, all blocks in the
|
|
// free list can be used to allocate a fixed array. This guarantees that we
|
|
// can fill the whole page.
|
|
DCHECK_LT(FixedArray::kHeaderSize,
|
|
paged_space->free_list()->min_block_size());
|
|
|
|
std::vector<int> available_sizes;
|
|
// Collect all free list block sizes
|
|
page->ForAllFreeListCategories(
|
|
[&available_sizes](FreeListCategory* category) {
|
|
category->IterateNodesForTesting([&available_sizes](FreeSpace node) {
|
|
int node_size = node.Size();
|
|
if (node_size >= kMaxRegularHeapObjectSize) {
|
|
available_sizes.push_back(node_size);
|
|
}
|
|
});
|
|
});
|
|
|
|
Isolate* isolate = heap->isolate();
|
|
|
|
// Allocate as many max size arrays as possible, while making sure not to
|
|
// leave behind a block too small to fit a FixedArray.
|
|
const int max_array_length = FixedArrayLenFromSize(kMaxRegularHeapObjectSize);
|
|
for (size_t i = 0; i < available_sizes.size(); ++i) {
|
|
int available_size = available_sizes[i];
|
|
while (available_size > kMaxRegularHeapObjectSize) {
|
|
Handle<FixedArray> fixed_array = isolate->factory()->NewFixedArray(
|
|
max_array_length, AllocationType::kYoung);
|
|
if (out_handles) out_handles->push_back(fixed_array);
|
|
available_size -= kMaxRegularHeapObjectSize;
|
|
}
|
|
}
|
|
|
|
paged_space->FreeLinearAllocationArea();
|
|
|
|
// Allocate FixedArrays in remaining free list blocks, from largest
|
|
// category to smallest.
|
|
std::vector<std::vector<int>> remaining_sizes;
|
|
page->ForAllFreeListCategories(
|
|
[&remaining_sizes](FreeListCategory* category) {
|
|
remaining_sizes.push_back({});
|
|
std::vector<int>& sizes_in_category =
|
|
remaining_sizes[remaining_sizes.size() - 1];
|
|
category->IterateNodesForTesting([&sizes_in_category](FreeSpace node) {
|
|
int node_size = node.Size();
|
|
DCHECK_LT(0, FixedArrayLenFromSize(node_size));
|
|
sizes_in_category.push_back(node_size);
|
|
});
|
|
});
|
|
for (auto it = remaining_sizes.rbegin(); it != remaining_sizes.rend(); ++it) {
|
|
std::vector<int> sizes_in_category = *it;
|
|
for (int size : sizes_in_category) {
|
|
DCHECK_LE(size, kMaxRegularHeapObjectSize);
|
|
int array_length = FixedArrayLenFromSize(size);
|
|
DCHECK_LT(0, array_length);
|
|
Handle<FixedArray> fixed_array = isolate->factory()->NewFixedArray(
|
|
array_length, AllocationType::kYoung);
|
|
if (out_handles) out_handles->push_back(fixed_array);
|
|
}
|
|
}
|
|
|
|
DCHECK_EQ(0, page->AvailableInFreeList());
|
|
DCHECK_EQ(0, page->AvailableInFreeListFromAllocatedBytes());
|
|
|
|
for (Page* p : *paged_space) {
|
|
if (p != page) paged_space->RelinkFreeListCategories(p);
|
|
}
|
|
|
|
// Allocations in this method should not require a GC.
|
|
CHECK_EQ(full_epoch, heap->tracer()->CurrentEpoch(
|
|
GCTracer::Scope::ScopeId::MARK_COMPACTOR));
|
|
CHECK_EQ(young_epoch, heap->tracer()->CurrentEpoch(
|
|
GCTracer::Scope::ScopeId::MINOR_MARK_COMPACTOR));
|
|
}
|
|
} // namespace
|
|
|
|
void FillCurrentPage(v8::internal::NewSpace* space,
|
|
std::vector<Handle<FixedArray>>* out_handles) {
|
|
if (v8_flags.minor_mc) {
|
|
PauseAllocationObserversScope pause_observers(space->heap());
|
|
if (space->top() == kNullAddress) return;
|
|
Page* page = Page::FromAllocationAreaAddress(space->top());
|
|
space->heap()->EnsureSweepingCompleted(
|
|
Heap::SweepingForcedFinalizationMode::kV8Only);
|
|
space->FreeLinearAllocationArea();
|
|
FillPageInPagedSpace(page, out_handles);
|
|
} else {
|
|
FillCurrentPageButNBytes(space, 0, out_handles);
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
int GetSpaceRemainingOnCurrentPage(v8::internal::NewSpace* space) {
|
|
Address top = space->top();
|
|
if ((top & kPageAlignmentMask) == 0) {
|
|
// `top` points to the start of a page signifies that there is not room in
|
|
// the current page.
|
|
return 0;
|
|
}
|
|
return static_cast<int>(Page::FromAddress(space->top())->area_end() - top);
|
|
}
|
|
} // namespace
|
|
|
|
void FillCurrentPageButNBytes(v8::internal::NewSpace* space, int extra_bytes,
|
|
std::vector<Handle<FixedArray>>* out_handles) {
|
|
PauseAllocationObserversScope pause_observers(space->heap());
|
|
// We cannot rely on `space->limit()` to point to the end of the current page
|
|
// in the case where inline allocations are disabled, it actually points to
|
|
// the current allocation pointer.
