v8/test/common/wasm/wasm-interpreter.cc
Manos Koukoutos e0644bbbce [wasm-gc] Implement dataref
As per latest wasm-gc spec, the data heap type is a subtype of eq and a
supertype of all array and struct types.
The heap type expected for arrays and structs when interacting with JS
changes from eq to data.

Bug: v8:7748
Change-Id: Idd1670b9e47acc95c098559e674c629ea44ca49d
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2649044
Commit-Queue: Manos Koukoutos <manoskouk@chromium.org>
Reviewed-by: Jakob Kummerow <jkummerow@chromium.org>
Cr-Commit-Position: refs/heads/master@{#72399}
2021-01-28 12:49:49 +00:00

4120 lines
169 KiB
C++

// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "test/common/wasm/wasm-interpreter.h"
#include <atomic>
#include <type_traits>
#include "src/base/overflowing-math.h"
#include "src/base/safe_conversions.h"
#include "src/codegen/assembler-inl.h"
#include "src/common/globals.h"
#include "src/compiler/wasm-compiler.h"
#include "src/numbers/conversions.h"
#include "src/objects/objects-inl.h"
#include "src/utils/boxed-float.h"
#include "src/utils/identity-map.h"
#include "src/utils/utils.h"
#include "src/wasm/decoder.h"
#include "src/wasm/function-body-decoder-impl.h"
#include "src/wasm/function-body-decoder.h"
#include "src/wasm/memory-tracing.h"
#include "src/wasm/module-compiler.h"
#include "src/wasm/wasm-arguments.h"
#include "src/wasm/wasm-engine.h"
#include "src/wasm/wasm-external-refs.h"
#include "src/wasm/wasm-limits.h"
#include "src/wasm/wasm-module.h"
#include "src/wasm/wasm-objects-inl.h"
#include "src/wasm/wasm-opcodes-inl.h"
#include "src/wasm/wasm-opcodes.h"
#include "src/zone/accounting-allocator.h"
#include "src/zone/zone-containers.h"
namespace v8 {
namespace internal {
namespace wasm {
using base::ReadLittleEndianValue;
using base::ReadUnalignedValue;
using base::WriteLittleEndianValue;
using base::WriteUnalignedValue;
#define TRACE(...) \
do { \
if (FLAG_trace_wasm_interpreter) PrintF(__VA_ARGS__); \
} while (false)
#if V8_TARGET_BIG_ENDIAN
#define LANE(i, type) ((sizeof(type.val) / sizeof(type.val[0])) - (i)-1)
#else
#define LANE(i, type) (i)
#endif
#define FOREACH_SIMPLE_BINOP(V) \
V(I32Add, uint32_t, +) \
V(I32Sub, uint32_t, -) \
V(I32Mul, uint32_t, *) \
V(I32And, uint32_t, &) \
V(I32Ior, uint32_t, |) \
V(I32Xor, uint32_t, ^) \
V(I32Eq, uint32_t, ==) \
V(I32Ne, uint32_t, !=) \
V(I32LtU, uint32_t, <) \
V(I32LeU, uint32_t, <=) \
V(I32GtU, uint32_t, >) \
V(I32GeU, uint32_t, >=) \
V(I32LtS, int32_t, <) \
V(I32LeS, int32_t, <=) \
V(I32GtS, int32_t, >) \
V(I32GeS, int32_t, >=) \
V(I64Add, uint64_t, +) \
V(I64Sub, uint64_t, -) \
V(I64Mul, uint64_t, *) \
V(I64And, uint64_t, &) \
V(I64Ior, uint64_t, |) \
V(I64Xor, uint64_t, ^) \
V(I64Eq, uint64_t, ==) \
V(I64Ne, uint64_t, !=) \
V(I64LtU, uint64_t, <) \
V(I64LeU, uint64_t, <=) \
V(I64GtU, uint64_t, >) \
V(I64GeU, uint64_t, >=) \
V(I64LtS, int64_t, <) \
V(I64LeS, int64_t, <=) \
V(I64GtS, int64_t, >) \
V(I64GeS, int64_t, >=) \
V(F32Add, float, +) \
V(F32Sub, float, -) \
V(F32Eq, float, ==) \
V(F32Ne, float, !=) \
V(F32Lt, float, <) \
V(F32Le, float, <=) \
V(F32Gt, float, >) \
V(F32Ge, float, >=) \
V(F64Add, double, +) \
V(F64Sub, double, -) \
V(F64Eq, double, ==) \
V(F64Ne, double, !=) \
V(F64Lt, double, <) \
V(F64Le, double, <=) \
V(F64Gt, double, >) \
V(F64Ge, double, >=) \
V(F32Mul, float, *) \
V(F64Mul, double, *) \
V(F32Div, float, /) \
V(F64Div, double, /)
#define FOREACH_OTHER_BINOP(V) \
V(I32DivS, int32_t) \
V(I32DivU, uint32_t) \
V(I32RemS, int32_t) \
V(I32RemU, uint32_t) \
V(I32Shl, uint32_t) \
V(I32ShrU, uint32_t) \
V(I32ShrS, int32_t) \
V(I64DivS, int64_t) \
V(I64DivU, uint64_t) \
V(I64RemS, int64_t) \
V(I64RemU, uint64_t) \
V(I64Shl, uint64_t) \
V(I64ShrU, uint64_t) \
V(I64ShrS, int64_t) \
V(I32Ror, int32_t) \
V(I32Rol, int32_t) \
V(I64Ror, int64_t) \
V(I64Rol, int64_t) \
V(F32Min, float) \
V(F32Max, float) \
V(F64Min, double) \
V(F64Max, double) \
V(I32AsmjsDivS, int32_t) \
V(I32AsmjsDivU, uint32_t) \
V(I32AsmjsRemS, int32_t) \
V(I32AsmjsRemU, uint32_t) \
V(F32CopySign, Float32) \
V(F64CopySign, Float64)
#define FOREACH_I32CONV_FLOATOP(V) \
V(I32SConvertF32, int32_t, float) \
V(I32SConvertF64, int32_t, double) \
V(I32UConvertF32, uint32_t, float) \
V(I32UConvertF64, uint32_t, double)
#define FOREACH_OTHER_UNOP(V) \
V(I32Clz, uint32_t) \
V(I32Ctz, uint32_t) \
V(I32Popcnt, uint32_t) \
V(I32Eqz, uint32_t) \
V(I64Clz, uint64_t) \
V(I64Ctz, uint64_t) \
V(I64Popcnt, uint64_t) \
V(I64Eqz, uint64_t) \
V(F32Abs, Float32) \
V(F32Neg, Float32) \
V(F32Ceil, float) \
V(F32Floor, float) \
V(F32Trunc, float) \
V(F32NearestInt, float) \
V(F64Abs, Float64) \
V(F64Neg, Float64) \
V(F64Ceil, double) \
V(F64Floor, double) \
V(F64Trunc, double) \
V(F64NearestInt, double) \
V(I32ConvertI64, int64_t) \
V(I64SConvertF32, float) \
V(I64SConvertF64, double) \
V(I64UConvertF32, float) \
V(I64UConvertF64, double) \
V(I64SConvertI32, int32_t) \
V(I64UConvertI32, uint32_t) \
V(F32SConvertI32, int32_t) \
V(F32UConvertI32, uint32_t) \
V(F32SConvertI64, int64_t) \
V(F32UConvertI64, uint64_t) \
V(F32ConvertF64, double) \
V(F32ReinterpretI32, int32_t) \
V(F64SConvertI32, int32_t) \
V(F64UConvertI32, uint32_t) \
V(F64SConvertI64, int64_t) \
V(F64UConvertI64, uint64_t) \
V(F64ConvertF32, float) \
V(F64ReinterpretI64, int64_t) \
V(I32AsmjsSConvertF32, float) \
V(I32AsmjsUConvertF32, float) \
V(I32AsmjsSConvertF64, double) \
V(I32AsmjsUConvertF64, double) \
V(F32Sqrt, float) \
V(F64Sqrt, double)
namespace {
constexpr uint32_t kFloat32SignBitMask = uint32_t{1} << 31;
constexpr uint64_t kFloat64SignBitMask = uint64_t{1} << 63;
int32_t ExecuteI32DivS(int32_t a, int32_t b, TrapReason* trap) {
if (b == 0) {
*trap = kTrapDivByZero;
return 0;
}
if (b == -1 && a == std::numeric_limits<int32_t>::min()) {
*trap = kTrapDivUnrepresentable;
return 0;
}
return a / b;
}
uint32_t ExecuteI32DivU(uint32_t a, uint32_t b, TrapReason* trap) {
if (b == 0) {
*trap = kTrapDivByZero;
return 0;
}
return a / b;
}
int32_t ExecuteI32RemS(int32_t a, int32_t b, TrapReason* trap) {
if (b == 0) {
*trap = kTrapRemByZero;
return 0;
}
if (b == -1) return 0;
return a % b;
}
uint32_t ExecuteI32RemU(uint32_t a, uint32_t b, TrapReason* trap) {
if (b == 0) {
*trap = kTrapRemByZero;
return 0;
}
return a % b;
}
uint32_t ExecuteI32Shl(uint32_t a, uint32_t b, TrapReason* trap) {
return a << (b & 0x1F);
}
uint32_t ExecuteI32ShrU(uint32_t a, uint32_t b, TrapReason* trap) {
return a >> (b & 0x1F);
}
int32_t ExecuteI32ShrS(int32_t a, int32_t b, TrapReason* trap) {
return a >> (b & 0x1F);
}
int64_t ExecuteI64DivS(int64_t a, int64_t b, TrapReason* trap) {
if (b == 0) {
*trap = kTrapDivByZero;
return 0;
}
if (b == -1 && a == std::numeric_limits<int64_t>::min()) {
*trap = kTrapDivUnrepresentable;
return 0;
}
return a / b;
}
uint64_t ExecuteI64DivU(uint64_t a, uint64_t b, TrapReason* trap) {
if (b == 0) {
*trap = kTrapDivByZero;
return 0;
}
return a / b;
}
int64_t ExecuteI64RemS(int64_t a, int64_t b, TrapReason* trap) {
if (b == 0) {
*trap = kTrapRemByZero;
return 0;
}
if (b == -1) return 0;
return a % b;
}
uint64_t ExecuteI64RemU(uint64_t a, uint64_t b, TrapReason* trap) {
if (b == 0) {
*trap = kTrapRemByZero;
return 0;
}
return a % b;
}
uint64_t ExecuteI64Shl(uint64_t a, uint64_t b, TrapReason* trap) {
return a << (b & 0x3F);
}
uint64_t ExecuteI64ShrU(uint64_t a, uint64_t b, TrapReason* trap) {
return a >> (b & 0x3F);
}
int64_t ExecuteI64ShrS(int64_t a, int64_t b, TrapReason* trap) {
return a >> (b & 0x3F);
}
uint32_t ExecuteI32Ror(uint32_t a, uint32_t b, TrapReason* trap) {
return (a >> (b & 0x1F)) | (a << ((32 - b) & 0x1F));
}
uint32_t ExecuteI32Rol(uint32_t a, uint32_t b, TrapReason* trap) {
return (a << (b & 0x1F)) | (a >> ((32 - b) & 0x1F));
}
uint64_t ExecuteI64Ror(uint64_t a, uint64_t b, TrapReason* trap) {
return (a >> (b & 0x3F)) | (a << ((64 - b) & 0x3F));
}
uint64_t ExecuteI64Rol(uint64_t a, uint64_t b, TrapReason* trap) {
return (a << (b & 0x3F)) | (a >> ((64 - b) & 0x3F));
}
float ExecuteF32Min(float a, float b, TrapReason* trap) { return JSMin(a, b); }
float ExecuteF32Max(float a, float b, TrapReason* trap) { return JSMax(a, b); }
Float32 ExecuteF32CopySign(Float32 a, Float32 b, TrapReason* trap) {
return Float32::FromBits((a.get_bits() & ~kFloat32SignBitMask) |
(b.get_bits() & kFloat32SignBitMask));
}
double ExecuteF64Min(double a, double b, TrapReason* trap) {
return JSMin(a, b);
}
double ExecuteF64Max(double a, double b, TrapReason* trap) {
return JSMax(a, b);
}
Float64 ExecuteF64CopySign(Float64 a, Float64 b, TrapReason* trap) {
return Float64::FromBits((a.get_bits() & ~kFloat64SignBitMask) |
(b.get_bits() & kFloat64SignBitMask));
}
int32_t ExecuteI32AsmjsDivS(int32_t a, int32_t b, TrapReason* trap) {
if (b == 0) return 0;
if (b == -1 && a == std::numeric_limits<int32_t>::min()) {
return std::numeric_limits<int32_t>::min();
}
return a / b;
}
uint32_t ExecuteI32AsmjsDivU(uint32_t a, uint32_t b, TrapReason* trap) {
if (b == 0) return 0;
return a / b;
}
int32_t ExecuteI32AsmjsRemS(int32_t a, int32_t b, TrapReason* trap) {
if (b == 0) return 0;
if (b == -1) return 0;
return a % b;
}
uint32_t ExecuteI32AsmjsRemU(uint32_t a, uint32_t b, TrapReason* trap) {
if (b == 0) return 0;
return a % b;
}
int32_t ExecuteI32AsmjsSConvertF32(float a, TrapReason* trap) {
return DoubleToInt32(a);
}
uint32_t ExecuteI32AsmjsUConvertF32(float a, TrapReason* trap) {
return DoubleToUint32(a);
}
int32_t ExecuteI32AsmjsSConvertF64(double a, TrapReason* trap) {
return DoubleToInt32(a);
}
uint32_t ExecuteI32AsmjsUConvertF64(double a, TrapReason* trap) {
return DoubleToUint32(a);
}
int32_t ExecuteI32Clz(uint32_t val, TrapReason* trap) {
return base::bits::CountLeadingZeros(val);
}
uint32_t ExecuteI32Ctz(uint32_t val, TrapReason* trap) {
return base::bits::CountTrailingZeros(val);
}
uint32_t ExecuteI32Popcnt(uint32_t val, TrapReason* trap) {
return base::bits::CountPopulation(val);
}
uint32_t ExecuteI32Eqz(uint32_t val, TrapReason* trap) {
return val == 0 ? 1 : 0;
}
int64_t ExecuteI64Clz(uint64_t val, TrapReason* trap) {
return base::bits::CountLeadingZeros(val);
}
uint64_t ExecuteI64Ctz(uint64_t val, TrapReason* trap) {
return base::bits::CountTrailingZeros(val);
}
int64_t ExecuteI64Popcnt(uint64_t val, TrapReason* trap) {
return base::bits::CountPopulation(val);
}
int32_t ExecuteI64Eqz(uint64_t val, TrapReason* trap) {
return val == 0 ? 1 : 0;
}
Float32 ExecuteF32Abs(Float32 a, TrapReason* trap) {
return Float32::FromBits(a.get_bits() & ~kFloat32SignBitMask);
}
Float32 ExecuteF32Neg(Float32 a, TrapReason* trap) {
return Float32::FromBits(a.get_bits() ^ kFloat32SignBitMask);
}
float ExecuteF32Ceil(float a, TrapReason* trap) { return ceilf(a); }
float ExecuteF32Floor(float a, TrapReason* trap) { return floorf(a); }
float ExecuteF32Trunc(float a, TrapReason* trap) { return truncf(a); }
float ExecuteF32NearestInt(float a, TrapReason* trap) { return nearbyintf(a); }
float ExecuteF32Sqrt(float a, TrapReason* trap) {
float result = sqrtf(a);
return result;
}
Float64 ExecuteF64Abs(Float64 a, TrapReason* trap) {
return Float64::FromBits(a.get_bits() & ~kFloat64SignBitMask);
}
Float64 ExecuteF64Neg(Float64 a, TrapReason* trap) {
return Float64::FromBits(a.get_bits() ^ kFloat64SignBitMask);
}
double ExecuteF64Ceil(double a, TrapReason* trap) { return ceil(a); }
double ExecuteF64Floor(double a, TrapReason* trap) { return floor(a); }
double ExecuteF64Trunc(double a, TrapReason* trap) { return trunc(a); }
double ExecuteF64NearestInt(double a, TrapReason* trap) { return nearbyint(a); }
double ExecuteF64Sqrt(double a, TrapReason* trap) { return sqrt(a); }
template <typename int_type, typename float_type>
int_type ExecuteConvert(float_type a, TrapReason* trap) {
if (is_inbounds<int_type>(a)) {
return static_cast<int_type>(a);
}
*trap = kTrapFloatUnrepresentable;
return 0;
}
template <typename dst_type, typename src_type, void (*fn)(Address)>
dst_type CallExternalIntToFloatFunction(src_type input) {
uint8_t data[std::max(sizeof(dst_type), sizeof(src_type))];
Address data_addr = reinterpret_cast<Address>(data);
WriteUnalignedValue<src_type>(data_addr, input);
fn(data_addr);
return ReadUnalignedValue<dst_type>(data_addr);
}
template <typename dst_type, typename src_type, int32_t (*fn)(Address)>
dst_type CallExternalFloatToIntFunction(src_type input, TrapReason* trap) {
uint8_t data[std::max(sizeof(dst_type), sizeof(src_type))];
Address data_addr = reinterpret_cast<Address>(data);
WriteUnalignedValue<src_type>(data_addr, input);
if (!fn(data_addr)) *trap = kTrapFloatUnrepresentable;
return ReadUnalignedValue<dst_type>(data_addr);
}
uint32_t ExecuteI32ConvertI64(int64_t a, TrapReason* trap) {
return static_cast<uint32_t>(a & 0xFFFFFFFF);
}
int64_t ExecuteI64SConvertF32(float a, TrapReason* trap) {
return CallExternalFloatToIntFunction<int64_t, float,
float32_to_int64_wrapper>(a, trap);
}
int64_t ExecuteI64SConvertF64(double a, TrapReason* trap) {
return CallExternalFloatToIntFunction<int64_t, double,
float64_to_int64_wrapper>(a, trap);
}
uint64_t ExecuteI64UConvertF32(float a, TrapReason* trap) {
return CallExternalFloatToIntFunction<uint64_t, float,
float32_to_uint64_wrapper>(a, trap);
}
uint64_t ExecuteI64UConvertF64(double a, TrapReason* trap) {
return CallExternalFloatToIntFunction<uint64_t, double,
float64_to_uint64_wrapper>(a, trap);
}
int64_t ExecuteI64SConvertI32(int32_t a, TrapReason* trap) {
return static_cast<int64_t>(a);
}
int64_t ExecuteI64UConvertI32(uint32_t a, TrapReason* trap) {
return static_cast<uint64_t>(a);
}
float ExecuteF32SConvertI32(int32_t a, TrapReason* trap) {
return static_cast<float>(a);
}
float ExecuteF32UConvertI32(uint32_t a, TrapReason* trap) {
return static_cast<float>(a);
}
float ExecuteF32SConvertI64(int64_t a, TrapReason* trap) {
return static_cast<float>(a);
}
float ExecuteF32UConvertI64(uint64_t a, TrapReason* trap) {
return CallExternalIntToFloatFunction<float, uint64_t,
uint64_to_float32_wrapper>(a);
}
float ExecuteF32ConvertF64(double a, TrapReason* trap) {
return DoubleToFloat32(a);
}
Float32 ExecuteF32ReinterpretI32(int32_t a, TrapReason* trap) {
return Float32::FromBits(a);
}
double ExecuteF64SConvertI32(int32_t a, TrapReason* trap) {
return static_cast<double>(a);
}
double ExecuteF64UConvertI32(uint32_t a, TrapReason* trap) {
return static_cast<double>(a);
}
double ExecuteF64SConvertI64(int64_t a, TrapReason* trap) {
return static_cast<double>(a);
}
double ExecuteF64UConvertI64(uint64_t a, TrapReason* trap) {
return CallExternalIntToFloatFunction<double, uint64_t,
uint64_to_float64_wrapper>(a);
}
double ExecuteF64ConvertF32(float a, TrapReason* trap) {
return static_cast<double>(a);
}
Float64 ExecuteF64ReinterpretI64(int64_t a, TrapReason* trap) {
return Float64::FromBits(a);
}
int32_t ExecuteI32ReinterpretF32(WasmValue a) {
return a.to_f32_boxed().get_bits();
}
int64_t ExecuteI64ReinterpretF64(WasmValue a) {
return a.to_f64_boxed().get_bits();
}
constexpr int32_t kCatchInArity = 1;
} // namespace
class SideTable;
// Code and metadata needed to execute a function.
struct InterpreterCode {
const WasmFunction* function; // wasm function
BodyLocalDecls locals; // local declarations
const byte* start; // start of code
const byte* end; // end of code
SideTable* side_table; // precomputed side table for control flow
const byte* at(pc_t pc) { return start + pc; }
};
// A helper class to compute the control transfers for each bytecode offset.
// Control transfers allow Br, BrIf, BrTable, If, Else, and End bytecodes to
// be directly executed without the need to dynamically track blocks.
class SideTable : public ZoneObject {
public:
ControlTransferMap map_;
int32_t max_stack_height_ = 0;
SideTable(Zone* zone, const WasmModule* module, InterpreterCode* code)
: map_(zone) {
// Create a zone for all temporary objects.
