6c85119c6a
BUG=v8:1912 Review URL: https://chromiumcodereview.appspot.com/9285013 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@10492 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
650 lines
21 KiB
C++
650 lines
21 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#ifndef V8_SERIALIZE_H_
|
|
#define V8_SERIALIZE_H_
|
|
|
|
#include "hashmap.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
// A TypeCode is used to distinguish different kinds of external reference.
|
|
// It is a single bit to make testing for types easy.
|
|
enum TypeCode {
|
|
UNCLASSIFIED, // One-of-a-kind references.
|
|
BUILTIN,
|
|
RUNTIME_FUNCTION,
|
|
IC_UTILITY,
|
|
DEBUG_ADDRESS,
|
|
STATS_COUNTER,
|
|
TOP_ADDRESS,
|
|
C_BUILTIN,
|
|
EXTENSION,
|
|
ACCESSOR,
|
|
RUNTIME_ENTRY,
|
|
STUB_CACHE_TABLE
|
|
};
|
|
|
|
const int kTypeCodeCount = STUB_CACHE_TABLE + 1;
|
|
const int kFirstTypeCode = UNCLASSIFIED;
|
|
|
|
const int kReferenceIdBits = 16;
|
|
const int kReferenceIdMask = (1 << kReferenceIdBits) - 1;
|
|
const int kReferenceTypeShift = kReferenceIdBits;
|
|
const int kDebugRegisterBits = 4;
|
|
const int kDebugIdShift = kDebugRegisterBits;
|
|
|
|
|
|
// ExternalReferenceTable is a helper class that defines the relationship
|
|
// between external references and their encodings. It is used to build
|
|
// hashmaps in ExternalReferenceEncoder and ExternalReferenceDecoder.
|
|
class ExternalReferenceTable {
|
|
public:
|
|
static ExternalReferenceTable* instance(Isolate* isolate);
|
|
|
|
~ExternalReferenceTable() { }
|
|
|
|
int size() const { return refs_.length(); }
|
|
|
|
Address address(int i) { return refs_[i].address; }
|
|
|
|
uint32_t code(int i) { return refs_[i].code; }
|
|
|
|
const char* name(int i) { return refs_[i].name; }
|
|
|
|
int max_id(int code) { return max_id_[code]; }
|
|
|
|
private:
|
|
explicit ExternalReferenceTable(Isolate* isolate) : refs_(64) {
|
|
PopulateTable(isolate);
|
|
}
|
|
|
|
struct ExternalReferenceEntry {
|
|
Address address;
|
|
uint32_t code;
|
|
const char* name;
|
|
};
|
|
|
|
void PopulateTable(Isolate* isolate);
|
|
|
|
// For a few types of references, we can get their address from their id.
|
|
void AddFromId(TypeCode type,
|
|
uint16_t id,
|
|
const char* name,
|
|
Isolate* isolate);
|
|
|
|
// For other types of references, the caller will figure out the address.
|
|
void Add(Address address, TypeCode type, uint16_t id, const char* name);
|
|
|
|
List<ExternalReferenceEntry> refs_;
|
|
int max_id_[kTypeCodeCount];
|
|
};
|
|
|
|
|
|
class ExternalReferenceEncoder {
|
|
public:
|
|
ExternalReferenceEncoder();
|
|
|
|
uint32_t Encode(Address key) const;
|
|
|
|
const char* NameOfAddress(Address key) const;
|
|
|
|
private:
|
|
HashMap encodings_;
|
|
static uint32_t Hash(Address key) {
|
|
return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key) >> 2);
|
|
}
|
|
|
|
int IndexOf(Address key) const;
|
|
|
|
static bool Match(void* key1, void* key2) { return key1 == key2; }
|
|
|
|
void Put(Address key, int index);
|
|
|
|
Isolate* isolate_;
|
|
};
|
|
|
|
|
|
class ExternalReferenceDecoder {
|
|
public:
|
|
ExternalReferenceDecoder();
|
|
~ExternalReferenceDecoder();
|
|
|
|
Address Decode(uint32_t key) const {
|
|
