v8/test/cctest/compiler/test-representation-change.cc
mstarzinger 16f133001f Move compiler cctests into v8::internal::compiler namespace.
This moves all cctest files for the compiler to live in the same
namespace as the components they are testing. Hence we can avoid the
forbidden using directives pulling in entire namespaces.

From the Google C++ style guide: "You may not use a using-directive to
make all names from a namespace available". This would be covered by
presubmit linter checks if build/namespaces were not blacklisted.

R=bmeurer@chromium.org

Review URL: https://codereview.chromium.org/1424943004

Cr-Commit-Position: refs/heads/master@{#31671}
2015-10-30 09:16:39 +00:00

554 lines
17 KiB
C++

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// TODO(jochen): Remove this after the setting is turned on globally.
#define V8_IMMINENT_DEPRECATION_WARNINGS
#include <limits>
#include "test/cctest/cctest.h"
#include "test/cctest/compiler/codegen-tester.h"
#include "test/cctest/compiler/graph-builder-tester.h"
#include "test/cctest/compiler/value-helper.h"
#include "src/compiler/node-matchers.h"
#include "src/compiler/representation-change.h"
namespace v8 {
namespace internal {
namespace compiler {
class RepresentationChangerTester : public HandleAndZoneScope,
public GraphAndBuilders {
public:
explicit RepresentationChangerTester(int num_parameters = 0)
: GraphAndBuilders(main_zone()),
javascript_(main_zone()),
jsgraph_(main_isolate(), main_graph_, &main_common_, &javascript_,
&main_simplified_, &main_machine_),
changer_(&jsgraph_, main_isolate()) {
Node* s = graph()->NewNode(common()->Start(num_parameters));
graph()->SetStart(s);
}
JSOperatorBuilder javascript_;
JSGraph jsgraph_;
RepresentationChanger changer_;
Isolate* isolate() { return main_isolate(); }
Graph* graph() { return main_graph_; }
CommonOperatorBuilder* common() { return &main_common_; }
JSGraph* jsgraph() { return &jsgraph_; }
RepresentationChanger* changer() { return &changer_; }
// TODO(titzer): use ValueChecker / ValueUtil
void CheckInt32Constant(Node* n, int32_t expected) {
Int32Matcher m(n);
CHECK(m.HasValue());
CHECK_EQ(expected, m.Value());
}
void CheckUint32Constant(Node* n, uint32_t expected) {
Uint32Matcher m(n);
CHECK(m.HasValue());
CHECK_EQ(static_cast<int>(expected), static_cast<int>(m.Value()));
}
void CheckFloat64Constant(Node* n, double expected) {
Float64Matcher m(n);
CHECK(m.HasValue());
CheckDoubleEq(expected, m.Value());
}
void CheckFloat32Constant(Node* n, float expected) {
CHECK_EQ(IrOpcode::kFloat32Constant, n->opcode());
float fval = OpParameter<float>(n->op());
CHECK_EQ(expected, fval);
}
void CheckHeapConstant(Node* n, HeapObject* expected) {
HeapObjectMatcher m(n);
CHECK(m.HasValue());
CHECK_EQ(expected, *m.Value());
}
void CheckNumberConstant(Node* n, double expected) {
NumberMatcher m(n);
CHECK_EQ(IrOpcode::kNumberConstant, n->opcode());
CHECK(m.HasValue());
CheckDoubleEq(expected, m.Value());
}
Node* Parameter(int index = 0) {
return graph()->NewNode(common()->Parameter(index), graph()->start());
}
void CheckTypeError(MachineTypeUnion from, MachineTypeUnion to) {