Zone control_transfer_zone(zone->allocator(), ZONE_NAME);
// Represents a control flow label.
class CLabel : public ZoneObject {
friend Zone;
explicit CLabel(Zone* zone, int32_t target_stack_height, uint32_t arity)
: target_stack_height(target_stack_height), arity(arity), refs(zone) {
DCHECK_LE(0, target_stack_height);
}
public:
struct Ref {
const byte* from_pc;
const int32_t stack_height;
};
const byte* target = nullptr;
int32_t target_stack_height;
// Arity when branching to this label.
const uint32_t arity;
ZoneVector<Ref> refs;
static CLabel* New(Zone* zone, int32_t stack_height, uint32_t arity) {
return zone->New<CLabel>(zone, stack_height, arity);
}
// Bind this label to the given PC.
void Bind(const byte* pc) {
DCHECK_NULL(target);
target = pc;
}
// Reference this label from the given location.
void Ref(const byte* from_pc, int32_t stack_height) {
// Target being bound before a reference means this is a loop.
DCHECK_IMPLIES(target, *target == kExprLoop);
refs.push_back({from_pc, stack_height});
}
void Finish(ControlTransferMap* map, const byte* start) {
DCHECK_NOT_NULL(target);
for (auto ref : refs) {
size_t offset = static_cast<size_t>(ref.from_pc - start);
auto pcdiff = static_cast<pcdiff_t>(target - ref.from_pc);
DCHECK_GE(ref.stack_height, target_stack_height);
spdiff_t spdiff =
static_cast<spdiff_t>(ref.stack_height - target_stack_height);
TRACE("control transfer @%zu: Δpc %d, stack %u->%u = -%u\n", offset,
pcdiff, ref.stack_height, target_stack_height, spdiff);
ControlTransferEntry& entry = (*map)[offset];
entry.pc_diff = pcdiff;
entry.sp_diff = spdiff;
entry.target_arity = arity;
}
}
};
// An entry in the control stack.
struct Control {
const byte* pc;
CLabel* end_label;
CLabel* else_label;
// Arity (number of values on the stack) when exiting this control
// structure via |end|.
uint32_t exit_arity;
// Track whether this block was already left, i.e. all further
// instructions are unreachable.
bool unreachable = false;
Control(const byte* pc, CLabel* end_label, CLabel* else_label,
uint32_t exit_arity)
: pc(pc),
end_label(end_label),
else_label(else_label),
exit_arity(exit_arity) {}
Control(const byte* pc, CLabel* end_label, uint32_t exit_arity)
: Control(pc, end_label, nullptr, exit_arity) {}
void Finish(ControlTransferMap* map, const byte* start) {
end_label->Finish(map, start);
if (else_label) else_label->Finish(map, start);
}
};
// Compute the ControlTransfer map.
// This algorithm maintains a stack of control constructs similar to the
// AST decoder. The {control_stack} allows matching {br,br_if,br_table}
// bytecodes with their target, as well as determining whether the current
// bytecodes are within the true or false block of an else.
ZoneVector<Control> control_stack(&control_transfer_zone);
// It also maintains a stack of all nested {try} blocks to resolve local
// handler targets for potentially throwing operations. These exceptional
// control transfers are treated just like other branches in the resulting
// map. This stack contains indices into the above control stack.
ZoneVector<size_t> exception_stack(zone);
int32_t stack_height = 0;
uint32_t func_arity =
static_cast<uint32_t>(code->function->sig->return_count());
CLabel* func_label =
CLabel::New(&control_transfer_zone, stack_height, func_arity);
control_stack.emplace_back(code->start, func_label, func_arity);
auto control_parent = [&]() -> Control& {
DCHECK_LE(2, control_stack.size());
return control_stack[control_stack.size() - 2];
};
auto copy_unreachable = [&] {
control_stack.back().unreachable = control_parent().unreachable;
};
for (BytecodeIterator i(code->start, code->end, &code->locals);
i.has_next(); i.next()) {
WasmOpcode opcode = i.current();
int32_t exceptional_stack_height = 0;
if (WasmOpcodes::IsPrefixOpcode(opcode)) opcode = i.prefixed_opcode();
bool unreachable = control_stack.back().unreachable;
if (unreachable) {
TRACE("@%u: %s (is unreachable)\n", i.pc_offset(),
WasmOpcodes::OpcodeName(opcode));
} else {
auto stack_effect =
StackEffect(module, code->function->sig, i.pc(), i.end());
TRACE("@%u: %s (sp %d - %d + %d)\n", i.pc_offset(),
WasmOpcodes::OpcodeName(opcode), stack_height, stack_effect.first,
stack_effect.second);
DCHECK_GE(stack_height, stack_effect.first);
DCHECK_GE(kMaxUInt32, static_cast<uint64_t>(stack_height) -
stack_effect.first + stack_effect.second);
exceptional_stack_height = stack_height - stack_effect.first;
stack_height = stack_height - stack_effect.first + stack_effect.second;
if (stack_height > max_stack_height_) max_stack_height_ = stack_height;
}
if (!exception_stack.empty() && WasmOpcodes::IsThrowingOpcode(opcode)) {
// Record exceptional control flow from potentially throwing opcodes to
// the local handler if one is present. The stack height at the throw
// point is assumed to have popped all operands and not pushed any yet.
DCHECK_GE(control_stack.size() - 1, exception_stack.back());
const Control* c = &control_stack[exception_stack.back()];
if (!unreachable) c->else_label->Ref(i.pc(), exceptional_stack_height);
if (exceptional_stack_height + kCatchInArity > max_stack_height_) {
max_stack_height_ = exceptional_stack_height + kCatchInArity;
}
TRACE("handler @%u: %s -> try @%u\n", i.pc_offset(),
WasmOpcodes::OpcodeName(opcode),
static_cast<uint32_t>(c->pc - code->start));
}
switch (opcode) {
case kExprBlock:
case kExprLoop: {
bool is_loop = opcode == kExprLoop;
BlockTypeImmediate<Decoder::kNoValidation> imm(
WasmFeatures::All(), &i, i.pc() + 1, module);
if (imm.type == kWasmBottom) {
imm.sig = module->signature(imm.sig_index);
}
TRACE("control @%u: %s, arity %d->%d\n", i.pc_offset(),
is_loop ? "Loop" : "Block", imm.in_arity(), imm.out_arity());
DCHECK_IMPLIES(!unreachable,
stack_height >= static_cast<int32_t>(imm.in_arity()));
int32_t target_stack_height = stack_height - imm.in_arity();
// The stack may underflow in unreachable code. In this case the
// stack height is clamped at 0.
if (V8_UNLIKELY(target_stack_height < 0)) target_stack_height = 0;
CLabel* label =
CLabel::New(&control_transfer_zone, target_stack_height,
is_loop ? imm.in_arity() : imm.out_arity());
control_stack.emplace_back(i.pc(), label, imm.out_arity());
copy_unreachable();
if (is_loop) label->Bind(i.pc());
break;
}
case kExprIf: {
BlockTypeImmediate<Decoder::kNoValidation> imm(
WasmFeatures::All(), &i, i.pc() + 1, module);
if (imm.type == kWasmBottom) {
imm.sig = module->signature(imm.sig_index);
}
TRACE("control @%u: If, arity %d->%d\n", i.pc_offset(),
imm.in_arity(), imm.out_arity());
DCHECK_IMPLIES(!unreachable,
stack_height >= static_cast<int32_t>(imm.in_arity()));
int32_t target_stack_height = stack_height - imm.in_arity();
// The stack may underflow in unreachable code. In this case the
// stack height is clamped at 0.
if (V8_UNLIKELY(target_stack_height < 0)) target_stack_height = 0;
CLabel* end_label = CLabel::New(&control_transfer_zone,
target_stack_height, imm.out_arity());
CLabel* else_label =
CLabel::New(&control_transfer_zone, stack_height, 0);
control_stack.emplace_back(i.pc(), end_label, else_label,
imm.out_arity());
copy_unreachable();
if (!unreachable) else_label->Ref(i.pc(), stack_height);
break;
}
case kExprElse: {
Control* c = &control_stack.back();
copy_unreachable();
TRACE("control @%u: Else\n", i.pc_offset());
if (!unreachable) {
c->end_label->Ref(i.pc(), stack_height);
}
DCHECK_NOT_NULL(c->else_label);
c->else_label->Bind(i.pc() + 1);
c->else_label->Finish(&map_, code->start);
stack_height = c->else_label->target_stack_height;
c->else_label = nullptr;
DCHECK_IMPLIES(!unreachable,
stack_height >= c->end_label->target_stack_height);
break;
}
case kExprTry: {
BlockTypeImmediate<Decoder::kNoValidation> imm(
WasmFeatures::All(), &i, i.pc() + 1, module);
if (imm.type == kWasmBottom) {
imm.sig = module->signature(imm.sig_index);
}
TRACE("control @%u: Try, arity %d->%d\n", i.pc_offset(),
imm.in_arity(), imm.out_arity());
CLabel* end_label = CLabel::New(&control_transfer_zone, stack_height,
imm.out_arity());
CLabel* catch_label =
CLabel::New(&control_transfer_zone, stack_height, kCatchInArity);
control_stack.emplace_back(i.pc(), end_label, catch_label,
imm.out_arity());
exception_stack.push_back(control_stack.size() - 1);
copy_unreachable();
break;
}
case kExprCatch: {
DCHECK_EQ(control_stack.size() - 1, exception_stack.back());
Control* c = &control_stack.back();
exception_stack.pop_back();
copy_unreachable();
TRACE("control @%u: Catch\n", i.pc_offset());
if (!unreachable) {
c->end_label->Ref(i.pc(), stack_height);
}
DCHECK_NOT_NULL(c->else_label);
c->else_label->Bind(i.pc() + 1);
c->else_label->Finish(&map_, code->start);
c->else_label = nullptr;
DCHECK_IMPLIES(!unreachable,
stack_height >= c->end_label->target_stack_height);
stack_height = c->end_label->target_stack_height + kCatchInArity;
break;
}
case kExprEnd: {
Control* c = &control_stack.back();
TRACE("control @%u: End\n", i.pc_offset());
// Only loops have bound labels.
DCHECK_IMPLIES(c->end_label->target, *c->pc == kExprLoop);
if (!c->end_label->target) {
if (c->else_label) c->else_label->Bind(i.pc());
c->end_label->Bind(i.pc() + 1);
}
c->Finish(&map_, code->start);
DCHECK_IMPLIES(!unreachable,
stack_height >= c->end_label->target_stack_height);
stack_height = c->end_label->target_stack_height + c->exit_arity;
control_stack.pop_back();
break;
}
case kExprBr: {
BranchDepthImmediate<Decoder::kNoValidation> imm(&i, i.pc() + 1);
TRACE("control @%u: Br[depth=%u]\n", i.pc_offset(), imm.depth);
Control* c = &control_stack[control_stack.size() - imm.depth - 1];
if (!unreachable) c->end_label->Ref(i.pc(), stack_height);
break;
}
case kExprBrIf: {
BranchDepthImmediate<Decoder::kNoValidation> imm(&i, i.pc() + 1);
TRACE("control @%u: BrIf[depth=%u]\n", i.pc_offset(), imm.depth);
Control* c = &control_stack[control_stack.size() - imm.depth - 1];
if (!unreachable) c->end_label->Ref(i.pc(), stack_height);
break;
}
case kExprBrTable: {
BranchTableImmediate<Decoder::kNoValidation> imm(&i, i.pc() + 1);
BranchTableIterator<Decoder::kNoValidation> iterator(&i, imm);
TRACE("control @%u: BrTable[count=%u]\n", i.pc_offset(),
imm.table_count);
if (!unreachable) {
while (iterator.has_next()) {
uint32_t j = iterator.cur_index();
uint32_t target = iterator.next();
Control* c = &control_stack[control_stack.size() - target - 1];
c->end_label->Ref(i.pc() + j, stack_height);
}
}
break;
}
default:
break;
}
if (WasmOpcodes::IsUnconditionalJump(opcode)) {
control_stack.back().unreachable = true;
}
}
DCHECK_EQ(0, control_stack.size());
DCHECK_EQ(func_arity, stack_height);
}
bool HasEntryAt(pc_t from) {
auto result = map_.find(from);
return result != map_.end();
}
ControlTransferEntry& Lookup(pc_t from) {
auto result = map_.find(from);
DCHECK(result != map_.end());
return result->second;
}
};
// The main storage for interpreter code. It maps {WasmFunction} to the
// metadata needed to execute each function.
class CodeMap {
Zone* zone_;
const WasmModule* module_;
ZoneVector<InterpreterCode> interpreter_code_;
public:
CodeMap(const WasmModule* module, const uint8_t* module_start, Zone* zone)
: zone_(zone), module_(module), interpreter_code_(zone) {
if (module == nullptr) return;
interpreter_code_.reserve(module->functions.size());
for (const WasmFunction& function : module->functions) {
if (function.imported) {
DCHECK(!function.code.is_set());
AddFunction(&function, nullptr, nullptr);
} else {
AddFunction(&function, module_start + function.code.offset(),
module_start + function.code.end_offset());
}
}
}
const WasmModule* module() const { return module_; }
InterpreterCode* GetCode(const WasmFunction* function) {
InterpreterCode* code = GetCode(function->func_index);
DCHECK_EQ(function, code->function);
return code;
}
InterpreterCode* GetCode(uint32_t function_index) {
DCHECK_LT(function_index, interpreter_code_.size());
return Preprocess(&interpreter_code_[function_index]);
}
InterpreterCode* Preprocess(InterpreterCode* code) {
DCHECK_EQ(code->function->imported, code->start == nullptr);
if (!code->side_table && code->start) {
// Compute the control targets map and the local declarations.
code->side_table = zone_->New<SideTable>(zone_, module_, code);
}
return code;
}
void AddFunction(const WasmFunction* function, const byte* code_start,
const byte* code_end) {
InterpreterCode code = {function, BodyLocalDecls(zone_), code_start,
code_end, nullptr};
DCHECK_EQ(interpreter_code_.size(), function->func_index);
interpreter_code_.push_back(code);
}
void SetFunctionCode(const WasmFunction* function, const byte* start,
const byte* end) {
DCHECK_LT(function->func_index, interpreter_code_.size());
InterpreterCode* code = &interpreter_code_[function->func_index];
DCHECK_EQ(function, code->function);
code->start = const_cast<byte*>(start);
code->end = const_cast<byte*>(end);
code->side_table = nullptr;
Preprocess(code);
}
};
namespace {
struct CallResult {
enum Type {
// The function should be executed inside this interpreter.
INTERNAL,
// For indirect calls: Table or function does not exist.
INVALID_FUNC,
// For indirect calls: Signature does not match expected signature.
SIGNATURE_MISMATCH
};
Type type;
// If type is INTERNAL, this field holds the function to call internally.
InterpreterCode* interpreter_code;
CallResult(Type type) : type(type) { // NOLINT
DCHECK_NE(INTERNAL, type);
}
CallResult(Type type, InterpreterCode* code)
: type(type), interpreter_code(code) {
DCHECK_EQ(INTERNAL, type);
}
};
// Like a static_cast from src to dst, but specialized for boxed floats.
template <typename dst, typename src>
struct converter {
dst operator()(src val) const { return static_cast<dst>(val); }
};
template <>
struct converter<Float64, uint64_t> {
Float64 operator()(uint64_t val) const { return Float64::FromBits(val); }
};
template <>
struct converter<Float32, uint32_t> {
Float32 operator()(uint32_t val) const { return Float32::FromBits(val); }
};
template <>
struct converter<uint64_t, Float64> {
uint64_t operator()(Float64 val) const { return val.get_bits(); }
};
template <>
struct converter<uint32_t, Float32> {
uint32_t operator()(Float32 val) const { return val.get_bits(); }
};
template <typename T>
V8_INLINE bool has_nondeterminism(T val) {
static_assert(!std::is_floating_point<T>::value, "missing specialization");
return false;
}
template <>
V8_INLINE bool has_nondeterminism<float>(float val) {
return std::isnan(val);
}
template <>
V8_INLINE bool has_nondeterminism<double>(double val) {
return std::isnan(val);
}
} // namespace
//============================================================================
// The implementation details of the interpreter.
//============================================================================
class WasmInterpreterInternals {
public:
WasmInterpreterInternals(Zone* zone, const WasmModule* module,
const ModuleWireBytes& wire_bytes,
Handle<WasmInstanceObject> instance_object)
: module_bytes_(wire_bytes.start(), wire_bytes.end(), zone),
codemap_(module, module_bytes_.data(), zone),
isolate_(instance_object->GetIsolate()),
instance_object_(instance_object),
reference_stack_(isolate_->global_handles()->Create(
ReadOnlyRoots(isolate_).empty_fixed_array())),
frames_(zone) {}
~WasmInterpreterInternals() {
isolate_->global_handles()->Destroy(reference_stack_.location());
}
WasmInterpreter::State state() { return state_; }
void InitFrame(const WasmFunction* function, WasmValue* args) {
DCHECK(frames_.empty());
InterpreterCode* code = codemap_.GetCode(function);
size_t num_params = function->sig->parameter_count();
EnsureStackSpace(num_params);
Push(args, num_params);
PushFrame(code);
}
WasmInterpreter::State Run(int num_steps = -1) {
DCHECK(state_ == WasmInterpreter::STOPPED ||
state_ == WasmInterpreter::PAUSED);
DCHECK(num_steps == -1 || num_steps > 0);
if (num_steps == -1) {
TRACE(" => Run()\n");
} else if (num_steps == 1) {
TRACE(" => Step()\n");
} else {
TRACE(" => Run(%d)\n", num_steps);
}
state_ = WasmInterpreter::RUNNING;
Execute(frames_.back().code, frames_.back().pc, num_steps);
// If state_ is STOPPED, the stack must be fully unwound.
DCHECK_IMPLIES(state_ == WasmInterpreter::STOPPED, frames_.empty());
return state_;
}
void Pause() { UNIMPLEMENTED(); }
void Reset() {
TRACE("----- RESET -----\n");
ResetStack(0);
frames_.clear();
state_ = WasmInterpreter::STOPPED;
trap_reason_ = kTrapCount;
possible_nondeterminism_ = false;
}
WasmValue GetReturnValue(uint32_t index) {
if (state_ == WasmInterpreter::TRAPPED) return WasmValue(0xDEADBEEF);
DCHECK_EQ(WasmInterpreter::FINISHED, state_);
return GetStackValue(index);
}
WasmValue GetStackValue(sp_t index) {
DCHECK_GT(StackHeight(), index);
return stack_[index].ExtractValue(this, index);
}
void SetStackValue(sp_t index, WasmValue value) {
DCHECK_GT(StackHeight(), index);
stack_[index] = StackValue(value, this, index);
}
TrapReason GetTrapReason() { return trap_reason_; }
bool PossibleNondeterminism() const { return possible_nondeterminism_; }
uint64_t NumInterpretedCalls() const { return num_interpreted_calls_; }
CodeMap* codemap() { return &codemap_; }
private:
// Handle a thrown exception. Returns whether the exception was handled inside
// of wasm. Unwinds the interpreted stack accordingly.
WasmInterpreter::ExceptionHandlingResult HandleException(Isolate* isolate) {
DCHECK(isolate->has_pending_exception());
bool catchable =
isolate->is_catchable_by_wasm(isolate->pending_exception());
while (!frames_.empty()) {
Frame& frame = frames_.back();
InterpreterCode* code = frame.code;
if (catchable && code->side_table->HasEntryAt(frame.pc)) {
TRACE("----- HANDLE -----\n");
Push(WasmValue(handle(isolate->pending_exception(), isolate)));
isolate->clear_pending_exception();
frame.pc += JumpToHandlerDelta(code, frame.pc);
TRACE(" => handler #%zu (#%u @%zu)\n", frames_.size() - 1,
code->function->func_index, frame.pc);
return WasmInterpreter::HANDLED;
}
TRACE(" => drop frame #%zu (#%u @%zu)\n", frames_.size() - 1,
code->function->func_index, frame.pc);
ResetStack(frame.sp);
frames_.pop_back();
}
TRACE("----- UNWIND -----\n");
DCHECK(frames_.empty());
DCHECK_EQ(sp_, stack_.get());
state_ = WasmInterpreter::STOPPED;
return WasmInterpreter::UNWOUND;
}
// Entries on the stack of functions being evaluated.
struct Frame {
InterpreterCode* code;
pc_t pc;
sp_t sp;
// Limit of parameters.
sp_t plimit() { return sp + code->function->sig->parameter_count(); }
// Limit of locals.
sp_t llimit() { return plimit() + code->locals.type_list.size(); }
};
// Safety wrapper for values on the operand stack represented as {WasmValue}.
// Most values are stored directly on the stack, only reference values are
// kept in a separate on-heap reference stack to make the GC trace them.
// TODO(wasm): Optimize simple stack operations (like "get_local",
// "set_local", and "tee_local") so that they don't require a handle scope.
class StackValue {
public:
StackValue() = default; // Only needed for resizing the stack.
