v8/src/objects-inl.h
lrn@chromium.org c8c5d9820d Test a few assertions that should hold.
git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@1589 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2009-03-24 10:16:30 +00:00

2599 lines
69 KiB
C++

// Copyright 2006-2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Review notes:
//
// - The use of macros in these inline functions may seem superfluous
// but it is absolutely needed to make sure gcc generates optimal
// code. gcc is not happy when attempting to inline too deep.
//
#ifndef V8_OBJECTS_INL_H_
#define V8_OBJECTS_INL_H_
#include "objects.h"
#include "contexts.h"
#include "conversions-inl.h"
#include "property.h"
namespace v8 { namespace internal {
PropertyDetails::PropertyDetails(Smi* smi) {
value_ = smi->value();
}
Smi* PropertyDetails::AsSmi() {
return Smi::FromInt(value_);
}
#define CAST_ACCESSOR(type) \
type* type::cast(Object* object) { \
ASSERT(object->Is##type()); \
return reinterpret_cast<type*>(object); \
}
#define INT_ACCESSORS(holder, name, offset) \
int holder::name() { return READ_INT_FIELD(this, offset); } \
void holder::set_##name(int value) { WRITE_INT_FIELD(this, offset, value); }
#define ACCESSORS(holder, name, type, offset) \
type* holder::name() { return type::cast(READ_FIELD(this, offset)); } \
void holder::set_##name(type* value, WriteBarrierMode mode) { \
WRITE_FIELD(this, offset, value); \
CONDITIONAL_WRITE_BARRIER(this, offset, mode); \
}
#define SMI_ACCESSORS(holder, name, offset) \
int holder::name() { \
Object* value = READ_FIELD(this, offset); \
return Smi::cast(value)->value(); \
} \
void holder::set_##name(int value) { \
WRITE_FIELD(this, offset, Smi::FromInt(value)); \
}
#define BOOL_ACCESSORS(holder, field, name, offset) \
bool holder::name() { \
return BooleanBit::get(field(), offset); \
} \
void holder::set_##name(bool value) { \
set_##field(BooleanBit::set(field(), offset, value)); \
}
bool Object::IsSmi() {
return HAS_SMI_TAG(this);
}
bool Object::IsHeapObject() {
return HAS_HEAP_OBJECT_TAG(this);
}
bool Object::IsHeapNumber() {
return Object::IsHeapObject()
&& HeapObject::cast(this)->map()->instance_type() == HEAP_NUMBER_TYPE;
}
bool Object::IsString() {
return Object::IsHeapObject()
&& HeapObject::cast(this)->map()->instance_type() < FIRST_NONSTRING_TYPE;
}
bool Object::IsSymbol() {
if (!this->IsHeapObject()) return false;
uint32_t type = HeapObject::cast(this)->map()->instance_type();
return (type & (kIsNotStringMask | kIsSymbolMask)) ==
(kStringTag | kSymbolTag);
}
bool Object::IsConsString() {
if (!this->IsHeapObject()) return false;
uint32_t type = HeapObject::cast(this)->map()->instance_type();
return (type & (kIsNotStringMask | kStringRepresentationMask)) ==
(kStringTag | kConsStringTag);
}
#ifdef DEBUG
// These are for cast checks. If you need one of these in release
// mode you should consider using a StringShape before moving it out
// of the ifdef
bool Object::IsSeqString() {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsSequential();
}
bool Object::IsSeqAsciiString() {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsSequential() &&
StringShape(String::cast(this)).IsAsciiRepresentation();
}
bool Object::IsSeqTwoByteString() {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsSequential() &&
StringShape(String::cast(this)).IsTwoByteRepresentation();
}
bool Object::IsExternalString() {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsExternal();
}
bool Object::IsExternalAsciiString() {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsExternal() &&
StringShape(String::cast(this)).IsAsciiRepresentation();
}
bool Object::IsExternalTwoByteString() {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsExternal() &&
StringShape(String::cast(this)).IsTwoByteRepresentation();
}
bool Object::IsSlicedString() {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsSliced();
}
#endif // DEBUG
StringShape::StringShape(String* str)
: type_(str->map()->instance_type()) {
set_valid();
ASSERT((type_ & kIsNotStringMask) == kStringTag);
}
StringShape::StringShape(Map* map)
: type_(map->instance_type()) {
set_valid();
ASSERT((type_ & kIsNotStringMask) == kStringTag);
}
StringShape::StringShape(InstanceType t)
: type_(static_cast<uint32_t>(t)) {
set_valid();
ASSERT((type_ & kIsNotStringMask) == kStringTag);
}
bool StringShape::IsSymbol() {
ASSERT(valid());
return (type_ & kIsSymbolMask) == kSymbolTag;
}
bool StringShape::IsAsciiRepresentation() {
return (type_ & kStringEncodingMask) == kAsciiStringTag;
}
bool StringShape::IsTwoByteRepresentation() {
return (type_ & kStringEncodingMask) == kTwoByteStringTag;
}
bool StringShape::IsCons() {
return (type_ & kStringRepresentationMask) == kConsStringTag;
}
bool StringShape::IsSliced() {
return (type_ & kStringRepresentationMask) == kSlicedStringTag;
}
bool StringShape::IsExternal() {
return (type_ & kStringRepresentationMask) == kExternalStringTag;
}
bool StringShape::IsSequential() {
return (type_ & kStringRepresentationMask) == kSeqStringTag;
}
StringRepresentationTag StringShape::representation_tag() {
uint32_t tag = (type_ & kStringRepresentationMask);
return static_cast<StringRepresentationTag>(tag);
}
uint32_t StringShape::full_representation_tag() {
return (type_ & (kStringRepresentationMask | kStringEncodingMask));
}
uint32_t StringShape::size_tag() {
return (type_ & kStringSizeMask);
}
bool StringShape::IsSequentialAscii() {
return full_representation_tag() == (kSeqStringTag | kAsciiStringTag);
}
bool StringShape::IsSequentialTwoByte() {
return (type_ & (kStringRepresentationMask | kStringEncodingMask)) ==
(kSeqStringTag | kTwoByteStringTag);
}
bool StringShape::IsExternalAscii() {
return full_representation_tag() == (kExternalStringTag | kAsciiStringTag);
}
bool StringShape::IsExternalTwoByte() {
return (type_ & (kStringRepresentationMask | kStringEncodingMask)) ==
(kExternalStringTag | kTwoByteStringTag);
}
uc32 FlatStringReader::Get(int index) {
ASSERT(0 <= index && index <= length_);
if (is_ascii_) {
return static_cast<const byte*>(start_)[index];
} else {
return static_cast<const uc16*>(start_)[index];
}
}
bool Object::IsNumber() {
return IsSmi() || IsHeapNumber();
}
bool Object::IsByteArray() {
return Object::IsHeapObject()
&& HeapObject::cast(this)->map()->instance_type() == BYTE_ARRAY_TYPE;
}
bool Object::IsFailure() {
return HAS_FAILURE_TAG(this);
}
bool Object::IsRetryAfterGC() {
return HAS_FAILURE_TAG(this)
