v8/src/scopes.cc
keuchel@chromium.org 08c9629f80 Static resolution of outer variables in eval code.
So far free variables references in eval code are not statically
resolved. For example in
    function foo() { var x = 1; eval("y = x"); }
the variable x will get mode DYNAMIC and y will get mode DYNAMIC_GLOBAL,
i.e. free variable references trigger dynamic lookups with a fast case
handling for global variables.

The CL introduces static resolution of free variables references in eval
code. If possible variable references are resolved to bindings belonging to
outer scopes of the eval call site.

This is achieved by deserializing the outer scope chain using
Scope::DeserializeScopeChain prior to parsing the eval code similar to lazy
parsing of functions. The existing code for variable resolution is used,
however resolution starts at the first outer unresolved scope instead of
always starting at the root of the scope tree.

This is a prerequisite for statically checking validity of assignments in
the extended code as specified by the current ES.next draft which will be
introduced by a subsequent CL. More specifically section 11.13 of revision 4
of the ES.next draft reads:
* It is a Syntax Error if the AssignmentExpression is contained in extended
  code and the LeftHandSideExpression is an Identifier that does not
  statically resolve to a declarative environment record binding or if the
  resolved binding is an immutable binding.

TEST=existing tests in mjsunit

Review URL: http://codereview.chromium.org/8508052

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@9999 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2011-11-15 13:48:40 +00:00

1188 lines
36 KiB
C++

// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "scopes.h"
#include "bootstrapper.h"
#include "compiler.h"
#include "scopeinfo.h"
#include "allocation-inl.h"
namespace v8 {
namespace internal {
// ----------------------------------------------------------------------------
// A Zone allocator for use with LocalsMap.
// TODO(isolates): It is probably worth it to change the Allocator class to
// take a pointer to an isolate.
class ZoneAllocator: public Allocator {
public:
/* nothing to do */
virtual ~ZoneAllocator() {}
virtual void* New(size_t size) { return ZONE->New(static_cast<int>(size)); }
/* ignored - Zone is freed in one fell swoop */
virtual void Delete(void* p) {}
};
static ZoneAllocator LocalsMapAllocator;
// ----------------------------------------------------------------------------
// Implementation of LocalsMap
//
// Note: We are storing the handle locations as key values in the hash map.
// When inserting a new variable via Declare(), we rely on the fact that
// the handle location remains alive for the duration of that variable
// use. Because a Variable holding a handle with the same location exists
// this is ensured.
static bool Match(void* key1, void* key2) {
String* name1 = *reinterpret_cast<String**>(key1);
String* name2 = *reinterpret_cast<String**>(key2);
ASSERT(name1->IsSymbol());
ASSERT(name2->IsSymbol());
return name1 == name2;
}
VariableMap::VariableMap() : HashMap(Match, &LocalsMapAllocator, 8) {}
VariableMap::~VariableMap() {}
Variable* VariableMap::Declare(
Scope* scope,
Handle<String> name,
VariableMode mode,
bool is_valid_lhs,
Variable::Kind kind,
InitializationFlag initialization_flag) {
HashMap::Entry* p = HashMap::Lookup(name.location(), name->Hash(), true);
if (p->value == NULL) {
// The variable has not been declared yet -> insert it.
ASSERT(p->key == name.location());
p->value = new Variable(scope,
name,
mode,
is_valid_lhs,
kind,
initialization_flag);
}
return reinterpret_cast<Variable*>(p->value);
}
Variable* VariableMap::Lookup(Handle<String> name) {
HashMap::Entry* p = HashMap::Lookup(name.location(), name->Hash(), false);
if (p != NULL) {
ASSERT(*reinterpret_cast<String**>(p->key) == *name);
ASSERT(p->value != NULL);
return reinterpret_cast<Variable*>(p->value);
}
return NULL;
}
// ----------------------------------------------------------------------------
// Implementation of Scope
Scope::Scope(Scope* outer_scope, ScopeType type)
: isolate_(Isolate::Current()),
inner_scopes_(4),
variables_(),
temps_(4),
params_(4),
unresolved_(16),
decls_(4),
already_resolved_(false) {
SetDefaults(type, outer_scope, Handle<ScopeInfo>::null());
// At some point we might want to provide outer scopes to
// eval scopes (by walking the stack and reading the scope info).
// In that case, the ASSERT below needs to be adjusted.