StackValue(WasmValue v, WasmInterpreterInternals* impl, sp_t index)
: value_(v) {
if (IsReferenceValue()) {
value_ = WasmValue(Handle<Object>::null());
int ref_index = static_cast<int>(index);
impl->reference_stack_->set(ref_index, *v.to_externref());
}
}
WasmValue ExtractValue(WasmInterpreterInternals* impl, sp_t index) {
if (!IsReferenceValue()) return value_;
DCHECK(value_.to_externref().is_null());
int ref_index = static_cast<int>(index);
Isolate* isolate = impl->isolate_;
Handle<Object> ref(impl->reference_stack_->get(ref_index), isolate);
DCHECK(!ref->IsTheHole(isolate));
return WasmValue(ref);
}
bool IsReferenceValue() const {
return value_.type().is_reference_to(HeapType::kExtern);
}
void ClearValue(WasmInterpreterInternals* impl, sp_t index) {
if (!IsReferenceValue()) return;
int ref_index = static_cast<int>(index);
Isolate* isolate = impl->isolate_;
impl->reference_stack_->set_the_hole(isolate, ref_index);
}
static void ClearValues(WasmInterpreterInternals* impl, sp_t index,
int count) {
int ref_index = static_cast<int>(index);
impl->reference_stack_->FillWithHoles(ref_index, ref_index + count);
}
static bool IsClearedValue(WasmInterpreterInternals* impl, sp_t index) {
int ref_index = static_cast<int>(index);
Isolate* isolate = impl->isolate_;
return impl->reference_stack_->is_the_hole(isolate, ref_index);
}
private:
WasmValue value_;
};
const WasmModule* module() const { return codemap_.module(); }
void DoTrap(TrapReason trap, pc_t pc) {
TRACE("TRAP: %s\n", WasmOpcodes::TrapReasonMessage(trap));
state_ = WasmInterpreter::TRAPPED;
trap_reason_ = trap;
CommitPc(pc);
}
// Check if there is room for a function's activation.
void EnsureStackSpaceForCall(InterpreterCode* code) {
EnsureStackSpace(code->side_table->max_stack_height_ +
code->locals.type_list.size());
DCHECK_GE(StackHeight(), code->function->sig->parameter_count());
}
// Push a frame with arguments already on the stack.
void PushFrame(InterpreterCode* code) {
DCHECK_NOT_NULL(code);
DCHECK_NOT_NULL(code->side_table);
EnsureStackSpaceForCall(code);
++num_interpreted_calls_;
size_t arity = code->function->sig->parameter_count();
// The parameters will overlap the arguments already on the stack.
DCHECK_GE(StackHeight(), arity);
frames_.push_back({code, 0, StackHeight() - arity});
frames_.back().pc = InitLocals(code);
TRACE(" => PushFrame #%zu (#%u @%zu)\n", frames_.size() - 1,
code->function->func_index, frames_.back().pc);
}
pc_t InitLocals(InterpreterCode* code) {
for (ValueType p : code->locals.type_list) {
WasmValue val;
switch (p.kind()) {
#define CASE_TYPE(valuetype, ctype) \
case ValueType::valuetype: \
val = WasmValue(ctype{}); \
break;
FOREACH_WASMVALUE_CTYPES(CASE_TYPE)
#undef CASE_TYPE
case ValueType::kOptRef: {
val = WasmValue(isolate_->factory()->null_value());
break;
}
case ValueType::kRef: // TODO(7748): Implement.
case ValueType::kRtt:
case ValueType::kRttWithDepth:
case ValueType::kStmt:
case ValueType::kBottom:
case ValueType::kI8:
case ValueType::kI16:
UNREACHABLE();
break;
}
Push(val);
}
return code->locals.encoded_size;
}
void CommitPc(pc_t pc) {
DCHECK(!frames_.empty());
frames_.back().pc = pc;
}
void ReloadFromFrameOnException(Decoder* decoder, InterpreterCode** code,
pc_t* pc, pc_t* limit) {
Frame* top = &frames_.back();
*code = top->code;
*pc = top->pc;
*limit = top->code->end - top->code->start;
decoder->Reset(top->code->start, top->code->end);
}
int LookupTargetDelta(InterpreterCode* code, pc_t pc) {
return static_cast<int>(code->side_table->Lookup(pc).pc_diff);
}
int JumpToHandlerDelta(InterpreterCode* code, pc_t pc) {
ControlTransferEntry& control_transfer_entry = code->side_table->Lookup(pc);
DoStackTransfer(control_transfer_entry.sp_diff + kCatchInArity,
control_transfer_entry.target_arity);
return control_transfer_entry.pc_diff;
}
int DoBreak(InterpreterCode* code, pc_t pc, size_t depth) {
ControlTransferEntry& control_transfer_entry = code->side_table->Lookup(pc);
DoStackTransfer(control_transfer_entry.sp_diff,
control_transfer_entry.target_arity);
return control_transfer_entry.pc_diff;
}
pc_t ReturnPc(Decoder* decoder, InterpreterCode* code, pc_t pc) {
switch (code->start[pc]) {
case kExprCallFunction: {
CallFunctionImmediate<Decoder::kNoValidation> imm(decoder,
code->at(pc + 1));
return pc + 1 + imm.length;
}
case kExprCallIndirect: {
CallIndirectImmediate<Decoder::kNoValidation> imm(
WasmFeatures::All(), decoder, code->at(pc + 1));
return pc + 1 + imm.length;
}
default:
UNREACHABLE();
}
}
bool DoReturn(Decoder* decoder, InterpreterCode** code, pc_t* pc, pc_t* limit,
size_t arity) {
DCHECK_GT(frames_.size(), 0);
spdiff_t sp_diff = static_cast<spdiff_t>(StackHeight() - frames_.back().sp);
frames_.pop_back();
if (frames_.empty()) {
// A return from the last frame terminates the execution.
state_ = WasmInterpreter::FINISHED;
DoStackTransfer(sp_diff, arity);
TRACE(" => finish\n");
return false;
} else {
// Return to caller frame.
Frame* top = &frames_.back();
*code = top->code;
decoder->Reset((*code)->start, (*code)->end);
*pc = ReturnPc(decoder, *code, top->pc);
*limit = top->code->end - top->code->start;
TRACE(" => Return to #%zu (#%u @%zu)\n", frames_.size() - 1,
(*code)->function->func_index, *pc);
DoStackTransfer(sp_diff, arity);
return true;
}
}
// Returns true if the call was successful, false if the stack check failed
// and the stack was fully unwound.
bool DoCall(Decoder* decoder, InterpreterCode* target, pc_t* pc,
pc_t* limit) V8_WARN_UNUSED_RESULT {
frames_.back().pc = *pc;
PushFrame(target);
if (!DoStackCheck()) return false;
*pc = frames_.back().pc;
*limit = target->end - target->start;
decoder->Reset(target->start, target->end);
return true;
}
// Returns true if the tail call was successful, false if the stack check
// failed.
bool DoReturnCall(Decoder* decoder, InterpreterCode* target, pc_t* pc,
pc_t* limit) V8_WARN_UNUSED_RESULT {
DCHECK_NOT_NULL(target);
DCHECK_NOT_NULL(target->side_table);
EnsureStackSpaceForCall(target);
++num_interpreted_calls_;
Frame* top = &frames_.back();
// Drop everything except current parameters.
spdiff_t sp_diff = static_cast<spdiff_t>(StackHeight() - top->sp);
size_t arity = target->function->sig->parameter_count();
DoStackTransfer(sp_diff, arity);
*limit = target->end - target->start;
decoder->Reset(target->start, target->end);
// Rebuild current frame to look like a call to callee.
top->code = target;
top->pc = 0;
top->sp = StackHeight() - arity;
top->pc = InitLocals(target);
*pc = top->pc;
TRACE(" => ReturnCall #%zu (#%u @%zu)\n", frames_.size() - 1,
target->function->func_index, top->pc);
return true;
}
// Copies {arity} values on the top of the stack down the stack while also
// dropping {sp_diff} many stack values in total from the stack.
void DoStackTransfer(spdiff_t sp_diff, size_t arity) {
// before: |---------------| pop_count | arity |
// ^ 0 ^ dest ^ src ^ StackHeight()
// ^----< sp_diff >----^
//
// after: |---------------| arity |
// ^ 0 ^ StackHeight()
sp_t stack_height = StackHeight();
sp_t dest = stack_height - sp_diff;
sp_t src = stack_height - arity;
DCHECK_LE(dest, stack_height);
DCHECK_LE(dest, src);
if (arity && (dest != src)) {
StackValue* stack = stack_.get();
memmove(stack + dest, stack + src, arity * sizeof(StackValue));
// Also move elements on the reference stack accordingly.
reference_stack_->MoveElements(
isolate_, static_cast<int>(dest), static_cast<int>(src),
static_cast<int>(arity), UPDATE_WRITE_BARRIER);
}
ResetStack(dest + arity);
}
Address EffectiveAddress(uint64_t index) {
DCHECK_GE(std::numeric_limits<uintptr_t>::max(),
instance_object_->memory_size());
DCHECK_GE(instance_object_->memory_size(), index);
// Compute the effective address of the access, making sure to condition
// the index even in the in-bounds case.
return reinterpret_cast<Address>(instance_object_->memory_start()) +
(index & instance_object_->memory_mask());
}
template <typename mtype>
Address BoundsCheckMem(uint64_t offset, uint64_t index) {
uint64_t effective_index = offset + index;
if (effective_index < index) {
return kNullAddress; // wraparound => oob
}
if (!base::IsInBounds<uint64_t>(effective_index, sizeof(mtype),
instance_object_->memory_size())) {
return kNullAddress; // oob
}
return EffectiveAddress(effective_index);
}
bool BoundsCheckMemRange(uint64_t index, uint64_t* size,
Address* out_address) {
DCHECK_GE(std::numeric_limits<uintptr_t>::max(),
instance_object_->memory_size());
if (!base::ClampToBounds<uint64_t>(index, size,
instance_object_->memory_size())) {
return false;
}
*out_address = EffectiveAddress(index);
return true;
}
uint64_t ToMemType(WasmValue value) {
return module()->is_memory64 ? value.to<uint64_t>() : value.to<uint32_t>();
}
template <typename ctype, typename mtype>
bool ExecuteLoad(Decoder* decoder, InterpreterCode* code, pc_t pc,
int* const len, MachineRepresentation rep,
uint32_t prefix_len = 1) {
// prefix_len is the length of the opcode, before the immediate. We don't
// increment pc at the caller, because we want to keep pc to the start of
// the operation to keep trap reporting and tracing accurate, otherwise
// those will report at the middle of an opcode.
MemoryAccessImmediate<Decoder::kNoValidation> imm(
decoder, code->at(pc + prefix_len), sizeof(ctype),
module()->is_memory64);
uint64_t index = ToMemType(Pop());
Address addr = BoundsCheckMem<mtype>(imm.offset, index);
if (!addr) {
DoTrap(kTrapMemOutOfBounds, pc);
return false;
}
WasmValue result(
converter<ctype, mtype>{}(ReadLittleEndianValue<mtype>(addr)));
Push(result);
*len += imm.length;
if (FLAG_trace_wasm_memory) {
MemoryTracingInfo info(imm.offset + index, false, rep);
TraceMemoryOperation({}, &info, code->function->func_index,
static_cast<int>(pc),
instance_object_->memory_start());
}
return true;
}
template <typename ctype, typename mtype>
bool ExecuteStore(Decoder* decoder, InterpreterCode* code, pc_t pc,
int* const len, MachineRepresentation rep,
uint32_t prefix_len = 1) {
// prefix_len is the length of the opcode, before the immediate. We don't
// increment pc at the caller, because we want to keep pc to the start of
// the operation to keep trap reporting and tracing accurate, otherwise
// those will report at the middle of an opcode.
MemoryAccessImmediate<Decoder::kNoValidation> imm(
decoder, code->at(pc + prefix_len), sizeof(ctype),
module()->is_memory64);
ctype val = Pop().to<ctype>();
uint64_t index = ToMemType(Pop());
Address addr = BoundsCheckMem<mtype>(imm.offset, index);
if (!addr) {
DoTrap(kTrapMemOutOfBounds, pc);
return false;
}
WriteLittleEndianValue<mtype>(addr, converter<mtype, ctype>{}(val));
*len += imm.length;
if (FLAG_trace_wasm_memory) {
MemoryTracingInfo info(imm.offset + index, true, rep);
TraceMemoryOperation({}, &info, code->function->func_index,
static_cast<int>(pc),
instance_object_->memory_start());
}
return true;
}
template <typename type, typename op_type>
bool ExtractAtomicOpParams(Decoder* decoder, InterpreterCode* code,
Address* address, pc_t pc, int* const len,
type* val = nullptr, type* val2 = nullptr) {
MemoryAccessImmediate<Decoder::kNoValidation> imm(
decoder, code->at(pc + *len), sizeof(type), module()->is_memory64);
if (val2) *val2 = static_cast<type>(Pop().to<op_type>());
if (val) *val = static_cast<type>(Pop().to<op_type>());
uint64_t index = ToMemType(Pop());
*address = BoundsCheckMem<type>(imm.offset, index);
if (!*address) {
DoTrap(kTrapMemOutOfBounds, pc);
return false;
}
if (!IsAligned(*address, sizeof(type))) {
DoTrap(kTrapUnalignedAccess, pc);
return false;
}
*len += imm.length;
return true;
}
template <typename type>
bool ExtractAtomicWaitNotifyParams(Decoder* decoder, InterpreterCode* code,
pc_t pc, int* const len,
uint64_t* buffer_offset, type* val,
int64_t* timeout = nullptr) {
// TODO(manoskouk): Introduce test which exposes wrong pc offset below.
MemoryAccessImmediate<Decoder::kFullValidation> imm(
decoder, code->at(pc + *len), sizeof(type), module()->is_memory64);
if (timeout) {
*timeout = Pop().to<int64_t>();
}
*val = Pop().to<type>();
uint64_t index = ToMemType(Pop());
// Check bounds.
Address address = BoundsCheckMem<uint64_t>(imm.offset, index);
*buffer_offset = index + imm.offset;
if (!address) {
DoTrap(kTrapMemOutOfBounds, pc);
return false;
}
// Check alignment.
const uint32_t align_mask = sizeof(type) - 1;
if ((*buffer_offset & align_mask) != 0) {
DoTrap(kTrapUnalignedAccess, pc);
return false;
}
*len += imm.length;
return true;
}
bool ExecuteNumericOp(WasmOpcode opcode, Decoder* decoder,
InterpreterCode* code, pc_t pc, int* const len) {
switch (opcode) {
case kExprI32SConvertSatF32:
Push(WasmValue(base::saturated_cast<int32_t>(Pop().to<float>())));
return true;
case kExprI32UConvertSatF32:
Push(WasmValue(base::saturated_cast<uint32_t>(Pop().to<float>())));
return true;
case kExprI32SConvertSatF64:
Push(WasmValue(base::saturated_cast<int32_t>(Pop().to<double>())));
return true;
case kExprI32UConvertSatF64:
Push(WasmValue(base::saturated_cast<uint32_t>(Pop().to<double>())));
return true;
case kExprI64SConvertSatF32:
Push(WasmValue(base::saturated_cast<int64_t>(Pop().to<float>())));
return true;
case kExprI64UConvertSatF32:
Push(WasmValue(base::saturated_cast<uint64_t>(Pop().to<float>())));
return true;
case kExprI64SConvertSatF64:
Push(WasmValue(base::saturated_cast<int64_t>(Pop().to<double>())));
return true;
case kExprI64UConvertSatF64:
Push(WasmValue(base::saturated_cast<uint64_t>(Pop().to<double>())));
return true;
case kExprMemoryInit: {
MemoryInitImmediate<Decoder::kNoValidation> imm(decoder,
code->at(pc + 2));
// The data segment index must be in bounds since it is required by
// validation.
DCHECK_LT(imm.data_segment_index, module()->num_declared_data_segments);
*len += imm.length;
uint64_t size = ToMemType(Pop());
uint64_t src = ToMemType(Pop());
uint64_t dst = ToMemType(Pop());
Address dst_addr;
uint64_t src_max =
instance_object_->data_segment_sizes()[imm.data_segment_index];
if (!BoundsCheckMemRange(dst, &size, &dst_addr) ||
!base::IsInBounds(src, size, src_max)) {
DoTrap(kTrapMemOutOfBounds, pc);
return false;
}
Address src_addr =
instance_object_->data_segment_starts()[imm.data_segment_index] +
src;
std::memmove(reinterpret_cast<void*>(dst_addr),
reinterpret_cast<void*>(src_addr), size);
return true;
}
case kExprDataDrop: {
DataDropImmediate<Decoder::kNoValidation> imm(decoder,
code->at(pc + 2));
// The data segment index must be in bounds since it is required by
// validation.
DCHECK_LT(imm.index, module()->num_declared_data_segments);
*len += imm.length;
instance_object_->data_segment_sizes()[imm.index] = 0;
return true;
}
case kExprMemoryCopy: {
MemoryCopyImmediate<Decoder::kNoValidation> imm(decoder,
code->at(pc + 2));
*len += imm.length;
uint64_t size = ToMemType(Pop());
uint64_t src = ToMemType(Pop());
uint64_t dst = ToMemType(Pop());
Address dst_addr;
Address src_addr;
if (!BoundsCheckMemRange(dst, &size, &dst_addr) ||
!BoundsCheckMemRange(src, &size, &src_addr)) {
DoTrap(kTrapMemOutOfBounds, pc);
return false;
}
std::memmove(reinterpret_cast<void*>(dst_addr),
reinterpret_cast<void*>(src_addr), size);
return true;
}
case kExprMemoryFill: {
MemoryIndexImmediate<Decoder::kNoValidation> imm(decoder,
code->at(pc + 2));
*len += imm.length;
uint64_t size = ToMemType(Pop());
uint32_t value = Pop().to<uint32_t>();
uint64_t dst = ToMemType(Pop());
Address dst_addr;
if (!BoundsCheckMemRange(dst, &size, &dst_addr)) {
DoTrap(kTrapMemOutOfBounds, pc);
return false;
}
std::memset(reinterpret_cast<void*>(dst_addr), value, size);
return true;
}
case kExprTableInit: {
TableInitImmediate<Decoder::kNoValidation> imm(decoder,
code->at(pc + 2));
*len += imm.length;
auto size = Pop().to<uint32_t>();
auto src = Pop().to<uint32_t>();
auto dst = Pop().to<uint32_t>();
HandleScope scope(isolate_); // Avoid leaking handles.
bool ok = WasmInstanceObject::InitTableEntries(
instance_object_->GetIsolate(), instance_object_, imm.table.index,
imm.elem_segment_index, dst, src, size);
if (!ok) DoTrap(kTrapTableOutOfBounds, pc);
return ok;
}
case kExprElemDrop: {
ElemDropImmediate<Decoder::kNoValidation> imm(decoder,
code->at(pc + 2));
*len += imm.length;
instance_object_->dropped_elem_segments()[imm.index] = 1;
return true;
}
case kExprTableCopy: {
TableCopyImmediate<Decoder::kNoValidation> imm(decoder,
code->at(pc + 2));
auto size = Pop().to<uint32_t>();
auto src = Pop().to<uint32_t>();
auto dst = Pop().to<uint32_t>();
HandleScope handle_scope(isolate_); // Avoid leaking handles.
bool ok = WasmInstanceObject::CopyTableEntries(
isolate_, instance_object_, imm.table_dst.index,
imm.table_src.index, dst, src, size);
if (!ok) DoTrap(kTrapTableOutOfBounds, pc);
*len += imm.length;
return ok;
}
case kExprTableGrow: {
TableIndexImmediate<Decoder::kNoValidation> imm(decoder,
code->at(pc + 2));
HandleScope handle_scope(isolate_);
auto table = handle(
WasmTableObject::cast(instance_object_->tables().get(imm.index)),
isolate_);
auto delta = Pop().to<uint32_t>();
auto value = Pop().to_externref();
int32_t result = WasmTableObject::Grow(isolate_, table, delta, value);
Push(WasmValue(result));
*len += imm.length;
return true;
}
case kExprTableSize: {
TableIndexImmediate<Decoder::kNoValidation> imm(decoder,
code->at(pc + 2));
HandleScope handle_scope(isolate_);
auto table = handle(
WasmTableObject::cast(instance_object_->tables().get(imm.index)),
isolate_);
uint32_t table_size = table->current_length();
Push(WasmValue(table_size));
*len += imm.length;
return true;
}
case kExprTableFill: {
TableIndexImmediate<Decoder::kNoValidation> imm(decoder,
code->at(pc + 2));
HandleScope handle_scope(isolate_);
auto count = Pop().to<uint32_t>();
auto value = Pop().to_externref();
auto start = Pop().to<uint32_t>();
auto table = handle(
WasmTableObject::cast(instance_object_->tables().get(imm.index)),
isolate_);
uint32_t table_size = table->current_length();
if (start > table_size) {
DoTrap(kTrapTableOutOfBounds, pc);
return false;
}
// Even when table.fill goes out-of-bounds, as many entries as possible
// are put into the table. Only afterwards we trap.