&& Failure::cast(this)->type() == Failure::RETRY_AFTER_GC;
}
bool Object::IsOutOfMemoryFailure() {
return HAS_FAILURE_TAG(this)
&& Failure::cast(this)->IsOutOfMemoryException();
}
bool Object::IsException() {
return this == Failure::Exception();
}
bool Object::IsJSObject() {
return IsHeapObject()
&& HeapObject::cast(this)->map()->instance_type() >= FIRST_JS_OBJECT_TYPE;
}
bool Object::IsJSContextExtensionObject() {
return IsHeapObject()
&& (HeapObject::cast(this)->map()->instance_type() ==
JS_CONTEXT_EXTENSION_OBJECT_TYPE);
}
bool Object::IsMap() {
return Object::IsHeapObject()
&& HeapObject::cast(this)->map()->instance_type() == MAP_TYPE;
}
bool Object::IsFixedArray() {
return Object::IsHeapObject()
&& HeapObject::cast(this)->map()->instance_type() == FIXED_ARRAY_TYPE;
}
bool Object::IsDescriptorArray() {
return IsFixedArray();
}
bool Object::IsContext() {
return Object::IsHeapObject()
&& (HeapObject::cast(this)->map() == Heap::context_map() ||
HeapObject::cast(this)->map() == Heap::catch_context_map() ||
HeapObject::cast(this)->map() == Heap::global_context_map());
}
bool Object::IsCatchContext() {
return Object::IsHeapObject()
&& HeapObject::cast(this)->map() == Heap::catch_context_map();
}
bool Object::IsGlobalContext() {
return Object::IsHeapObject()
&& HeapObject::cast(this)->map() == Heap::global_context_map();
}
bool Object::IsJSFunction() {
return Object::IsHeapObject()
&& HeapObject::cast(this)->map()->instance_type() == JS_FUNCTION_TYPE;
}
template <> inline bool Is<JSFunction>(Object* obj) {
return obj->IsJSFunction();
}
bool Object::IsCode() {
return Object::IsHeapObject()
&& HeapObject::cast(this)->map()->instance_type() == CODE_TYPE;
}
bool Object::IsOddball() {
return Object::IsHeapObject()
&& HeapObject::cast(this)->map()->instance_type() == ODDBALL_TYPE;
}
bool Object::IsSharedFunctionInfo() {
return Object::IsHeapObject() &&
(HeapObject::cast(this)->map()->instance_type() ==
SHARED_FUNCTION_INFO_TYPE);
}
bool Object::IsJSValue() {
return Object::IsHeapObject()
&& HeapObject::cast(this)->map()->instance_type() == JS_VALUE_TYPE;
}
bool Object::IsStringWrapper() {
return IsJSValue() && JSValue::cast(this)->value()->IsString();
}
bool Object::IsProxy() {
return Object::IsHeapObject()
&& HeapObject::cast(this)->map()->instance_type() == PROXY_TYPE;
}
bool Object::IsBoolean() {
return IsTrue() || IsFalse();
}
bool Object::IsJSArray() {
return Object::IsHeapObject()
&& HeapObject::cast(this)->map()->instance_type() == JS_ARRAY_TYPE;
}
bool Object::IsJSRegExp() {
return Object::IsHeapObject()
&& HeapObject::cast(this)->map()->instance_type() == JS_REGEXP_TYPE;
}
template <> inline bool Is<JSArray>(Object* obj) {
return obj->IsJSArray();
}
bool Object::IsHashTable() {
return Object::IsHeapObject()
&& HeapObject::cast(this)->map() == Heap::hash_table_map();
}
bool Object::IsDictionary() {
return IsHashTable() && this != Heap::symbol_table();
}
bool Object::IsSymbolTable() {
return IsHashTable() && this == Heap::symbol_table();
}
bool Object::IsCompilationCacheTable() {
return IsHashTable();
}
bool Object::IsMapCache() {
return IsHashTable();
}
bool Object::IsLookupCache() {
return IsHashTable();
}
bool Object::IsPrimitive() {
return IsOddball() || IsNumber() || IsString();
}
bool Object::IsJSGlobalProxy() {
bool result = IsHeapObject() &&
(HeapObject::cast(this)->map()->instance_type() ==
JS_GLOBAL_PROXY_TYPE);
ASSERT(!result || IsAccessCheckNeeded());
return result;
}
bool Object::IsGlobalObject() {
if (!IsHeapObject()) return false;
InstanceType type = HeapObject::cast(this)->map()->instance_type();
return type == JS_GLOBAL_OBJECT_TYPE ||
type == JS_BUILTINS_OBJECT_TYPE;
}
bool Object::IsJSGlobalObject() {
return IsHeapObject() &&
(HeapObject::cast(this)->map()->instance_type() ==
JS_GLOBAL_OBJECT_TYPE);
}
bool Object::IsJSBuiltinsObject() {
return IsHeapObject() &&
(HeapObject::cast(this)->map()->instance_type() ==
JS_BUILTINS_OBJECT_TYPE);
}
bool Object::IsUndetectableObject() {
return IsHeapObject()
&& HeapObject::cast(this)->map()->is_undetectable();
}
bool Object::IsAccessCheckNeeded() {
return IsHeapObject()
&& HeapObject::cast(this)->map()->is_access_check_needed();
}
bool Object::IsStruct() {
if (!IsHeapObject()) return false;
switch (HeapObject::cast(this)->map()->instance_type()) {
#define MAKE_STRUCT_CASE(NAME, Name, name) case NAME##_TYPE: return true;
STRUCT_LIST(MAKE_STRUCT_CASE)
#undef MAKE_STRUCT_CASE
default: return false;
}
}
#define MAKE_STRUCT_PREDICATE(NAME, Name, name) \
bool Object::Is##Name() { \
return Object::IsHeapObject() \
&& HeapObject::cast(this)->map()->instance_type() == NAME##_TYPE; \
}
STRUCT_LIST(MAKE_STRUCT_PREDICATE)
#undef MAKE_STRUCT_PREDICATE
bool Object::IsUndefined() {
return this == Heap::undefined_value();
}
bool Object::IsTheHole() {
return this == Heap::the_hole_value();
}
bool Object::IsNull() {
return this == Heap::null_value();
}
bool Object::IsTrue() {
return this == Heap::true_value();
}
bool Object::IsFalse() {
return this == Heap::false_value();
}
double Object::Number() {
ASSERT(IsNumber());
return IsSmi()
? static_cast<double>(reinterpret_cast<Smi*>(this)->value())
: reinterpret_cast<HeapNumber*>(this)->value();
}
Object* Object::ToSmi() {
if (IsSmi()) return this;
if (IsHeapNumber()) {
double value = HeapNumber::cast(this)->value();
int int_value = FastD2I(value);
if (value == FastI2D(int_value) && Smi::IsValid(int_value)) {
return Smi::FromInt(int_value);
}
}
return Failure::Exception();
}
bool Object::HasSpecificClassOf(String* name) {
return this->IsJSObject() && (JSObject::cast(this)->class_name() == name);
}
Object* Object::GetElement(uint32_t index) {
return GetElementWithReceiver(this, index);
}
Object* Object::GetProperty(String* key) {
PropertyAttributes attributes;
return GetPropertyWithReceiver(this, key, &attributes);
}
Object* Object::GetProperty(String* key, PropertyAttributes* attributes) {
return GetPropertyWithReceiver(this, key, attributes);
}
#define FIELD_ADDR(p, offset) \
(reinterpret_cast<byte*>(p) + offset - kHeapObjectTag)
#define READ_FIELD(p, offset) \
(*reinterpret_cast<Object**>(FIELD_ADDR(p, offset)))
#define WRITE_FIELD(p, offset, value) \
(*reinterpret_cast<Object**>(FIELD_ADDR(p, offset)) = value)
#define WRITE_BARRIER(object, offset) \
Heap::RecordWrite(object->address(), offset);
// CONDITIONAL_WRITE_BARRIER must be issued after the actual
// write due to the assert validating the written value.