ASSERT_EQ(type == GLOBAL_SCOPE, outer_scope == NULL);
ASSERT(!HasIllegalRedeclaration());
}
Scope::Scope(Scope* inner_scope,
ScopeType type,
Handle<ScopeInfo> scope_info)
: isolate_(Isolate::Current()),
inner_scopes_(4),
variables_(),
temps_(4),
params_(4),
unresolved_(16),
decls_(4),
already_resolved_(true) {
SetDefaults(type, NULL, scope_info);
if (!scope_info.is_null()) {
num_heap_slots_ = scope_info_->ContextLength();
} else if (is_with_scope()) {
num_heap_slots_ = Context::MIN_CONTEXT_SLOTS;
}
AddInnerScope(inner_scope);
}
Scope::Scope(Scope* inner_scope, Handle<String> catch_variable_name)
: isolate_(Isolate::Current()),
inner_scopes_(1),
variables_(),
temps_(0),
params_(0),
unresolved_(0),
decls_(0),
already_resolved_(true) {
SetDefaults(CATCH_SCOPE, NULL, Handle<ScopeInfo>::null());
AddInnerScope(inner_scope);
++num_var_or_const_;
num_heap_slots_ = Context::MIN_CONTEXT_SLOTS;
Variable* variable = variables_.Declare(this,
catch_variable_name,
VAR,
true, // Valid left-hand side.
Variable::NORMAL,
kCreatedInitialized);
AllocateHeapSlot(variable);
}
void Scope::SetDefaults(ScopeType type,
Scope* outer_scope,
Handle<ScopeInfo> scope_info) {
outer_scope_ = outer_scope;
type_ = type;
scope_name_ = isolate_->factory()->empty_symbol();
dynamics_ = NULL;
receiver_ = NULL;
function_ = NULL;
arguments_ = NULL;
illegal_redecl_ = NULL;
scope_inside_with_ = false;
scope_contains_with_ = false;
scope_calls_eval_ = false;
// Inherit the strict mode from the parent scope.
strict_mode_flag_ = (outer_scope != NULL)
? outer_scope->strict_mode_flag_ : kNonStrictMode;
outer_scope_calls_non_strict_eval_ = false;
inner_scope_calls_eval_ = false;
force_eager_compilation_ = false;
num_var_or_const_ = 0;
num_stack_slots_ = 0;
num_heap_slots_ = 0;
scope_info_ = scope_info;
start_position_ = RelocInfo::kNoPosition;
end_position_ = RelocInfo::kNoPosition;
if (!scope_info.is_null()) {
scope_calls_eval_ = scope_info->CallsEval();
strict_mode_flag_ =
scope_info->IsStrictMode() ? kStrictMode : kNonStrictMode;
}
}
Scope* Scope::DeserializeScopeChain(Context* context, Scope* global_scope) {
// Reconstruct the outer scope chain from a closure's context chain.
Scope* current_scope = NULL;
Scope* innermost_scope = NULL;
bool contains_with = false;
while (!context->IsGlobalContext()) {
if (context->IsWithContext()) {
Scope* with_scope = new Scope(current_scope,
WITH_SCOPE,
Handle<ScopeInfo>::null());
current_scope = with_scope;
// All the inner scopes are inside a with.
contains_with = true;
for (Scope* s = innermost_scope; s != NULL; s = s->outer_scope()) {
s->scope_inside_with_ = true;
}
} else if (context->IsFunctionContext()) {
ScopeInfo* scope_info = context->closure()->shared()->scope_info();
current_scope = new Scope(current_scope,
FUNCTION_SCOPE,
Handle<ScopeInfo>(scope_info));
} else if (context->IsBlockContext()) {
ScopeInfo* scope_info = ScopeInfo::cast(context->extension());
current_scope = new Scope(current_scope,
BLOCK_SCOPE,
Handle<ScopeInfo>(scope_info));
} else {
ASSERT(context->IsCatchContext());
String* name = String::cast(context->extension());
current_scope = new Scope(current_scope, Handle<String>(name));
}
if (contains_with) current_scope->RecordWithStatement();
if (innermost_scope == NULL) innermost_scope = current_scope;
// Forget about a with when we move to a context for a different function.
if (context->previous()->closure() != context->closure()) {
contains_with = false;
}
context = context->previous();
}
global_scope->AddInnerScope(current_scope);
global_scope->PropagateScopeInfo(false);
return (innermost_scope == NULL) ? global_scope : innermost_scope;
}
bool Scope::Analyze(CompilationInfo* info) {
ASSERT(info->function() != NULL);
Scope* scope = info->function()->scope();
Scope* top = scope;
// Traverse the scope tree up to the first unresolved scope or the global
// scope and start scope resolution and variable allocation from that scope.
while (!top->is_global_scope() &&
!top->outer_scope()->already_resolved()) {
top = top->outer_scope();
}
// Allocated the variables.
top->AllocateVariables(info->global_scope());
#ifdef DEBUG
if (info->isolate()->bootstrapper()->IsActive()
? FLAG_print_builtin_scopes
: FLAG_print_scopes) {
scope->Print();
}
#endif
info->SetScope(scope);
return true; // Can not fail.
