v8/test/unittests/wasm/leb-helper-unittest.cc
Clemens Hammacher eeaceccbc6 [wasm] [decoder] Templatize decode function for unchecked decoding
In the C++ wasm interpreter, we decode LEB encoded immediates each time
we execute the respective instruction. The whole instruction sequence
was validated before, thus we know that all integers are valid.
This CL refactors several Decoder methods to allow for either checked
or unchecked decoding. In the checked case, an error is set if a check
fails, in the unchecked case, a DCHECK will fail.

This improves performance of the interpreter by 20.5%.

R=ahaas@chromium.org
BUG=v8:5822

Change-Id: If69efd4f6fbe19d84bfc2f4aa000f429a8e22bf5
Reviewed-on: https://chromium-review.googlesource.com/468786
Commit-Queue: Clemens Hammacher <clemensh@chromium.org>
Reviewed-by: Andreas Haas <ahaas@chromium.org>
Cr-Commit-Position: refs/heads/master@{#44406}
2017-04-05 11:14:32 +00:00

192 lines
5.7 KiB
C++

// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "test/unittests/test-utils.h"
#include "src/objects-inl.h"
#include "src/wasm/decoder.h"
#include "src/wasm/leb-helper.h"
namespace v8 {
namespace internal {
namespace wasm {
class LEBHelperTest : public TestWithZone {};
TEST_F(LEBHelperTest, sizeof_u32v) {
EXPECT_EQ(1u, LEBHelper::sizeof_u32v(0));
EXPECT_EQ(1u, LEBHelper::sizeof_u32v(1));
EXPECT_EQ(1u, LEBHelper::sizeof_u32v(3));
for (uint32_t i = 4; i < 128; i++) {
EXPECT_EQ(1u, LEBHelper::sizeof_u32v(i));
}
for (uint32_t i = (1u << 7); i < (1u << 9); i++) {
EXPECT_EQ(2u, LEBHelper::sizeof_u32v(i));
}
for (uint32_t i = (1u << 14); i < (1u << 16); i += 33) {
EXPECT_EQ(3u, LEBHelper::sizeof_u32v(i));
}
for (uint32_t i = (1u << 21); i < (1u << 24); i += 33999) {
EXPECT_EQ(4u, LEBHelper::sizeof_u32v(i));
}
for (uint32_t i = (1u << 28); i < (1u << 31); i += 33997779u) {
EXPECT_EQ(5u, LEBHelper::sizeof_u32v(i));
}
EXPECT_EQ(5u, LEBHelper::sizeof_u32v(0xFFFFFFFF));
}
TEST_F(LEBHelperTest, sizeof_i32v) {
EXPECT_EQ(1u, LEBHelper::sizeof_i32v(0));
EXPECT_EQ(1u, LEBHelper::sizeof_i32v(1));
EXPECT_EQ(1u, LEBHelper::sizeof_i32v(3));
for (int32_t i = 0; i < (1 << 6); i++) {
EXPECT_EQ(1u, LEBHelper::sizeof_i32v(i));
}
for (int32_t i = (1 << 6); i < (1 << 8); i++) {
EXPECT_EQ(2u, LEBHelper::sizeof_i32v(i));
}
for (int32_t i = (1 << 13); i < (1 << 15); i += 31) {
EXPECT_EQ(3u, LEBHelper::sizeof_i32v(i));
}
for (int32_t i = (1 << 20); i < (1 << 22); i += 31991) {
EXPECT_EQ(4u, LEBHelper::sizeof_i32v(i));
}
for (int32_t i = (1 << 27); i < (1 << 29); i += 3199893) {
EXPECT_EQ(5u, LEBHelper::sizeof_i32v(i));
}
for (int32_t i = -(1 << 6); i <= 0; i++) {
EXPECT_EQ(1u, LEBHelper::sizeof_i32v(i));
}
for (int32_t i = -(1 << 13); i < -(1 << 6); i++) {
EXPECT_EQ(2u, LEBHelper::sizeof_i32v(i));
}
for (int32_t i = -(1 << 20); i < -(1 << 18); i += 11) {
EXPECT_EQ(3u, LEBHelper::sizeof_i32v(i));
}
for (int32_t i = -(1 << 27); i < -(1 << 25); i += 11999) {