uint32_t fill_count = std::min(count, table_size - start);
if (fill_count < count) {
DoTrap(kTrapTableOutOfBounds, pc);
return false;
}
WasmTableObject::Fill(isolate_, table, start, value, fill_count);
*len += imm.length;
return true;
}
default:
FATAL(
"Unknown or unimplemented opcode #%d:%s", code->start[pc],
WasmOpcodes::OpcodeName(static_cast<WasmOpcode>(code->start[pc])));
UNREACHABLE();
}
return false;
}
template <typename type, typename op_type, typename func>
op_type ExecuteAtomicBinopBE(type val, Address addr, func op) {
type old_val;
type new_val;
old_val = ReadUnalignedValue<type>(addr);
do {
new_val =
ByteReverse(static_cast<type>(op(ByteReverse<type>(old_val), val)));
} while (!(std::atomic_compare_exchange_strong(
reinterpret_cast<std::atomic<type>*>(addr), &old_val, new_val)));
return static_cast<op_type>(ByteReverse<type>(old_val));
}
template <typename type>
type AdjustByteOrder(type param) {
#if V8_TARGET_BIG_ENDIAN
return ByteReverse(param);
#else
return param;
#endif
}
bool ExecuteAtomicOp(WasmOpcode opcode, Decoder* decoder,
InterpreterCode* code, pc_t pc, int* const len) {
#if V8_TARGET_BIG_ENDIAN
constexpr bool kBigEndian = true;
#else
constexpr bool kBigEndian = false;
#endif
WasmValue result;
switch (opcode) {
#define ATOMIC_BINOP_CASE(name, type, op_type, operation, op) \
case kExpr##name: { \
type val; \
Address addr; \
op_type result; \
if (!ExtractAtomicOpParams<type, op_type>(decoder, code, &addr, pc, len, \
&val)) { \
return false; \
} \
static_assert(sizeof(std::atomic<type>) == sizeof(type), \
"Size mismatch for types std::atomic<" #type \
">, and " #type); \
if (kBigEndian) { \
auto oplambda = [](type a, type b) { return a op b; }; \
result = ExecuteAtomicBinopBE<type, op_type>(val, addr, oplambda); \
} else { \
result = static_cast<op_type>( \
std::operation(reinterpret_cast<std::atomic<type>*>(addr), val)); \
} \
Push(WasmValue(result)); \
break; \
}
ATOMIC_BINOP_CASE(I32AtomicAdd, uint32_t, uint32_t, atomic_fetch_add, +);
ATOMIC_BINOP_CASE(I32AtomicAdd8U, uint8_t, uint32_t, atomic_fetch_add, +);
ATOMIC_BINOP_CASE(I32AtomicAdd16U, uint16_t, uint32_t, atomic_fetch_add,
+);
ATOMIC_BINOP_CASE(I32AtomicSub, uint32_t, uint32_t, atomic_fetch_sub, -);
ATOMIC_BINOP_CASE(I32AtomicSub8U, uint8_t, uint32_t, atomic_fetch_sub, -);
ATOMIC_BINOP_CASE(I32AtomicSub16U, uint16_t, uint32_t, atomic_fetch_sub,
-);
ATOMIC_BINOP_CASE(I32AtomicAnd, uint32_t, uint32_t, atomic_fetch_and, &);
ATOMIC_BINOP_CASE(I32AtomicAnd8U, uint8_t, uint32_t, atomic_fetch_and, &);
ATOMIC_BINOP_CASE(I32AtomicAnd16U, uint16_t, uint32_t,
atomic_fetch_and, &);
ATOMIC_BINOP_CASE(I32AtomicOr, uint32_t, uint32_t, atomic_fetch_or, |);
ATOMIC_BINOP_CASE(I32AtomicOr8U, uint8_t, uint32_t, atomic_fetch_or, |);
ATOMIC_BINOP_CASE(I32AtomicOr16U, uint16_t, uint32_t, atomic_fetch_or, |);
ATOMIC_BINOP_CASE(I32AtomicXor, uint32_t, uint32_t, atomic_fetch_xor, ^);
ATOMIC_BINOP_CASE(I32AtomicXor8U, uint8_t, uint32_t, atomic_fetch_xor, ^);
ATOMIC_BINOP_CASE(I32AtomicXor16U, uint16_t, uint32_t, atomic_fetch_xor,
^);
ATOMIC_BINOP_CASE(I32AtomicExchange, uint32_t, uint32_t, atomic_exchange,
=);
ATOMIC_BINOP_CASE(I32AtomicExchange8U, uint8_t, uint32_t, atomic_exchange,
=);
ATOMIC_BINOP_CASE(I32AtomicExchange16U, uint16_t, uint32_t,
atomic_exchange, =);
ATOMIC_BINOP_CASE(I64AtomicAdd, uint64_t, uint64_t, atomic_fetch_add, +);
ATOMIC_BINOP_CASE(I64AtomicAdd8U, uint8_t, uint64_t, atomic_fetch_add, +);
ATOMIC_BINOP_CASE(I64AtomicAdd16U, uint16_t, uint64_t, atomic_fetch_add,
+);
ATOMIC_BINOP_CASE(I64AtomicAdd32U, uint32_t, uint64_t, atomic_fetch_add,
+);
ATOMIC_BINOP_CASE(I64AtomicSub, uint64_t, uint64_t, atomic_fetch_sub, -);
ATOMIC_BINOP_CASE(I64AtomicSub8U, uint8_t, uint64_t, atomic_fetch_sub, -);
ATOMIC_BINOP_CASE(I64AtomicSub16U, uint16_t, uint64_t, atomic_fetch_sub,
-);
ATOMIC_BINOP_CASE(I64AtomicSub32U, uint32_t, uint64_t, atomic_fetch_sub,
-);
ATOMIC_BINOP_CASE(I64AtomicAnd, uint64_t, uint64_t, atomic_fetch_and, &);
ATOMIC_BINOP_CASE(I64AtomicAnd8U, uint8_t, uint64_t, atomic_fetch_and, &);
ATOMIC_BINOP_CASE(I64AtomicAnd16U, uint16_t, uint64_t,
atomic_fetch_and, &);
ATOMIC_BINOP_CASE(I64AtomicAnd32U, uint32_t, uint64_t,
atomic_fetch_and, &);
ATOMIC_BINOP_CASE(I64AtomicOr, uint64_t, uint64_t, atomic_fetch_or, |);
ATOMIC_BINOP_CASE(I64AtomicOr8U, uint8_t, uint64_t, atomic_fetch_or, |);
ATOMIC_BINOP_CASE(I64AtomicOr16U, uint16_t, uint64_t, atomic_fetch_or, |);
ATOMIC_BINOP_CASE(I64AtomicOr32U, uint32_t, uint64_t, atomic_fetch_or, |);
ATOMIC_BINOP_CASE(I64AtomicXor, uint64_t, uint64_t, atomic_fetch_xor, ^);
ATOMIC_BINOP_CASE(I64AtomicXor8U, uint8_t, uint64_t, atomic_fetch_xor, ^);
ATOMIC_BINOP_CASE(I64AtomicXor16U, uint16_t, uint64_t, atomic_fetch_xor,
^);
ATOMIC_BINOP_CASE(I64AtomicXor32U, uint32_t, uint64_t, atomic_fetch_xor,
^);
ATOMIC_BINOP_CASE(I64AtomicExchange, uint64_t, uint64_t, atomic_exchange,
=);
ATOMIC_BINOP_CASE(I64AtomicExchange8U, uint8_t, uint64_t, atomic_exchange,
=);
ATOMIC_BINOP_CASE(I64AtomicExchange16U, uint16_t, uint64_t,
atomic_exchange, =);
ATOMIC_BINOP_CASE(I64AtomicExchange32U, uint32_t, uint64_t,
atomic_exchange, =);
#undef ATOMIC_BINOP_CASE
#define ATOMIC_COMPARE_EXCHANGE_CASE(name, type, op_type) \
case kExpr##name: { \
type old_val; \
type new_val; \
Address addr; \
if (!ExtractAtomicOpParams<type, op_type>(decoder, code, &addr, pc, len, \
&old_val, &new_val)) { \
return false; \
} \
static_assert(sizeof(std::atomic<type>) == sizeof(type), \
"Size mismatch for types std::atomic<" #type \
">, and " #type); \
old_val = AdjustByteOrder<type>(old_val); \
new_val = AdjustByteOrder<type>(new_val); \
std::atomic_compare_exchange_strong( \
reinterpret_cast<std::atomic<type>*>(addr), &old_val, new_val); \
Push(WasmValue(static_cast<op_type>(AdjustByteOrder<type>(old_val)))); \
break; \
}
ATOMIC_COMPARE_EXCHANGE_CASE(I32AtomicCompareExchange, uint32_t,
uint32_t);
ATOMIC_COMPARE_EXCHANGE_CASE(I32AtomicCompareExchange8U, uint8_t,
uint32_t);
ATOMIC_COMPARE_EXCHANGE_CASE(I32AtomicCompareExchange16U, uint16_t,
uint32_t);
ATOMIC_COMPARE_EXCHANGE_CASE(I64AtomicCompareExchange, uint64_t,
uint64_t);
ATOMIC_COMPARE_EXCHANGE_CASE(I64AtomicCompareExchange8U, uint8_t,
uint64_t);
ATOMIC_COMPARE_EXCHANGE_CASE(I64AtomicCompareExchange16U, uint16_t,
uint64_t);
ATOMIC_COMPARE_EXCHANGE_CASE(I64AtomicCompareExchange32U, uint32_t,
uint64_t);
#undef ATOMIC_COMPARE_EXCHANGE_CASE
#define ATOMIC_LOAD_CASE(name, type, op_type, operation) \
case kExpr##name: { \
Address addr; \
if (!ExtractAtomicOpParams<type, op_type>(decoder, code, &addr, pc, \
len)) { \
return false; \
} \
static_assert(sizeof(std::atomic<type>) == sizeof(type), \
"Size mismatch for types std::atomic<" #type \
">, and " #type); \
result = WasmValue(static_cast<op_type>(AdjustByteOrder<type>( \
std::operation(reinterpret_cast<std::atomic<type>*>(addr))))); \
Push(result); \
break; \
}
ATOMIC_LOAD_CASE(I32AtomicLoad, uint32_t, uint32_t, atomic_load);
ATOMIC_LOAD_CASE(I32AtomicLoad8U, uint8_t, uint32_t, atomic_load);
ATOMIC_LOAD_CASE(I32AtomicLoad16U, uint16_t, uint32_t, atomic_load);
ATOMIC_LOAD_CASE(I64AtomicLoad, uint64_t, uint64_t, atomic_load);
ATOMIC_LOAD_CASE(I64AtomicLoad8U, uint8_t, uint64_t, atomic_load);
ATOMIC_LOAD_CASE(I64AtomicLoad16U, uint16_t, uint64_t, atomic_load);
ATOMIC_LOAD_CASE(I64AtomicLoad32U, uint32_t, uint64_t, atomic_load);
#undef ATOMIC_LOAD_CASE
#define ATOMIC_STORE_CASE(name, type, op_type, operation) \
case kExpr##name: { \
type val; \
Address addr; \
if (!ExtractAtomicOpParams<type, op_type>(decoder, code, &addr, pc, len, \
&val)) { \
return false; \
} \
static_assert(sizeof(std::atomic<type>) == sizeof(type), \
"Size mismatch for types std::atomic<" #type \
">, and " #type); \
std::operation(reinterpret_cast<std::atomic<type>*>(addr), \
AdjustByteOrder<type>(val)); \
break; \
}
ATOMIC_STORE_CASE(I32AtomicStore, uint32_t, uint32_t, atomic_store);
ATOMIC_STORE_CASE(I32AtomicStore8U, uint8_t, uint32_t, atomic_store);
ATOMIC_STORE_CASE(I32AtomicStore16U, uint16_t, uint32_t, atomic_store);
ATOMIC_STORE_CASE(I64AtomicStore, uint64_t, uint64_t, atomic_store);
ATOMIC_STORE_CASE(I64AtomicStore8U, uint8_t, uint64_t, atomic_store);
ATOMIC_STORE_CASE(I64AtomicStore16U, uint16_t, uint64_t, atomic_store);
ATOMIC_STORE_CASE(I64AtomicStore32U, uint32_t, uint64_t, atomic_store);
#undef ATOMIC_STORE_CASE
case kExprAtomicFence:
std::atomic_thread_fence(std::memory_order_seq_cst);
*len += 1;
break;
case kExprI32AtomicWait: {
if (!module()->has_shared_memory) {
DoTrap(kTrapUnreachable, pc);
return false;
}
int32_t val;
int64_t timeout;
uint64_t buffer_offset;
if (!ExtractAtomicWaitNotifyParams<int32_t>(
decoder, code, pc, len, &buffer_offset, &val, &timeout)) {
return false;
}
HandleScope handle_scope(isolate_);
Handle<JSArrayBuffer> array_buffer(
instance_object_->memory_object().array_buffer(), isolate_);
auto result = FutexEmulation::WaitWasm32(isolate_, array_buffer,
buffer_offset, val, timeout);
Push(WasmValue(result.ToSmi().value()));
break;
}
case kExprI64AtomicWait: {
if (!module()->has_shared_memory) {
DoTrap(kTrapUnreachable, pc);
return false;
}
int64_t val;
int64_t timeout;
uint64_t buffer_offset;
if (!ExtractAtomicWaitNotifyParams<int64_t>(
decoder, code, pc, len, &buffer_offset, &val, &timeout)) {
return false;
}
HandleScope handle_scope(isolate_);
Handle<JSArrayBuffer> array_buffer(
instance_object_->memory_object().array_buffer(), isolate_);
auto result = FutexEmulation::WaitWasm64(isolate_, array_buffer,
buffer_offset, val, timeout);
Push(WasmValue(result.ToSmi().value()));
break;
}
case kExprAtomicNotify: {
int32_t val;
uint64_t buffer_offset;
if (!ExtractAtomicWaitNotifyParams<int32_t>(decoder, code, pc, len,
&buffer_offset, &val)) {
return false;
}
if (!module()->has_shared_memory) {
Push(WasmValue(0));
break;
}
HandleScope handle_scope(isolate_);
Handle<JSArrayBuffer> array_buffer(
instance_object_->memory_object().array_buffer(), isolate_);
auto result = FutexEmulation::Wake(array_buffer, buffer_offset, val);
Push(WasmValue(result.ToSmi().value()));
break;
}
default:
UNREACHABLE();
return false;
}
return true;
}
template <typename T, T (*float_round_op)(T)>
T AixFpOpWorkaround(T input) {
#if V8_OS_AIX
return FpOpWorkaround<T>(input, float_round_op(input));
#else
return float_round_op(input);
#endif
}
bool ExecuteSimdOp(WasmOpcode opcode, Decoder* decoder, InterpreterCode* code,
pc_t pc, int* const len) {
switch (opcode) {
#define WIDEN_CASE(op, expr) \
case op: { \
uint8_t lane = \
decoder->read_u8<Decoder::kNoValidation>(code->at(pc + *len), "lane"); \
*len += 1; \
int16 s = Pop().to_s128().to_i8x16(); \
int4 r; \
for (int i = 0; i < 4; i++) { \
auto x = s.val[LANE(lane * 4 + i, s)]; \
r.val[LANE(i, r)] = expr; \
} \
Push(WasmValue(Simd128(r))); \
return true; \
}
WIDEN_CASE(kExprI32x4WidenI8x16S, static_cast<int32_t>(x))
WIDEN_CASE(kExprI32x4WidenI8x16U,
static_cast<int32_t>(bit_cast<uint8_t>(x)))
#undef WIDEN_CASE
#define SPLAT_CASE(format, sType, valType, num) \
case kExpr##format##Splat: { \
WasmValue val = Pop(); \
valType v = val.to<valType>(); \
sType s; \
for (int i = 0; i < num; i++) s.val[i] = v; \
Push(WasmValue(Simd128(s))); \
return true; \
}
SPLAT_CASE(F64x2, float2, double, 2)
SPLAT_CASE(F32x4, float4, float, 4)
SPLAT_CASE(I64x2, int2, int64_t, 2)
SPLAT_CASE(I32x4, int4, int32_t, 4)
SPLAT_CASE(I16x8, int8, int32_t, 8)
SPLAT_CASE(I8x16, int16, int32_t, 16)
#undef SPLAT_CASE
#define EXTRACT_LANE_CASE(format, name) \
case kExpr##format##ExtractLane: { \
SimdLaneImmediate<Decoder::kNoValidation> imm(decoder, \
code->at(pc + *len)); \
*len += 1; \
WasmValue val = Pop(); \
Simd128 s = val.to_s128(); \
auto ss = s.to_##name(); \
Push(WasmValue(ss.val[LANE(imm.lane, ss)])); \
return true; \
}
EXTRACT_LANE_CASE(F64x2, f64x2)
EXTRACT_LANE_CASE(F32x4, f32x4)
EXTRACT_LANE_CASE(I64x2, i64x2)
EXTRACT_LANE_CASE(I32x4, i32x4)
#undef EXTRACT_LANE_CASE
// Unsigned extracts require a bit more care. The underlying array in
// Simd128 is signed (see wasm-value.h), so when casted to uint32_t it
// will be signed extended, e.g. int8_t -> int32_t -> uint32_t. So for
// unsigned extracts, we will cast it int8_t -> uint8_t -> uint32_t. We
// add the DCHECK to ensure that if the array type changes, we know to
// change this function.