}
void Scope::Initialize() {
ASSERT(!already_resolved());
// Add this scope as a new inner scope of the outer scope.
if (outer_scope_ != NULL) {
outer_scope_->inner_scopes_.Add(this);
scope_inside_with_ = outer_scope_->scope_inside_with_ || is_with_scope();
} else {
scope_inside_with_ = is_with_scope();
}
// Declare convenience variables.
// Declare and allocate receiver (even for the global scope, and even
// if naccesses_ == 0).
// NOTE: When loading parameters in the global scope, we must take
// care not to access them as properties of the global object, but
// instead load them directly from the stack. Currently, the only
// such parameter is 'this' which is passed on the stack when
// invoking scripts
if (is_declaration_scope()) {
Variable* var =
variables_.Declare(this,
isolate_->factory()->this_symbol(),
VAR,
false,
Variable::THIS,
kCreatedInitialized);
var->AllocateTo(Variable::PARAMETER, -1);
receiver_ = var;
} else {
ASSERT(outer_scope() != NULL);
receiver_ = outer_scope()->receiver();
}
if (is_function_scope()) {
// Declare 'arguments' variable which exists in all functions.
// Note that it might never be accessed, in which case it won't be
// allocated during variable allocation.
variables_.Declare(this,
isolate_->factory()->arguments_symbol(),
VAR,
true,
Variable::ARGUMENTS,
kCreatedInitialized);
}
}
Scope* Scope::FinalizeBlockScope() {
ASSERT(is_block_scope());
ASSERT(temps_.is_empty());
ASSERT(params_.is_empty());
if (num_var_or_const() > 0) return this;
// Remove this scope from outer scope.
for (int i = 0; i < outer_scope_->inner_scopes_.length(); i++) {
if (outer_scope_->inner_scopes_[i] == this) {
outer_scope_->inner_scopes_.Remove(i);
break;
}
}
// Reparent inner scopes.
for (int i = 0; i < inner_scopes_.length(); i++) {
outer_scope()->AddInnerScope(inner_scopes_[i]);
}
// Move unresolved variables
for (int i = 0; i < unresolved_.length(); i++) {
outer_scope()->unresolved_.Add(unresolved_[i]);
}
return NULL;
}
Variable* Scope::LocalLookup(Handle<String> name) {
Variable* result = variables_.Lookup(name);
if (result != NULL || scope_info_.is_null()) {
return result;
}
// If we have a serialized scope info, we might find the variable there.
// There should be no local slot with the given name.
ASSERT(scope_info_->StackSlotIndex(*name) < 0);
// Check context slot lookup.
VariableMode mode;
InitializationFlag init_flag;
int index = scope_info_->ContextSlotIndex(*name, &mode, &init_flag);
if (index < 0) {
// Check parameters.
mode = VAR;
init_flag = kCreatedInitialized;
index = scope_info_->ParameterIndex(*name);
if (index < 0) return NULL;
}
Variable* var =
variables_.Declare(this,
name,
mode,
true,
Variable::NORMAL,
init_flag);
var->AllocateTo(Variable::CONTEXT, index);
return var;
}
Variable* Scope::LookupFunctionVar(Handle<String> name) {
if (function_ != NULL && function_->name().is_identical_to(name)) {
return function_->var();
} else if (!scope_info_.is_null()) {
// If we are backed by a scope info, try to lookup the variable there.
VariableMode mode;
int index = scope_info_->FunctionContextSlotIndex(*name, &mode);
if (index < 0) return NULL;
Variable* var = DeclareFunctionVar(name, mode);
var->AllocateTo(Variable::CONTEXT, index);
return var;
} else {
return NULL;
}
}
Variable* Scope::Lookup(Handle<String> name) {
for (Scope* scope = this;
scope != NULL;
scope = scope->outer_scope()) {
Variable* var = scope->LocalLookup(name);
if (var != NULL) return var;
}
return NULL;
}
Variable* Scope::DeclareFunctionVar(Handle<String> name, VariableMode mode) {
ASSERT(is_function_scope() && function_ == NULL);
Variable* function_var = new Variable(
this, name, mode, true, Variable::NORMAL, kCreatedInitialized);
function_ = new(isolate_->zone()) VariableProxy(isolate_, function_var);
return function_var;
}
void Scope::DeclareParameter(Handle<String> name, VariableMode mode) {
ASSERT(!already_resolved());
ASSERT(is_function_scope());
Variable* var = variables_.Declare(
this, name, mode, true, Variable::NORMAL, kCreatedInitialized);
params_.Add(var);
}
Variable* Scope::DeclareLocal(Handle<String> name,
VariableMode mode,
InitializationFlag init_flag) {
ASSERT(!already_resolved());
// This function handles VAR and CONST modes. DYNAMIC variables are
// introduces during variable allocation, INTERNAL variables are allocated
// explicitly, and TEMPORARY variables are allocated via NewTemporary().
