v8/src/futex-emulation.cc
Jakob Kummerow 056f927861 [ubsan] Port Object to the new design
Tbr: ahaas@chromium.org,leszeks@chromium.org,verwaest@chromium.org
Bug: v8:3770
Change-Id: Ia6530fbb70dac05e9972283781c3550d8b50e1eb
Reviewed-on: https://chromium-review.googlesource.com/c/1390116
Commit-Queue: Jakob Kummerow <jkummerow@chromium.org>
Reviewed-by: Jakob Kummerow <jkummerow@chromium.org>
Reviewed-by: Alexei Filippov <alph@chromium.org>
Reviewed-by: Jakob Gruber <jgruber@chromium.org>
Reviewed-by: Ulan Degenbaev <ulan@chromium.org>
Reviewed-by: Sigurd Schneider <sigurds@chromium.org>
Cr-Commit-Position: refs/heads/master@{#58470}
2018-12-26 20:54:07 +00:00

317 lines
10 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/futex-emulation.h"
#include <limits>
#include "src/base/macros.h"
#include "src/base/platform/time.h"
#include "src/conversions.h"
#include "src/handles-inl.h"
#include "src/isolate.h"
#include "src/objects-inl.h"
#include "src/objects/js-array-buffer-inl.h"
namespace v8 {
namespace internal {
using AtomicsWaitEvent = v8::Isolate::AtomicsWaitEvent;
base::LazyMutex FutexEmulation::mutex_ = LAZY_MUTEX_INITIALIZER;
base::LazyInstance<FutexWaitList>::type FutexEmulation::wait_list_ =
LAZY_INSTANCE_INITIALIZER;
void FutexWaitListNode::NotifyWake() {
// Lock the FutexEmulation mutex before notifying. We know that the mutex
// will have been unlocked if we are currently waiting on the condition
// variable. The mutex will not be locked if FutexEmulation::Wait hasn't
// locked it yet. In that case, we set the interrupted_
// flag to true, which will be tested after the mutex locked by a future wait.
base::MutexGuard lock_guard(FutexEmulation::mutex_.Pointer());
// if not waiting, this will not have any effect.
cond_.NotifyOne();
interrupted_ = true;
}
FutexWaitList::FutexWaitList() : head_(nullptr), tail_(nullptr) {}
void FutexWaitList::AddNode(FutexWaitListNode* node) {
DCHECK(node->prev_ == nullptr && node->next_ == nullptr);
if (tail_) {
tail_->next_ = node;
} else {
head_ = node;
}
node->prev_ = tail_;
node->next_ = nullptr;
tail_ = node;
}
void FutexWaitList::RemoveNode(FutexWaitListNode* node) {
if (node->prev_) {
node->prev_->next_ = node->next_;
} else {
head_ = node->next_;
}
if (node->next_) {
node->next_->prev_ = node->prev_;
} else {
tail_ = node->prev_;
}
node->prev_ = node->next_ = nullptr;
}
void AtomicsWaitWakeHandle::Wake() {
// Adding a separate `NotifyWake()` variant that doesn't acquire the lock
// itself would likely just add unnecessary complexity..
// The split lock by itself isnt an issue, as long as the caller properly
// synchronizes this with the closing `AtomicsWaitCallback`.
{
base::MutexGuard lock_guard(FutexEmulation::mutex_.Pointer());
stopped_ = true;
}
isolate_->futex_wait_list_node()->NotifyWake();
}
enum WaitReturnValue : int { kOk = 0, kNotEqual = 1, kTimedOut = 2 };
Object FutexEmulation::WaitJs(Isolate* isolate,
Handle<JSArrayBuffer> array_buffer, size_t addr,
int32_t value, double rel_timeout_ms) {
Object res = Wait32(isolate, array_buffer, addr, value, rel_timeout_ms);
if (res->IsSmi()) {
int val = Smi::ToInt(res);
switch (val) {
case WaitReturnValue::kOk:
return ReadOnlyRoots(isolate).ok();
case WaitReturnValue::kNotEqual:
return ReadOnlyRoots(isolate).not_equal();
case WaitReturnValue::kTimedOut:
return ReadOnlyRoots(isolate).timed_out();
default:
UNREACHABLE();
}
}
return res;
}
Object FutexEmulation::Wait32(Isolate* isolate,
Handle<JSArrayBuffer> array_buffer, size_t addr,
int32_t value, double rel_timeout_ms) {
return Wait<int32_t>(isolate, array_buffer, addr, value, rel_timeout_ms);
}
Object FutexEmulation::Wait64(Isolate* isolate,
Handle<JSArrayBuffer> array_buffer, size_t addr,
int64_t value, double rel_timeout_ms) {
return Wait<int64_t>(isolate, array_buffer, addr, value, rel_timeout_ms);
}
template <typename T>
Object FutexEmulation::Wait(Isolate* isolate,
Handle<JSArrayBuffer> array_buffer, size_t addr,
T value, double rel_timeout_ms) {
DCHECK_LT(addr, array_buffer->byte_length());
bool use_timeout = rel_timeout_ms != V8_INFINITY;
base::TimeDelta rel_timeout;
if (use_timeout) {
// Convert to nanoseconds.
double rel_timeout_ns = rel_timeout_ms *
base::Time::kNanosecondsPerMicrosecond *
base::Time::kMicrosecondsPerMillisecond;
if (rel_timeout_ns >
static_cast<double>(std::numeric_limits<int64_t>::max())) {
// 2**63 nanoseconds is 292 years. Let's just treat anything greater as
// infinite.
