v8/test/fuzzer/multi-return.cc
Andreas Haas 8d797a285f [multi-return] Restrict number of params and returns in the fuzzer
Apparently the fuzzer tries to create functions with more 130000
parameters, which is too much for TurboFan. For returns I use the
wasm limit because only wasm uses multiple returns.

R=clemensh@chromium.org

Bug: chromium:811070
Change-Id: Ib9a55439c1da8e82ef5f35ffb2e79cab8d4a9018
Reviewed-on: https://chromium-review.googlesource.com/913268
Reviewed-by: Clemens Hammacher <clemensh@chromium.org>
Commit-Queue: Andreas Haas <ahaas@chromium.org>
Cr-Commit-Position: refs/heads/master@{#51231}
2018-02-12 10:07:38 +00:00

352 lines
12 KiB
C++

// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <cstddef>
#include <cstdint>
#include "src/compilation-info.h"
#include "src/compiler/graph.h"
#include "src/compiler/instruction-selector.h"
#include "src/compiler/linkage.h"
#include "src/compiler/node.h"
#include "src/compiler/operator.h"
#include "src/compiler/pipeline.h"
#include "src/compiler/raw-machine-assembler.h"
#include "src/machine-type.h"
#include "src/objects-inl.h"
#include "src/objects.h"
#include "src/simulator.h"
#include "src/wasm/wasm-limits.h"
#include "src/zone/accounting-allocator.h"
#include "src/zone/zone.h"
#include "test/fuzzer/fuzzer-support.h"
namespace v8 {
namespace internal {
namespace compiler {
namespace fuzzer {
constexpr MachineType kTypes[] = {
// The first entry is just a placeholder, because '0' is a separator.
MachineType(),
#if !V8_TARGET_ARCH_32_BIT
MachineType::Int64(),
#endif
MachineType::Int32(), MachineType::Float32(), MachineType::Float64()};
static constexpr int kNumTypes = arraysize(kTypes);
class InputProvider {
public:
InputProvider(const uint8_t* data, size_t size)
: current_(data), end_(data + size) {}
size_t NumNonZeroBytes(size_t offset, int limit) {
DCHECK_LE(limit, std::numeric_limits<uint8_t>::max());
DCHECK_GE(current_ + offset, current_);
const uint8_t* p;
for (p = current_ + offset; p < end_; ++p) {
if (*p % limit == 0) break;
}
return p - current_ - offset;
}
int NextInt8(int limit) {
DCHECK_LE(limit, std::numeric_limits<uint8_t>::max());
if (current_ == end_) return 0;
uint8_t result = *current_;
current_++;
return static_cast<int>(result) % limit;
}
int NextInt32(int limit) {
if (current_ + sizeof(uint32_t) > end_) return 0;
int result = ReadLittleEndianValue<int>(current_);
current_ += sizeof(uint32_t);
return result % limit;
}
private:
const uint8_t* current_;
const uint8_t* end_;
};
MachineType RandomType(InputProvider* input) {
return kTypes[input->NextInt8(kNumTypes)];
}
int num_registers(MachineType type) {
const RegisterConfiguration* config = RegisterConfiguration::Default();
switch (type.representation()) {
case MachineRepresentation::kWord32:
case MachineRepresentation::kWord64:
return config->num_allocatable_general_registers();
case MachineRepresentation::kFloat32:
return config->num_allocatable_float_registers();
case MachineRepresentation::kFloat64:
return config->num_allocatable_double_registers();
default:
UNREACHABLE();
}
}
int size(MachineType type) {
return 1 << ElementSizeLog2Of(type.representation());
}
int index(MachineType type) { return static_cast<int>(type.representation()); }
const int* codes(MachineType type) {
const RegisterConfiguration* config = RegisterConfiguration::Default();
switch (type.representation()) {
case MachineRepresentation::kWord32:
case MachineRepresentation::kWord64:
return config->allocatable_general_codes();
case MachineRepresentation::kFloat32:
return config->allocatable_float_codes();
case MachineRepresentation::kFloat64:
return config->allocatable_double_codes();
default:
UNREACHABLE();
}
}
LinkageLocation AllocateLocation(MachineType type, int* int_count,
int* float_count, int* stack_slots) {
int* count = IsFloatingPoint(type.representation()) ? float_count : int_count;
int reg_code = *count;
#if V8_TARGET_ARCH_ARM
// Allocate floats using a double register, but modify the code to
// reflect how ARM FP registers alias.