ASSERT(mode == VAR ||
mode == CONST ||
mode == CONST_HARMONY ||
mode == LET);
++num_var_or_const_;
return
variables_.Declare(this, name, mode, true, Variable::NORMAL, init_flag);
}
Variable* Scope::DeclareGlobal(Handle<String> name) {
ASSERT(is_global_scope());
return variables_.Declare(this,
name,
DYNAMIC_GLOBAL,
true,
Variable::NORMAL,
kCreatedInitialized);
}
VariableProxy* Scope::NewUnresolved(Handle<String> name, int position) {
// Note that we must not share the unresolved variables with
// the same name because they may be removed selectively via
// RemoveUnresolved().
ASSERT(!already_resolved());
VariableProxy* proxy = new(isolate_->zone()) VariableProxy(
isolate_, name, false, position);
unresolved_.Add(proxy);
return proxy;
}
void Scope::RemoveUnresolved(VariableProxy* var) {
// Most likely (always?) any variable we want to remove
// was just added before, so we search backwards.
for (int i = unresolved_.length(); i-- > 0;) {
if (unresolved_[i] == var) {
unresolved_.Remove(i);
return;
}
}
}
Variable* Scope::NewTemporary(Handle<String> name) {
ASSERT(!already_resolved());
Variable* var = new Variable(this,
name,
TEMPORARY,
true,
Variable::NORMAL,
kCreatedInitialized);
temps_.Add(var);
return var;
}
void Scope::AddDeclaration(Declaration* declaration) {
decls_.Add(declaration);
}
void Scope::SetIllegalRedeclaration(Expression* expression) {
// Record only the first illegal redeclaration.
if (!HasIllegalRedeclaration()) {
illegal_redecl_ = expression;
}
ASSERT(HasIllegalRedeclaration());
}
void Scope::VisitIllegalRedeclaration(AstVisitor* visitor) {
ASSERT(HasIllegalRedeclaration());
illegal_redecl_->Accept(visitor);
}
Declaration* Scope::CheckConflictingVarDeclarations() {
int length = decls_.length();
for (int i = 0; i < length; i++) {
Declaration* decl = decls_[i];
if (decl->mode() != VAR) continue;
Handle<String> name = decl->proxy()->name();
// Iterate through all scopes until and including the declaration scope.
Scope* previous = NULL;
Scope* current = decl->scope();
do {
// There is a conflict if there exists a non-VAR binding.
Variable* other_var = current->variables_.Lookup(name);
if (other_var != NULL && other_var->mode() != VAR) {
return decl;
}
previous = current;
current = current->outer_scope_;
} while (!previous->is_declaration_scope());
}
return NULL;
}
void Scope::CollectStackAndContextLocals(ZoneList<Variable*>* stack_locals,
ZoneList<Variable*>* context_locals) {
ASSERT(stack_locals != NULL);
ASSERT(context_locals != NULL);
// Collect temporaries which are always allocated on the stack.
for (int i = 0; i < temps_.length(); i++) {
Variable* var = temps_[i];
if (var->is_used()) {
ASSERT(var->IsStackLocal());
stack_locals->Add(var);
}
}
// Collect declared local variables.
for (VariableMap::Entry* p = variables_.Start();
p != NULL;
p = variables_.Next(p)) {
Variable* var = reinterpret_cast<Variable*>(p->value);
if (var->is_used()) {
if (var->IsStackLocal()) {
stack_locals->Add(var);
} else if (var->IsContextSlot()) {
context_locals->Add(var);
}
}
}
}
void Scope::AllocateVariables(Scope* global_scope) {
// 1) Propagate scope information.
bool outer_scope_calls_non_strict_eval = false;
if (outer_scope_ != NULL) {
outer_scope_calls_non_strict_eval =
outer_scope_->outer_scope_calls_non_strict_eval() |
outer_scope_->calls_non_strict_eval();
}
PropagateScopeInfo(outer_scope_calls_non_strict_eval);
// 2) Resolve variables.
ResolveVariablesRecursively(global_scope);
// 3) Allocate variables.
