v8/test/cctest/heap/heap-utils.cc
Omer Katz 096fefc03a [heap] Move Sweeper from collectors to heap
This is needed to simplify concurrent sweeping for MinorMC.

Also: move evacuation verifiers to a separate file so that they can be
used from heap.cc as well.

Bug: v8:12612
Change-Id: I2a738a31e83a357f4fdded8a30ccb2ff6ba70553
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/3932720
Commit-Queue: Omer Katz <omerkatz@chromium.org>
Reviewed-by: Michael Lippautz <mlippautz@chromium.org>
Reviewed-by: Dominik Inführ <dinfuehr@chromium.org>
Reviewed-by: Toon Verwaest <verwaest@chromium.org>
Cr-Commit-Position: refs/heads/main@{#83557}
2022-10-06 13:30:33 +00:00

360 lines
13 KiB
C++

// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "test/cctest/heap/heap-utils.h"
#include "src/base/platform/mutex.h"
#include "src/common/assert-scope.h"
#include "src/common/globals.h"
#include "src/execution/isolate.h"
#include "src/heap/factory.h"
#include "src/heap/free-list.h"
#include "src/heap/heap-inl.h"
#include "src/heap/incremental-marking.h"
#include "src/heap/mark-compact.h"
#include "src/heap/marking-barrier.h"
#include "src/heap/memory-chunk.h"
#include "src/heap/safepoint.h"
#include "src/heap/spaces.h"
#include "src/objects/free-space-inl.h"
#include "test/cctest/cctest.h"
namespace v8 {
namespace internal {
namespace heap {
void InvokeScavenge(Isolate* isolate) {
CcTest::CollectGarbage(i::NEW_SPACE, isolate);
}
void InvokeMarkSweep(Isolate* isolate) { CcTest::CollectAllGarbage(isolate); }
void SealCurrentObjects(Heap* heap) {
// If you see this check failing, disable the flag at the start of your test:
// v8_flags.stress_concurrent_allocation = false;
// Background thread allocating concurrently interferes with this function.
CHECK(!v8_flags.stress_concurrent_allocation);
CcTest::CollectAllGarbage();
CcTest::CollectAllGarbage();
heap->EnsureSweepingCompleted(Heap::SweepingForcedFinalizationMode::kV8Only);
heap->old_space()->FreeLinearAllocationArea();
for (Page* page : *heap->old_space()) {
page->MarkNeverAllocateForTesting();
}
}
int FixedArrayLenFromSize(int size) {
return std::min({(size - FixedArray::kHeaderSize) / kTaggedSize,
FixedArray::kMaxRegularLength});
}
std::vector<Handle<FixedArray>> FillOldSpacePageWithFixedArrays(Heap* heap,
int remainder) {
PauseAllocationObserversScope pause_observers(heap);
std::vector<Handle<FixedArray>> handles;
Isolate* isolate = heap->isolate();
const int kArraySize = 128;
const int kArrayLen = heap::FixedArrayLenFromSize(kArraySize);
Handle<FixedArray> array;
int allocated = 0;
do {
if (allocated + kArraySize * 2 >
static_cast<int>(MemoryChunkLayout::AllocatableMemoryInDataPage())) {
int size =
kArraySize * 2 -
((allocated + kArraySize * 2) -
static_cast<int>(MemoryChunkLayout::AllocatableMemoryInDataPage())) -
remainder;
int last_array_len = heap::FixedArrayLenFromSize(size);
array = isolate->factory()->NewFixedArray(last_array_len,
AllocationType::kOld);
CHECK_EQ(size, array->Size());
allocated += array->Size() + remainder;
} else {
array =
isolate->factory()->NewFixedArray(kArrayLen, AllocationType::kOld);
allocated += array->Size();
CHECK_EQ(kArraySize, array->Size());
}
if (handles.empty()) {
// Check that allocations started on a new page.
CHECK_EQ(array->address(), Page::FromHeapObject(*array)->area_start());
}
handles.push_back(array);
} while (allocated <
static_cast<int>(MemoryChunkLayout::AllocatableMemoryInDataPage()));
return handles;
}
std::vector<Handle<FixedArray>> CreatePadding(Heap* heap, int padding_size,
AllocationType allocation,
int object_size) {
std::vector<Handle<FixedArray>> handles;
Isolate* isolate = heap->isolate();
int allocate_memory;
int length;
int free_memory = padding_size;
if (allocation == i::AllocationType::kOld) {
heap->old_space()->FreeLinearAllocationArea();
int overall_free_memory = static_cast<int>(heap->old_space()->Available());
CHECK(padding_size <= overall_free_memory || overall_free_memory == 0);
} else {
int overall_free_memory = static_cast<int>(heap->new_space()->Available());
CHECK(padding_size <= overall_free_memory || overall_free_memory == 0);
}
while (free_memory > 0) {
if (free_memory > object_size) {
allocate_memory = object_size;
length = FixedArrayLenFromSize(allocate_memory);
} else {
allocate_memory = free_memory;
length = FixedArrayLenFromSize(allocate_memory);
if (length <= 0) {
// Not enough room to create another FixedArray, so create a filler.