if (type == MachineType::Float32()) {
reg_code *= 2;
}
#endif
LinkageLocation location = LinkageLocation::ForAnyRegister(); // Dummy.
if (reg_code < num_registers(type)) {
location = LinkageLocation::ForRegister(codes(type)[reg_code], type);
} else {
location = LinkageLocation::ForCallerFrameSlot(-*stack_slots - 1, type);
*stack_slots += std::max(1, size(type) / kPointerSize);
}
++*count;
return location;
}
Node* Constant(RawMachineAssembler& m, MachineType type, int value) {
switch (type.representation()) {
case MachineRepresentation::kWord32:
return m.Int32Constant(static_cast<int32_t>(value));
case MachineRepresentation::kWord64:
return m.Int64Constant(static_cast<int64_t>(value));
case MachineRepresentation::kFloat32:
return m.Float32Constant(static_cast<float>(value));
case MachineRepresentation::kFloat64:
return m.Float64Constant(static_cast<double>(value));
default:
UNREACHABLE();
}
}
Node* ToInt32(RawMachineAssembler& m, MachineType type, Node* a) {
switch (type.representation()) {
case MachineRepresentation::kWord32:
return a;
case MachineRepresentation::kWord64:
return m.TruncateInt64ToInt32(a);
case MachineRepresentation::kFloat32:
return m.TruncateFloat32ToInt32(a);
case MachineRepresentation::kFloat64:
return m.RoundFloat64ToInt32(a);
default:
UNREACHABLE();
}
}
CallDescriptor* CreateRandomCallDescriptor(Zone* zone, size_t return_count,
size_t param_count,
InputProvider* input) {
LocationSignature::Builder locations(zone, return_count, param_count);
int stack_slots = 0;
int int_params = 0;
int float_params = 0;
for (size_t i = 0; i < param_count; i++) {
MachineType type = RandomType(input);
LinkageLocation location =
AllocateLocation(type, &int_params, &float_params, &stack_slots);
locations.AddParam(location);
}
// Read the end byte of the parameters.
input->NextInt8(1);
int stack_params = stack_slots;
#if V8_TARGET_ARCH_ARM64
// Align the stack slots.
stack_slots = stack_slots + (stack_slots % 2);
#endif
int aligned_stack_params = stack_slots;
int int_returns = 0;
int float_returns = 0;
for (size_t i = 0; i < return_count; i++) {
MachineType type = RandomType(input);
LinkageLocation location =
AllocateLocation(type, &int_returns, &float_returns, &stack_slots);
locations.AddReturn(location);
}
int stack_returns = stack_slots - aligned_stack_params;
MachineType target_type = MachineType::AnyTagged();
LinkageLocation target_loc = LinkageLocation::ForAnyRegister(target_type);
return new (zone) CallDescriptor( // --
CallDescriptor::kCallCodeObject, // kind
target_type, // target MachineType
target_loc, // target location
locations.Build(), // location_sig
stack_params, // on-stack parameter count
compiler::Operator::kNoProperties, // properties
0, // callee-saved registers
0, // callee-saved fp regs
CallDescriptor::kNoFlags, // flags
"c-call", // debug name
0, // allocatable registers
stack_returns); // on-stack return count
}
extern "C" int LLVMFuzzerTestOneInput(const uint8_t* data, size_t size) {
v8_fuzzer::FuzzerSupport* support = v8_fuzzer::FuzzerSupport::Get();
v8::Isolate* isolate = support->GetIsolate();
i::Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);
v8::Isolate::Scope isolate_scope(isolate);
v8::HandleScope handle_scope(isolate);
v8::Context::Scope context_scope(support->GetContext());
v8::TryCatch try_catch(isolate);
v8::internal::AccountingAllocator allocator;
Zone zone(&allocator, ZONE_NAME);
InputProvider input(data, size);
// Create randomized descriptor.
size_t param_count = input.NumNonZeroBytes(0, kNumTypes);
if (param_count > Code::kMaxArguments) return 0;
size_t return_count = input.NumNonZeroBytes(param_count + 1, kNumTypes);
if (return_count > wasm::kV8MaxWasmFunctionMultiReturns) return 0;
CallDescriptor* desc =
CreateRandomCallDescriptor(&zone, return_count, param_count, &input);
if (FLAG_wasm_fuzzer_gen_test) {
// Print some debugging output which describes the produced signature.