AllocateVariablesRecursively();
}
bool Scope::AllowsLazyCompilation() const {
return !force_eager_compilation_ && HasTrivialOuterContext();
}
bool Scope::HasTrivialContext() const {
// A function scope has a trivial context if it always is the global
// context. We iteratively scan out the context chain to see if
// there is anything that makes this scope non-trivial; otherwise we
// return true.
for (const Scope* scope = this; scope != NULL; scope = scope->outer_scope_) {
if (scope->is_eval_scope()) return false;
if (scope->scope_inside_with_) return false;
if (scope->num_heap_slots_ > 0) return false;
}
return true;
}
bool Scope::HasTrivialOuterContext() const {
Scope* outer = outer_scope_;
if (outer == NULL) return true;
// Note that the outer context may be trivial in general, but the current
// scope may be inside a 'with' statement in which case the outer context
// for this scope is not trivial.
return !scope_inside_with_ && outer->HasTrivialContext();
}
int Scope::ContextChainLength(Scope* scope) {
int n = 0;
for (Scope* s = this; s != scope; s = s->outer_scope_) {
ASSERT(s != NULL); // scope must be in the scope chain
if (s->num_heap_slots() > 0) n++;
}
return n;
}
Scope* Scope::DeclarationScope() {
Scope* scope = this;
while (!scope->is_declaration_scope()) {
scope = scope->outer_scope();
}
return scope;
}
Handle<ScopeInfo> Scope::GetScopeInfo() {
if (scope_info_.is_null()) {
scope_info_ = ScopeInfo::Create(this);
}
return scope_info_;
}
void Scope::GetNestedScopeChain(
List<Handle<ScopeInfo> >* chain,
int position) {
chain->Add(Handle<ScopeInfo>(GetScopeInfo()));
for (int i = 0; i < inner_scopes_.length(); i++) {
Scope* scope = inner_scopes_[i];
int beg_pos = scope->start_position();
int end_pos = scope->end_position();
ASSERT(beg_pos >= 0 && end_pos >= 0);
if (beg_pos <= position && position <= end_pos) {
scope->GetNestedScopeChain(chain, position);
return;
}
}
}
#ifdef DEBUG
static const char* Header(ScopeType type) {
switch (type) {
case EVAL_SCOPE: return "eval";
case FUNCTION_SCOPE: return "function";
case GLOBAL_SCOPE: return "global";
case CATCH_SCOPE: return "catch";
case BLOCK_SCOPE: return "block";
case WITH_SCOPE: return "with";
}
UNREACHABLE();
return NULL;
}
static void Indent(int n, const char* str) {
PrintF("%*s%s", n, "", str);
}
static void PrintName(Handle<String> name) {
SmartArrayPointer<char> s = name->ToCString(DISALLOW_NULLS);
PrintF("%s", *s);
}
static void PrintLocation(Variable* var) {
switch (var->location()) {
case Variable::UNALLOCATED:
break;
case Variable::PARAMETER:
PrintF("parameter[%d]", var->index());
break;
case Variable::LOCAL:
PrintF("local[%d]", var->index());
break;
case Variable::CONTEXT:
PrintF("context[%d]", var->index());
break;
case Variable::LOOKUP:
PrintF("lookup");
break;
}
}
static void PrintVar(int indent, Variable* var) {
if (var->is_used() || !var->IsUnallocated()) {
Indent(indent, Variable::Mode2String(var->mode()));
PrintF(" ");
PrintName(var->name());
PrintF("; // ");
PrintLocation(var);
if (var->has_forced_context_allocation()) {
if (!var->IsUnallocated()) PrintF(", ");
PrintF("forced context allocation");
}
PrintF("\n");
}
}
static void PrintMap(int indent, VariableMap* map) {
for (VariableMap::Entry* p = map->Start(); p != NULL; p = map->Next(p)) {
Variable* var = reinterpret_cast<Variable*>(p->value);
PrintVar(indent, var);
}
}
void Scope::Print(int n) {
int n0 = (n > 0 ? n : 0);
int n1 = n0 + 2; // indentation
// Print header.