changer()->testing_type_errors_ = true;
changer()->type_error_ = false;
Node* n = Parameter(0);
Node* c = changer()->GetRepresentationFor(n, from, to);
CHECK(changer()->type_error_);
CHECK_EQ(n, c);
}
void CheckNop(MachineTypeUnion from, MachineTypeUnion to) {
Node* n = Parameter(0);
Node* c = changer()->GetRepresentationFor(n, from, to);
CHECK_EQ(n, c);
}
};
static const MachineType all_reps[] = {kRepBit, kRepWord32, kRepWord64,
kRepFloat32, kRepFloat64, kRepTagged};
TEST(BoolToBit_constant) {
RepresentationChangerTester r;
Node* true_node = r.jsgraph()->TrueConstant();
Node* true_bit =
r.changer()->GetRepresentationFor(true_node, kRepTagged, kRepBit);
r.CheckInt32Constant(true_bit, 1);
Node* false_node = r.jsgraph()->FalseConstant();
Node* false_bit =
r.changer()->GetRepresentationFor(false_node, kRepTagged, kRepBit);
r.CheckInt32Constant(false_bit, 0);
}
TEST(BitToBool_constant) {
RepresentationChangerTester r;
for (int i = -5; i < 5; i++) {
Node* node = r.jsgraph()->Int32Constant(i);
Node* val = r.changer()->GetRepresentationFor(node, kRepBit, kRepTagged);
r.CheckHeapConstant(val, i == 0 ? r.isolate()->heap()->false_value()
: r.isolate()->heap()->true_value());
}
}
TEST(ToTagged_constant) {
RepresentationChangerTester r;
{
FOR_FLOAT64_INPUTS(i) {
Node* n = r.jsgraph()->Float64Constant(*i);
Node* c = r.changer()->GetRepresentationFor(n, kRepFloat64, kRepTagged);
r.CheckNumberConstant(c, *i);
}
}
{
FOR_FLOAT64_INPUTS(i) {
Node* n = r.jsgraph()->Constant(*i);
Node* c = r.changer()->GetRepresentationFor(n, kRepFloat64, kRepTagged);
r.CheckNumberConstant(c, *i);
}
}
{
FOR_FLOAT32_INPUTS(i) {
Node* n = r.jsgraph()->Float32Constant(*i);
Node* c = r.changer()->GetRepresentationFor(n, kRepFloat32, kRepTagged);
r.CheckNumberConstant(c, *i);
}
}
{
FOR_INT32_INPUTS(i) {
Node* n = r.jsgraph()->Int32Constant(*i);
Node* c = r.changer()->GetRepresentationFor(n, kRepWord32 | kTypeInt32,
kRepTagged);
r.CheckNumberConstant(c, *i);
}
}
{
FOR_UINT32_INPUTS(i) {
Node* n = r.jsgraph()->Int32Constant(*i);
Node* c = r.changer()->GetRepresentationFor(n, kRepWord32 | kTypeUint32,
kRepTagged);
r.CheckNumberConstant(c, *i);
}
}
}
TEST(ToFloat64_constant) {
RepresentationChangerTester r;
{
FOR_FLOAT64_INPUTS(i) {
Node* n = r.jsgraph()->Float64Constant(*i);
Node* c = r.changer()->GetRepresentationFor(n, kRepFloat64, kRepFloat64);
CHECK_EQ(n, c);
}
}
{
FOR_FLOAT64_INPUTS(i) {
Node* n = r.jsgraph()->Constant(*i);
Node* c = r.changer()->GetRepresentationFor(n, kRepTagged, kRepFloat64);
r.CheckFloat64Constant(c, *i);
}
}
{
FOR_FLOAT32_INPUTS(i) {
Node* n = r.jsgraph()->Float32Constant(*i);
Node* c = r.changer()->GetRepresentationFor(n, kRepFloat32, kRepFloat64);
r.CheckFloat64Constant(c, *i);
}
}
{
FOR_INT32_INPUTS(i) {
Node* n = r.jsgraph()->Int32Constant(*i);
Node* c = r.changer()->GetRepresentationFor(n, kRepWord32 | kTypeInt32,
kRepFloat64);
r.CheckFloat64Constant(c, *i);
}
}
{
FOR_UINT32_INPUTS(i) {
Node* n = r.jsgraph()->Int32Constant(*i);
Node* c = r.changer()->GetRepresentationFor(n, kRepWord32 | kTypeUint32,
kRepFloat64);
r.CheckFloat64Constant(c, *i);
}
}
}
static bool IsFloat32Int32(int32_t val) {