#define EXTRACT_LANE_EXTEND_CASE(format, name, sign, extended_type) \
case kExpr##format##ExtractLane##sign: { \
SimdLaneImmediate<Decoder::kNoValidation> imm(decoder, \
code->at(pc + *len)); \
*len += 1; \
WasmValue val = Pop(); \
Simd128 s = val.to_s128(); \
auto ss = s.to_##name(); \
auto res = ss.val[LANE(imm.lane, ss)]; \
DCHECK(std::is_signed<decltype(res)>::value); \
if (std::is_unsigned<extended_type>::value) { \
using unsigned_type = std::make_unsigned<decltype(res)>::type; \
Push(WasmValue( \
static_cast<extended_type>(static_cast<unsigned_type>(res)))); \
} else { \
Push(WasmValue(static_cast<extended_type>(res))); \
} \
return true; \
}
EXTRACT_LANE_EXTEND_CASE(I16x8, i16x8, S, int32_t)
EXTRACT_LANE_EXTEND_CASE(I16x8, i16x8, U, uint32_t)
EXTRACT_LANE_EXTEND_CASE(I8x16, i8x16, S, int32_t)
EXTRACT_LANE_EXTEND_CASE(I8x16, i8x16, U, uint32_t)
#undef EXTRACT_LANE_EXTEND_CASE
#define BINOP_CASE(op, name, stype, count, expr) \
case kExpr##op: { \
WasmValue v2 = Pop(); \
WasmValue v1 = Pop(); \
stype s1 = v1.to_s128().to_##name(); \
stype s2 = v2.to_s128().to_##name(); \
stype res; \
for (size_t i = 0; i < count; ++i) { \
auto a = s1.val[LANE(i, s1)]; \
auto b = s2.val[LANE(i, s2)]; \
auto result = expr; \
possible_nondeterminism_ |= has_nondeterminism(result); \
res.val[LANE(i, res)] = expr; \
} \
Push(WasmValue(Simd128(res))); \
return true; \
}
BINOP_CASE(F64x2Add, f64x2, float2, 2, a + b)
BINOP_CASE(F64x2Sub, f64x2, float2, 2, a - b)
BINOP_CASE(F64x2Mul, f64x2, float2, 2, a * b)
BINOP_CASE(F64x2Div, f64x2, float2, 2, base::Divide(a, b))
BINOP_CASE(F64x2Min, f64x2, float2, 2, JSMin(a, b))
BINOP_CASE(F64x2Max, f64x2, float2, 2, JSMax(a, b))
BINOP_CASE(F64x2Pmin, f64x2, float2, 2, std::min(a, b))
BINOP_CASE(F64x2Pmax, f64x2, float2, 2, std::max(a, b))
BINOP_CASE(F32x4Add, f32x4, float4, 4, a + b)
BINOP_CASE(F32x4Sub, f32x4, float4, 4, a - b)
BINOP_CASE(F32x4Mul, f32x4, float4, 4, a * b)
BINOP_CASE(F32x4Div, f32x4, float4, 4, a / b)
BINOP_CASE(F32x4Min, f32x4, float4, 4, JSMin(a, b))
BINOP_CASE(F32x4Max, f32x4, float4, 4, JSMax(a, b))
BINOP_CASE(F32x4Pmin, f32x4, float4, 4, std::min(a, b))
BINOP_CASE(F32x4Pmax, f32x4, float4, 4, std::max(a, b))
BINOP_CASE(I64x2Add, i64x2, int2, 2, base::AddWithWraparound(a, b))
BINOP_CASE(I64x2Sub, i64x2, int2, 2, base::SubWithWraparound(a, b))
BINOP_CASE(I64x2Mul, i64x2, int2, 2, base::MulWithWraparound(a, b))
BINOP_CASE(I32x4Add, i32x4, int4, 4, base::AddWithWraparound(a, b))
BINOP_CASE(I32x4Sub, i32x4, int4, 4, base::SubWithWraparound(a, b))
BINOP_CASE(I32x4Mul, i32x4, int4, 4, base::MulWithWraparound(a, b))
BINOP_CASE(I32x4MinS, i32x4, int4, 4, a < b ? a : b)
BINOP_CASE(I32x4MinU, i32x4, int4, 4,
static_cast<uint32_t>(a) < static_cast<uint32_t>(b) ? a : b)
BINOP_CASE(I32x4MaxS, i32x4, int4, 4, a > b ? a : b)
BINOP_CASE(I32x4MaxU, i32x4, int4, 4,
static_cast<uint32_t>(a) > static_cast<uint32_t>(b) ? a : b)
BINOP_CASE(S128And, i32x4, int4, 4, a & b)
BINOP_CASE(S128Or, i32x4, int4, 4, a | b)
BINOP_CASE(S128Xor, i32x4, int4, 4, a ^ b)
BINOP_CASE(S128AndNot, i32x4, int4, 4, a & ~b)
BINOP_CASE(I16x8Add, i16x8, int8, 8, base::AddWithWraparound(a, b))
BINOP_CASE(I16x8Sub, i16x8, int8, 8, base::SubWithWraparound(a, b))
BINOP_CASE(I16x8Mul, i16x8, int8, 8, base::MulWithWraparound(a, b))
BINOP_CASE(I16x8MinS, i16x8, int8, 8, a < b ? a : b)
BINOP_CASE(I16x8MinU, i16x8, int8, 8,
static_cast<uint16_t>(a) < static_cast<uint16_t>(b) ? a : b)
BINOP_CASE(I16x8MaxS, i16x8, int8, 8, a > b ? a : b)
BINOP_CASE(I16x8MaxU, i16x8, int8, 8,
static_cast<uint16_t>(a) > static_cast<uint16_t>(b) ? a : b)
BINOP_CASE(I16x8AddSatS, i16x8, int8, 8, SaturateAdd<int16_t>(a, b))
BINOP_CASE(I16x8AddSatU, i16x8, int8, 8, SaturateAdd<uint16_t>(a, b))
BINOP_CASE(I16x8SubSatS, i16x8, int8, 8, SaturateSub<int16_t>(a, b))
BINOP_CASE(I16x8SubSatU, i16x8, int8, 8, SaturateSub<uint16_t>(a, b))
BINOP_CASE(I16x8RoundingAverageU, i16x8, int8, 8,
base::RoundingAverageUnsigned<uint16_t>(a, b))
BINOP_CASE(I16x8Q15MulRSatS, i16x8, int8, 8,
SaturateRoundingQMul<int16_t>(a, b))
BINOP_CASE(I8x16Add, i8x16, int16, 16, base::AddWithWraparound(a, b))
BINOP_CASE(I8x16Sub, i8x16, int16, 16, base::SubWithWraparound(a, b))
BINOP_CASE(I8x16Mul, i8x16, int16, 16, base::MulWithWraparound(a, b))
BINOP_CASE(I8x16MinS, i8x16, int16, 16, a < b ? a : b)
BINOP_CASE(I8x16MinU, i8x16, int16, 16,
static_cast<uint8_t>(a) < static_cast<uint8_t>(b) ? a : b)
BINOP_CASE(I8x16MaxS, i8x16, int16, 16, a > b ? a : b)
BINOP_CASE(I8x16MaxU, i8x16, int16, 16,
static_cast<uint8_t>(a) > static_cast<uint8_t>(b) ? a : b)
BINOP_CASE(I8x16AddSatS, i8x16, int16, 16, SaturateAdd<int8_t>(a, b))
BINOP_CASE(I8x16AddSatU, i8x16, int16, 16, SaturateAdd<uint8_t>(a, b))
BINOP_CASE(I8x16SubSatS, i8x16, int16, 16, SaturateSub<int8_t>(a, b))
BINOP_CASE(I8x16SubSatU, i8x16, int16, 16, SaturateSub<uint8_t>(a, b))
BINOP_CASE(I8x16RoundingAverageU, i8x16, int16, 16,
base::RoundingAverageUnsigned<uint8_t>(a, b))
#undef BINOP_CASE
#define UNOP_CASE(op, name, stype, count, expr) \
case kExpr##op: { \
WasmValue v = Pop(); \
stype s = v.to_s128().to_##name(); \
stype res; \
for (size_t i = 0; i < count; ++i) { \
auto a = s.val[LANE(i, s)]; \
auto result = expr; \
possible_nondeterminism_ |= has_nondeterminism(result); \
res.val[LANE(i, res)] = result; \
} \
Push(WasmValue(Simd128(res))); \
return true; \
}
UNOP_CASE(F64x2Abs, f64x2, float2, 2, std::abs(a))
UNOP_CASE(F64x2Neg, f64x2, float2, 2, -a)
UNOP_CASE(F64x2Sqrt, f64x2, float2, 2, std::sqrt(a))
UNOP_CASE(F64x2Ceil, f64x2, float2, 2,
(AixFpOpWorkaround<double, &ceil>(a)))
UNOP_CASE(F64x2Floor, f64x2, float2, 2,
(AixFpOpWorkaround<double, &floor>(a)))
UNOP_CASE(F64x2Trunc, f64x2, float2, 2,
(AixFpOpWorkaround<double, &trunc>(a)))
UNOP_CASE(F64x2NearestInt, f64x2, float2, 2,
(AixFpOpWorkaround<double, &nearbyint>(a)))
UNOP_CASE(F32x4Abs, f32x4, float4, 4, std::abs(a))
UNOP_CASE(F32x4Neg, f32x4, float4, 4, -a)
UNOP_CASE(F32x4Sqrt, f32x4, float4, 4, std::sqrt(a))
UNOP_CASE(F32x4RecipApprox, f32x4, float4, 4, base::Recip(a))
UNOP_CASE(F32x4RecipSqrtApprox, f32x4, float4, 4, base::RecipSqrt(a))
UNOP_CASE(F32x4Ceil, f32x4, float4, 4,
(AixFpOpWorkaround<float, &ceilf>(a)))
UNOP_CASE(F32x4Floor, f32x4, float4, 4,
(AixFpOpWorkaround<float, &floorf>(a)))
UNOP_CASE(F32x4Trunc, f32x4, float4, 4,
(AixFpOpWorkaround<float, &truncf>(a)))
UNOP_CASE(F32x4NearestInt, f32x4, float4, 4,
(AixFpOpWorkaround<float, &nearbyintf>(a)))
UNOP_CASE(I64x2Neg, i64x2, int2, 2, base::NegateWithWraparound(a))
UNOP_CASE(I32x4Neg, i32x4, int4, 4, base::NegateWithWraparound(a))
UNOP_CASE(I32x4Abs, i32x4, int4, 4, std::abs(a))
UNOP_CASE(S128Not, i32x4, int4, 4, ~a)
UNOP_CASE(I16x8Neg, i16x8, int8, 8, base::NegateWithWraparound(a))
UNOP_CASE(I16x8Abs, i16x8, int8, 8, std::abs(a))
UNOP_CASE(I8x16Neg, i8x16, int16, 16, base::NegateWithWraparound(a))
UNOP_CASE(I8x16Abs, i8x16, int16, 16, std::abs(a))
UNOP_CASE(I8x16Popcnt, i8x16, int16, 16,
base::bits::CountPopulation<uint8_t>(a))
#undef UNOP_CASE
// Cast to double in call to signbit is due to MSCV issue, see
// https://github.com/microsoft/STL/issues/519.
#define BITMASK_CASE(op, name, stype, count) \
case kExpr##op: { \
WasmValue v = Pop(); \
stype s = v.to_s128().to_##name(); \
int32_t res = 0; \
for (size_t i = 0; i < count; ++i) { \
bool sign = std::signbit(static_cast<double>(s.val[LANE(i, s)])); \
res |= (sign << i); \
} \
Push(WasmValue(res)); \
return true; \
}
BITMASK_CASE(I8x16BitMask, i8x16, int16, 16)
BITMASK_CASE(I16x8BitMask, i16x8, int8, 8)
BITMASK_CASE(I32x4BitMask, i32x4, int4, 4)
BITMASK_CASE(I64x2BitMask, i64x2, int2, 2)
#undef BITMASK_CASE
#define CMPOP_CASE(op, name, stype, out_stype, count, expr) \
case kExpr##op: { \
WasmValue v2 = Pop(); \
WasmValue v1 = Pop(); \
stype s1 = v1.to_s128().to_##name(); \
stype s2 = v2.to_s128().to_##name(); \
out_stype res; \
for (size_t i = 0; i < count; ++i) { \
auto a = s1.val[LANE(i, s1)]; \
auto b = s2.val[LANE(i, s2)]; \
auto result = expr; \
possible_nondeterminism_ |= has_nondeterminism(result); \
res.val[LANE(i, res)] = result ? -1 : 0; \
} \
Push(WasmValue(Simd128(res))); \
return true; \
}
CMPOP_CASE(F64x2Eq, f64x2, float2, int2, 2, a == b)
CMPOP_CASE(F64x2Ne, f64x2, float2, int2, 2, a != b)
CMPOP_CASE(F64x2Gt, f64x2, float2, int2, 2, a > b)
CMPOP_CASE(F64x2Ge, f64x2, float2, int2, 2, a >= b)
CMPOP_CASE(F64x2Lt, f64x2, float2, int2, 2, a < b)
CMPOP_CASE(F64x2Le, f64x2, float2, int2, 2, a <= b)
CMPOP_CASE(F32x4Eq, f32x4, float4, int4, 4, a == b)
CMPOP_CASE(F32x4Ne, f32x4, float4, int4, 4, a != b)
CMPOP_CASE(F32x4Gt, f32x4, float4, int4, 4, a > b)
CMPOP_CASE(F32x4Ge, f32x4, float4, int4, 4, a >= b)
CMPOP_CASE(F32x4Lt, f32x4, float4, int4, 4, a < b)
CMPOP_CASE(F32x4Le, f32x4, float4, int4, 4, a <= b)
CMPOP_CASE(I64x2Eq, i64x2, int2, int2, 2, a == b)
CMPOP_CASE(I32x4Eq, i32x4, int4, int4, 4, a == b)
CMPOP_CASE(I32x4Ne, i32x4, int4, int4, 4, a != b)
CMPOP_CASE(I32x4GtS, i32x4, int4, int4, 4, a > b)
CMPOP_CASE(I32x4GeS, i32x4, int4, int4, 4, a >= b)
CMPOP_CASE(I32x4LtS, i32x4, int4, int4, 4, a < b)
CMPOP_CASE(I32x4LeS, i32x4, int4, int4, 4, a <= b)
CMPOP_CASE(I32x4GtU, i32x4, int4, int4, 4,
static_cast<uint32_t>(a) > static_cast<uint32_t>(b))
CMPOP_CASE(I32x4GeU, i32x4, int4, int4, 4,
static_cast<uint32_t>(a) >= static_cast<uint32_t>(b))
CMPOP_CASE(I32x4LtU, i32x4, int4, int4, 4,
static_cast<uint32_t>(a) < static_cast<uint32_t>(b))
CMPOP_CASE(I32x4LeU, i32x4, int4, int4, 4,
static_cast<uint32_t>(a) <= static_cast<uint32_t>(b))
CMPOP_CASE(I16x8Eq, i16x8, int8, int8, 8, a == b)
CMPOP_CASE(I16x8Ne, i16x8, int8, int8, 8, a != b)
CMPOP_CASE(I16x8GtS, i16x8, int8, int8, 8, a > b)
CMPOP_CASE(I16x8GeS, i16x8, int8, int8, 8, a >= b)
CMPOP_CASE(I16x8LtS, i16x8, int8, int8, 8, a < b)
CMPOP_CASE(I16x8LeS, i16x8, int8, int8, 8, a <= b)
CMPOP_CASE(I16x8GtU, i16x8, int8, int8, 8,
static_cast<uint16_t>(a) > static_cast<uint16_t>(b))
CMPOP_CASE(I16x8GeU, i16x8, int8, int8, 8,
static_cast<uint16_t>(a) >= static_cast<uint16_t>(b))
CMPOP_CASE(I16x8LtU, i16x8, int8, int8, 8,
static_cast<uint16_t>(a) < static_cast<uint16_t>(b))
CMPOP_CASE(I16x8LeU, i16x8, int8, int8, 8,
static_cast<uint16_t>(a) <= static_cast<uint16_t>(b))
CMPOP_CASE(I8x16Eq, i8x16, int16, int16, 16, a == b)
CMPOP_CASE(I8x16Ne, i8x16, int16, int16, 16, a != b)
CMPOP_CASE(I8x16GtS, i8x16, int16, int16, 16, a > b)
CMPOP_CASE(I8x16GeS, i8x16, int16, int16, 16, a >= b)
CMPOP_CASE(I8x16LtS, i8x16, int16, int16, 16, a < b)
CMPOP_CASE(I8x16LeS, i8x16, int16, int16, 16, a <= b)
CMPOP_CASE(I8x16GtU, i8x16, int16, int16, 16,
static_cast<uint8_t>(a) > static_cast<uint8_t>(b))
CMPOP_CASE(I8x16GeU, i8x16, int16, int16, 16,
static_cast<uint8_t>(a) >= static_cast<uint8_t>(b))
CMPOP_CASE(I8x16LtU, i8x16, int16, int16, 16,
static_cast<uint8_t>(a) < static_cast<uint8_t>(b))
CMPOP_CASE(I8x16LeU, i8x16, int16, int16, 16,
static_cast<uint8_t>(a) <= static_cast<uint8_t>(b))
#undef CMPOP_CASE
#define REPLACE_LANE_CASE(format, name, stype, ctype) \
case kExpr##format##ReplaceLane: { \
SimdLaneImmediate<Decoder::kNoValidation> imm(decoder, \
code->at(pc + *len)); \
*len += 1; \
WasmValue new_val = Pop(); \
WasmValue simd_val = Pop(); \
stype s = simd_val.to_s128().to_##name(); \
s.val[LANE(imm.lane, s)] = new_val.to<ctype>(); \
Push(WasmValue(Simd128(s))); \
return true; \
}
REPLACE_LANE_CASE(F64x2, f64x2, float2, double)
REPLACE_LANE_CASE(F32x4, f32x4, float4, float)
REPLACE_LANE_CASE(I64x2, i64x2, int2, int64_t)
REPLACE_LANE_CASE(I32x4, i32x4, int4, int32_t)
REPLACE_LANE_CASE(I16x8, i16x8, int8, int32_t)
REPLACE_LANE_CASE(I8x16, i8x16, int16, int32_t)
#undef REPLACE_LANE_CASE
case kExprS128LoadMem:
return ExecuteLoad<Simd128, Simd128>(decoder, code, pc, len,
MachineRepresentation::kSimd128,
/*prefix_len=*/*len);
case kExprS128StoreMem:
return ExecuteStore<Simd128, Simd128>(decoder, code, pc, len,
MachineRepresentation::kSimd128,
/*prefix_len=*/*len);
#define SHIFT_CASE(op, name, stype, count, expr) \
case kExpr##op: { \
uint32_t shift = Pop().to<uint32_t>(); \
WasmValue v = Pop(); \
stype s = v.to_s128().to_##name(); \
stype res; \
for (size_t i = 0; i < count; ++i) { \
auto a = s.val[LANE(i, s)]; \
res.val[LANE(i, res)] = expr; \
} \
Push(WasmValue(Simd128(res))); \
return true; \
}
SHIFT_CASE(I64x2Shl, i64x2, int2, 2,
static_cast<uint64_t>(a) << (shift % 64))
SHIFT_CASE(I64x2ShrS, i64x2, int2, 2, a >> (shift % 64))
SHIFT_CASE(I64x2ShrU, i64x2, int2, 2,
static_cast<uint64_t>(a) >> (shift % 64))
SHIFT_CASE(I32x4Shl, i32x4, int4, 4,
static_cast<uint32_t>(a) << (shift % 32))
SHIFT_CASE(I32x4ShrS, i32x4, int4, 4, a >> (shift % 32))
SHIFT_CASE(I32x4ShrU, i32x4, int4, 4,
static_cast<uint32_t>(a) >> (shift % 32))
SHIFT_CASE(I16x8Shl, i16x8, int8, 8,
static_cast<uint16_t>(a) << (shift % 16))
SHIFT_CASE(I16x8ShrS, i16x8, int8, 8, a >> (shift % 16))
SHIFT_CASE(I16x8ShrU, i16x8, int8, 8,
static_cast<uint16_t>(a) >> (shift % 16))
SHIFT_CASE(I8x16Shl, i8x16, int16, 16,
static_cast<uint8_t>(a) << (shift % 8))
SHIFT_CASE(I8x16ShrS, i8x16, int16, 16, a >> (shift % 8))
SHIFT_CASE(I8x16ShrU, i8x16, int16, 16,
static_cast<uint8_t>(a) >> (shift % 8))
case kExprI16x8ExtMulLowI8x16S: {
return DoSimdExtMul<int16, int8, int8_t, int16_t>(0);
}
case kExprI16x8ExtMulHighI8x16S: {
return DoSimdExtMul<int16, int8, int8_t, int16_t>(8);
}
case kExprI16x8ExtMulLowI8x16U: {
return DoSimdExtMul<int16, int8, uint8_t, uint16_t>(0);
}
case kExprI16x8ExtMulHighI8x16U: {
return DoSimdExtMul<int16, int8, uint8_t, uint16_t>(8);
}
case kExprI32x4ExtMulLowI16x8S: {
return DoSimdExtMul<int8, int4, int16_t, int32_t>(0);
}
case kExprI32x4ExtMulHighI16x8S: {
return DoSimdExtMul<int8, int4, int16_t, int32_t>(4);
}
case kExprI32x4ExtMulLowI16x8U: {
return DoSimdExtMul<int8, int4, uint16_t, uint32_t>(0);
}
case kExprI32x4ExtMulHighI16x8U: {
return DoSimdExtMul<int8, int4, uint16_t, uint32_t>(4);
}
case kExprI64x2ExtMulLowI32x4S: {
return DoSimdExtMul<int4, int2, int32_t, int64_t>(0);
}
case kExprI64x2ExtMulHighI32x4S: {
return DoSimdExtMul<int4, int2, int32_t, int64_t>(2);
}
case kExprI64x2ExtMulLowI32x4U: {
return DoSimdExtMul<int4, int2, uint32_t, uint64_t>(0);
}
case kExprI64x2ExtMulHighI32x4U: {
return DoSimdExtMul<int4, int2, uint32_t, uint64_t>(2);
}
#undef SHIFT_CASE
#define CONVERT_CASE(op, src_type, name, dst_type, count, start_index, ctype, \
expr) \
case kExpr##op: { \
WasmValue v = Pop(); \
src_type s = v.to_s128().to_##name(); \
dst_type res = {0}; \
for (size_t i = 0; i < count; ++i) { \
ctype a = s.val[LANE(start_index + i, s)]; \
auto result = expr; \
possible_nondeterminism_ |= has_nondeterminism(result); \
res.val[LANE(i, res)] = expr; \
} \
Push(WasmValue(Simd128(res))); \
return true; \
}
CONVERT_CASE(F32x4SConvertI32x4, int4, i32x4, float4, 4, 0, int32_t,
static_cast<float>(a))
CONVERT_CASE(F32x4UConvertI32x4, int4, i32x4, float4, 4, 0, uint32_t,
static_cast<float>(a))
CONVERT_CASE(I32x4SConvertF32x4, float4, f32x4, int4, 4, 0, double,
std::isnan(a) ? 0
: a<kMinInt ? kMinInt : a> kMaxInt
? kMaxInt
: static_cast<int32_t>(a))
CONVERT_CASE(I32x4UConvertF32x4, float4, f32x4, int4, 4, 0, double,
std::isnan(a)
? 0
: a<0 ? 0 : a> kMaxUInt32 ? kMaxUInt32
: static_cast<uint32_t>(a))
CONVERT_CASE(I64x2SConvertI32x4Low, int4, i32x4, int2, 2, 0, int32_t, a)
CONVERT_CASE(I64x2SConvertI32x4High, int4, i32x4, int2, 2, 2, int32_t,
a)
CONVERT_CASE(I64x2UConvertI32x4Low, int4, i32x4, int2, 2, 0, uint32_t,
a)
CONVERT_CASE(I64x2UConvertI32x4High, int4, i32x4, int2, 2, 2, uint32_t,
a)
CONVERT_CASE(I32x4SConvertI16x8High, int8, i16x8, int4, 4, 4, int16_t,
a)
CONVERT_CASE(I32x4UConvertI16x8High, int8, i16x8, int4, 4, 4, uint16_t,
a)
CONVERT_CASE(I32x4SConvertI16x8Low, int8, i16x8, int4, 4, 0, int16_t, a)
CONVERT_CASE(I32x4UConvertI16x8Low, int8, i16x8, int4, 4, 0, uint16_t,
a)
CONVERT_CASE(I16x8SConvertI8x16High, int16, i8x16, int8, 8, 8, int8_t,
a)
CONVERT_CASE(I16x8UConvertI8x16High, int16, i8x16, int8, 8, 8, uint8_t,
a)
CONVERT_CASE(I16x8SConvertI8x16Low, int16, i8x16, int8, 8, 0, int8_t, a)
CONVERT_CASE(I16x8UConvertI8x16Low, int16, i8x16, int8, 8, 0, uint8_t,
a)
CONVERT_CASE(F64x2ConvertLowI32x4S, int4, i32x4, float2, 2, 0, int32_t,
static_cast<double>(a))
CONVERT_CASE(F64x2ConvertLowI32x4U, int4, i32x4, float2, 2, 0, uint32_t,
static_cast<double>(a))
CONVERT_CASE(I32x4TruncSatF64x2SZero, float2, f64x2, int4, 2, 0, double,
base::saturated_cast<int32_t>(a))
CONVERT_CASE(I32x4TruncSatF64x2UZero, float2, f64x2, int4, 2, 0, double,
base::saturated_cast<uint32_t>(a))
CONVERT_CASE(F32x4DemoteF64x2Zero, float2, f64x2, float4, 2, 0, float,
DoubleToFloat32(a))
CONVERT_CASE(F64x2PromoteLowF32x4, float4, f32x4, float2, 2, 0, float,
static_cast<double>(a))
#undef CONVERT_CASE
#define PACK_CASE(op, src_type, name, dst_type, count, ctype, dst_ctype) \
case kExpr##op: { \
WasmValue v2 = Pop(); \
WasmValue v1 = Pop(); \
src_type s1 = v1.to_s128().to_##name(); \
src_type s2 = v2.to_s128().to_##name(); \
dst_type res; \
int64_t min = std::numeric_limits<ctype>::min(); \
int64_t max = std::numeric_limits<ctype>::max(); \
for (size_t i = 0; i < count; ++i) { \
int64_t v = i < count / 2 ? s1.val[LANE(i, s1)] \
: s2.val[LANE(i - count / 2, s2)]; \