#define CONDITIONAL_WRITE_BARRIER(object, offset, mode) \
if (mode == UPDATE_WRITE_BARRIER) { \
Heap::RecordWrite(object->address(), offset); \
} else { \
ASSERT(mode == SKIP_WRITE_BARRIER); \
ASSERT(Heap::InNewSpace(object) || \
!Heap::InNewSpace(READ_FIELD(object, offset))); \
}
#define READ_DOUBLE_FIELD(p, offset) \
(*reinterpret_cast<double*>(FIELD_ADDR(p, offset)))
#define WRITE_DOUBLE_FIELD(p, offset, value) \
(*reinterpret_cast<double*>(FIELD_ADDR(p, offset)) = value)
#define READ_INT_FIELD(p, offset) \
(*reinterpret_cast<int*>(FIELD_ADDR(p, offset)))
#define WRITE_INT_FIELD(p, offset, value) \
(*reinterpret_cast<int*>(FIELD_ADDR(p, offset)) = value)
#define READ_UINT32_FIELD(p, offset) \
(*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset)))
#define WRITE_UINT32_FIELD(p, offset, value) \
(*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset)) = value)
#define READ_SHORT_FIELD(p, offset) \
(*reinterpret_cast<uint16_t*>(FIELD_ADDR(p, offset)))
#define WRITE_SHORT_FIELD(p, offset, value) \
(*reinterpret_cast<uint16_t*>(FIELD_ADDR(p, offset)) = value)
#define READ_BYTE_FIELD(p, offset) \
(*reinterpret_cast<byte*>(FIELD_ADDR(p, offset)))
#define WRITE_BYTE_FIELD(p, offset, value) \
(*reinterpret_cast<byte*>(FIELD_ADDR(p, offset)) = value)
Object** HeapObject::RawField(HeapObject* obj, int byte_offset) {
return &READ_FIELD(obj, byte_offset);
}
int Smi::value() {
return reinterpret_cast<int>(this) >> kSmiTagSize;
}
Smi* Smi::FromInt(int value) {
ASSERT(Smi::IsValid(value));
return reinterpret_cast<Smi*>((value << kSmiTagSize) | kSmiTag);
}
Failure::Type Failure::type() const {
return static_cast<Type>(value() & kFailureTypeTagMask);
}
bool Failure::IsInternalError() const {
return type() == INTERNAL_ERROR;
}
bool Failure::IsOutOfMemoryException() const {
return type() == OUT_OF_MEMORY_EXCEPTION;
}
int Failure::requested() const {
const int kShiftBits =
kFailureTypeTagSize + kSpaceTagSize - kObjectAlignmentBits;
STATIC_ASSERT(kShiftBits >= 0);
ASSERT(type() == RETRY_AFTER_GC);
return value() >> kShiftBits;
}
AllocationSpace Failure::allocation_space() const {
ASSERT_EQ(RETRY_AFTER_GC, type());
return static_cast<AllocationSpace>((value() >> kFailureTypeTagSize)
& kSpaceTagMask);
}
Failure* Failure::InternalError() {
return Construct(INTERNAL_ERROR);
}
Failure* Failure::Exception() {
return Construct(EXCEPTION);
}
Failure* Failure::OutOfMemoryException() {
return Construct(OUT_OF_MEMORY_EXCEPTION);
}
int Failure::value() const {
return reinterpret_cast<int>(this) >> kFailureTagSize;
}
Failure* Failure::RetryAfterGC(int requested_bytes) {
int requested = requested_bytes >> kObjectAlignmentBits;
int value = (requested << kSpaceTagSize) | NEW_SPACE;
ASSERT(value >> kSpaceTagSize == requested);
ASSERT(Smi::IsValid(value));
ASSERT(value == ((value << kFailureTypeTagSize) >> kFailureTypeTagSize));
ASSERT(Smi::IsValid(value << kFailureTypeTagSize));
return Construct(RETRY_AFTER_GC, value);
}
Failure* Failure::Construct(Type type, int value) {
int info = (value << kFailureTypeTagSize) | type;
ASSERT(Smi::IsValid(info)); // Same validation check as in Smi
return reinterpret_cast<Failure*>((info << kFailureTagSize) | kFailureTag);
}
bool Smi::IsValid(int value) {
#ifdef DEBUG
bool in_range = (value >= kMinValue) && (value <= kMaxValue);
#endif
// To be representable as an tagged small integer, the two
// most-significant bits of 'value' must be either 00 or 11 due to
// sign-extension. To check this we add 01 to the two
// most-significant bits, and check if the most-significant bit is 0
//
// CAUTION: The original code below:
// bool result = ((value + 0x40000000) & 0x80000000) == 0;
// may lead to incorrect results according to the C language spec, and
// in fact doesn't work correctly with gcc4.1.1 in some cases: The
// compiler may produce undefined results in case of signed integer
// overflow. The computation must be done w/ unsigned ints.
bool result =
((static_cast<unsigned int>(value) + 0x40000000U) & 0x80000000U) == 0;
ASSERT(result == in_range);
return result;
}
MapWord MapWord::FromMap(Map* map) {
return MapWord(reinterpret_cast<uintptr_t>(map));
}
Map* MapWord::ToMap() {
return reinterpret_cast<Map*>(value_);
}
bool MapWord::IsForwardingAddress() {
return HAS_SMI_TAG(reinterpret_cast<Object*>(value_));
}
MapWord MapWord::FromForwardingAddress(HeapObject* object) {
Address raw = reinterpret_cast<Address>(object) - kHeapObjectTag;
return MapWord(reinterpret_cast<uintptr_t>(raw));
}
HeapObject* MapWord::ToForwardingAddress() {
ASSERT(IsForwardingAddress());
return HeapObject::FromAddress(reinterpret_cast<Address>(value_));
}
bool MapWord::IsMarked() {
return (value_ & kMarkingMask) == 0;
}
void MapWord::SetMark() {
value_ &= ~kMarkingMask;
}
void MapWord::ClearMark() {
value_ |= kMarkingMask;
}
bool MapWord::IsOverflowed() {
return (value_ & kOverflowMask) != 0;
}
void MapWord::SetOverflow() {
value_ |= kOverflowMask;
}
void MapWord::ClearOverflow() {
value_ &= ~kOverflowMask;
}
MapWord MapWord::EncodeAddress(Address map_address, int offset) {
// Offset is the distance in live bytes from the first live object in the
// same page. The offset between two objects in the same page should not
// exceed the object area size of a page.