|
|
DCHECK_IMPLIES(!space->IsInlineAllocationEnabled(),
|
|
space->limit() == space->top());
|
|
int space_remaining = GetSpaceRemainingOnCurrentPage(space);
|
|
CHECK(space_remaining >= extra_bytes);
|
|
int new_linear_size = space_remaining - extra_bytes;
|
|
if (new_linear_size == 0) return;
|
|
std::vector<Handle<FixedArray>> handles = heap::CreatePadding(
|
|
space->heap(), space_remaining, i::AllocationType::kYoung);
|
|
if (out_handles != nullptr) {
|
|
out_handles->insert(out_handles->end(), handles.begin(), handles.end());
|
|
}
|
|
}
|
|
|
|
void SimulateIncrementalMarking(i::Heap* heap, bool force_completion) {
|
|
const double kStepSizeInMs = 100;
|
|
CHECK(v8_flags.incremental_marking);
|
|
i::IncrementalMarking* marking = heap->incremental_marking();
|
|
|
|
if (heap->sweeping_in_progress()) {
|
|
IsolateSafepointScope scope(heap);
|
|
heap->EnsureSweepingCompleted(
|
|
Heap::SweepingForcedFinalizationMode::kV8Only);
|
|
}
|
|
|
|
if (marking->IsMinorMarking()) {
|
|
// If minor incremental marking is running, we need to finalize it first
|
|
// because of the AdvanceForTesting call in this function which is currently
|
|
// only possible for MajorMC.
|
|
ScanStackModeScopeForTesting scope(heap, Heap::ScanStackMode::kNone);
|
|
heap->CollectGarbage(NEW_SPACE, GarbageCollectionReason::kFinalizeMinorMC);
|
|
}
|
|
|
|
if (marking->IsStopped()) {
|
|
heap->StartIncrementalMarking(i::Heap::kNoGCFlags,
|
|
i::GarbageCollectionReason::kTesting);
|
|
}
|
|
CHECK(marking->IsMarking());
|
|
if (!force_completion) return;
|
|
|
|
IsolateSafepointScope scope(heap);
|
|
MarkingBarrier::PublishAll(heap);
|
|
marking->MarkRootsForTesting();
|
|
|
|
while (!marking->IsMajorMarkingComplete()) {
|
|
marking->AdvanceForTesting(kStepSizeInMs);
|
|
}
|
|
}
|
|
|
|
void SimulateFullSpace(v8::internal::PagedSpace* space) {
|
|
// If you see this check failing, disable the flag at the start of your test:
|
|
// v8_flags.stress_concurrent_allocation = false;
|
|
// Background thread allocating concurrently interferes with this function.
|
|
CHECK(!v8_flags.stress_concurrent_allocation);
|
|
CodePageCollectionMemoryModificationScopeForTesting code_scope(space->heap());
|
|
if (space->heap()->sweeping_in_progress()) {
|
|
space->heap()->EnsureSweepingCompleted(
|
|
Heap::SweepingForcedFinalizationMode::kV8Only);
|
|
}
|
|
space->FreeLinearAllocationArea();
|
|
space->ResetFreeList();
|
|
}
|
|
|
|
void AbandonCurrentlyFreeMemory(PagedSpace* space) {
|
|
space->FreeLinearAllocationArea();
|
|
for (Page* page : *space) {
|
|
page->MarkNeverAllocateForTesting();
|
|
}
|
|
}
|
|
|
|
void GcAndSweep(Heap* heap, AllocationSpace space) {
|
|
ScanStackModeScopeForTesting scope(heap, Heap::ScanStackMode::kNone);
|
|
heap->CollectGarbage(space, GarbageCollectionReason::kTesting);
|
|
if (heap->sweeping_in_progress()) {
|
|
IsolateSafepointScope scope(heap);
|
|
heap->EnsureSweepingCompleted(
|
|
Heap::SweepingForcedFinalizationMode::kV8Only);
|
|
}
|
|
}
|
|
|
|
void ForceEvacuationCandidate(Page* page) {
|
|
CHECK(v8_flags.manual_evacuation_candidates_selection);
|
|
page->SetFlag(MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING);
|
|
PagedSpace* space = static_cast<PagedSpace*>(page->owner());
|
|
DCHECK_NOT_NULL(space);
|
|
Address top = space->top();
|
|
Address limit = space->limit();
|
|
if (top < limit && Page::FromAllocationAreaAddress(top) == page) {
|
|
// Create filler object to keep page iterable if it was iterable.
|
|
int remaining = static_cast<int>(limit - top);
|
|
space->heap()->CreateFillerObjectAt(top, remaining);
|
|
base::MutexGuard guard(space->mutex());
|
|
space->FreeLinearAllocationArea();
|
|
}
|
|
}
|
|
|
|
bool InCorrectGeneration(HeapObject object) {
|
|
return v8_flags.single_generation ? !i::Heap::InYoungGeneration(object)
|
|
: i::Heap::InYoungGeneration(object);
|
|
}
|
|
|
|
void GrowNewSpace(Heap* heap) {
|
|
IsolateSafepointScope scope(heap);
|
|
if (!heap->new_space()->IsAtMaximumCapacity()) {
|
|
heap->new_space()->Grow();
|
|
}
|
|
CHECK(heap->new_space()->EnsureCurrentCapacity());
|
|
}
|
|
|
|
void GrowNewSpaceToMaximumCapacity(Heap* heap) {
|
|
IsolateSafepointScope scope(heap);
|
|
while (!heap->new_space()->IsAtMaximumCapacity()) {
|
|
heap->new_space()->Grow();
|
|
}
|
|
CHECK(heap->new_space()->EnsureCurrentCapacity());
|
|
}
|
|
|
|
} // namespace heap
|
|
} // namespace internal
|
|
} // namespace v8
|