res.val[LANE(i, res)] = \
static_cast<dst_ctype>(std::max(min, std::min(max, v))); \
} \
Push(WasmValue(Simd128(res))); \
return true; \
}
PACK_CASE(I16x8SConvertI32x4, int4, i32x4, int8, 8, int16_t, int16_t)
PACK_CASE(I16x8UConvertI32x4, int4, i32x4, int8, 8, uint16_t, int16_t)
PACK_CASE(I8x16SConvertI16x8, int8, i16x8, int16, 16, int8_t, int8_t)
PACK_CASE(I8x16UConvertI16x8, int8, i16x8, int16, 16, uint8_t, int8_t)
#undef PACK_CASE
case kExprS128Select: {
int4 bool_val = Pop().to_s128().to_i32x4();
int4 v2 = Pop().to_s128().to_i32x4();
int4 v1 = Pop().to_s128().to_i32x4();
int4 res;
for (size_t i = 0; i < 4; ++i) {
res.val[LANE(i, res)] = v2.val[LANE(i, v2)] ^
((v1.val[LANE(i, v1)] ^ v2.val[LANE(i, v2)]) &
bool_val.val[LANE(i, bool_val)]);
}
Push(WasmValue(Simd128(res)));
return true;
}
#define ADD_HORIZ_CASE(op, name, stype, count) \
case kExpr##op: { \
WasmValue v2 = Pop(); \
WasmValue v1 = Pop(); \
stype s1 = v1.to_s128().to_##name(); \
stype s2 = v2.to_s128().to_##name(); \
stype res; \
for (size_t i = 0; i < count / 2; ++i) { \
auto result1 = s1.val[LANE(i * 2, s1)] + s1.val[LANE(i * 2 + 1, s1)]; \
possible_nondeterminism_ |= has_nondeterminism(result1); \
res.val[LANE(i, res)] = result1; \
auto result2 = s2.val[LANE(i * 2, s2)] + s2.val[LANE(i * 2 + 1, s2)]; \
possible_nondeterminism_ |= has_nondeterminism(result2); \
res.val[LANE(i + count / 2, res)] = result2; \
} \
Push(WasmValue(Simd128(res))); \
return true; \
}
ADD_HORIZ_CASE(I32x4AddHoriz, i32x4, int4, 4)
ADD_HORIZ_CASE(F32x4AddHoriz, f32x4, float4, 4)
ADD_HORIZ_CASE(I16x8AddHoriz, i16x8, int8, 8)
#undef ADD_HORIZ_CASE
case kExprI32x4DotI16x8S: {
int8 v2 = Pop().to_s128().to_i16x8();
int8 v1 = Pop().to_s128().to_i16x8();
int4 res;
for (size_t i = 0; i < 4; i++) {
int32_t lo = (v1.val[LANE(i * 2, v1)] * v2.val[LANE(i * 2, v2)]);
int32_t hi =
(v1.val[LANE(i * 2 + 1, v1)] * v2.val[LANE(i * 2 + 1, v2)]);
res.val[LANE(i, res)] = base::AddWithWraparound(lo, hi);
}
Push(WasmValue(Simd128(res)));
return true;
}
case kExprS128Const: {
Simd128Immediate<Decoder::kNoValidation> imm(decoder,
code->at(pc + *len));
int16 res;
for (size_t i = 0; i < kSimd128Size; ++i) {
res.val[LANE(i, res)] = imm.value[i];
}
Push(WasmValue(Simd128(res)));
*len += 16;
return true;
}
case kExprI8x16Swizzle: {
int16 v2 = Pop().to_s128().to_i8x16();
int16 v1 = Pop().to_s128().to_i8x16();
int16 res;
for (size_t i = 0; i < kSimd128Size; ++i) {
int lane = v2.val[LANE(i, v2)];
res.val[LANE(i, res)] =
lane < kSimd128Size && lane >= 0 ? v1.val[LANE(lane, v1)] : 0;
}
Push(WasmValue(Simd128(res)));
return true;
}
case kExprI8x16Shuffle: {
Simd128Immediate<Decoder::kNoValidation> imm(decoder,
code->at(pc + *len));
*len += 16;
int16 v2 = Pop().to_s128().to_i8x16();
int16 v1 = Pop().to_s128().to_i8x16();
int16 res;
for (size_t i = 0; i < kSimd128Size; ++i) {
int lane = imm.value[i];
res.val[LANE(i, res)] = lane < kSimd128Size
? v1.val[LANE(lane, v1)]
: v2.val[LANE(lane - kSimd128Size, v2)];
}
Push(WasmValue(Simd128(res)));
return true;
}
case kExprV32x4AnyTrue:
case kExprV16x8AnyTrue:
case kExprV8x16AnyTrue: {
int4 s = Pop().to_s128().to_i32x4();
bool res = s.val[LANE(0, s)] | s.val[LANE(1, s)] | s.val[LANE(2, s)] |
s.val[LANE(3, s)];
Push(WasmValue((res)));
return true;
}
#define REDUCTION_CASE(op, name, stype, count, operation) \
case kExpr##op: { \
stype s = Pop().to_s128().to_##name(); \
bool res = true; \
for (size_t i = 0; i < count; ++i) { \
res = res & static_cast<bool>(s.val[LANE(i, s)]); \
} \
Push(WasmValue(res)); \
return true; \
}
REDUCTION_CASE(V32x4AllTrue, i32x4, int4, 4, &)
REDUCTION_CASE(V16x8AllTrue, i16x8, int8, 8, &)
REDUCTION_CASE(V8x16AllTrue, i8x16, int16, 16, &)
#undef REDUCTION_CASE
#define QFM_CASE(op, name, stype, count, operation) \
case kExpr##op: { \
stype c = Pop().to_s128().to_##name(); \
stype b = Pop().to_s128().to_##name(); \
stype a = Pop().to_s128().to_##name(); \
stype res; \
for (size_t i = 0; i < count; i++) { \
res.val[LANE(i, res)] = \
a.val[LANE(i, a)] operation(b.val[LANE(i, b)] * c.val[LANE(i, c)]); \
} \
Push(WasmValue(Simd128(res))); \
return true; \
}
QFM_CASE(F32x4Qfma, f32x4, float4, 4, +)
QFM_CASE(F32x4Qfms, f32x4, float4, 4, -)
QFM_CASE(F64x2Qfma, f64x2, float2, 2, +)
QFM_CASE(F64x2Qfms, f64x2, float2, 2, -)
#undef QFM_CASE
case kExprS128Load8Splat: {
return DoSimdLoadSplat<int16, int32_t, int8_t>(
decoder, code, pc, len, MachineRepresentation::kWord8);
}
case kExprS128Load16Splat: {
return DoSimdLoadSplat<int8, int32_t, int16_t>(
decoder, code, pc, len, MachineRepresentation::kWord16);
}
case kExprS128Load32Splat: {
return DoSimdLoadSplat<int4, int32_t, int32_t>(
decoder, code, pc, len, MachineRepresentation::kWord32);
}
case kExprS128Load64Splat: {
return DoSimdLoadSplat<int2, int64_t, int64_t>(
decoder, code, pc, len, MachineRepresentation::kWord64);
}
case kExprS128Load8x8S: {
return DoSimdLoadExtend<int8, int16_t, int8_t>(
decoder, code, pc, len, MachineRepresentation::kWord64);
}
case kExprS128Load8x8U: {
return DoSimdLoadExtend<int8, uint16_t, uint8_t>(
decoder, code, pc, len, MachineRepresentation::kWord64);
}
case kExprS128Load16x4S: {
return DoSimdLoadExtend<int4, int32_t, int16_t>(
decoder, code, pc, len, MachineRepresentation::kWord64);
}
case kExprS128Load16x4U: {
return DoSimdLoadExtend<int4, uint32_t, uint16_t>(
decoder, code, pc, len, MachineRepresentation::kWord64);
}
case kExprS128Load32x2S: {
return DoSimdLoadExtend<int2, int64_t, int32_t>(
decoder, code, pc, len, MachineRepresentation::kWord64);
}
case kExprS128Load32x2U: {
return DoSimdLoadExtend<int2, uint64_t, uint32_t>(
decoder, code, pc, len, MachineRepresentation::kWord64);
}
case kExprS128Load32Zero: {
return DoSimdLoadZeroExtend<int4, uint32_t>(
decoder, code, pc, len, MachineRepresentation::kWord32);
}
case kExprS128Load64Zero: {
return DoSimdLoadZeroExtend<int2, uint64_t>(
decoder, code, pc, len, MachineRepresentation::kWord64);
}
case kExprS128Load8Lane: {
return DoSimdLoadLane<int16, int32_t, int8_t>(
decoder, code, pc, len, MachineRepresentation::kWord8);
}
case kExprS128Load16Lane: {
return DoSimdLoadLane<int8, int32_t, int16_t>(
decoder, code, pc, len, MachineRepresentation::kWord16);
}
case kExprS128Load32Lane: {
return DoSimdLoadLane<int4, int32_t, int32_t>(
decoder, code, pc, len, MachineRepresentation::kWord32);
}
case kExprS128Load64Lane: {
return DoSimdLoadLane<int2, int64_t, int64_t>(
decoder, code, pc, len, MachineRepresentation::kWord64);
}
case kExprS128Store8Lane: {
return DoSimdStoreLane<int16, int32_t, int8_t>(
decoder, code, pc, len, MachineRepresentation::kWord8);
}
case kExprS128Store16Lane: {
return DoSimdStoreLane<int8, int32_t, int16_t>(
decoder, code, pc, len, MachineRepresentation::kWord16);
}
case kExprS128Store32Lane: {
return DoSimdStoreLane<int4, int32_t, int32_t>(
decoder, code, pc, len, MachineRepresentation::kWord32);
}
case kExprS128Store64Lane: {
return DoSimdStoreLane<int2, int64_t, int64_t>(
decoder, code, pc, len, MachineRepresentation::kWord64);
}
case kExprI8x16SignSelect: {
return DoSimdSignSelect<int16>();
}
case kExprI16x8SignSelect: {
return DoSimdSignSelect<int8>();
}
case kExprI32x4SignSelect: {
return DoSimdSignSelect<int4>();
}
case kExprI64x2SignSelect: {
return DoSimdSignSelect<int2>();
}
case kExprI32x4ExtAddPairwiseI16x8S: {
return DoSimdExtAddPairwise<int4, int8, int32_t, int16_t>();
}
case kExprI32x4ExtAddPairwiseI16x8U: {
return DoSimdExtAddPairwise<int4, int8, uint32_t, uint16_t>();
}
case kExprI16x8ExtAddPairwiseI8x16S: {
return DoSimdExtAddPairwise<int8, int16, int16_t, int8_t>();
}
case kExprI16x8ExtAddPairwiseI8x16U: {
return DoSimdExtAddPairwise<int8, int16, uint16_t, uint8_t>();
}
case kExprPrefetchT:
case kExprPrefetchNT: {
// Max alignment doesn't matter, use an arbitrary value.
MemoryAccessImmediate<Decoder::kNoValidation> imm(
decoder, code->at(pc + *len), 4, module()->is_memory64);
// Pop address and do nothing.
Pop().to<uint32_t>();
*len += imm.length;
return true;
}
default:
return false;
}
}
template <typename s_type, typename result_type, typename load_type>
bool DoSimdLoadSplat(Decoder* decoder, InterpreterCode* code, pc_t pc,
int* const len, MachineRepresentation rep) {
// len is the number of bytes the make up this op, including prefix byte, so
// the prefix_len for ExecuteLoad is len, minus the prefix byte itself.
// Think of prefix_len as: number of extra bytes that make up this op.
if (!ExecuteLoad<result_type, load_type>(decoder, code, pc, len, rep,
/*prefix_len=*/*len)) {
return false;
}
result_type v = Pop().to<result_type>();
s_type s;
for (size_t i = 0; i < arraysize(s.val); i++) s.val[LANE(i, s)] = v;
Push(WasmValue(Simd128(s)));
return true;
}
template <typename s_type, typename wide_type, typename narrow_type>
bool DoSimdLoadExtend(Decoder* decoder, InterpreterCode* code, pc_t pc,
int* const len, MachineRepresentation rep) {
static_assert(sizeof(wide_type) == sizeof(narrow_type) * 2,
"size mismatch for wide and narrow types");
if (!ExecuteLoad<uint64_t, uint64_t>(decoder, code, pc, len, rep,
/*prefix_len=*/*len)) {
return false;
}
constexpr int lanes = kSimd128Size / sizeof(wide_type);
uint64_t v = Pop().to_u64();
s_type s;
for (int i = 0; i < lanes; i++) {
uint8_t shift = i * (sizeof(narrow_type) * 8);
narrow_type el = static_cast<narrow_type>(v >> shift);
s.val[LANE(i, s)] = static_cast<wide_type>(el);
}
Push(WasmValue(Simd128(s)));
return true;
}
template <typename s_type, typename load_type>
bool DoSimdLoadZeroExtend(Decoder* decoder, InterpreterCode* code, pc_t pc,
int* const len, MachineRepresentation rep) {
if (!ExecuteLoad<load_type, load_type>(decoder, code, pc, len, rep,
/*prefix_len=*/*len)) {
return false;
}
load_type v = Pop().to<load_type>();
s_type s;
// All lanes are 0.
for (size_t i = 0; i < arraysize(s.val); i++) s.val[LANE(i, s)] = 0;
// Lane 0 is set to the loaded value.
s.val[LANE(0, s)] = v;
Push(WasmValue(Simd128(s)));
return true;
}
template <typename s_type, typename result_type, typename load_type>
bool DoSimdLoadLane(Decoder* decoder, InterpreterCode* code, pc_t pc,
int* const len, MachineRepresentation rep) {
s_type value = Pop().to_s128().to<s_type>();
if (!ExecuteLoad<result_type, load_type>(decoder, code, pc, len, rep,
/*prefix_len=*/*len)) {
return false;
}
SimdLaneImmediate<Decoder::kNoValidation> lane_imm(decoder,
code->at(pc + *len));
*len += lane_imm.length;
result_type loaded = Pop().to<result_type>();
value.val[LANE(lane_imm.lane, value)] = loaded;
Push(WasmValue(Simd128(value)));
return true;
}
template <typename s_type, typename result_type, typename load_type>
bool DoSimdStoreLane(Decoder* decoder, InterpreterCode* code, pc_t pc,
int* const len, MachineRepresentation rep) {
// Extract a single lane, push it onto the stack, then store the lane.
s_type value = Pop().to_s128().to<s_type>();
MemoryAccessImmediate<Decoder::kNoValidation> imm(
decoder, code->at(pc + *len), sizeof(load_type), module()->is_memory64);
SimdLaneImmediate<Decoder::kNoValidation> lane_imm(
decoder, code->at(pc + *len + imm.length));
Push(WasmValue(value.val[LANE(lane_imm.lane, value)]));
// ExecuteStore will update the len, so pass it unchanged here.
if (!ExecuteStore<result_type, load_type>(decoder, code, pc, len, rep,
/*prefix_len=*/*len)) {
return false;
}
*len += lane_imm.length;
return true;
}
template <typename s_type, typename d_type, typename narrow, typename wide>
bool DoSimdExtMul(unsigned start) {
WasmValue v2 = Pop();
WasmValue v1 = Pop();
auto s1 = v1.to_s128().to<s_type>();
auto s2 = v2.to_s128().to<s_type>();
auto end = start + (kSimd128Size / sizeof(wide));
d_type res;
for (size_t dst = 0; start < end; ++start, ++dst) {
// Need static_cast for unsigned narrow types.
res.val[LANE(dst, res)] =
MultiplyLong<wide>(static_cast<narrow>(s1.val[LANE(start, s1)]),
static_cast<narrow>(s2.val[LANE(start, s2)]));
}
Push(WasmValue(Simd128(res)));
return true;
}
template <typename s_type>
bool DoSimdSignSelect() {
constexpr int lanes = kSimd128Size / sizeof(s_type::val[0]);
auto c = Pop().to_s128().to<s_type>();
auto v2 = Pop().to_s128().to<s_type>();
auto v1 = Pop().to_s128().to<s_type>();
s_type res;
for (int i = 0; i < lanes; ++i) {
res.val[LANE(i, res)] =
c.val[LANE(i, c)] < 0 ? v1.val[LANE(i, v1)] : v2.val[LANE(i, v2)];
}
Push(WasmValue(Simd128(res)));
return true;
}
template <typename DstSimdType, typename SrcSimdType, typename Wide,
typename Narrow>
bool DoSimdExtAddPairwise() {
constexpr int lanes = kSimd128Size / sizeof(DstSimdType::val[0]);
auto v = Pop().to_s128().to<SrcSimdType>();
DstSimdType res;
for (int i = 0; i < lanes; ++i) {
res.val[LANE(i, res)] =
AddLong<Wide>(static_cast<Narrow>(v.val[LANE(i * 2, v)]),
static_cast<Narrow>(v.val[LANE(i * 2 + 1, v)]));
}
Push(WasmValue(Simd128(res)));
return true;
}
// Check if our control stack (frames_) exceeds the limit. Trigger stack
// overflow if it does, and unwinding the current frame.
// Returns true if execution can continue, false if the stack was fully
// unwound. Do call this function immediately *after* pushing a new frame. The
// pc of the top frame will be reset to 0 if the stack check fails.
bool DoStackCheck() V8_WARN_UNUSED_RESULT {
// The goal of this stack check is not to prevent actual stack overflows,
// but to simulate stack overflows during the execution of compiled code.
// That is why this function uses FLAG_stack_size, even though the value
// stack actually lies in zone memory.
const size_t stack_size_limit = FLAG_stack_size * KB;
// Sum up the value stack size and the control stack size.
const size_t current_stack_size = (sp_ - stack_.get()) * sizeof(*sp_) +
frames_.size() * sizeof(frames_[0]);
if (V8_LIKELY(current_stack_size <= stack_size_limit)) {
return true;
}
// The pc of the top frame is initialized to the first instruction. We reset
// it to 0 here such that we report the same position as in compiled code.
frames_.back().pc = 0;
isolate_->StackOverflow();
return HandleException(isolate_) == WasmInterpreter::HANDLED;
}
void EncodeI32ExceptionValue(Handle<FixedArray> encoded_values,
uint32_t* encoded_index, uint32_t value) {
encoded_values->set((*encoded_index)++, Smi::FromInt(value >> 16));
encoded_values->set((*encoded_index)++, Smi::FromInt(value & 0xffff));
}
void EncodeI64ExceptionValue(Handle<FixedArray> encoded_values,
uint32_t* encoded_index, uint64_t value) {
EncodeI32ExceptionValue(encoded_values, encoded_index,
static_cast<uint32_t>(value >> 32));
EncodeI32ExceptionValue(encoded_values, encoded_index,
static_cast<uint32_t>(value));
}
// Allocate, initialize and throw a new exception. The exception values are
// being popped off the operand stack. Returns true if the exception is being
// handled locally by the interpreter, false otherwise (interpreter exits).
bool DoThrowException(const WasmException* exception,
uint32_t index) V8_WARN_UNUSED_RESULT {
HandleScope handle_scope(isolate_); // Avoid leaking handles.
Handle<WasmExceptionTag> exception_tag(
WasmExceptionTag::cast(instance_object_->exceptions_table().get(index)),
isolate_);
uint32_t encoded_size = WasmExceptionPackage::GetEncodedSize(exception);
Handle<WasmExceptionPackage> exception_object =
WasmExceptionPackage::New(isolate_, exception_tag, encoded_size);
Handle<FixedArray> encoded_values = Handle<FixedArray>::cast(
WasmExceptionPackage::GetExceptionValues(isolate_, exception_object));
// Encode the exception values on the operand stack into the exception
// package allocated above. This encoding has to be in sync with other
// backends so that exceptions can be passed between them.
const WasmExceptionSig* sig = exception->sig;
uint32_t encoded_index = 0;
sp_t base_index = StackHeight() - sig->parameter_count();
for (size_t i = 0; i < sig->parameter_count(); ++i) {
WasmValue value = GetStackValue(base_index + i);
switch (sig->GetParam(i).kind()) {
case ValueType::kI32: {
uint32_t u32 = value.to_u32();
EncodeI32ExceptionValue(encoded_values, &encoded_index, u32);
break;
}
case ValueType::kF32: {
uint32_t f32 = value.to_f32_boxed().get_bits();
EncodeI32ExceptionValue(encoded_values, &encoded_index, f32);
break;
}
case ValueType::kI64: {
uint64_t u64 = value.to_u64();
EncodeI64ExceptionValue(encoded_values, &encoded_index, u64);
break;
}
case ValueType::kF64: {
uint64_t f64 = value.to_f64_boxed().get_bits();
EncodeI64ExceptionValue(encoded_values, &encoded_index, f64);
break;
}
case ValueType::kS128: {
int4 s128 = value.to_s128().to_i32x4();
EncodeI32ExceptionValue(encoded_values, &encoded_index, s128.val[0]);
EncodeI32ExceptionValue(encoded_values, &encoded_index, s128.val[1]);
EncodeI32ExceptionValue(encoded_values, &encoded_index, s128.val[2]);
EncodeI32ExceptionValue(encoded_values, &encoded_index, s128.val[3]);
break;
}
case ValueType::kRef:
case ValueType::kOptRef: {
switch (sig->GetParam(i).heap_representation()) {
case HeapType::kExtern:
case HeapType::kFunc:
case HeapType::kAny: {
Handle<Object> externref = value.to_externref();
encoded_values->set(encoded_index++, *externref);
break;
}
case HeapType::kBottom:
UNREACHABLE();
case HeapType::kEq:
case HeapType::kData:
case HeapType::kI31:
default:
// TODO(7748): Implement these.