Indent(n0, Header(type_));
if (scope_name_->length() > 0) {
PrintF(" ");
PrintName(scope_name_);
}
// Print parameters, if any.
if (is_function_scope()) {
PrintF(" (");
for (int i = 0; i < params_.length(); i++) {
if (i > 0) PrintF(", ");
PrintName(params_[i]->name());
}
PrintF(")");
}
PrintF(" {\n");
// Function name, if any (named function literals, only).
if (function_ != NULL) {
Indent(n1, "// (local) function name: ");
PrintName(function_->name());
PrintF("\n");
}
// Scope info.
if (HasTrivialOuterContext()) {
Indent(n1, "// scope has trivial outer context\n");
}
if (is_strict_mode()) Indent(n1, "// strict mode scope\n");
if (scope_inside_with_) Indent(n1, "// scope inside 'with'\n");
if (scope_contains_with_) Indent(n1, "// scope contains 'with'\n");
if (scope_calls_eval_) Indent(n1, "// scope calls 'eval'\n");
if (outer_scope_calls_non_strict_eval_) {
Indent(n1, "// outer scope calls 'eval' in non-strict context\n");
}
if (inner_scope_calls_eval_) Indent(n1, "// inner scope calls 'eval'\n");
if (num_stack_slots_ > 0) { Indent(n1, "// ");
PrintF("%d stack slots\n", num_stack_slots_); }
if (num_heap_slots_ > 0) { Indent(n1, "// ");
PrintF("%d heap slots\n", num_heap_slots_); }
// Print locals.
Indent(n1, "// function var\n");
if (function_ != NULL) {
PrintVar(n1, function_->var());
}
Indent(n1, "// temporary vars\n");
for (int i = 0; i < temps_.length(); i++) {
PrintVar(n1, temps_[i]);
}
Indent(n1, "// local vars\n");
PrintMap(n1, &variables_);
Indent(n1, "// dynamic vars\n");
if (dynamics_ != NULL) {
PrintMap(n1, dynamics_->GetMap(DYNAMIC));
PrintMap(n1, dynamics_->GetMap(DYNAMIC_LOCAL));
PrintMap(n1, dynamics_->GetMap(DYNAMIC_GLOBAL));
}
// Print inner scopes (disable by providing negative n).
if (n >= 0) {
for (int i = 0; i < inner_scopes_.length(); i++) {
PrintF("\n");
inner_scopes_[i]->Print(n1);
}
}
Indent(n0, "}\n");
}
#endif // DEBUG
Variable* Scope::NonLocal(Handle<String> name, VariableMode mode) {
if (dynamics_ == NULL) dynamics_ = new DynamicScopePart();
VariableMap* map = dynamics_->GetMap(mode);
Variable* var = map->Lookup(name);
if (var == NULL) {
// Declare a new non-local.
InitializationFlag init_flag = (mode == VAR)
? kCreatedInitialized : kNeedsInitialization;
var = map->Declare(NULL,
name,
mode,
true,
Variable::NORMAL,
init_flag);
// Allocate it by giving it a dynamic lookup.
var->AllocateTo(Variable::LOOKUP, -1);
}
return var;
}
Variable* Scope::LookupRecursive(Handle<String> name,
BindingKind* binding_kind) {
ASSERT(binding_kind != NULL);
// Try to find the variable in this scope.
Variable* var = LocalLookup(name);
// We found a variable and we are done. (Even if there is an 'eval' in
// this scope which introduces the same variable again, the resulting
// variable remains the same.)
if (var != NULL) {
*binding_kind = BOUND;
return var;
}
// We did not find a variable locally. Check against the function variable,
// if any. We can do this for all scopes, since the function variable is
// only present - if at all - for function scopes.
*binding_kind = UNBOUND;
var = LookupFunctionVar(name);
if (var != NULL) {
*binding_kind = BOUND;
} else if (outer_scope_ != NULL) {
var = outer_scope_->LookupRecursive(name, binding_kind);
if (*binding_kind == BOUND && (is_function_scope() || is_with_scope())) {
var->ForceContextAllocation();
}
} else {
ASSERT(is_global_scope());
}
if (is_with_scope()) {
// The current scope is a with scope, so the variable binding can not be
// statically resolved. However, note that it was necessary to do a lookup
// in the outer scope anyway, because if a binding exists in an outer scope,
// the associated variable has to be marked as potentially being accessed
// from inside of an inner with scope (the property may not be in the 'with'
// object).
*binding_kind = DYNAMIC_LOOKUP;
return NULL;
} else if (calls_non_strict_eval()) {
// A variable binding may have been found in an outer scope, but the current
// scope makes a non-strict 'eval' call, so the found variable may not be
// the correct one (the 'eval' may introduce a binding with the same name).
// In that case, change the lookup result to reflect this situation.
if (*binding_kind == BOUND) {
*binding_kind = BOUND_EVAL_SHADOWED;
} else if (*binding_kind == UNBOUND) {
*binding_kind = UNBOUND_EVAL_SHADOWED;
}
}
return var;
}
void Scope::ResolveVariable(Scope* global_scope,
VariableProxy* proxy) {
ASSERT(global_scope == NULL || global_scope->is_global_scope());
// If the proxy is already resolved there's nothing to do
// (functions and consts may be resolved by the parser).
if (proxy->var() != NULL) return;
// Otherwise, try to resolve the variable.