return val >= -(1 << 23) && val <= (1 << 23);
}
static bool IsFloat32Uint32(uint32_t val) { return val <= (1 << 23); }
TEST(ToFloat32_constant) {
RepresentationChangerTester r;
{
FOR_FLOAT32_INPUTS(i) {
Node* n = r.jsgraph()->Float32Constant(*i);
Node* c = r.changer()->GetRepresentationFor(n, kRepFloat32, kRepFloat32);
CHECK_EQ(n, c);
}
}
{
FOR_FLOAT32_INPUTS(i) {
Node* n = r.jsgraph()->Constant(*i);
Node* c = r.changer()->GetRepresentationFor(n, kRepTagged, kRepFloat32);
r.CheckFloat32Constant(c, *i);
}
}
{
FOR_FLOAT32_INPUTS(i) {
Node* n = r.jsgraph()->Float64Constant(*i);
Node* c = r.changer()->GetRepresentationFor(n, kRepFloat64, kRepFloat32);
r.CheckFloat32Constant(c, *i);
}
}
{
FOR_INT32_INPUTS(i) {
if (!IsFloat32Int32(*i)) continue;
Node* n = r.jsgraph()->Int32Constant(*i);
Node* c = r.changer()->GetRepresentationFor(n, kRepWord32 | kTypeInt32,
kRepFloat32);
r.CheckFloat32Constant(c, static_cast<float>(*i));
}
}
{
FOR_UINT32_INPUTS(i) {
if (!IsFloat32Uint32(*i)) continue;
Node* n = r.jsgraph()->Int32Constant(*i);
Node* c = r.changer()->GetRepresentationFor(n, kRepWord32 | kTypeUint32,
kRepFloat32);
r.CheckFloat32Constant(c, static_cast<float>(*i));
}
}
}
TEST(ToInt32_constant) {
RepresentationChangerTester r;
{
FOR_INT32_INPUTS(i) {
Node* n = r.jsgraph()->Int32Constant(*i);
Node* c = r.changer()->GetRepresentationFor(n, kRepWord32 | kTypeInt32,
kRepWord32);
r.CheckInt32Constant(c, *i);
}
}
{
FOR_INT32_INPUTS(i) {
if (!IsFloat32Int32(*i)) continue;
Node* n = r.jsgraph()->Float32Constant(static_cast<float>(*i));
Node* c = r.changer()->GetRepresentationFor(n, kRepFloat32 | kTypeInt32,
kRepWord32);
r.CheckInt32Constant(c, *i);
}
}
{
FOR_INT32_INPUTS(i) {
Node* n = r.jsgraph()->Float64Constant(*i);
Node* c = r.changer()->GetRepresentationFor(n, kRepFloat64 | kTypeInt32,
kRepWord32);
r.CheckInt32Constant(c, *i);
}
}
{
FOR_INT32_INPUTS(i) {
Node* n = r.jsgraph()->Constant(*i);
Node* c = r.changer()->GetRepresentationFor(n, kRepTagged | kTypeInt32,
kRepWord32);
r.CheckInt32Constant(c, *i);
}
}
}
TEST(ToUint32_constant) {
RepresentationChangerTester r;
{
FOR_UINT32_INPUTS(i) {
Node* n = r.jsgraph()->Int32Constant(*i);
Node* c = r.changer()->GetRepresentationFor(n, kRepWord32 | kTypeUint32,
kRepWord32);
r.CheckUint32Constant(c, *i);
}
}
{
FOR_UINT32_INPUTS(i) {
if (!IsFloat32Uint32(*i)) continue;
Node* n = r.jsgraph()->Float32Constant(static_cast<float>(*i));
Node* c = r.changer()->GetRepresentationFor(n, kRepFloat32 | kTypeUint32,
kRepWord32);
r.CheckUint32Constant(c, *i);
}
}
{
FOR_UINT32_INPUTS(i) {
Node* n = r.jsgraph()->Float64Constant(*i);
Node* c = r.changer()->GetRepresentationFor(n, kRepFloat64 | kTypeUint32,
kRepWord32);
r.CheckUint32Constant(c, *i);
}
}
{
FOR_UINT32_INPUTS(i) {
Node* n = r.jsgraph()->Constant(static_cast<double>(*i));
Node* c = r.changer()->GetRepresentationFor(n, kRepTagged | kTypeUint32,
kRepWord32);
r.CheckUint32Constant(c, *i);
}
}
}
static void CheckChange(IrOpcode::Value expected, MachineTypeUnion from,
MachineTypeUnion to) {
RepresentationChangerTester r;
Node* n = r.Parameter();
Node* c = r.changer()->GetRepresentationFor(n, from, to);
CHECK_NE(c, n);
CHECK_EQ(expected, c->opcode());