if (allocation == i::AllocationType::kOld) {
heap->CreateFillerObjectAt(
*heap->old_space()->allocation_top_address(), free_memory);
} else {
heap->CreateFillerObjectAt(
*heap->new_space()->allocation_top_address(), free_memory);
}
break;
}
}
handles.push_back(isolate->factory()->NewFixedArray(length, allocation));
CHECK((allocation == AllocationType::kYoung &&
heap->new_space()->Contains(*handles.back())) ||
(allocation == AllocationType::kOld &&
heap->InOldSpace(*handles.back())) ||
v8_flags.single_generation);
free_memory -= handles.back()->Size();
}
return handles;
}
namespace {
void FillPageInPagedSpace(Page* page,
std::vector<Handle<FixedArray>>* out_handles) {
DCHECK(page->SweepingDone());
PagedSpaceBase* paged_space = static_cast<PagedSpaceBase*>(page->owner());
// Make sure the LAB is empty to guarantee that all free space is accounted
// for in the freelist.
DCHECK_EQ(paged_space->limit(), paged_space->top());
for (Page* p : *paged_space) {
if (p != page) paged_space->UnlinkFreeListCategories(p);
}
// If min_block_size is larger than FixedArray::kHeaderSize, all blocks in the
// free list can be used to allocate a fixed array. This guarantees that we
// can fill the whole page.
DCHECK_LT(FixedArray::kHeaderSize,
paged_space->free_list()->min_block_size());
std::vector<int> available_sizes;
// Collect all free list block sizes
page->ForAllFreeListCategories(
[&available_sizes](FreeListCategory* category) {
category->IterateNodesForTesting([&available_sizes](FreeSpace node) {
int node_size = node.Size();
DCHECK_LT(0, FixedArrayLenFromSize(node_size));
available_sizes.push_back(node_size);
});
});
Isolate* isolate = page->heap()->isolate();
// Allocate as many max size arrays as possible, while making sure not to
// leave behind a block too small to fit a FixedArray.
const int max_array_length = FixedArrayLenFromSize(kMaxRegularHeapObjectSize);
for (size_t i = 0; i < available_sizes.size(); ++i) {
int available_size = available_sizes[i];
while (available_size >
kMaxRegularHeapObjectSize + FixedArray::kHeaderSize) {
Handle<FixedArray> fixed_array = isolate->factory()->NewFixedArray(
max_array_length, AllocationType::kYoung);
if (out_handles) out_handles->push_back(fixed_array);
available_size -= kMaxRegularHeapObjectSize;
}
if (available_size > kMaxRegularHeapObjectSize) {
// Allocate less than kMaxRegularHeapObjectSize to ensure remaining space
// can be used to allcoate another FixedArray.
int array_size = kMaxRegularHeapObjectSize - FixedArray::kHeaderSize;
Handle<FixedArray> fixed_array = isolate->factory()->NewFixedArray(
FixedArrayLenFromSize(array_size), AllocationType::kYoung);
if (out_handles) out_handles->push_back(fixed_array);
available_size -= array_size;
}
DCHECK_LE(available_size, kMaxRegularHeapObjectSize);
DCHECK_LT(0, FixedArrayLenFromSize(available_size));
available_sizes[i] = available_size;
}
// Allocate FixedArrays in remaining free list blocks, from largest to
// smallest.
std::sort(available_sizes.begin(), available_sizes.end(),
[](size_t a, size_t b) { return a > b; });
for (size_t i = 0; i < available_sizes.size(); ++i) {
int available_size = available_sizes[i];
DCHECK_LE(available_size, kMaxRegularHeapObjectSize);
int array_length = FixedArrayLenFromSize(available_size);
DCHECK_LT(0, array_length);
Handle<FixedArray> fixed_array =
isolate->factory()->NewFixedArray(array_length, AllocationType::kYoung);
if (out_handles) out_handles->push_back(fixed_array);
}
for (Page* p : *paged_space) {
if (p != page) paged_space->RelinkFreeListCategories(p);
}
}
} // namespace
void FillCurrentPage(v8::internal::NewSpace* space,
std::vector<Handle<FixedArray>>* out_handles) {
if (v8_flags.minor_mc) {
PauseAllocationObserversScope pause_observers(space->heap());
if (space->top() == kNullAddress) return;
Page* page = Page::FromAllocationAreaAddress(space->top());
space->FreeLinearAllocationArea();
FillPageInPagedSpace(page, out_handles);
} else {
FillCurrentPageButNBytes(space, 0, out_handles);
}
}
namespace {
int GetSpaceRemainingOnCurrentPage(v8::internal::NewSpace* space) {
Address top = space->top();
if ((top & kPageAlignmentMask) == 0) {
// `top` points to the start of a page signifies that there is not room in
// the current page.
return 0;
}
return static_cast<int>(Page::FromAddress(space->top())->area_end() - top);
}
} // namespace
void FillCurrentPageButNBytes(v8::internal::NewSpace* space, int extra_bytes,
std::vector<Handle<FixedArray>>* out_handles) {
PauseAllocationObserversScope pause_observers(space->heap());
// We cannot rely on `space->limit()` to point to the end of the current page
// in the case where inline allocations are disabled, it actually points to
// the current allocation pointer.