if (key == 0) return NULL;
|
|
return *Lookup(key);
|
|
}
|
|
|
|
private:
|
|
Address** encodings_;
|
|
|
|
Address* Lookup(uint32_t key) const {
|
|
int type = key >> kReferenceTypeShift;
|
|
ASSERT(kFirstTypeCode <= type && type < kTypeCodeCount);
|
|
int id = key & kReferenceIdMask;
|
|
return &encodings_[type][id];
|
|
}
|
|
|
|
void Put(uint32_t key, Address value) {
|
|
*Lookup(key) = value;
|
|
}
|
|
|
|
Isolate* isolate_;
|
|
};
|
|
|
|
|
|
class SnapshotByteSource {
|
|
public:
|
|
SnapshotByteSource(const byte* array, int length)
|
|
: data_(array), length_(length), position_(0) { }
|
|
|
|
bool HasMore() { return position_ < length_; }
|
|
|
|
int Get() {
|
|
ASSERT(position_ < length_);
|
|
return data_[position_++];
|
|
}
|
|
|
|
inline void CopyRaw(byte* to, int number_of_bytes);
|
|
|
|
inline int GetInt();
|
|
|
|
bool AtEOF() {
|
|
return position_ == length_;
|
|
}
|
|
|
|
int position() { return position_; }
|
|
|
|
private:
|
|
const byte* data_;
|
|
int length_;
|
|
int position_;
|
|
};
|
|
|
|
|
|
#define COMMON_RAW_LENGTHS(f) \
|
|
f(1, 1) \
|
|
f(2, 2) \
|
|
f(3, 3) \
|
|
f(4, 4) \
|
|
f(5, 5) \
|
|
f(6, 6) \
|
|
f(7, 7) \
|
|
f(8, 8) \
|
|
f(9, 12) \
|
|
f(10, 16) \
|
|
f(11, 20) \
|
|
f(12, 24) \
|
|
f(13, 28) \
|
|
f(14, 32) \
|
|
f(15, 36)
|
|
|
|
// The Serializer/Deserializer class is a common superclass for Serializer and
|
|
// Deserializer which is used to store common constants and methods used by
|
|
// both.
|
|
class SerializerDeserializer: public ObjectVisitor {
|
|
public:
|
|
static void Iterate(ObjectVisitor* visitor);
|
|
static void SetSnapshotCacheSize(int size);
|
|
|
|
protected:
|
|
// Where the pointed-to object can be found:
|
|
enum Where {
|
|
kNewObject = 0, // Object is next in snapshot.
|
|
// 1-8 One per space.
|
|
kRootArray = 0x9, // Object is found in root array.
|
|
kPartialSnapshotCache = 0xa, // Object is in the cache.
|
|
kExternalReference = 0xb, // Pointer to an external reference.
|
|
kSkip = 0xc, // Skip a pointer sized cell.
|
|
// 0xd-0xf Free.
|
|
kBackref = 0x10, // Object is described relative to end.
|
|
// 0x11-0x18 One per space.
|
|
// 0x19-0x1f Free.
|
|
kFromStart = 0x20, // Object is described relative to start.
|
|
// 0x21-0x28 One per space.
|
|
// 0x29-0x2f Free.
|
|
// 0x30-0x3f Used by misc. tags below.
|
|
kPointedToMask = 0x3f
|
|
};
|
|
|
|
// How to code the pointer to the object.
|
|
enum HowToCode {
|
|
kPlain = 0, // Straight pointer.
|
|
// What this means depends on the architecture:
|
|
kFromCode = 0x40, // A pointer inlined in code.
|
|
kHowToCodeMask = 0x40
|
|
};
|
|
|
|
// Where to point within the object.
|
|
enum WhereToPoint {
|
|
kStartOfObject = 0,
|
|
kFirstInstruction = 0x80,
|
|
kWhereToPointMask = 0x80
|
|
};
|
|
|
|
// Misc.
|
|
// Raw data to be copied from the snapshot.
|
|
static const int kRawData = 0x30;
|
|
// Some common raw lengths: 0x31-0x3f
|
|
// A tag emitted at strategic points in the snapshot to delineate sections.
|
|
// If the deserializer does not find these at the expected moments then it
|
|
// is an indication that the snapshot and the VM do not fit together.
|
|
// Examine the build process for architecture, version or configuration
|
|
// mismatches.