printf("[");
for (size_t j = 0; j < desc->ParameterCount(); ++j) {
printf(" %s",
MachineReprToString(desc->GetParameterType(j).representation()));
}
printf(" ] -> [");
for (size_t j = 0; j < desc->ReturnCount(); ++j) {
printf(" %s",
MachineReprToString(desc->GetReturnType(j).representation()));
}
printf(" ]\n\n");
}
// Count parameters of each type.
constexpr size_t kNumMachineRepresentations =
static_cast<size_t>(MachineRepresentation::kLastRepresentation) + 1;
// Trivial hash table for the number of occurrences of parameter types. The
// MachineRepresentation of the parameter types is used as hash code.
int counts[kNumMachineRepresentations] = {0};
for (size_t i = 0; i < desc->ParameterCount(); ++i) {
++counts[index(desc->GetParameterType(i))];
}
// Generate random inputs.
std::unique_ptr<int[]> inputs(new int[desc->ParameterCount()]);
std::unique_ptr<int[]> outputs(new int[desc->ReturnCount()]);
for (size_t i = 0; i < desc->ParameterCount(); ++i) {
inputs[i] = input.NextInt32(10000);
}
RawMachineAssembler callee(
i_isolate, new (&zone) Graph(&zone), desc,
MachineType::PointerRepresentation(),
InstructionSelector::SupportedMachineOperatorFlags());
// Generate callee, returning random picks of its parameters.
std::unique_ptr<Node* []> params(new Node*[desc->ParameterCount() + 1]);
std::unique_ptr<Node* []> returns(new Node*[desc->ReturnCount()]);
for (size_t i = 0; i < desc->ParameterCount(); ++i) {
params[i] = callee.Parameter(i);
}
for (size_t i = 0; i < desc->ReturnCount(); ++i) {
MachineType type = desc->GetReturnType(i);
// Find a random same-type parameter to return. Use a constant if none.
if (counts[index(type)] == 0) {
returns[i] = Constant(callee, type, 42);
outputs[i] = 42;
} else {
int n = input.NextInt32(counts[index(type)]);
int k = 0;
while (desc->GetParameterType(k) != desc->GetReturnType(i) || --n > 0) {
++k;
}
returns[i] = params[k];
outputs[i] = inputs[k];
}
}
callee.Return(static_cast<int>(desc->ReturnCount()), returns.get());
CompilationInfo info(ArrayVector("testing"), &zone, Code::STUB);
Handle<Code> code = Pipeline::GenerateCodeForTesting(
&info, i_isolate, desc, callee.graph(), callee.Export());
// Generate wrapper.
int expect = 0;
MachineSignature::Builder sig_builder(&zone, 1, 0);
sig_builder.AddReturn(MachineType::Int32());
CallDescriptor* wrapper_desc =
Linkage::GetSimplifiedCDescriptor(&zone, sig_builder.Build());
RawMachineAssembler caller(
i_isolate, new (&zone) Graph(&zone), wrapper_desc,
MachineType::PointerRepresentation(),
InstructionSelector::SupportedMachineOperatorFlags());
params[0] = caller.HeapConstant(code);
for (size_t i = 0; i < desc->ParameterCount(); ++i) {
params[i + 1] = Constant(caller, desc->GetParameterType(i), inputs[i]);
}
Node* call = caller.AddNode(caller.common()->Call(desc),
static_cast<int>(desc->ParameterCount() + 1),
params.get());
Node* ret = Constant(caller, MachineType::Int32(), 0);
for (size_t i = 0; i < desc->ReturnCount(); ++i) {
// Skip roughly one third of the outputs.
if (input.NextInt8(3) == 0) continue;
Node* ret_i = (desc->ReturnCount() == 1)
? call
: caller.AddNode(caller.common()->Projection(i), call);
ret = caller.Int32Add(ret, ToInt32(caller, desc->GetReturnType(i), ret_i));
expect += outputs[i];
}
caller.Return(ret);
// Call the wrapper.
CompilationInfo wrapper_info(ArrayVector("wrapper"), &zone, Code::STUB);
Handle<Code> wrapper_code = Pipeline::GenerateCodeForTesting(
&wrapper_info, i_isolate, wrapper_desc, caller.graph(), caller.Export());
auto fn = GeneratedCode<int32_t>::FromCode(*wrapper_code);
int result = fn.Call();
CHECK_EQ(expect, result);
return 0;
}
} // namespace fuzzer
} // namespace compiler
} // namespace internal
} // namespace v8