CHECK_EQ(n, c->InputAt(0));
}
static void CheckTwoChanges(IrOpcode::Value expected2,
IrOpcode::Value expected1, MachineTypeUnion from,
MachineTypeUnion to) {
RepresentationChangerTester r;
Node* n = r.Parameter();
Node* c1 = r.changer()->GetRepresentationFor(n, from, to);
CHECK_NE(c1, n);
CHECK_EQ(expected1, c1->opcode());
Node* c2 = c1->InputAt(0);
CHECK_NE(c2, n);
CHECK_EQ(expected2, c2->opcode());
CHECK_EQ(n, c2->InputAt(0));
}
TEST(SingleChanges) {
CheckChange(IrOpcode::kChangeBoolToBit, kRepTagged, kRepBit);
CheckChange(IrOpcode::kChangeBitToBool, kRepBit, kRepTagged);
CheckChange(IrOpcode::kChangeInt32ToTagged, kRepWord32 | kTypeInt32,
kRepTagged);
CheckChange(IrOpcode::kChangeUint32ToTagged, kRepWord32 | kTypeUint32,
kRepTagged);
CheckChange(IrOpcode::kChangeFloat64ToTagged, kRepFloat64, kRepTagged);
CheckChange(IrOpcode::kChangeTaggedToInt32, kRepTagged | kTypeInt32,
kRepWord32);
CheckChange(IrOpcode::kChangeTaggedToUint32, kRepTagged | kTypeUint32,
kRepWord32);
CheckChange(IrOpcode::kChangeTaggedToFloat64, kRepTagged, kRepFloat64);
// Int32,Uint32 <-> Float64 are actually machine conversions.
CheckChange(IrOpcode::kChangeInt32ToFloat64, kRepWord32 | kTypeInt32,
kRepFloat64);
CheckChange(IrOpcode::kChangeUint32ToFloat64, kRepWord32 | kTypeUint32,
kRepFloat64);
CheckChange(IrOpcode::kChangeFloat64ToInt32, kRepFloat64 | kTypeInt32,
kRepWord32);
CheckChange(IrOpcode::kChangeFloat64ToUint32, kRepFloat64 | kTypeUint32,
kRepWord32);
CheckChange(IrOpcode::kTruncateFloat64ToFloat32, kRepFloat64, kRepFloat32);
// Int32,Uint32 <-> Float32 require two changes.
CheckTwoChanges(IrOpcode::kChangeInt32ToFloat64,
IrOpcode::kTruncateFloat64ToFloat32, kRepWord32 | kTypeInt32,
kRepFloat32);
CheckTwoChanges(IrOpcode::kChangeUint32ToFloat64,
IrOpcode::kTruncateFloat64ToFloat32, kRepWord32 | kTypeUint32,
kRepFloat32);
CheckTwoChanges(IrOpcode::kChangeFloat32ToFloat64,
IrOpcode::kChangeFloat64ToInt32, kRepFloat32 | kTypeInt32,
kRepWord32);
CheckTwoChanges(IrOpcode::kChangeFloat32ToFloat64,
IrOpcode::kChangeFloat64ToUint32, kRepFloat32 | kTypeUint32,
kRepWord32);
// Float32 <-> Tagged require two changes.
CheckTwoChanges(IrOpcode::kChangeFloat32ToFloat64,
IrOpcode::kChangeFloat64ToTagged, kRepFloat32, kRepTagged);
CheckTwoChanges(IrOpcode::kChangeTaggedToFloat64,
IrOpcode::kTruncateFloat64ToFloat32, kRepTagged, kRepFloat32);
}
TEST(SignednessInWord32) {
RepresentationChangerTester r;
// TODO(titzer): assume that uses of a word32 without a sign mean kTypeInt32.
CheckChange(IrOpcode::kChangeTaggedToInt32, kRepTagged,
kRepWord32 | kTypeInt32);
CheckChange(IrOpcode::kChangeTaggedToUint32, kRepTagged,
kRepWord32 | kTypeUint32);
CheckChange(IrOpcode::kChangeInt32ToFloat64, kRepWord32, kRepFloat64);
CheckChange(IrOpcode::kChangeFloat64ToInt32, kRepFloat64, kRepWord32);
CheckTwoChanges(IrOpcode::kChangeInt32ToFloat64,
IrOpcode::kTruncateFloat64ToFloat32, kRepWord32, kRepFloat32);
CheckTwoChanges(IrOpcode::kChangeFloat32ToFloat64,
IrOpcode::kChangeFloat64ToInt32, kRepFloat32, kRepWord32);
}
TEST(Nops) {
RepresentationChangerTester r;
// X -> X is always a nop for any single representation X.