|
|
static const int kSynchronize = 0x70;
|
|
// Used for the source code of the natives, which is in the executable, but
|
|
// is referred to from external strings in the snapshot.
|
|
static const int kNativesStringResource = 0x71;
|
|
static const int kNewPage = 0x72;
|
|
static const int kRepeat = 0x73;
|
|
static const int kConstantRepeat = 0x74;
|
|
// 0x74-0x7f Repeat last word (subtract 0x73 to get the count).
|
|
static const int kMaxRepeats = 0x7f - 0x73;
|
|
static int CodeForRepeats(int repeats) {
|
|
ASSERT(repeats >= 1 && repeats <= kMaxRepeats);
|
|
return 0x73 + repeats;
|
|
}
|
|
static int RepeatsForCode(int byte_code) {
|
|
ASSERT(byte_code >= kConstantRepeat && byte_code <= 0x7f);
|
|
return byte_code - 0x73;
|
|
}
|
|
static const int kRootArrayLowConstants = 0xb0;
|
|
// 0xb0-0xbf Things from the first 16 elements of the root array.
|
|
static const int kRootArrayHighConstants = 0xf0;
|
|
// 0xf0-0xff Things from the next 16 elements of the root array.
|
|
static const int kRootArrayNumberOfConstantEncodings = 0x20;
|
|
static const int kRootArrayNumberOfLowConstantEncodings = 0x10;
|
|
static int RootArrayConstantFromByteCode(int byte_code) {
|
|
int constant = (byte_code & 0xf) | ((byte_code & 0x40) >> 2);
|
|
ASSERT(constant >= 0 && constant < kRootArrayNumberOfConstantEncodings);
|
|
return constant;
|
|
}
|
|
|
|
|
|
static const int kLargeData = LAST_SPACE;
|
|
static const int kLargeCode = kLargeData + 1;
|
|
static const int kLargeFixedArray = kLargeCode + 1;
|
|
static const int kNumberOfSpaces = kLargeFixedArray + 1;
|
|
static const int kAnyOldSpace = -1;
|
|
|
|
// A bitmask for getting the space out of an instruction.
|
|
static const int kSpaceMask = 15;
|
|
|
|
static inline bool SpaceIsLarge(int space) { return space >= kLargeData; }
|
|
static inline bool SpaceIsPaged(int space) {
|
|
return space >= FIRST_PAGED_SPACE && space <= LAST_PAGED_SPACE;
|
|
}
|
|
};
|
|
|
|
|
|
int SnapshotByteSource::GetInt() {
|
|
// A little unwind to catch the really small ints.
|
|
int snapshot_byte = Get();
|
|
if ((snapshot_byte & 0x80) == 0) {
|
|
return snapshot_byte;
|
|
}
|
|
int accumulator = (snapshot_byte & 0x7f) << 7;
|
|
while (true) {
|
|
snapshot_byte = Get();
|
|
if ((snapshot_byte & 0x80) == 0) {
|
|
return accumulator | snapshot_byte;
|
|
}
|
|
accumulator = (accumulator | (snapshot_byte & 0x7f)) << 7;
|
|
}
|
|
UNREACHABLE();
|
|
return accumulator;
|
|
}
|
|
|
|
|
|
void SnapshotByteSource::CopyRaw(byte* to, int number_of_bytes) {
|
|
memcpy(to, data_ + position_, number_of_bytes);
|
|
position_ += number_of_bytes;
|
|
}
|
|
|
|
|
|
// A Deserializer reads a snapshot and reconstructs the Object graph it defines.
|
|
class Deserializer: public SerializerDeserializer {
|
|
public:
|
|
// Create a deserializer from a snapshot byte source.
|
|
explicit Deserializer(SnapshotByteSource* source);
|
|
|
|
virtual ~Deserializer();
|
|
|
|
// Deserialize the snapshot into an empty heap.
|
|
void Deserialize();
|
|
|
|
// Deserialize a single object and the objects reachable from it.