use_timeout = false;
} else {
rel_timeout = base::TimeDelta::FromNanoseconds(
static_cast<int64_t>(rel_timeout_ns));
}
}
AtomicsWaitWakeHandle stop_handle(isolate);
isolate->RunAtomicsWaitCallback(AtomicsWaitEvent::kStartWait, array_buffer,
addr, value, rel_timeout_ms, &stop_handle);
if (isolate->has_scheduled_exception()) {
return isolate->PromoteScheduledException();
}
Object result;
AtomicsWaitEvent callback_result = AtomicsWaitEvent::kWokenUp;
do { // Not really a loop, just makes it easier to break out early.
base::MutexGuard lock_guard(mutex_.Pointer());
void* backing_store = array_buffer->backing_store();
FutexWaitListNode* node = isolate->futex_wait_list_node();
node->backing_store_ = backing_store;
node->wait_addr_ = addr;
node->waiting_ = true;
// Reset node->waiting_ = false when leaving this scope (but while
// still holding the lock).
ResetWaitingOnScopeExit reset_waiting(node);
T* p = reinterpret_cast<T*>(static_cast<int8_t*>(backing_store) + addr);
if (*p != value) {
result = Smi::FromInt(WaitReturnValue::kNotEqual);
callback_result = AtomicsWaitEvent::kNotEqual;
break;
}
base::TimeTicks timeout_time;
base::TimeTicks current_time;
if (use_timeout) {
current_time = base::TimeTicks::Now();
timeout_time = current_time + rel_timeout;
}
wait_list_.Pointer()->AddNode(node);
while (true) {
bool interrupted = node->interrupted_;
node->interrupted_ = false;
// Unlock the mutex here to prevent deadlock from lock ordering between
// mutex_ and mutexes locked by HandleInterrupts.
mutex_.Pointer()->Unlock();
// Because the mutex is unlocked, we have to be careful about not dropping
// an interrupt. The notification can happen in three different places:
// 1) Before Wait is called: the notification will be dropped, but
// interrupted_ will be set to 1. This will be checked below.
// 2) After interrupted has been checked here, but before mutex_ is
// acquired: interrupted is checked again below, with mutex_ locked.
// Because the wakeup signal also acquires mutex_, we know it will not
// be able to notify until mutex_ is released below, when waiting on
// the condition variable.
// 3) After the mutex is released in the call to WaitFor(): this
// notification will wake up the condition variable. node->waiting() will
// be false, so we'll loop and then check interrupts.
if (interrupted) {
Object interrupt_object = isolate->stack_guard()->HandleInterrupts();
if (interrupt_object->IsException(isolate)) {
result = interrupt_object;
callback_result = AtomicsWaitEvent::kTerminatedExecution;
mutex_.Pointer()->Lock();
break;
}
}
mutex_.Pointer()->Lock();
if (node->interrupted_) {
// An interrupt occurred while the mutex_ was unlocked. Don't wait yet.
continue;
}
if (stop_handle.has_stopped()) {
node->waiting_ = false;
callback_result = AtomicsWaitEvent::kAPIStopped;
}
if (!node->waiting_) {
result = Smi::FromInt(WaitReturnValue::kOk);
break;
}
// No interrupts, now wait.
if (use_timeout) {
current_time = base::TimeTicks::Now();
if (current_time >= timeout_time) {
result = Smi::FromInt(WaitReturnValue::kTimedOut);
callback_result = AtomicsWaitEvent::kTimedOut;
break;
}
base::TimeDelta time_until_timeout = timeout_time - current_time;
DCHECK_GE(time_until_timeout.InMicroseconds(), 0);
bool wait_for_result =
node->cond_.WaitFor(mutex_.Pointer(), time_until_timeout);
USE(wait_for_result);
} else {
node->cond_.Wait(mutex_.Pointer());
}
// Spurious wakeup, interrupt or timeout.
}
wait_list_.Pointer()->RemoveNode(node);
} while (false);
isolate->RunAtomicsWaitCallback(callback_result, array_buffer, addr, value,
rel_timeout_ms, nullptr);
if (isolate->has_scheduled_exception()) {
CHECK_NE(callback_result, AtomicsWaitEvent::kTerminatedExecution);
result = isolate->PromoteScheduledException();
}
return result;
}
Object FutexEmulation::Wake(Handle<JSArrayBuffer> array_buffer, size_t addr,
uint32_t num_waiters_to_wake) {
DCHECK_LT(addr, array_buffer->byte_length());
int waiters_woken = 0;
void* backing_store = array_buffer->backing_store();
base::MutexGuard lock_guard(mutex_.Pointer());
FutexWaitListNode* node = wait_list_.Pointer()->head_;
while (node && num_waiters_to_wake > 0) {
if (backing_store == node->backing_store_ && addr == node->wait_addr_ &&
node->waiting_) {
node->waiting_ = false;
node->cond_.NotifyOne();
if (num_waiters_to_wake != kWakeAll) {
--num_waiters_to_wake;
}
waiters_woken++;
}
node = node->next_;
}
return Smi::FromInt(waiters_woken);
}
Object FutexEmulation::NumWaitersForTesting(Handle<JSArrayBuffer> array_buffer,
size_t addr) {
DCHECK_LT(addr, array_buffer->byte_length());
void* backing_store = array_buffer->backing_store();
base::MutexGuard lock_guard(mutex_.Pointer());
int waiters = 0;
FutexWaitListNode* node = wait_list_.Pointer()->head_;
while (node) {
if (backing_store == node->backing_store_ && addr == node->wait_addr_ &&
node->waiting_) {
waiters++;
}
node = node->next_;
}
return Smi::FromInt(waiters);
}
} // namespace internal
} // namespace v8