ASSERT(0 <= offset && offset < Page::kObjectAreaSize);
int compact_offset = offset >> kObjectAlignmentBits;
ASSERT(compact_offset < (1 << kForwardingOffsetBits));
Page* map_page = Page::FromAddress(map_address);
ASSERT_MAP_PAGE_INDEX(map_page->mc_page_index);
int map_page_offset =
map_page->Offset(map_address) >> kObjectAlignmentBits;
uintptr_t encoding =
(compact_offset << kForwardingOffsetShift) |
(map_page_offset << kMapPageOffsetShift) |
(map_page->mc_page_index << kMapPageIndexShift);
return MapWord(encoding);
}
Address MapWord::DecodeMapAddress(MapSpace* map_space) {
int map_page_index = (value_ & kMapPageIndexMask) >> kMapPageIndexShift;
ASSERT_MAP_PAGE_INDEX(map_page_index);
int map_page_offset =
((value_ & kMapPageOffsetMask) >> kMapPageOffsetShift)
<< kObjectAlignmentBits;
return (map_space->PageAddress(map_page_index) + map_page_offset);
}
int MapWord::DecodeOffset() {
// The offset field is represented in the kForwardingOffsetBits
// most-significant bits.
int offset = (value_ >> kForwardingOffsetShift) << kObjectAlignmentBits;
ASSERT(0 <= offset && offset < Page::kObjectAreaSize);
return offset;
}
MapWord MapWord::FromEncodedAddress(Address address) {
return MapWord(reinterpret_cast<uintptr_t>(address));
}
Address MapWord::ToEncodedAddress() {
return reinterpret_cast<Address>(value_);
}
#ifdef DEBUG
void HeapObject::VerifyObjectField(int offset) {
VerifyPointer(READ_FIELD(this, offset));
}
#endif
Map* HeapObject::map() {
return map_word().ToMap();
}
void HeapObject::set_map(Map* value) {
set_map_word(MapWord::FromMap(value));
}
MapWord HeapObject::map_word() {
return MapWord(reinterpret_cast<uintptr_t>(READ_FIELD(this, kMapOffset)));
}
void HeapObject::set_map_word(MapWord map_word) {
// WRITE_FIELD does not update the remembered set, but there is no need
// here.
WRITE_FIELD(this, kMapOffset, reinterpret_cast<Object*>(map_word.value_));
}
HeapObject* HeapObject::FromAddress(Address address) {
ASSERT_TAG_ALIGNED(address);
return reinterpret_cast<HeapObject*>(address + kHeapObjectTag);
}
Address HeapObject::address() {
return reinterpret_cast<Address>(this) - kHeapObjectTag;
}
int HeapObject::Size() {
return SizeFromMap(map());
}
void HeapObject::IteratePointers(ObjectVisitor* v, int start, int end) {
v->VisitPointers(reinterpret_cast<Object**>(FIELD_ADDR(this, start)),
reinterpret_cast<Object**>(FIELD_ADDR(this, end)));
}
void HeapObject::IteratePointer(ObjectVisitor* v, int offset) {
v->VisitPointer(reinterpret_cast<Object**>(FIELD_ADDR(this, offset)));
}
bool HeapObject::IsMarked() {
return map_word().IsMarked();
}
void HeapObject::SetMark() {
ASSERT(!IsMarked());
MapWord first_word = map_word();
first_word.SetMark();
set_map_word(first_word);
}
void HeapObject::ClearMark() {
ASSERT(IsMarked());
MapWord first_word = map_word();
first_word.ClearMark();
set_map_word(first_word);
}
bool HeapObject::IsOverflowed() {
return map_word().IsOverflowed();
}
void HeapObject::SetOverflow() {
MapWord first_word = map_word();
first_word.SetOverflow();
set_map_word(first_word);
}
void HeapObject::ClearOverflow() {
ASSERT(IsOverflowed());
MapWord first_word = map_word();
first_word.ClearOverflow();
set_map_word(first_word);
}
double HeapNumber::value() {
return READ_DOUBLE_FIELD(this, kValueOffset);
}
void HeapNumber::set_value(double value) {
WRITE_DOUBLE_FIELD(this, kValueOffset, value);
}
ACCESSORS(JSObject, properties, FixedArray, kPropertiesOffset)
ACCESSORS(JSObject, elements, FixedArray, kElementsOffset)
void JSObject::initialize_properties() {
ASSERT(!Heap::InNewSpace(Heap::empty_fixed_array()));
WRITE_FIELD(this, kPropertiesOffset, Heap::empty_fixed_array());
}
void JSObject::initialize_elements() {
ASSERT(!Heap::InNewSpace(Heap::empty_fixed_array()));
WRITE_FIELD(this, kElementsOffset, Heap::empty_fixed_array());
}
ACCESSORS(Oddball, to_string, String, kToStringOffset)
ACCESSORS(Oddball, to_number, Object, kToNumberOffset)
int JSObject::GetHeaderSize() {
switch (map()->instance_type()) {
case JS_GLOBAL_PROXY_TYPE:
return JSGlobalProxy::kSize;
case JS_GLOBAL_OBJECT_TYPE:
return JSGlobalObject::kSize;
case JS_BUILTINS_OBJECT_TYPE:
return JSBuiltinsObject::kSize;
case JS_FUNCTION_TYPE:
return JSFunction::kSize;
case JS_VALUE_TYPE:
return JSValue::kSize;
case JS_ARRAY_TYPE:
return JSValue::kSize;
case JS_REGEXP_TYPE:
return JSValue::kSize;
case JS_OBJECT_TYPE:
case JS_CONTEXT_EXTENSION_OBJECT_TYPE:
return JSObject::kHeaderSize;
default:
UNREACHABLE();
return 0;
}
}
int JSObject::GetInternalFieldCount() {
ASSERT(1 << kPointerSizeLog2 == kPointerSize);
// Make sure to adjust for the number of in-object properties. These
// properties do contribute to the size, but are not internal fields.
return ((Size() - GetHeaderSize()) >> kPointerSizeLog2) -
map()->inobject_properties();
}
Object* JSObject::GetInternalField(int index) {
ASSERT(index < GetInternalFieldCount() && index >= 0);
// Internal objects do follow immediately after the header, whereas in-object
// properties are at the end of the object. Therefore there is no need
// to adjust the index here.
return READ_FIELD(this, GetHeaderSize() + (kPointerSize * index));
}
void JSObject::SetInternalField(int index, Object* value) {
ASSERT(index < GetInternalFieldCount() && index >= 0);
// Internal objects do follow immediately after the header, whereas in-object
// properties are at the end of the object. Therefore there is no need
// to adjust the index here.
int offset = GetHeaderSize() + (kPointerSize * index);
WRITE_FIELD(this, offset, value);
WRITE_BARRIER(this, offset);
}
// Access fast-case object properties at index. The use of these routines
// is needed to correctly distinguish between properties stored in-object and
// properties stored in the properties array.