EXPECT_EQ(4u, LEBHelper::sizeof_i32v(i));
}
for (int32_t i = -(1 << 30); i < -(1 << 28); i += 1199999) {
EXPECT_EQ(5u, LEBHelper::sizeof_i32v(i));
}
}
#define DECLARE_ENCODE_DECODE_CHECKER(ctype, name) \
static void CheckEncodeDecode_##name(ctype val) { \
static const int kSize = 16; \
static byte buffer[kSize]; \
byte* ptr = buffer; \
LEBHelper::write_##name(&ptr, val); \
EXPECT_EQ(LEBHelper::sizeof_##name(val), \
static_cast<size_t>(ptr - buffer)); \
Decoder decoder(buffer, buffer + kSize); \
unsigned length = 0; \
ctype result = decoder.read_##name<false>(buffer, &length); \
EXPECT_EQ(val, result); \
EXPECT_EQ(LEBHelper::sizeof_##name(val), static_cast<size_t>(length)); \
}
DECLARE_ENCODE_DECODE_CHECKER(int32_t, i32v)
DECLARE_ENCODE_DECODE_CHECKER(uint32_t, u32v)
DECLARE_ENCODE_DECODE_CHECKER(int64_t, i64v)
DECLARE_ENCODE_DECODE_CHECKER(uint64_t, u64v)
TEST_F(LEBHelperTest, WriteAndDecode_u32v) {
CheckEncodeDecode_u32v(0);
CheckEncodeDecode_u32v(1);
CheckEncodeDecode_u32v(5);
CheckEncodeDecode_u32v(99);
CheckEncodeDecode_u32v(298);
CheckEncodeDecode_u32v(87348723);
CheckEncodeDecode_u32v(77777);
for (uint32_t val = 0x3a; val != 0; val = val << 1) {
CheckEncodeDecode_u32v(val);
}
}
TEST_F(LEBHelperTest, WriteAndDecode_i32v) {
CheckEncodeDecode_i32v(0);
CheckEncodeDecode_i32v(1);
CheckEncodeDecode_i32v(5);
CheckEncodeDecode_i32v(99);
CheckEncodeDecode_i32v(298);
CheckEncodeDecode_i32v(87348723);
CheckEncodeDecode_i32v(77777);
CheckEncodeDecode_i32v(-2);
CheckEncodeDecode_i32v(-4);
CheckEncodeDecode_i32v(-59);
CheckEncodeDecode_i32v(-288);
CheckEncodeDecode_i32v(-12608);
CheckEncodeDecode_i32v(-87328723);
CheckEncodeDecode_i32v(-77377);
for (uint32_t val = 0x3a; val != 0; val = val << 1) {
CheckEncodeDecode_i32v(bit_cast<int32_t>(val));
}
for (uint32_t val = 0xFFFFFF3B; val != 0; val = val << 1) {
CheckEncodeDecode_i32v(bit_cast<int32_t>(val));
}
}
TEST_F(LEBHelperTest, WriteAndDecode_u64v) {
CheckEncodeDecode_u64v(0);
CheckEncodeDecode_u64v(1);
CheckEncodeDecode_u64v(5);
CheckEncodeDecode_u64v(99);
CheckEncodeDecode_u64v(298);
CheckEncodeDecode_u64v(87348723);
CheckEncodeDecode_u64v(77777);
for (uint64_t val = 0x3a; val != 0; val = val << 1) {
CheckEncodeDecode_u64v(val);
}
}
TEST_F(LEBHelperTest, WriteAndDecode_i64v) {
CheckEncodeDecode_i64v(0);
CheckEncodeDecode_i64v(1);
CheckEncodeDecode_i64v(5);
CheckEncodeDecode_i64v(99);
CheckEncodeDecode_i64v(298);
CheckEncodeDecode_i64v(87348723);
CheckEncodeDecode_i64v(77777);
CheckEncodeDecode_i64v(-2);
CheckEncodeDecode_i64v(-4);
CheckEncodeDecode_i64v(-59);
CheckEncodeDecode_i64v(-288);
CheckEncodeDecode_i64v(-87648723);
CheckEncodeDecode_i64v(-77377);
for (uint64_t val = 0x3a; val != 0; val = val << 1) {
CheckEncodeDecode_i64v(bit_cast<int64_t>(val));
}
for (uint64_t val = 0xFFFFFFFFFFFFFF3B; val != 0; val = val << 1) {
CheckEncodeDecode_i64v(bit_cast<int64_t>(val));
}
}
} // namespace wasm
} // namespace internal
} // namespace v8