|
|
void DeserializePartial(Object** root);
|
|
|
|
private:
|
|
virtual void VisitPointers(Object** start, Object** end);
|
|
|
|
virtual void VisitExternalReferences(Address* start, Address* end) {
|
|
UNREACHABLE();
|
|
}
|
|
|
|
virtual void VisitRuntimeEntry(RelocInfo* rinfo) {
|
|
UNREACHABLE();
|
|
}
|
|
|
|
// Fills in some heap data in an area from start to end (non-inclusive). The
|
|
// space id is used for the write barrier. The object_address is the address
|
|
// of the object we are writing into, or NULL if we are not writing into an
|
|
// object, i.e. if we are writing a series of tagged values that are not on
|
|
// the heap.
|
|
void ReadChunk(
|
|
Object** start, Object** end, int space, Address object_address);
|
|
HeapObject* GetAddressFromStart(int space);
|
|
inline HeapObject* GetAddressFromEnd(int space);
|
|
Address Allocate(int space_number, Space* space, int size);
|
|
void ReadObject(int space_number, Space* space, Object** write_back);
|
|
|
|
// Cached current isolate.
|
|
Isolate* isolate_;
|
|
|
|
// Keep track of the pages in the paged spaces.
|
|
// (In large object space we are keeping track of individual objects
|
|
// rather than pages.) In new space we just need the address of the
|
|
// first object and the others will flow from that.
|
|
List<Address> pages_[SerializerDeserializer::kNumberOfSpaces];
|
|
|
|
SnapshotByteSource* source_;
|
|
// This is the address of the next object that will be allocated in each
|
|
// space. It is used to calculate the addresses of back-references.
|
|
Address high_water_[LAST_SPACE + 1];
|
|
// This is the address of the most recent object that was allocated. It
|
|
// is used to set the location of the new page when we encounter a
|
|
// START_NEW_PAGE_SERIALIZATION tag.
|
|
Address last_object_address_;
|
|
|
|
ExternalReferenceDecoder* external_reference_decoder_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(Deserializer);
|
|
};
|
|
|
|
|
|
class SnapshotByteSink {
|
|
public:
|
|
virtual ~SnapshotByteSink() { }
|
|
virtual void Put(int byte, const char* description) = 0;
|
|
virtual void PutSection(int byte, const char* description) {
|
|
Put(byte, description);
|
|
}
|
|
void PutInt(uintptr_t integer, const char* description);
|
|
virtual int Position() = 0;
|
|
};
|
|
|
|
|
|
// Mapping objects to their location after deserialization.
|
|
// This is used during building, but not at runtime by V8.
|
|
class SerializationAddressMapper {
|
|
public:
|
|
SerializationAddressMapper()
|
|
: serialization_map_(new HashMap(&SerializationMatchFun)),
|
|
no_allocation_(new AssertNoAllocation()) { }
|
|
|
|
~SerializationAddressMapper() {
|
|
delete serialization_map_;
|
|
delete no_allocation_;
|
|
}
|
|
|
|
bool IsMapped(HeapObject* obj) {
|
|
return serialization_map_->Lookup(Key(obj), Hash(obj), false) != NULL;
|
|
}
|
|
|
|
int MappedTo(HeapObject* obj) {
|
|
ASSERT(IsMapped(obj));
|
|
return static_cast<int>(reinterpret_cast<intptr_t>(
|
|
serialization_map_->Lookup(Key(obj), Hash(obj), false)->value));
|
|
}
|
|
|
|
void AddMapping(HeapObject* obj, int to) {
|
|
ASSERT(!IsMapped(obj));
|
|
HashMap::Entry* entry =
|
|
serialization_map_->Lookup(Key(obj), Hash(obj), true);
|
|
entry->value = Value(to);
|
|
}
|
|
|
|
private:
|
|
static bool SerializationMatchFun(void* key1, void* key2) {
|
|
return key1 == key2;
|
|
}
|
|
|
|
static uint32_t Hash(HeapObject* obj) {
|
|
return static_cast<int32_t>(reinterpret_cast<intptr_t>(obj->address()));
|
|
}
|
|
|
|
static void* Key(HeapObject* obj) {
|
|
return reinterpret_cast<void*>(obj->address());
|
|
}
|
|
|
|
static void* Value(int v) {
|
|
return reinterpret_cast<void*>(v);
|
|
}
|
|
|
|
HashMap* serialization_map_;
|
|
AssertNoAllocation* no_allocation_;
|
|
DISALLOW_COPY_AND_ASSIGN(SerializationAddressMapper);
|
|
};
|
|
|
|
|
|
// There can be only one serializer per V8 process.