Object* JSObject::FastPropertyAt(int index) {
// Adjust for the number of properties stored in the object.
index -= map()->inobject_properties();
if (index < 0) {
int offset = map()->instance_size() + (index * kPointerSize);
return READ_FIELD(this, offset);
} else {
ASSERT(index < properties()->length());
return properties()->get(index);
}
}
Object* JSObject::FastPropertyAtPut(int index, Object* value) {
// Adjust for the number of properties stored in the object.
index -= map()->inobject_properties();
if (index < 0) {
int offset = map()->instance_size() + (index * kPointerSize);
WRITE_FIELD(this, offset, value);
WRITE_BARRIER(this, offset);
} else {
ASSERT(index < properties()->length());
properties()->set(index, value);
}
return value;
}
Object* JSObject::InObjectPropertyAt(int index) {
// Adjust for the number of properties stored in the object.
index -= map()->inobject_properties();
ASSERT(index < 0);
int offset = map()->instance_size() + (index * kPointerSize);
return READ_FIELD(this, offset);
}
Object* JSObject::InObjectPropertyAtPut(int index,
Object* value,
WriteBarrierMode mode) {
// Adjust for the number of properties stored in the object.
index -= map()->inobject_properties();
ASSERT(index < 0);
int offset = map()->instance_size() + (index * kPointerSize);
WRITE_FIELD(this, offset, value);
CONDITIONAL_WRITE_BARRIER(this, offset, mode);
return value;
}
void JSObject::InitializeBody(int object_size) {
Object* value = Heap::undefined_value();
for (int offset = kHeaderSize; offset < object_size; offset += kPointerSize) {
WRITE_FIELD(this, offset, value);
}
}
void Struct::InitializeBody(int object_size) {
Object* value = Heap::undefined_value();
for (int offset = kHeaderSize; offset < object_size; offset += kPointerSize) {
WRITE_FIELD(this, offset, value);
}
}
bool JSObject::HasFastProperties() {
return !properties()->IsDictionary();
}
bool Array::IndexFromObject(Object* object, uint32_t* index) {
if (object->IsSmi()) {
int value = Smi::cast(object)->value();
if (value < 0) return false;
*index = value;
return true;
}
if (object->IsHeapNumber()) {
double value = HeapNumber::cast(object)->value();
uint32_t uint_value = static_cast<uint32_t>(value);
if (value == static_cast<double>(uint_value)) {
*index = uint_value;
return true;
}
}
return false;
}
bool Object::IsStringObjectWithCharacterAt(uint32_t index) {
if (!this->IsJSValue()) return false;
JSValue* js_value = JSValue::cast(this);
if (!js_value->value()->IsString()) return false;
String* str = String::cast(js_value->value());
if (index >= (uint32_t)str->length()) return false;
return true;
}
Object* FixedArray::get(int index) {
ASSERT(index >= 0 && index < this->length());
return READ_FIELD(this, kHeaderSize + index * kPointerSize);
}
void FixedArray::set(int index, Smi* value) {
ASSERT(reinterpret_cast<Object*>(value)->IsSmi());
int offset = kHeaderSize + index * kPointerSize;
WRITE_FIELD(this, offset, value);
}
void FixedArray::set(int index, Object* value) {
ASSERT(index >= 0 && index < this->length());
int offset = kHeaderSize + index * kPointerSize;
WRITE_FIELD(this, offset, value);
WRITE_BARRIER(this, offset);
}
WriteBarrierMode HeapObject::GetWriteBarrierMode() {
if (Heap::InNewSpace(this)) return SKIP_WRITE_BARRIER;
return UPDATE_WRITE_BARRIER;
}
void FixedArray::set(int index,
Object* value,
WriteBarrierMode mode) {
ASSERT(index >= 0 && index < this->length());
int offset = kHeaderSize + index * kPointerSize;
WRITE_FIELD(this, offset, value);
CONDITIONAL_WRITE_BARRIER(this, offset, mode);
}
void FixedArray::fast_set(FixedArray* array, int index, Object* value) {
ASSERT(index >= 0 && index < array->length());
WRITE_FIELD(array, kHeaderSize + index * kPointerSize, value);
}
void FixedArray::set_undefined(int index) {
ASSERT(index >= 0 && index < this->length());
ASSERT(!Heap::InNewSpace(Heap::undefined_value()));
WRITE_FIELD(this, kHeaderSize + index * kPointerSize,
Heap::undefined_value());
}
void FixedArray::set_null(int index) {
ASSERT(index >= 0 && index < this->length());
ASSERT(!Heap::InNewSpace(Heap::null_value()));
WRITE_FIELD(this, kHeaderSize + index * kPointerSize, Heap::null_value());
}
void FixedArray::set_the_hole(int index) {
ASSERT(index >= 0 && index < this->length());
ASSERT(!Heap::InNewSpace(Heap::the_hole_value()));
WRITE_FIELD(this, kHeaderSize + index * kPointerSize, Heap::the_hole_value());
}
bool DescriptorArray::IsEmpty() {
ASSERT(this == Heap::empty_descriptor_array() ||
this->length() > 2);
return this == Heap::empty_descriptor_array();
}
void DescriptorArray::fast_swap(FixedArray* array, int first, int second) {
Object* tmp = array->get(first);
fast_set(array, first, array->get(second));
fast_set(array, second, tmp);
}
int DescriptorArray::Search(String* name) {
SLOW_ASSERT(IsSortedNoDuplicates());
// Check for empty descriptor array.
int nof = number_of_descriptors();
if (nof == 0) return kNotFound;
// Fast case: do linear search for small arrays.
const int kMaxElementsForLinearSearch = 8;
if (StringShape(name).IsSymbol() && nof < kMaxElementsForLinearSearch) {
return LinearSearch(name, nof);
}
// Slow case: perform binary search.
return BinarySearch(name, 0, nof - 1);
}
String* DescriptorArray::GetKey(int descriptor_number) {
ASSERT(descriptor_number < number_of_descriptors());
return String::cast(get(ToKeyIndex(descriptor_number)));
}
Object* DescriptorArray::GetValue(int descriptor_number) {
ASSERT(descriptor_number < number_of_descriptors());
return GetContentArray()->get(ToValueIndex(descriptor_number));
}
Smi* DescriptorArray::GetDetails(int descriptor_number) {
ASSERT(descriptor_number < number_of_descriptors());
return Smi::cast(GetContentArray()->get(ToDetailsIndex(descriptor_number)));
}
void DescriptorArray::Get(int descriptor_number, Descriptor* desc) {
desc->Init(GetKey(descriptor_number),
GetValue(descriptor_number),
GetDetails(descriptor_number));
}
void DescriptorArray::Set(int descriptor_number, Descriptor* desc) {
// Range check.