DCHECK_IMPLIES(!space->IsInlineAllocationEnabled(),
space->limit() == space->top());
int space_remaining = GetSpaceRemainingOnCurrentPage(space);
CHECK(space_remaining >= extra_bytes);
int new_linear_size = space_remaining - extra_bytes;
if (new_linear_size == 0) return;
std::vector<Handle<FixedArray>> handles = heap::CreatePadding(
space->heap(), space_remaining, i::AllocationType::kYoung);
if (out_handles != nullptr) {
out_handles->insert(out_handles->end(), handles.begin(), handles.end());
}
}
void SimulateIncrementalMarking(i::Heap* heap, bool force_completion) {
const double kStepSizeInMs = 100;
CHECK(v8_flags.incremental_marking);
i::IncrementalMarking* marking = heap->incremental_marking();
if (heap->sweeping_in_progress()) {
SafepointScope scope(heap);
heap->EnsureSweepingCompleted(
Heap::SweepingForcedFinalizationMode::kV8Only);
}
if (marking->IsMinorMarking()) {
// If minor incremental marking is running, we need to finalize it first
// because of the AdvanceForTesting call in this function which is currently
// only possible for MajorMC.
heap->CollectGarbage(NEW_SPACE, GarbageCollectionReason::kFinalizeMinorMC);
}
if (marking->IsStopped()) {
heap->StartIncrementalMarking(i::Heap::kNoGCFlags,
i::GarbageCollectionReason::kTesting);
}
CHECK(marking->IsMarking());
if (!force_completion) return;
SafepointScope scope(heap);
MarkingBarrier::PublishAll(heap);
marking->MarkRootsForTesting();
while (!marking->IsMajorMarkingComplete()) {
marking->AdvanceForTesting(kStepSizeInMs);
}
}
void SimulateFullSpace(v8::internal::PagedSpace* space) {
// If you see this check failing, disable the flag at the start of your test:
// v8_flags.stress_concurrent_allocation = false;
// Background thread allocating concurrently interferes with this function.
CHECK(!v8_flags.stress_concurrent_allocation);
CodePageCollectionMemoryModificationScopeForTesting code_scope(space->heap());
if (space->heap()->sweeping_in_progress()) {
space->heap()->EnsureSweepingCompleted(
Heap::SweepingForcedFinalizationMode::kV8Only);
}
space->FreeLinearAllocationArea();
space->ResetFreeList();
}
void AbandonCurrentlyFreeMemory(PagedSpace* space) {
space->FreeLinearAllocationArea();
for (Page* page : *space) {
page->MarkNeverAllocateForTesting();
}
}
void GcAndSweep(Heap* heap, AllocationSpace space) {
heap->CollectGarbage(space, GarbageCollectionReason::kTesting);
if (heap->sweeping_in_progress()) {
SafepointScope scope(heap);
heap->EnsureSweepingCompleted(
Heap::SweepingForcedFinalizationMode::kV8Only);
}
}
void ForceEvacuationCandidate(Page* page) {
CHECK(v8_flags.manual_evacuation_candidates_selection);
page->SetFlag(MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING);
PagedSpace* space = static_cast<PagedSpace*>(page->owner());
DCHECK_NOT_NULL(space);
Address top = space->top();
Address limit = space->limit();
if (top < limit && Page::FromAllocationAreaAddress(top) == page) {
// Create filler object to keep page iterable if it was iterable.
int remaining = static_cast<int>(limit - top);
space->heap()->CreateFillerObjectAt(top, remaining);
base::MutexGuard guard(space->mutex());
space->FreeLinearAllocationArea();
}
}
bool InCorrectGeneration(HeapObject object) {
return v8_flags.single_generation ? !i::Heap::InYoungGeneration(object)
: i::Heap::InYoungGeneration(object);
}
void GrowNewSpace(Heap* heap) {
SafepointScope scope(heap);
if (!heap->new_space()->IsAtMaximumCapacity()) {
heap->new_space()->Grow();
}
}
void GrowNewSpaceToMaximumCapacity(Heap* heap) {
SafepointScope scope(heap);
while (!heap->new_space()->IsAtMaximumCapacity()) {
heap->new_space()->Grow();
}
}
} // namespace heap
} // namespace internal
} // namespace v8