BindingKind binding_kind;
Variable* var = LookupRecursive(proxy->name(), &binding_kind);
switch (binding_kind) {
case BOUND:
// We found a variable binding.
break;
case BOUND_EVAL_SHADOWED:
// We found a variable variable binding that might be shadowed
// by 'eval' introduced variable bindings.
if (var->is_global()) {
var = NonLocal(proxy->name(), DYNAMIC_GLOBAL);
} else {
Variable* invalidated = var;
var = NonLocal(proxy->name(), DYNAMIC_LOCAL);
var->set_local_if_not_shadowed(invalidated);
}
break;
case UNBOUND:
// No binding has been found. Declare a variable in global scope.
ASSERT(global_scope != NULL);
var = global_scope->DeclareGlobal(proxy->name());
break;
case UNBOUND_EVAL_SHADOWED:
// No binding has been found. But some scope makes a
// non-strict 'eval' call.
var = NonLocal(proxy->name(), DYNAMIC_GLOBAL);
break;
case DYNAMIC_LOOKUP:
// The variable could not be resolved statically.
var = NonLocal(proxy->name(), DYNAMIC);
break;
}
ASSERT(var != NULL);
proxy->BindTo(var);
}
void Scope::ResolveVariablesRecursively(Scope* global_scope) {
ASSERT(global_scope == NULL || global_scope->is_global_scope());
// Resolve unresolved variables for this scope.
for (int i = 0; i < unresolved_.length(); i++) {
ResolveVariable(global_scope, unresolved_[i]);
}
// Resolve unresolved variables for inner scopes.
for (int i = 0; i < inner_scopes_.length(); i++) {
inner_scopes_[i]->ResolveVariablesRecursively(global_scope);
}
}
bool Scope::PropagateScopeInfo(bool outer_scope_calls_non_strict_eval ) {
if (outer_scope_calls_non_strict_eval) {
outer_scope_calls_non_strict_eval_ = true;
}
bool calls_non_strict_eval =
this->calls_non_strict_eval() || outer_scope_calls_non_strict_eval_;
for (int i = 0; i < inner_scopes_.length(); i++) {
Scope* inner_scope = inner_scopes_[i];
if (inner_scope->PropagateScopeInfo(calls_non_strict_eval)) {
inner_scope_calls_eval_ = true;
}
if (inner_scope->force_eager_compilation_) {
force_eager_compilation_ = true;
}
}
return scope_calls_eval_ || inner_scope_calls_eval_;
}
bool Scope::MustAllocate(Variable* var) {
// Give var a read/write use if there is a chance it might be accessed
// via an eval() call. This is only possible if the variable has a
// visible name.
if ((var->is_this() || var->name()->length() > 0) &&
(var->has_forced_context_allocation() ||
scope_calls_eval_ ||
inner_scope_calls_eval_ ||
scope_contains_with_ ||
is_catch_scope() ||
is_block_scope())) {
var->set_is_used(true);
}
// Global variables do not need to be allocated.
return !var->is_global() && var->is_used();
}
bool Scope::MustAllocateInContext(Variable* var) {
// If var is accessed from an inner scope, or if there is a possibility
// that it might be accessed from the current or an inner scope (through
// an eval() call or a runtime with lookup), it must be allocated in the
// context.
//
// Exceptions: temporary variables are never allocated in a context;
// catch-bound variables are always allocated in a context.
if (var->mode() == TEMPORARY) return false;
if (is_catch_scope() || is_block_scope()) return true;
return var->has_forced_context_allocation() ||
scope_calls_eval_ ||
inner_scope_calls_eval_ ||
scope_contains_with_ ||
var->is_global();
}
bool Scope::HasArgumentsParameter() {
for (int i = 0; i < params_.length(); i++) {
if (params_[i]->name().is_identical_to(
isolate_->factory()->arguments_symbol())) {
return true;
}
}
return false;
}
void Scope::AllocateStackSlot(Variable* var) {
var->AllocateTo(Variable::LOCAL, num_stack_slots_++);
}
void Scope::AllocateHeapSlot(Variable* var) {
var->AllocateTo(Variable::CONTEXT, num_heap_slots_++);
}
void Scope::AllocateParameterLocals() {
ASSERT(is_function_scope());
Variable* arguments = LocalLookup(isolate_->factory()->arguments_symbol());
ASSERT(arguments != NULL); // functions have 'arguments' declared implicitly
bool uses_nonstrict_arguments = false;
if (MustAllocate(arguments) && !HasArgumentsParameter()) {
// 'arguments' is used. Unless there is also a parameter called
// 'arguments', we must be conservative and allocate all parameters to
// the context assuming they will be captured by the arguments object.