ASSERT(descriptor_number < number_of_descriptors());
// Make sure non of the elements in desc are in new space.
ASSERT(!Heap::InNewSpace(desc->GetKey()));
ASSERT(!Heap::InNewSpace(desc->GetValue()));
fast_set(this, ToKeyIndex(descriptor_number), desc->GetKey());
FixedArray* content_array = GetContentArray();
fast_set(content_array, ToValueIndex(descriptor_number), desc->GetValue());
fast_set(content_array, ToDetailsIndex(descriptor_number),
desc->GetDetails().AsSmi());
}
void DescriptorArray::Swap(int first, int second) {
fast_swap(this, ToKeyIndex(first), ToKeyIndex(second));
FixedArray* content_array = GetContentArray();
fast_swap(content_array, ToValueIndex(first), ToValueIndex(second));
fast_swap(content_array, ToDetailsIndex(first), ToDetailsIndex(second));
}
bool Dictionary::requires_slow_elements() {
Object* max_index_object = get(kMaxNumberKeyIndex);
if (!max_index_object->IsSmi()) return false;
return 0 !=
(Smi::cast(max_index_object)->value() & kRequiresSlowElementsMask);
}
uint32_t Dictionary::max_number_key() {
ASSERT(!requires_slow_elements());
Object* max_index_object = get(kMaxNumberKeyIndex);
if (!max_index_object->IsSmi()) return 0;
uint32_t value = static_cast<uint32_t>(Smi::cast(max_index_object)->value());
return value >> kRequiresSlowElementsTagSize;
}
void Dictionary::set_requires_slow_elements() {
set(kMaxNumberKeyIndex,
Smi::FromInt(kRequiresSlowElementsMask),
SKIP_WRITE_BARRIER);
}
// ------------------------------------
// Cast operations
CAST_ACCESSOR(FixedArray)
CAST_ACCESSOR(DescriptorArray)
CAST_ACCESSOR(Dictionary)
CAST_ACCESSOR(SymbolTable)
CAST_ACCESSOR(CompilationCacheTable)
CAST_ACCESSOR(MapCache)
CAST_ACCESSOR(LookupCache)
CAST_ACCESSOR(String)
CAST_ACCESSOR(SeqString)
CAST_ACCESSOR(SeqAsciiString)
CAST_ACCESSOR(SeqTwoByteString)
CAST_ACCESSOR(ConsString)
CAST_ACCESSOR(SlicedString)
CAST_ACCESSOR(ExternalString)
CAST_ACCESSOR(ExternalAsciiString)
CAST_ACCESSOR(ExternalTwoByteString)
CAST_ACCESSOR(JSObject)
CAST_ACCESSOR(Smi)
CAST_ACCESSOR(Failure)
CAST_ACCESSOR(HeapObject)
CAST_ACCESSOR(HeapNumber)
CAST_ACCESSOR(Oddball)
CAST_ACCESSOR(SharedFunctionInfo)
CAST_ACCESSOR(Map)
CAST_ACCESSOR(JSFunction)
CAST_ACCESSOR(GlobalObject)
CAST_ACCESSOR(JSGlobalProxy)
CAST_ACCESSOR(JSGlobalObject)
CAST_ACCESSOR(JSBuiltinsObject)
CAST_ACCESSOR(Code)
CAST_ACCESSOR(JSArray)
CAST_ACCESSOR(JSRegExp)
CAST_ACCESSOR(Proxy)
CAST_ACCESSOR(ByteArray)
CAST_ACCESSOR(Struct)
#define MAKE_STRUCT_CAST(NAME, Name, name) CAST_ACCESSOR(Name)
STRUCT_LIST(MAKE_STRUCT_CAST)
#undef MAKE_STRUCT_CAST
template <int prefix_size, int elem_size>
HashTable<prefix_size, elem_size>* HashTable<prefix_size, elem_size>::cast(
Object* obj) {
ASSERT(obj->IsHashTable());
return reinterpret_cast<HashTable*>(obj);
}
INT_ACCESSORS(Array, length, kLengthOffset)
bool String::Equals(String* other) {
if (other == this) return true;
if (StringShape(this).IsSymbol() && StringShape(other).IsSymbol()) {
return false;
}
return SlowEquals(other);
}
int String::length() {
uint32_t len = READ_INT_FIELD(this, kLengthOffset);
ASSERT(kShortStringTag + kLongLengthShift == kShortLengthShift);
ASSERT(kMediumStringTag + kLongLengthShift == kMediumLengthShift);
ASSERT(kLongStringTag == 0);
return len >> (StringShape(this).size_tag() + kLongLengthShift);
}
void String::set_length(int value) {
ASSERT(kShortStringTag + kLongLengthShift == kShortLengthShift);
ASSERT(kMediumStringTag + kLongLengthShift == kMediumLengthShift);
ASSERT(kLongStringTag == 0);
WRITE_INT_FIELD(this,
kLengthOffset,
value << (StringShape(this).size_tag() + kLongLengthShift));
}
uint32_t String::length_field() {
return READ_UINT32_FIELD(this, kLengthOffset);
}
void String::set_length_field(uint32_t value) {
WRITE_UINT32_FIELD(this, kLengthOffset, value);
}
Object* String::TryFlattenIfNotFlat() {
// We don't need to flatten strings that are already flat. Since this code
// is inlined, it can be helpful in the flat case to not call out to Flatten.
if (!IsFlat()) {
return TryFlatten();
}
return this;
}
uint16_t String::Get(int index) {
ASSERT(index >= 0 && index < length());
switch (StringShape(this).full_representation_tag()) {
case kSeqStringTag | kAsciiStringTag:
return SeqAsciiString::cast(this)->SeqAsciiStringGet(index);
case kSeqStringTag | kTwoByteStringTag:
return SeqTwoByteString::cast(this)->SeqTwoByteStringGet(index);
case kConsStringTag | kAsciiStringTag:
case kConsStringTag | kTwoByteStringTag:
return ConsString::cast(this)->ConsStringGet(index);
case kSlicedStringTag | kAsciiStringTag:
case kSlicedStringTag | kTwoByteStringTag:
return SlicedString::cast(this)->SlicedStringGet(index);
case kExternalStringTag | kAsciiStringTag:
return ExternalAsciiString::cast(this)->ExternalAsciiStringGet(index);
case kExternalStringTag | kTwoByteStringTag:
return ExternalTwoByteString::cast(this)->ExternalTwoByteStringGet(index);
default:
break;
}
UNREACHABLE();
return 0;
}
void String::Set(int index, uint16_t value) {
ASSERT(index >= 0 && index < length());
ASSERT(StringShape(this).IsSequential());
return StringShape(this).IsAsciiRepresentation()
? SeqAsciiString::cast(this)->SeqAsciiStringSet(index, value)
: SeqTwoByteString::cast(this)->SeqTwoByteStringSet(index, value);
}
bool String::IsFlat() {
switch (StringShape(this).representation_tag()) {
case kConsStringTag: {
String* second = ConsString::cast(this)->second();
// Only flattened strings have second part empty.