|
|
class Serializer : public SerializerDeserializer {
|
|
public:
|
|
explicit Serializer(SnapshotByteSink* sink);
|
|
~Serializer();
|
|
void VisitPointers(Object** start, Object** end);
|
|
// You can call this after serialization to find out how much space was used
|
|
// in each space.
|
|
int CurrentAllocationAddress(int space) {
|
|
if (SpaceIsLarge(space)) return large_object_total_;
|
|
return fullness_[space];
|
|
}
|
|
|
|
static void Enable() {
|
|
if (!serialization_enabled_) {
|
|
ASSERT(!too_late_to_enable_now_);
|
|
}
|
|
serialization_enabled_ = true;
|
|
}
|
|
|
|
static void Disable() { serialization_enabled_ = false; }
|
|
// Call this when you have made use of the fact that there is no serialization
|
|
// going on.
|
|
static void TooLateToEnableNow() { too_late_to_enable_now_ = true; }
|
|
static bool enabled() { return serialization_enabled_; }
|
|
SerializationAddressMapper* address_mapper() { return &address_mapper_; }
|
|
void PutRoot(
|
|
int index, HeapObject* object, HowToCode how, WhereToPoint where);
|
|
|
|
protected:
|
|
static const int kInvalidRootIndex = -1;
|
|
|
|
int RootIndex(HeapObject* heap_object);
|
|
virtual bool ShouldBeInThePartialSnapshotCache(HeapObject* o) = 0;
|
|
intptr_t root_index_wave_front() { return root_index_wave_front_; }
|
|
void set_root_index_wave_front(intptr_t value) {
|
|
ASSERT(value >= root_index_wave_front_);
|
|
root_index_wave_front_ = value;
|
|
}
|
|
|
|
class ObjectSerializer : public ObjectVisitor {
|
|
public:
|
|
ObjectSerializer(Serializer* serializer,
|
|
Object* o,
|
|
SnapshotByteSink* sink,
|
|
HowToCode how_to_code,
|
|
WhereToPoint where_to_point)
|
|
: serializer_(serializer),
|
|
object_(HeapObject::cast(o)),
|
|
sink_(sink),
|
|
reference_representation_(how_to_code + where_to_point),
|
|
bytes_processed_so_far_(0) { }
|
|
void Serialize();
|
|
void VisitPointers(Object** start, Object** end);
|
|
void VisitEmbeddedPointer(RelocInfo* target);
|
|
void VisitExternalReferences(Address* start, Address* end);
|
|
void VisitExternalReference(RelocInfo* rinfo);
|
|
void VisitCodeTarget(RelocInfo* target);
|
|
void VisitCodeEntry(Address entry_address);
|
|
void VisitGlobalPropertyCell(RelocInfo* rinfo);
|
|
void VisitRuntimeEntry(RelocInfo* reloc);
|
|
// Used for seralizing the external strings that hold the natives source.
|
|
void VisitExternalAsciiString(
|
|
v8::String::ExternalAsciiStringResource** resource);
|
|
// We can't serialize a heap with external two byte strings.
|
|
void VisitExternalTwoByteString(
|
|
v8::String::ExternalStringResource** resource) {
|
|
UNREACHABLE();
|
|
}
|
|
|
|
private:
|
|
void OutputRawData(Address up_to);
|
|
|
|
Serializer* serializer_;
|
|
HeapObject* object_;
|
|
SnapshotByteSink* sink_;
|
|
int reference_representation_;
|
|
int bytes_processed_so_far_;
|
|
};
|
|
|
|
virtual void SerializeObject(Object* o,
|
|
HowToCode how_to_code,
|
|
WhereToPoint where_to_point) = 0;
|
|
void SerializeReferenceToPreviousObject(
|
|
int space,
|
|
int address,
|
|
HowToCode how_to_code,
|
|
WhereToPoint where_to_point);
|
|
void InitializeAllocators();
|
|
// This will return the space for an object. If the object is in large
|
|
// object space it may return kLargeCode or kLargeFixedArray in order
|
|
// to indicate to the deserializer what kind of large object allocation
|
|
// to make.