UNIMPLEMENTED();
break;
}
break;
}
case ValueType::kRtt: // TODO(7748): Implement.
case ValueType::kRttWithDepth:
case ValueType::kI8:
case ValueType::kI16:
case ValueType::kStmt:
case ValueType::kBottom:
UNREACHABLE();
}
}
DCHECK_EQ(encoded_size, encoded_index);
Drop(static_cast<int>(sig->parameter_count()));
// Now that the exception is ready, set it as pending.
isolate_->Throw(*exception_object);
return HandleException(isolate_) == WasmInterpreter::HANDLED;
}
// Throw a given existing exception. Returns true if the exception is being
// handled locally by the interpreter, false otherwise (interpreter exits).
bool DoRethrowException(WasmValue exception) {
isolate_->ReThrow(*exception.to_externref());
return HandleException(isolate_) == WasmInterpreter::HANDLED;
}
// Determines whether the given exception has a tag matching the expected tag
// for the given index within the exception table of the current instance.
bool MatchingExceptionTag(Handle<Object> exception_object, uint32_t index) {
if (!exception_object->IsWasmExceptionPackage(isolate_)) return false;
Handle<Object> caught_tag = WasmExceptionPackage::GetExceptionTag(
isolate_, Handle<WasmExceptionPackage>::cast(exception_object));
Handle<Object> expected_tag =
handle(instance_object_->exceptions_table().get(index), isolate_);
DCHECK(expected_tag->IsWasmExceptionTag());
return expected_tag.is_identical_to(caught_tag);
}
void DecodeI32ExceptionValue(Handle<FixedArray> encoded_values,
uint32_t* encoded_index, uint32_t* value) {
uint32_t msb = Smi::cast(encoded_values->get((*encoded_index)++)).value();
uint32_t lsb = Smi::cast(encoded_values->get((*encoded_index)++)).value();
*value = (msb << 16) | (lsb & 0xffff);
}
void DecodeI64ExceptionValue(Handle<FixedArray> encoded_values,
uint32_t* encoded_index, uint64_t* value) {
uint32_t lsb = 0, msb = 0;
DecodeI32ExceptionValue(encoded_values, encoded_index, &msb);
DecodeI32ExceptionValue(encoded_values, encoded_index, &lsb);
*value = (static_cast<uint64_t>(msb) << 32) | static_cast<uint64_t>(lsb);
}
// Unpack the values encoded in the given exception. The exception values are
// pushed onto the operand stack. Callers must perform a tag check to ensure
// the encoded values match the expected signature of the exception.
void DoUnpackException(const WasmException* exception,
Handle<Object> exception_object) {
Handle<FixedArray> encoded_values =
Handle<FixedArray>::cast(WasmExceptionPackage::GetExceptionValues(
isolate_, Handle<WasmExceptionPackage>::cast(exception_object)));
// Decode the exception values from the given exception package and push
// them onto the operand stack. This encoding has to be in sync with other
// backends so that exceptions can be passed between them.
const WasmExceptionSig* sig = exception->sig;
uint32_t encoded_index = 0;
for (size_t i = 0; i < sig->parameter_count(); ++i) {
WasmValue value;
switch (sig->GetParam(i).kind()) {
case ValueType::kI32: {
uint32_t u32 = 0;
DecodeI32ExceptionValue(encoded_values, &encoded_index, &u32);
value = WasmValue(u32);
break;
}
case ValueType::kF32: {
uint32_t f32_bits = 0;
DecodeI32ExceptionValue(encoded_values, &encoded_index, &f32_bits);
value = WasmValue(Float32::FromBits(f32_bits));
break;
}
case ValueType::kI64: {
uint64_t u64 = 0;
DecodeI64ExceptionValue(encoded_values, &encoded_index, &u64);
value = WasmValue(u64);
break;
}
case ValueType::kF64: {
uint64_t f64_bits = 0;
DecodeI64ExceptionValue(encoded_values, &encoded_index, &f64_bits);
value = WasmValue(Float64::FromBits(f64_bits));
break;
}
case ValueType::kS128: {
int4 s128 = {0, 0, 0, 0};
uint32_t* vals = reinterpret_cast<uint32_t*>(s128.val);
DecodeI32ExceptionValue(encoded_values, &encoded_index, &vals[0]);
DecodeI32ExceptionValue(encoded_values, &encoded_index, &vals[1]);
DecodeI32ExceptionValue(encoded_values, &encoded_index, &vals[2]);
DecodeI32ExceptionValue(encoded_values, &encoded_index, &vals[3]);
value = WasmValue(Simd128(s128));
break;
}
case ValueType::kRef:
case ValueType::kOptRef: {
switch (sig->GetParam(i).heap_representation()) {
case HeapType::kExtern:
case HeapType::kFunc:
case HeapType::kAny: {
Handle<Object> externref(encoded_values->get(encoded_index++),
isolate_);
value = WasmValue(externref);
break;
}
default:
// TODO(7748): Implement these.
UNIMPLEMENTED();
break;
}
break;
}
case ValueType::kRtt: // TODO(7748): Implement.
case ValueType::kRttWithDepth:
case ValueType::kI8:
case ValueType::kI16:
case ValueType::kStmt:
case ValueType::kBottom:
UNREACHABLE();
}
Push(value);
}
DCHECK_EQ(WasmExceptionPackage::GetEncodedSize(exception), encoded_index);
}
void Execute(InterpreterCode* code, pc_t pc, int max) {
DCHECK_NOT_NULL(code->side_table);
DCHECK(!frames_.empty());
// There must be enough space on the stack to hold the arguments, locals,
// and the value stack.
DCHECK_LE(code->function->sig->parameter_count() +
code->locals.type_list.size() +
code->side_table->max_stack_height_,
stack_limit_ - stack_.get() - frames_.back().sp);
// Seal the surrounding {HandleScope} to ensure that all cases within the
// interpreter switch below which deal with handles open their own scope.
// This avoids leaking / accumulating handles in the surrounding scope.
SealHandleScope shs(isolate_);
Decoder decoder(code->start, code->end);
pc_t limit = code->end - code->start;
while (true) {
DCHECK_GT(limit, pc);
DCHECK_NOT_NULL(code->start);
int len = 1;
byte orig = code->start[pc];
WasmOpcode opcode = static_cast<WasmOpcode>(orig);
if (WasmOpcodes::IsPrefixOpcode(opcode)) {
uint32_t prefixed_opcode_length = 0;
opcode = decoder.read_prefixed_opcode<Decoder::kNoValidation>(
code->at(pc), &prefixed_opcode_length);
// read_prefixed_opcode includes the prefix byte, overwrite len.
len = prefixed_opcode_length;
}
// If max is 0, break. If max is positive (a limit is set), decrement it.
if (max >= 0 && WasmOpcodes::IsBreakable(opcode)) {
if (max == 0) break;
--max;
}
TRACE("@%-3zu: %-24s:", pc, WasmOpcodes::OpcodeName(opcode));
TraceValueStack();
TRACE("\n");
#ifdef DEBUG
// Compute the stack effect of this opcode, and verify later that the
// stack was modified accordingly.
std::pair<uint32_t, uint32_t> stack_effect =
StackEffect(codemap_.module(), frames_.back().code->function->sig,
code->start + pc, code->end);
sp_t expected_new_stack_height =
StackHeight() - stack_effect.first + stack_effect.second;
#endif
switch (orig) {
case kExprNop:
break;
case kExprBlock:
case kExprLoop:
case kExprTry: {
BlockTypeImmediate<Decoder::kNoValidation> imm(
WasmFeatures::All(), &decoder, code->at(pc + 1), module());
len = 1 + imm.length;
break;
}
case kExprIf: {
BlockTypeImmediate<Decoder::kNoValidation> imm(
WasmFeatures::All(), &decoder, code->at(pc + 1), module());
WasmValue cond = Pop();
bool is_true = cond.to<uint32_t>() != 0;
if (is_true) {
// fall through to the true block.
len = 1 + imm.length;
TRACE(" true => fallthrough\n");
} else {
len = LookupTargetDelta(code, pc);
TRACE(" false => @%zu\n", pc + len);
}
break;
}
case kExprElse:
case kExprCatch: {
len = LookupTargetDelta(code, pc);
TRACE(" end => @%zu\n", pc + len);
break;
}
case kExprThrow: {
ExceptionIndexImmediate<Decoder::kNoValidation> imm(&decoder,
code->at(pc + 1));
CommitPc(pc); // Needed for local unwinding.
const WasmException* exception = &module()->exceptions[imm.index];
if (!DoThrowException(exception, imm.index)) return;
ReloadFromFrameOnException(&decoder, &code, &pc, &limit);
continue; // Do not bump pc.
}
case kExprRethrow: {
HandleScope handle_scope(isolate_); // Avoid leaking handles.
WasmValue ex = Pop();
if (ex.to_externref()->IsNull()) {
return DoTrap(kTrapRethrowNull, pc);
}
CommitPc(pc); // Needed for local unwinding.
if (!DoRethrowException(ex)) return;
ReloadFromFrameOnException(&decoder, &code, &pc, &limit);
continue; // Do not bump pc.
}
case kExprSelectWithType: {
SelectTypeImmediate<Decoder::kNoValidation> imm(
WasmFeatures::All(), &decoder, code->at(pc + 1), module());
len = 1 + imm.length;
V8_FALLTHROUGH;
}
case kExprSelect: {
HandleScope scope(isolate_); // Avoid leaking handles.
WasmValue cond = Pop();
WasmValue fval = Pop();
WasmValue tval = Pop();
Push(cond.to<int32_t>() != 0 ? tval : fval);
break;
}
case kExprBr: {
BranchDepthImmediate<Decoder::kNoValidation> imm(&decoder,
code->at(pc + 1));
len = DoBreak(code, pc, imm.depth);
TRACE(" br => @%zu\n", pc + len);
break;
}
case kExprBrIf: {
BranchDepthImmediate<Decoder::kNoValidation> imm(&decoder,
code->at(pc + 1));
WasmValue cond = Pop();
bool is_true = cond.to<uint32_t>() != 0;
if (is_true) {
len = DoBreak(code, pc, imm.depth);
TRACE(" br_if => @%zu\n", pc + len);
} else {
TRACE(" false => fallthrough\n");
len = 1 + imm.length;
}
break;
}
case kExprBrTable: {
BranchTableImmediate<Decoder::kNoValidation> imm(&decoder,
code->at(pc + 1));
BranchTableIterator<Decoder::kNoValidation> iterator(&decoder, imm);
uint32_t key = Pop().to<uint32_t>();
uint32_t depth = 0;
if (key >= imm.table_count) key = imm.table_count;
for (uint32_t i = 0; i <= key; i++) {
DCHECK(iterator.has_next());
depth = iterator.next();
}
len = key + DoBreak(code, pc + key, static_cast<size_t>(depth));
TRACE(" br[%u] => @%zu\n", key, pc + key + len);
break;
}
case kExprReturn: {
size_t arity = code->function->sig->return_count();
if (!DoReturn(&decoder, &code, &pc, &limit, arity)) return;
continue; // Do not bump pc.
}
case kExprUnreachable: {
return DoTrap(kTrapUnreachable, pc);
}
case kExprEnd: {
break;
}
case kExprI32Const: {
ImmI32Immediate<Decoder::kNoValidation> imm(&decoder,
code->at(pc + 1));
Push(WasmValue(imm.value));
len = 1 + imm.length;
break;
}
case kExprI64Const: {
ImmI64Immediate<Decoder::kNoValidation> imm(&decoder,
code->at(pc + 1));
Push(WasmValue(imm.value));
len = 1 + imm.length;
break;
}
case kExprF32Const: {
ImmF32Immediate<Decoder::kNoValidation> imm(&decoder,
code->at(pc + 1));
Push(WasmValue(imm.value));
len = 1 + imm.length;
break;
}
case kExprF64Const: {
ImmF64Immediate<Decoder::kNoValidation> imm(&decoder,
code->at(pc + 1));
Push(WasmValue(imm.value));
len = 1 + imm.length;
break;
}
case kExprRefNull: {
HeapTypeImmediate<Decoder::kNoValidation> imm(
WasmFeatures::All(), &decoder, code->at(pc + 1), module());
len = 1 + imm.length;
Push(WasmValue(isolate_->factory()->null_value()));
break;
}
case kExprRefFunc: {
FunctionIndexImmediate<Decoder::kNoValidation> imm(&decoder,
code->at(pc + 1));
HandleScope handle_scope(isolate_); // Avoid leaking handles.
Handle<WasmExternalFunction> function =
WasmInstanceObject::GetOrCreateWasmExternalFunction(
isolate_, instance_object_, imm.index);
Push(WasmValue(function));
len = 1 + imm.length;
break;
}
case kExprLocalGet: {
LocalIndexImmediate<Decoder::kNoValidation> imm(&decoder,
code->at(pc + 1));
HandleScope handle_scope(isolate_); // Avoid leaking handles.
Push(GetStackValue(frames_.back().sp + imm.index));
len = 1 + imm.length;
break;
}
case kExprLocalSet: {
LocalIndexImmediate<Decoder::kNoValidation> imm(&decoder,
code->at(pc + 1));
HandleScope handle_scope(isolate_); // Avoid leaking handles.
WasmValue val = Pop();
SetStackValue(frames_.back().sp + imm.index, val);
len = 1 + imm.length;
break;
}
case kExprLocalTee: {
LocalIndexImmediate<Decoder::kNoValidation> imm(&decoder,
code->at(pc + 1));
HandleScope handle_scope(isolate_); // Avoid leaking handles.
WasmValue val = Pop();
SetStackValue(frames_.back().sp + imm.index, val);
Push(val);
len = 1 + imm.length;
break;
}
case kExprDrop: {
Drop();
break;
}
case kExprCallFunction: {
CallFunctionImmediate<Decoder::kNoValidation> imm(&decoder,
code->at(pc + 1));
InterpreterCode* target = codemap_.GetCode(imm.index);
CHECK(!target->function->imported);
// Execute an internal call.
if (!DoCall(&decoder, target, &pc, &limit)) return;
code = target;
continue; // Do not bump pc.
} break;
case kExprCallIndirect: {
CallIndirectImmediate<Decoder::kNoValidation> imm(
WasmFeatures::All(), &decoder, code->at(pc + 1));
uint32_t entry_index = Pop().to<uint32_t>();
CommitPc(pc); // TODO(wasm): Be more disciplined about committing PC.
CallResult result =
CallIndirectFunction(imm.table_index, entry_index, imm.sig_index);
switch (result.type) {
case CallResult::INTERNAL:
// The import is a function of this instance. Call it directly.
if (!DoCall(&decoder, result.interpreter_code, &pc, &limit))
return;
code = result.interpreter_code;
continue; // Do not bump pc.
case CallResult::INVALID_FUNC:
return DoTrap(kTrapTableOutOfBounds, pc);
case CallResult::SIGNATURE_MISMATCH:
return DoTrap(kTrapFuncSigMismatch, pc);
}
} break;
case kExprReturnCall: {
// Make return calls more expensive, so that return call recursions
// don't cause a timeout.
if (max > 0) max = std::max(0, max - 100);
CallFunctionImmediate<Decoder::kNoValidation> imm(&decoder,
code->at(pc + 1));
InterpreterCode* target = codemap_.GetCode(imm.index);
CHECK(!target->function->imported);
// Enter internal found function.
if (!DoReturnCall(&decoder, target, &pc, &limit)) return;
code = target;
continue; // Do not bump pc.
} break;
case kExprReturnCallIndirect: {
// Make return calls more expensive, so that return call recursions
// don't cause a timeout.
if (max > 0) max = std::max(0, max - 100);
CallIndirectImmediate<Decoder::kNoValidation> imm(
WasmFeatures::All(), &decoder, code->at(pc + 1));
uint32_t entry_index = Pop().to<uint32_t>();
CommitPc(pc); // TODO(wasm): Be more disciplined about committing PC.
// TODO(wasm): Calling functions needs some refactoring to avoid
// multi-exit code like this.
CallResult result =
CallIndirectFunction(imm.table_index, entry_index, imm.sig_index);
switch (result.type) {
case CallResult::INTERNAL: {
InterpreterCode* target = result.interpreter_code;
DCHECK(!target->function->imported);
// The function belongs to this instance. Enter it directly.
if (!DoReturnCall(&decoder, target, &pc, &limit)) return;
code = result.interpreter_code;
continue; // Do not bump pc.
}
case CallResult::INVALID_FUNC:
return DoTrap(kTrapTableOutOfBounds, pc);
case CallResult::SIGNATURE_MISMATCH:
return DoTrap(kTrapFuncSigMismatch, pc);
}
} break;
case kExprGlobalGet: {
GlobalIndexImmediate<Decoder::kNoValidation> imm(&decoder,
code->at(pc + 1));
HandleScope handle_scope(isolate_);
Push(WasmInstanceObject::GetGlobalValue(
instance_object_, module()->globals[imm.index]));
len = 1 + imm.length;
break;
}
case kExprGlobalSet: {
GlobalIndexImmediate<Decoder::kNoValidation> imm(&decoder,
code->at(pc + 1));
auto& global = module()->globals[imm.index];
switch (global.type.kind()) {
#define CASE_TYPE(valuetype, ctype) \
case ValueType::valuetype: { \
uint8_t* ptr = \
WasmInstanceObject::GetGlobalStorage(instance_object_, global); \
WriteLittleEndianValue<ctype>(reinterpret_cast<Address>(ptr), \
Pop().to<ctype>()); \
break; \
}
FOREACH_WASMVALUE_CTYPES(CASE_TYPE)
#undef CASE_TYPE
case ValueType::kRef:
case ValueType::kOptRef: {
// TODO(7748): Type checks or DCHECKs for ref types?
HandleScope handle_scope(isolate_); // Avoid leaking handles.