return second->length() == 0;
}
case kSlicedStringTag: {
StringRepresentationTag tag =
StringShape(SlicedString::cast(this)->buffer()).representation_tag();
return tag == kSeqStringTag || tag == kExternalStringTag;
}
default:
return true;
}
}
uint16_t SeqAsciiString::SeqAsciiStringGet(int index) {
ASSERT(index >= 0 && index < length());
return READ_BYTE_FIELD(this, kHeaderSize + index * kCharSize);
}
void SeqAsciiString::SeqAsciiStringSet(int index, uint16_t value) {
ASSERT(index >= 0 && index < length() && value <= kMaxAsciiCharCode);
WRITE_BYTE_FIELD(this, kHeaderSize + index * kCharSize,
static_cast<byte>(value));
}
Address SeqAsciiString::GetCharsAddress() {
return FIELD_ADDR(this, kHeaderSize);
}
char* SeqAsciiString::GetChars() {
return reinterpret_cast<char*>(GetCharsAddress());
}
Address SeqTwoByteString::GetCharsAddress() {
return FIELD_ADDR(this, kHeaderSize);
}
uc16* SeqTwoByteString::GetChars() {
return reinterpret_cast<uc16*>(FIELD_ADDR(this, kHeaderSize));
}
uint16_t SeqTwoByteString::SeqTwoByteStringGet(int index) {
ASSERT(index >= 0 && index < length());
return READ_SHORT_FIELD(this, kHeaderSize + index * kShortSize);
}
void SeqTwoByteString::SeqTwoByteStringSet(int index, uint16_t value) {
ASSERT(index >= 0 && index < length());
WRITE_SHORT_FIELD(this, kHeaderSize + index * kShortSize, value);
}
int SeqTwoByteString::SeqTwoByteStringSize(InstanceType instance_type) {
uint32_t length = READ_INT_FIELD(this, kLengthOffset);
ASSERT(kShortStringTag + kLongLengthShift == kShortLengthShift);
ASSERT(kMediumStringTag + kLongLengthShift == kMediumLengthShift);
ASSERT(kLongStringTag == 0);
// Use the map (and not 'this') to compute the size tag, since
// TwoByteStringSize is called during GC when maps are encoded.
length >>= StringShape(instance_type).size_tag() + kLongLengthShift;
return SizeFor(length);
}
int SeqAsciiString::SeqAsciiStringSize(InstanceType instance_type) {
uint32_t length = READ_INT_FIELD(this, kLengthOffset);
ASSERT(kShortStringTag + kLongLengthShift == kShortLengthShift);
ASSERT(kMediumStringTag + kLongLengthShift == kMediumLengthShift);
ASSERT(kLongStringTag == 0);
// Use the map (and not 'this') to compute the size tag, since
// AsciiStringSize is called during GC when maps are encoded.
length >>= StringShape(instance_type).size_tag() + kLongLengthShift;
return SizeFor(length);
}
String* ConsString::first() {
ASSERT(String::cast(READ_FIELD(this, kSecondOffset))->length() != 0 ||
StringShape(
String::cast(
READ_FIELD(this, kFirstOffset))).IsAsciiRepresentation()
== StringShape(this).IsAsciiRepresentation());
return String::cast(READ_FIELD(this, kFirstOffset));
}
Object* ConsString::unchecked_first() {
return READ_FIELD(this, kFirstOffset);
}
void ConsString::set_first(String* value, WriteBarrierMode mode) {
WRITE_FIELD(this, kFirstOffset, value);
CONDITIONAL_WRITE_BARRIER(this, kFirstOffset, mode);
}
String* ConsString::second() {
return String::cast(READ_FIELD(this, kSecondOffset));
}
Object* ConsString::unchecked_second() {
return READ_FIELD(this, kSecondOffset);
}
void ConsString::set_second(String* value, WriteBarrierMode mode) {
WRITE_FIELD(this, kSecondOffset, value);
CONDITIONAL_WRITE_BARRIER(this, kSecondOffset, mode);
}
String* SlicedString::buffer() {
ASSERT(
StringShape(
String::cast(READ_FIELD(this, kBufferOffset))).IsAsciiRepresentation()
== StringShape(this).IsAsciiRepresentation());
return String::cast(READ_FIELD(this, kBufferOffset));
}
void SlicedString::set_buffer(String* buffer) {
WRITE_FIELD(this, kBufferOffset, buffer);
WRITE_BARRIER(this, kBufferOffset);
}
int SlicedString::start() {
return READ_INT_FIELD(this, kStartOffset);
}
void SlicedString::set_start(int start) {
WRITE_INT_FIELD(this, kStartOffset, start);
}
ExternalAsciiString::Resource* ExternalAsciiString::resource() {
return *reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset));
}
void ExternalAsciiString::set_resource(
ExternalAsciiString::Resource* resource) {
*reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset)) = resource;
}
Map* ExternalAsciiString::StringMap(int length) {
Map* map;
// Number of characters: determines the map.
if (length <= String::kMaxShortStringSize) {
map = Heap::short_external_ascii_string_map();
} else if (length <= String::kMaxMediumStringSize) {
map = Heap::medium_external_ascii_string_map();
} else {
map = Heap::long_external_ascii_string_map();
}
return map;
}
Map* ExternalAsciiString::SymbolMap(int length) {
Map* map;
// Number of characters: determines the map.
if (length <= String::kMaxShortStringSize) {
map = Heap::short_external_ascii_symbol_map();
} else if (length <= String::kMaxMediumStringSize) {
map = Heap::medium_external_ascii_symbol_map();
} else {
map = Heap::long_external_ascii_symbol_map();
}
return map;
}
ExternalTwoByteString::Resource* ExternalTwoByteString::resource() {
return *reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset));
}
void ExternalTwoByteString::set_resource(
ExternalTwoByteString::Resource* resource) {
*reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset)) = resource;
}
Map* ExternalTwoByteString::StringMap(int length) {
Map* map;
// Number of characters: determines the map.
if (length <= String::kMaxShortStringSize) {
map = Heap::short_external_string_map();
} else if (length <= String::kMaxMediumStringSize) {
map = Heap::medium_external_string_map();
} else {
map = Heap::long_external_string_map();
}
return map;
}
Map* ExternalTwoByteString::SymbolMap(int length) {
Map* map;
// Number of characters: determines the map.