// If we have a parameter named 'arguments', a (new) value is always
// assigned to it via the function invocation. Then 'arguments' denotes
// that specific parameter value and cannot be used to access the
// parameters, which is why we don't need to allocate an arguments
// object in that case.
// We are using 'arguments'. Tell the code generator that is needs to
// allocate the arguments object by setting 'arguments_'.
arguments_ = arguments;
// In strict mode 'arguments' does not alias formal parameters.
// Therefore in strict mode we allocate parameters as if 'arguments'
// were not used.
uses_nonstrict_arguments = !is_strict_mode();
}
// The same parameter may occur multiple times in the parameters_ list.
// If it does, and if it is not copied into the context object, it must
// receive the highest parameter index for that parameter; thus iteration
// order is relevant!
for (int i = params_.length() - 1; i >= 0; --i) {
Variable* var = params_[i];
ASSERT(var->scope() == this);
if (uses_nonstrict_arguments) {
// Force context allocation of the parameter.
var->ForceContextAllocation();
}
if (MustAllocate(var)) {
if (MustAllocateInContext(var)) {
ASSERT(var->IsUnallocated() || var->IsContextSlot());
if (var->IsUnallocated()) {
AllocateHeapSlot(var);
}
} else {
ASSERT(var->IsUnallocated() || var->IsParameter());
if (var->IsUnallocated()) {
var->AllocateTo(Variable::PARAMETER, i);
}
}
}
}
}
void Scope::AllocateNonParameterLocal(Variable* var) {
ASSERT(var->scope() == this);
ASSERT(!var->IsVariable(isolate_->factory()->result_symbol()) ||
!var->IsStackLocal());
if (var->IsUnallocated() && MustAllocate(var)) {
if (MustAllocateInContext(var)) {
AllocateHeapSlot(var);
} else {
AllocateStackSlot(var);
}
}
}
void Scope::AllocateNonParameterLocals() {
// All variables that have no rewrite yet are non-parameter locals.
for (int i = 0; i < temps_.length(); i++) {
AllocateNonParameterLocal(temps_[i]);
}
for (VariableMap::Entry* p = variables_.Start();
p != NULL;
p = variables_.Next(p)) {
Variable* var = reinterpret_cast<Variable*>(p->value);
AllocateNonParameterLocal(var);
}
// For now, function_ must be allocated at the very end. If it gets
// allocated in the context, it must be the last slot in the context,
// because of the current ScopeInfo implementation (see
// ScopeInfo::ScopeInfo(FunctionScope* scope) constructor).
if (function_ != NULL) {
AllocateNonParameterLocal(function_->var());
}
}
void Scope::AllocateVariablesRecursively() {
// Allocate variables for inner scopes.
for (int i = 0; i < inner_scopes_.length(); i++) {
inner_scopes_[i]->AllocateVariablesRecursively();
}
// If scope is already resolved, we still need to allocate
// variables in inner scopes which might not had been resolved yet.
if (already_resolved()) return;
// The number of slots required for variables.
num_stack_slots_ = 0;
num_heap_slots_ = Context::MIN_CONTEXT_SLOTS;
// Allocate variables for this scope.
// Parameters must be allocated first, if any.
if (is_function_scope()) AllocateParameterLocals();
AllocateNonParameterLocals();
// Force allocation of a context for this scope if necessary. For a 'with'
// scope and for a function scope that makes an 'eval' call we need a context,
// even if no local variables were statically allocated in the scope.
bool must_have_context = is_with_scope() ||
(is_function_scope() && calls_eval());
// If we didn't allocate any locals in the local context, then we only
// need the minimal number of slots if we must have a context.
if (num_heap_slots_ == Context::MIN_CONTEXT_SLOTS && !must_have_context) {
num_heap_slots_ = 0;
}
// Allocation done.
ASSERT(num_heap_slots_ == 0 || num_heap_slots_ >= Context::MIN_CONTEXT_SLOTS);
}
int Scope::StackLocalCount() const {
return num_stack_slots() -
(function_ != NULL && function_->var()->IsStackLocal() ? 1 : 0);
}
int Scope::ContextLocalCount() const {
if (num_heap_slots() == 0) return 0;
return num_heap_slots() - Context::MIN_CONTEXT_SLOTS -
(function_ != NULL && function_->var()->IsContextSlot() ? 1 : 0);
}
} } // namespace v8::internal