|
|
static int SpaceOfObject(HeapObject* object);
|
|
// This just returns the space of the object. It will return LO_SPACE
|
|
// for all large objects since you can't check the type of the object
|
|
// once the map has been used for the serialization address.
|
|
static int SpaceOfAlreadySerializedObject(HeapObject* object);
|
|
int Allocate(int space, int size, bool* new_page_started);
|
|
int EncodeExternalReference(Address addr) {
|
|
return external_reference_encoder_->Encode(addr);
|
|
}
|
|
|
|
// Keep track of the fullness of each space in order to generate
|
|
// relative addresses for back references. Large objects are
|
|
// just numbered sequentially since relative addresses make no
|
|
// sense in large object space.
|
|
int fullness_[LAST_SPACE + 1];
|
|
SnapshotByteSink* sink_;
|
|
int current_root_index_;
|
|
ExternalReferenceEncoder* external_reference_encoder_;
|
|
static bool serialization_enabled_;
|
|
// Did we already make use of the fact that serialization was not enabled?
|
|
static bool too_late_to_enable_now_;
|
|
int large_object_total_;
|
|
SerializationAddressMapper address_mapper_;
|
|
intptr_t root_index_wave_front_;
|
|
|
|
friend class ObjectSerializer;
|
|
friend class Deserializer;
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(Serializer);
|
|
};
|
|
|
|
|
|
class PartialSerializer : public Serializer {
|
|
public:
|
|
PartialSerializer(Serializer* startup_snapshot_serializer,
|
|
SnapshotByteSink* sink)
|
|
: Serializer(sink),
|
|
startup_serializer_(startup_snapshot_serializer) {
|
|
set_root_index_wave_front(Heap::kStrongRootListLength);
|
|
}
|
|
|
|
// Serialize the objects reachable from a single object pointer.
|
|
virtual void Serialize(Object** o);
|
|
virtual void SerializeObject(Object* o,
|
|
HowToCode how_to_code,
|
|
WhereToPoint where_to_point);
|
|
|
|
protected:
|
|
virtual int PartialSnapshotCacheIndex(HeapObject* o);
|
|
virtual bool ShouldBeInThePartialSnapshotCache(HeapObject* o) {
|
|
// Scripts should be referred only through shared function infos. We can't
|
|
// allow them to be part of the partial snapshot because they contain a
|
|
// unique ID, and deserializing several partial snapshots containing script
|
|
// would cause dupes.
|
|
ASSERT(!o->IsScript());
|
|
return o->IsString() || o->IsSharedFunctionInfo() ||
|
|
o->IsHeapNumber() || o->IsCode() ||
|
|
o->IsScopeInfo() ||
|
|
o->map() == HEAP->fixed_cow_array_map();
|
|
}
|
|
|
|
private:
|
|
Serializer* startup_serializer_;
|
|
DISALLOW_COPY_AND_ASSIGN(PartialSerializer);
|
|
};
|
|
|
|
|
|
class StartupSerializer : public Serializer {
|
|
public:
|
|
explicit StartupSerializer(SnapshotByteSink* sink) : Serializer(sink) {
|
|
// Clear the cache of objects used by the partial snapshot. After the
|
|
// strong roots have been serialized we can create a partial snapshot
|
|
// which will repopulate the cache with objects needed by that partial
|
|
// snapshot.
|
|
Isolate::Current()->set_serialize_partial_snapshot_cache_length(0);
|
|
}
|
|
// Serialize the current state of the heap. The order is:
|
|
// 1) Strong references.
|
|
// 2) Partial snapshot cache.
|
|
// 3) Weak references (e.g. the symbol table).
|
|
virtual void SerializeStrongReferences();
|
|
virtual void SerializeObject(Object* o,
|
|
HowToCode how_to_code,
|
|
WhereToPoint where_to_point);
|
|
void SerializeWeakReferences();
|
|
void Serialize() {
|
|
SerializeStrongReferences();
|
|
SerializeWeakReferences();
|
|
}
|
|
|
|
private:
|
|
virtual bool ShouldBeInThePartialSnapshotCache(HeapObject* o) {
|
|
return false;
|
|
}
|
|
};
|
|
|
|
|
|
} } // namespace v8::internal
|
|
|
|
#endif // V8_SERIALIZE_H_
|