Handle<FixedArray> global_buffer; // The buffer of the global.
uint32_t global_index; // The index into the buffer.
std::tie(global_buffer, global_index) =
WasmInstanceObject::GetGlobalBufferAndIndex(instance_object_,
global);
Handle<Object> ref = Pop().to_externref();
global_buffer->set(global_index, *ref);
break;
}
case ValueType::kRtt: // TODO(7748): Implement.
case ValueType::kRttWithDepth:
case ValueType::kI8:
case ValueType::kI16:
case ValueType::kStmt:
case ValueType::kBottom:
UNREACHABLE();
}
len = 1 + imm.length;
break;
}
case kExprTableGet: {
TableIndexImmediate<Decoder::kNoValidation> imm(&decoder,
code->at(pc + 1));
HandleScope handle_scope(isolate_);
auto table = handle(
WasmTableObject::cast(instance_object_->tables().get(imm.index)),
isolate_);
uint32_t table_size = table->current_length();
uint32_t entry_index = Pop().to<uint32_t>();
if (entry_index >= table_size) {
return DoTrap(kTrapTableOutOfBounds, pc);
}
Handle<Object> value =
WasmTableObject::Get(isolate_, table, entry_index);
Push(WasmValue(value));
len = 1 + imm.length;
break;
}
case kExprTableSet: {
TableIndexImmediate<Decoder::kNoValidation> imm(&decoder,
code->at(pc + 1));
HandleScope handle_scope(isolate_);
auto table = handle(
WasmTableObject::cast(instance_object_->tables().get(imm.index)),
isolate_);
uint32_t table_size = table->current_length();
Handle<Object> value = Pop().to_externref();
uint32_t entry_index = Pop().to<uint32_t>();
if (entry_index >= table_size) {
return DoTrap(kTrapTableOutOfBounds, pc);
}
WasmTableObject::Set(isolate_, table, entry_index, value);
len = 1 + imm.length;
break;
}
#define LOAD_CASE(name, ctype, mtype, rep) \
case kExpr##name: { \
if (!ExecuteLoad<ctype, mtype>(&decoder, code, pc, &len, \
MachineRepresentation::rep)) \
return; \
break; \
}
LOAD_CASE(I32LoadMem8S, int32_t, int8_t, kWord8);
LOAD_CASE(I32LoadMem8U, int32_t, uint8_t, kWord8);
LOAD_CASE(I32LoadMem16S, int32_t, int16_t, kWord16);
LOAD_CASE(I32LoadMem16U, int32_t, uint16_t, kWord16);
LOAD_CASE(I64LoadMem8S, int64_t, int8_t, kWord8);
LOAD_CASE(I64LoadMem8U, int64_t, uint8_t, kWord16);
LOAD_CASE(I64LoadMem16S, int64_t, int16_t, kWord16);
LOAD_CASE(I64LoadMem16U, int64_t, uint16_t, kWord16);
LOAD_CASE(I64LoadMem32S, int64_t, int32_t, kWord32);
LOAD_CASE(I64LoadMem32U, int64_t, uint32_t, kWord32);
LOAD_CASE(I32LoadMem, int32_t, int32_t, kWord32);
LOAD_CASE(I64LoadMem, int64_t, int64_t, kWord64);
LOAD_CASE(F32LoadMem, Float32, uint32_t, kFloat32);
LOAD_CASE(F64LoadMem, Float64, uint64_t, kFloat64);
#undef LOAD_CASE
#define STORE_CASE(name, ctype, mtype, rep) \
case kExpr##name: { \
if (!ExecuteStore<ctype, mtype>(&decoder, code, pc, &len, \
MachineRepresentation::rep)) \
return; \
break; \
}
STORE_CASE(I32StoreMem8, int32_t, int8_t, kWord8);
STORE_CASE(I32StoreMem16, int32_t, int16_t, kWord16);
STORE_CASE(I64StoreMem8, int64_t, int8_t, kWord8);
STORE_CASE(I64StoreMem16, int64_t, int16_t, kWord16);
STORE_CASE(I64StoreMem32, int64_t, int32_t, kWord32);
STORE_CASE(I32StoreMem, int32_t, int32_t, kWord32);
STORE_CASE(I64StoreMem, int64_t, int64_t, kWord64);
STORE_CASE(F32StoreMem, Float32, uint32_t, kFloat32);
STORE_CASE(F64StoreMem, Float64, uint64_t, kFloat64);
#undef STORE_CASE
#define ASMJS_LOAD_CASE(name, ctype, mtype, defval) \
case kExpr##name: { \
uint32_t index = Pop().to<uint32_t>(); \
ctype result; \
Address addr = BoundsCheckMem<mtype>(0, index); \
if (!addr) { \
result = defval; \
} else { \
/* TODO(titzer): alignment for asmjs load mem? */ \
result = static_cast<ctype>(*reinterpret_cast<mtype*>(addr)); \
} \
Push(WasmValue(result)); \
break; \
}
ASMJS_LOAD_CASE(I32AsmjsLoadMem8S, int32_t, int8_t, 0);
ASMJS_LOAD_CASE(I32AsmjsLoadMem8U, int32_t, uint8_t, 0);
ASMJS_LOAD_CASE(I32AsmjsLoadMem16S, int32_t, int16_t, 0);
ASMJS_LOAD_CASE(I32AsmjsLoadMem16U, int32_t, uint16_t, 0);
ASMJS_LOAD_CASE(I32AsmjsLoadMem, int32_t, int32_t, 0);
ASMJS_LOAD_CASE(F32AsmjsLoadMem, float, float,
std::numeric_limits<float>::quiet_NaN());
ASMJS_LOAD_CASE(F64AsmjsLoadMem, double, double,
std::numeric_limits<double>::quiet_NaN());
#undef ASMJS_LOAD_CASE
#define ASMJS_STORE_CASE(name, ctype, mtype) \
case kExpr##name: { \
WasmValue val = Pop(); \
uint32_t index = Pop().to<uint32_t>(); \
Address addr = BoundsCheckMem<mtype>(0, index); \
if (addr) { \
*(reinterpret_cast<mtype*>(addr)) = static_cast<mtype>(val.to<ctype>()); \
} \
Push(val); \
break; \
}
ASMJS_STORE_CASE(I32AsmjsStoreMem8, int32_t, int8_t);
ASMJS_STORE_CASE(I32AsmjsStoreMem16, int32_t, int16_t);
ASMJS_STORE_CASE(I32AsmjsStoreMem, int32_t, int32_t);
ASMJS_STORE_CASE(F32AsmjsStoreMem, float, float);
ASMJS_STORE_CASE(F64AsmjsStoreMem, double, double);
#undef ASMJS_STORE_CASE
case kExprMemoryGrow: {
MemoryIndexImmediate<Decoder::kNoValidation> imm(&decoder,
code->at(pc + 1));
// TODO(clemensb): Fix this for memory64.
uint32_t delta_pages = Pop().to<uint32_t>();
HandleScope handle_scope(isolate_); // Avoid leaking handles.
Handle<WasmMemoryObject> memory(instance_object_->memory_object(),
isolate_);
int32_t result =
WasmMemoryObject::Grow(isolate_, memory, delta_pages);
Push(WasmValue(result));
len = 1 + imm.length;
// Treat one grow_memory instruction like 1000 other instructions,
// because it is a really expensive operation.
if (max > 0) max = std::max(0, max - 1000);
break;
}
case kExprMemorySize: {
MemoryIndexImmediate<Decoder::kNoValidation> imm(&decoder,
code->at(pc + 1));
uint64_t num_pages = instance_object_->memory_size() / kWasmPageSize;
Push(module()->is_memory64
? WasmValue(num_pages)
: WasmValue(static_cast<uint32_t>(num_pages)));
len = 1 + imm.length;
break;
}
// We need to treat kExprI32ReinterpretF32 and kExprI64ReinterpretF64
// specially to guarantee that the quiet bit of a NaN is preserved on
// ia32 by the reinterpret casts.
case kExprI32ReinterpretF32: {
WasmValue val = Pop();
Push(WasmValue(ExecuteI32ReinterpretF32(val)));
break;
}
case kExprI64ReinterpretF64: {
WasmValue val = Pop();
Push(WasmValue(ExecuteI64ReinterpretF64(val)));
break;
}
#define SIGN_EXTENSION_CASE(name, wtype, ntype) \
case kExpr##name: { \
ntype val = static_cast<ntype>(Pop().to<wtype>()); \
Push(WasmValue(static_cast<wtype>(val))); \
break; \
}
SIGN_EXTENSION_CASE(I32SExtendI8, int32_t, int8_t);
SIGN_EXTENSION_CASE(I32SExtendI16, int32_t, int16_t);
SIGN_EXTENSION_CASE(I64SExtendI8, int64_t, int8_t);
SIGN_EXTENSION_CASE(I64SExtendI16, int64_t, int16_t);
SIGN_EXTENSION_CASE(I64SExtendI32, int64_t, int32_t);
#undef SIGN_EXTENSION_CASE
case kExprRefIsNull: {
len = 1;
HandleScope handle_scope(isolate_); // Avoid leaking handles.
uint32_t result = Pop().to_externref()->IsNull() ? 1 : 0;
Push(WasmValue(result));
break;
}
case kNumericPrefix: {
if (!ExecuteNumericOp(opcode, &decoder, code, pc, &len)) return;
break;
}
case kAtomicPrefix: {
if (!ExecuteAtomicOp(opcode, &decoder, code, pc, &len)) return;
break;
}
case kSimdPrefix: {
if (!ExecuteSimdOp(opcode, &decoder, code, pc, &len)) return;
break;
}
#define EXECUTE_SIMPLE_BINOP(name, ctype, op) \
case kExpr##name: { \
WasmValue rval = Pop(); \
WasmValue lval = Pop(); \
auto result = lval.to<ctype>() op rval.to<ctype>(); \
possible_nondeterminism_ |= has_nondeterminism(result); \
Push(WasmValue(result)); \
break; \
}
FOREACH_SIMPLE_BINOP(EXECUTE_SIMPLE_BINOP)
#undef EXECUTE_SIMPLE_BINOP
#define EXECUTE_OTHER_BINOP(name, ctype) \
case kExpr##name: { \
TrapReason trap = kTrapCount; \
ctype rval = Pop().to<ctype>(); \
ctype lval = Pop().to<ctype>(); \
auto result = Execute##name(lval, rval, &trap); \
possible_nondeterminism_ |= has_nondeterminism(result); \
if (trap != kTrapCount) return DoTrap(trap, pc); \
Push(WasmValue(result)); \
break; \
}
FOREACH_OTHER_BINOP(EXECUTE_OTHER_BINOP)
#undef EXECUTE_OTHER_BINOP
#define EXECUTE_UNOP(name, ctype, exec_fn) \
case kExpr##name: { \
TrapReason trap = kTrapCount; \
ctype val = Pop().to<ctype>(); \
auto result = exec_fn(val, &trap); \
possible_nondeterminism_ |= has_nondeterminism(result); \
if (trap != kTrapCount) return DoTrap(trap, pc); \
Push(WasmValue(result)); \
break; \
}
#define EXECUTE_OTHER_UNOP(name, ctype) EXECUTE_UNOP(name, ctype, Execute##name)
FOREACH_OTHER_UNOP(EXECUTE_OTHER_UNOP)
#undef EXECUTE_OTHER_UNOP
#define EXECUTE_I32CONV_FLOATOP(name, out_type, in_type) \
EXECUTE_UNOP(name, in_type, ExecuteConvert<out_type>)
FOREACH_I32CONV_FLOATOP(EXECUTE_I32CONV_FLOATOP)
#undef EXECUTE_I32CONV_FLOATOP
#undef EXECUTE_UNOP
default:
FATAL("Unknown or unimplemented opcode #%d:%s", code->start[pc],
WasmOpcodes::OpcodeName(
static_cast<WasmOpcode>(code->start[pc])));
UNREACHABLE();
}
#ifdef DEBUG
if (!WasmOpcodes::IsControlOpcode(opcode)) {
DCHECK_EQ(expected_new_stack_height, StackHeight());
}
#endif
pc += len;
if (pc == limit) {
// Fell off end of code; do an implicit return.
TRACE("@%-3zu: ImplicitReturn\n", pc);
size_t arity = code->function->sig->return_count();
DCHECK_EQ(StackHeight() - arity, frames_.back().llimit());
if (!DoReturn(&decoder, &code, &pc, &limit, arity)) return;
}
}
state_ = WasmInterpreter::PAUSED;
CommitPc(pc);
}
WasmValue Pop() {
DCHECK_GT(frames_.size(), 0);
DCHECK_GT(StackHeight(), frames_.back().llimit()); // can't pop into locals
StackValue stack_value = *--sp_;
// Note that {StackHeight} depends on the current {sp} value, hence this
// operation is split into two statements to ensure proper evaluation order.
WasmValue val = stack_value.ExtractValue(this, StackHeight());
stack_value.ClearValue(this, StackHeight());
return val;
}
void Drop(int n = 1) {
DCHECK_GE(StackHeight(), n);
DCHECK_GT(frames_.size(), 0);
// Check that we don't pop into locals.
DCHECK_GE(StackHeight() - n, frames_.back().llimit());
StackValue::ClearValues(this, StackHeight() - n, n);
sp_ -= n;
}
WasmValue PopArity(size_t arity) {
if (arity == 0) return WasmValue();
CHECK_EQ(1, arity);
return Pop();
}
void Push(WasmValue val) {
DCHECK_NE(kWasmStmt, val.type());
DCHECK_LE(1, stack_limit_ - sp_);
DCHECK(StackValue::IsClearedValue(this, StackHeight()));
StackValue stack_value(val, this, StackHeight());
// Note that {StackHeight} depends on the current {sp} value, hence this
// operation is split into two statements to ensure proper evaluation order.
*sp_++ = stack_value;
}
void Push(WasmValue* vals, size_t arity) {
DCHECK_LE(arity, stack_limit_ - sp_);
for (WasmValue *val = vals, *end = vals + arity; val != end; ++val) {
DCHECK_NE(kWasmStmt, val->type());
Push(*val);
}
}
void ResetStack(sp_t new_height) {
DCHECK_LE(new_height, StackHeight()); // Only allowed to shrink.
int count = static_cast<int>(StackHeight() - new_height);
StackValue::ClearValues(this, new_height, count);
sp_ = stack_.get() + new_height;
}
void EnsureStackSpace(size_t size) {
if (V8_LIKELY(static_cast<size_t>(stack_limit_ - sp_) >= size)) return;
size_t old_size = stack_limit_ - stack_.get();
size_t requested_size =
base::bits::RoundUpToPowerOfTwo64((sp_ - stack_.get()) + size);
size_t new_size =
std::max(size_t{8}, std::max(2 * old_size, requested_size));
std::unique_ptr<StackValue[]> new_stack(new StackValue[new_size]);
if (old_size > 0) {
memcpy(new_stack.get(), stack_.get(), old_size * sizeof(*sp_));
}
sp_ = new_stack.get() + (sp_ - stack_.get());
stack_ = std::move(new_stack);
stack_limit_ = stack_.get() + new_size;
// Also resize the reference stack to the same size.
int grow_by = static_cast<int>(new_size - old_size);
HandleScope handle_scope(isolate_); // Avoid leaking handles.
Handle<FixedArray> new_ref_stack =
isolate_->factory()->CopyFixedArrayAndGrow(reference_stack_, grow_by);
new_ref_stack->FillWithHoles(static_cast<int>(old_size),
static_cast<int>(new_size));
isolate_->global_handles()->Destroy(reference_stack_.location());
reference_stack_ = isolate_->global_handles()->Create(*new_ref_stack);
}
sp_t StackHeight() { return sp_ - stack_.get(); }
void TraceValueStack() {
#ifdef DEBUG
if (!FLAG_trace_wasm_interpreter) return;
HandleScope handle_scope(isolate_); // Avoid leaking handles.
Frame* top = frames_.size() > 0 ? &frames_.back() : nullptr;
sp_t sp = top ? top->sp : 0;
sp_t plimit = top ? top->plimit() : 0;
sp_t llimit = top ? top->llimit() : 0;
for (size_t i = sp; i < StackHeight(); ++i) {
if (i < plimit) {
PrintF(" p%zu:", i);
} else if (i < llimit) {
PrintF(" l%zu:", i);
} else {
PrintF(" s%zu:", i);
}
WasmValue val = GetStackValue(i);
switch (val.type().kind()) {
case ValueType::kI32:
PrintF("i32:%d", val.to<int32_t>());
break;
case ValueType::kI64:
PrintF("i64:%" PRId64 "", val.to<int64_t>());
break;
case ValueType::kF32:
PrintF("f32:%a", val.to<float>());
break;
case ValueType::kF64:
PrintF("f64:%la", val.to<double>());
break;
case ValueType::kS128: {
// This defaults to tracing all S128 values as i32x4 values for now,
// when there is more state to know what type of values are on the
// stack, the right format should be printed here.
int4 s = val.to_s128().to_i32x4();
PrintF("i32x4:%d,%d,%d,%d", s.val[0], s.val[1], s.val[2], s.val[3]);
break;
}
case ValueType::kStmt:
PrintF("void");
break;
case ValueType::kRef:
case ValueType::kOptRef: {
if (val.type().is_reference_to(HeapType::kExtern)) {
Handle<Object> ref = val.to_externref();
if (ref->IsNull()) {
PrintF("ref:null");
} else {
PrintF("ref:0x%" V8PRIxPTR, ref->ptr());
}
} else {
// TODO(7748): Implement this properly.
PrintF("ref/ref null");
}
break;
}
case ValueType::kRtt:
case ValueType::kRttWithDepth:
// TODO(7748): Implement properly.
PrintF("rtt");
break;
case ValueType::kI8:
case ValueType::kI16:
case ValueType::kBottom:
UNREACHABLE();
break;
}
}
#endif // DEBUG
}
CallResult CallIndirectFunction(uint32_t table_index, uint32_t entry_index,
uint32_t sig_index) {
HandleScope handle_scope(isolate_); // Avoid leaking handles.
uint32_t expected_sig_id = module()->canonicalized_type_ids[sig_index];
DCHECK_EQ(expected_sig_id,
module()->signature_map.Find(*module()->signature(sig_index)));
// Bounds check against table size.
if (entry_index >=
static_cast<uint32_t>(WasmInstanceObject::IndirectFunctionTableSize(
isolate_, instance_object_, table_index))) {
return {CallResult::INVALID_FUNC};
}
IndirectFunctionTableEntry entry(instance_object_, table_index,
entry_index);
// Signature check.
if (entry.sig_id() != static_cast<int32_t>(expected_sig_id)) {
return {CallResult::SIGNATURE_MISMATCH};
}
Handle<Object> object_ref = handle(entry.object_ref(), isolate_);
// Check that this is an internal call (within the same instance).
CHECK(object_ref->IsWasmInstanceObject() &&
instance_object_.is_identical_to(object_ref));
NativeModule* native_module =
instance_object_->module_object().native_module();
#ifdef DEBUG
{
WasmCodeRefScope code_ref_scope;
WasmCode* wasm_code = native_module->Lookup(entry.target());
DCHECK_EQ(native_module, wasm_code->native_module());
DCHECK_EQ(WasmCode::kJumpTable, wasm_code->kind());
}
#endif
uint32_t func_index =
native_module->GetFunctionIndexFromJumpTableSlot(entry.target());
return {CallResult::INTERNAL, codemap_.GetCode(func_index)};
}
// Create a copy of the module bytes for the interpreter, since the passed
// pointer might be invalidated after constructing the interpreter.
const ZoneVector<uint8_t> module_bytes_;
CodeMap codemap_;
Isolate* isolate_;
Handle<WasmInstanceObject> instance_object_;
std::unique_ptr<StackValue[]> stack_;
StackValue* stack_limit_ = nullptr; // End of allocated stack space.
StackValue* sp_ = nullptr; // Current stack pointer.
// References are on an on-heap stack.
Handle<FixedArray> reference_stack_;
ZoneVector<Frame> frames_;
WasmInterpreter::State state_ = WasmInterpreter::STOPPED;
TrapReason trap_reason_ = kTrapCount;
bool possible_nondeterminism_ = false;
uint64_t num_interpreted_calls_ = 0;
};
namespace {
void NopFinalizer(const v8::WeakCallbackInfo<void>& data) {
Address* global_handle_location =
reinterpret_cast<Address*>(data.GetParameter());
GlobalHandles::Destroy(global_handle_location);
}
Handle<WasmInstanceObject> MakeWeak(
Isolate* isolate, Handle<WasmInstanceObject> instance_object) {
Handle<WasmInstanceObject> weak_instance =
isolate->global_handles()->Create<WasmInstanceObject>(*instance_object);
Address* global_handle_location = weak_instance.location();
GlobalHandles::MakeWeak(global_handle_location, global_handle_location,
&NopFinalizer, v8::WeakCallbackType::kParameter);
return weak_instance;
}
} // namespace
//============================================================================
// Implementation of the public interface of the interpreter.
//============================================================================
WasmInterpreter::WasmInterpreter(Isolate* isolate, const WasmModule* module,
const ModuleWireBytes& wire_bytes,
Handle<WasmInstanceObject> instance_object)
: zone_(isolate->allocator(), ZONE_NAME),
internals_(new WasmInterpreterInternals(
&zone_, module, wire_bytes, MakeWeak(isolate, instance_object))) {}
// The destructor is here so we can forward declare {WasmInterpreterInternals}
// used in the {unique_ptr} in the header.
WasmInterpreter::~WasmInterpreter() = default;
WasmInterpreter::State WasmInterpreter::state() const {
return internals_->state();
}
void WasmInterpreter::InitFrame(const WasmFunction* function, WasmValue* args) {
internals_->InitFrame(function, args);
}
WasmInterpreter::State WasmInterpreter::Run(int num_steps) {
return internals_->Run(num_steps);
}
void WasmInterpreter::Pause() { internals_->Pause(); }
void WasmInterpreter::Reset() { internals_->Reset(); }
WasmValue WasmInterpreter::GetReturnValue(int index) const {
return internals_->GetReturnValue(index);
}
TrapReason WasmInterpreter::GetTrapReason() const {
return internals_->GetTrapReason();
}
bool WasmInterpreter::PossibleNondeterminism() const {
return internals_->PossibleNondeterminism();
}
uint64_t WasmInterpreter::NumInterpretedCalls() const {
return internals_->NumInterpretedCalls();
}
void WasmInterpreter::AddFunctionForTesting(const WasmFunction* function) {
internals_->codemap()->AddFunction(function, nullptr, nullptr);
}
void WasmInterpreter::SetFunctionCodeForTesting(const WasmFunction* function,
const byte* start,
const byte* end) {
internals_->codemap()->SetFunctionCode(function, start, end);
}
ControlTransferMap WasmInterpreter::ComputeControlTransfersForTesting(
Zone* zone, const WasmModule* module, const byte* start, const byte* end) {
// Create some dummy structures, to avoid special-casing the implementation
// just for testing.
FunctionSig sig(0, 0, nullptr);
WasmFunction function{&sig, // sig
0, // func_index
0, // sig_index
{0, 0}, // code
false, // imported
false, // exported
false}; // declared
InterpreterCode code{&function, BodyLocalDecls(zone), start, end, nullptr};
// Now compute and return the control transfers.
SideTable side_table(zone, module, &code);
return side_table.map_;
}
#undef TRACE
#undef LANE
#undef FOREACH_SIMPLE_BINOP
#undef FOREACH_OTHER_BINOP
#undef FOREACH_I32CONV_FLOATOP
#undef FOREACH_OTHER_UNOP
} // namespace wasm
} // namespace internal
} // namespace v8