for (size_t i = 0; i < arraysize(all_reps); i++) {
r.CheckNop(all_reps[i], all_reps[i]);
}
// 32-bit floats.
r.CheckNop(kRepFloat32, kRepFloat32);
r.CheckNop(kRepFloat32 | kTypeNumber, kRepFloat32);
r.CheckNop(kRepFloat32, kRepFloat32 | kTypeNumber);
// 32-bit words can be used as smaller word sizes and vice versa, because
// loads from memory implicitly sign or zero extend the value to the
// full machine word size, and stores implicitly truncate.
r.CheckNop(kRepWord32, kRepWord8);
r.CheckNop(kRepWord32, kRepWord16);
r.CheckNop(kRepWord32, kRepWord32);
r.CheckNop(kRepWord8, kRepWord32);
r.CheckNop(kRepWord16, kRepWord32);
// kRepBit (result of comparison) is implicitly a wordish thing.
r.CheckNop(kRepBit, kRepWord8);
r.CheckNop(kRepBit | kTypeBool, kRepWord8);
r.CheckNop(kRepBit, kRepWord16);
r.CheckNop(kRepBit | kTypeBool, kRepWord16);
r.CheckNop(kRepBit, kRepWord32);
r.CheckNop(kRepBit | kTypeBool, kRepWord32);
r.CheckNop(kRepBit, kRepWord64);
r.CheckNop(kRepBit | kTypeBool, kRepWord64);
}
TEST(TypeErrors) {
RepresentationChangerTester r;
// Wordish cannot be implicitly converted to/from comparison conditions.
r.CheckTypeError(kRepWord8, kRepBit);
r.CheckTypeError(kRepWord8, kRepBit | kTypeBool);
r.CheckTypeError(kRepWord16, kRepBit);
r.CheckTypeError(kRepWord16, kRepBit | kTypeBool);
r.CheckTypeError(kRepWord32, kRepBit);
r.CheckTypeError(kRepWord32, kRepBit | kTypeBool);
r.CheckTypeError(kRepWord64, kRepBit);
r.CheckTypeError(kRepWord64, kRepBit | kTypeBool);
// Floats cannot be implicitly converted to/from comparison conditions.
r.CheckTypeError(kRepFloat64, kRepBit);
r.CheckTypeError(kRepFloat64, kRepBit | kTypeBool);
r.CheckTypeError(kRepBit, kRepFloat64);
r.CheckTypeError(kRepBit | kTypeBool, kRepFloat64);
// Floats cannot be implicitly converted to/from comparison conditions.
r.CheckTypeError(kRepFloat32, kRepBit);
r.CheckTypeError(kRepFloat32, kRepBit | kTypeBool);
r.CheckTypeError(kRepBit, kRepFloat32);
r.CheckTypeError(kRepBit | kTypeBool, kRepFloat32);
// Word64 is internal and shouldn't be implicitly converted.
r.CheckTypeError(kRepWord64, kRepTagged | kTypeBool);
r.CheckTypeError(kRepWord64, kRepTagged);
r.CheckTypeError(kRepWord64, kRepTagged | kTypeBool);
r.CheckTypeError(kRepTagged, kRepWord64);
r.CheckTypeError(kRepTagged | kTypeBool, kRepWord64);
// Word64 / Word32 shouldn't be implicitly converted.
r.CheckTypeError(kRepWord64, kRepWord32);
r.CheckTypeError(kRepWord32, kRepWord64);
r.CheckTypeError(kRepWord64, kRepWord32 | kTypeInt32);
r.CheckTypeError(kRepWord32 | kTypeInt32, kRepWord64);
r.CheckTypeError(kRepWord64, kRepWord32 | kTypeUint32);
r.CheckTypeError(kRepWord32 | kTypeUint32, kRepWord64);
for (size_t i = 0; i < arraysize(all_reps); i++) {
for (size_t j = 0; j < arraysize(all_reps); j++) {
if (i == j) continue;
// Only a single from representation is allowed.
r.CheckTypeError(all_reps[i] | all_reps[j], kRepTagged);
}
}
}
} // namespace compiler
} // namespace internal
} // namespace v8