if (length <= String::kMaxShortStringSize) {
map = Heap::short_external_symbol_map();
} else if (length <= String::kMaxMediumStringSize) {
map = Heap::medium_external_symbol_map();
} else {
map = Heap::long_external_symbol_map();
}
return map;
}
byte ByteArray::get(int index) {
ASSERT(index >= 0 && index < this->length());
return READ_BYTE_FIELD(this, kHeaderSize + index * kCharSize);
}
void ByteArray::set(int index, byte value) {
ASSERT(index >= 0 && index < this->length());
WRITE_BYTE_FIELD(this, kHeaderSize + index * kCharSize, value);
}
int ByteArray::get_int(int index) {
ASSERT(index >= 0 && (index * kIntSize) < this->length());
return READ_INT_FIELD(this, kHeaderSize + index * kIntSize);
}
ByteArray* ByteArray::FromDataStartAddress(Address address) {
ASSERT_TAG_ALIGNED(address);
return reinterpret_cast<ByteArray*>(address - kHeaderSize + kHeapObjectTag);
}
Address ByteArray::GetDataStartAddress() {
return reinterpret_cast<Address>(this) - kHeapObjectTag + kHeaderSize;
}
int Map::instance_size() {
return READ_BYTE_FIELD(this, kInstanceSizeOffset) << kPointerSizeLog2;
}
int Map::inobject_properties() {
return READ_BYTE_FIELD(this, kInObjectPropertiesOffset);
}
int HeapObject::SizeFromMap(Map* map) {
InstanceType instance_type = map->instance_type();
// Only inline the two most frequent cases.
if (instance_type == JS_OBJECT_TYPE) return map->instance_size();
if (instance_type == FIXED_ARRAY_TYPE) {
return reinterpret_cast<FixedArray*>(this)->FixedArraySize();
}
// Otherwise do the general size computation.
return SlowSizeFromMap(map);
}
void Map::set_instance_size(int value) {
ASSERT((value & ~(kPointerSize - 1)) == value);
value >>= kPointerSizeLog2;
ASSERT(0 <= value && value < 256);
WRITE_BYTE_FIELD(this, kInstanceSizeOffset, static_cast<byte>(value));
}
void Map::set_inobject_properties(int value) {
ASSERT(0 <= value && value < 256);
WRITE_BYTE_FIELD(this, kInObjectPropertiesOffset, static_cast<byte>(value));
}
InstanceType Map::instance_type() {
return static_cast<InstanceType>(READ_BYTE_FIELD(this, kInstanceTypeOffset));
}
void Map::set_instance_type(InstanceType value) {
ASSERT(0 <= value && value < 256);
WRITE_BYTE_FIELD(this, kInstanceTypeOffset, value);
}
int Map::unused_property_fields() {
return READ_BYTE_FIELD(this, kUnusedPropertyFieldsOffset);
}
void Map::set_unused_property_fields(int value) {
WRITE_BYTE_FIELD(this, kUnusedPropertyFieldsOffset, Min(value, 255));
}
byte Map::bit_field() {
return READ_BYTE_FIELD(this, kBitFieldOffset);
}
void Map::set_bit_field(byte value) {
WRITE_BYTE_FIELD(this, kBitFieldOffset, value);
}
void Map::set_non_instance_prototype(bool value) {
if (value) {
set_bit_field(bit_field() | (1 << kHasNonInstancePrototype));
} else {
set_bit_field(bit_field() & ~(1 << kHasNonInstancePrototype));
}
}
bool Map::has_non_instance_prototype() {
return ((1 << kHasNonInstancePrototype) & bit_field()) != 0;
}
void Map::set_is_access_check_needed(bool access_check_needed) {
if (access_check_needed) {
set_bit_field(bit_field() | (1 << kIsAccessCheckNeeded));
} else {
set_bit_field(bit_field() & ~(1 << kIsAccessCheckNeeded));
}
}
bool Map::is_access_check_needed() {
return ((1 << kIsAccessCheckNeeded) & bit_field()) != 0;
}
Code::Flags Code::flags() {
return static_cast<Flags>(READ_INT_FIELD(this, kFlagsOffset));
}
void Code::set_flags(Code::Flags flags) {
STATIC_ASSERT(Code::NUMBER_OF_KINDS <= (kFlagsKindMask >> kFlagsKindShift)+1);
// Make sure that all call stubs have an arguments count.
ASSERT(ExtractKindFromFlags(flags) != CALL_IC ||
ExtractArgumentsCountFromFlags(flags) >= 0);
WRITE_INT_FIELD(this, kFlagsOffset, flags);
}
Code::Kind Code::kind() {
return ExtractKindFromFlags(flags());
}
InlineCacheState Code::ic_state() {
InlineCacheState result = ExtractICStateFromFlags(flags());
// Only allow uninitialized or debugger states for non-IC code
// objects. This is used in the debugger to determine whether or not
// a call to code object has been replaced with a debug break call.
ASSERT(is_inline_cache_stub() ||
result == UNINITIALIZED ||
result == DEBUG_BREAK ||
result == DEBUG_PREPARE_STEP_IN);
return result;
}
PropertyType Code::type() {
ASSERT(ic_state() == MONOMORPHIC);
return ExtractTypeFromFlags(flags());
}
int Code::arguments_count() {
ASSERT(is_call_stub() || kind() == STUB);
return ExtractArgumentsCountFromFlags(flags());
}
CodeStub::Major Code::major_key() {
ASSERT(kind() == STUB);
return static_cast<CodeStub::Major>(READ_BYTE_FIELD(this,
kStubMajorKeyOffset));
}
void Code::set_major_key(CodeStub::Major major) {
ASSERT(kind() == STUB);
ASSERT(0 <= major && major < 256);
WRITE_BYTE_FIELD(this, kStubMajorKeyOffset, major);
}
bool Code::is_inline_cache_stub() {
Kind kind = this->kind();
return kind >= FIRST_IC_KIND && kind <= LAST_IC_KIND;
}
Code::Flags Code::ComputeFlags(Kind kind,
InlineCacheState ic_state,
PropertyType type,
int argc) {
// Compute the bit mask.
int bits = kind << kFlagsKindShift;
bits |= ic_state << kFlagsICStateShift;
bits |= type << kFlagsTypeShift;
bits |= argc << kFlagsArgumentsCountShift;
// Cast to flags and validate result before returning it.
Flags result = static_cast<Flags>(bits);
ASSERT(ExtractKindFromFlags(result) == kind);
ASSERT(ExtractICStateFromFlags(result) == ic_state);
ASSERT(ExtractTypeFromFlags(result) == type);
ASSERT(ExtractArgumentsCountFromFlags(result) == argc);
return result;
}
Code::Flags Code::ComputeMonomorphicFlags(Kind kind,
PropertyType type,
int argc) {
return ComputeFlags(kind, MONOMORPHIC, type, argc);
}
Code::Kind Code::ExtractKindFromFlags(Flags flags) {
int bits = (flags & kFlagsKindMask) >> kFlagsKindShift;
return static_cast<Kind>(bits);
}
InlineCacheState Code::ExtractICStateFromFlags(Flags flags) {
int bits = (flags & kFlagsICStateMask) >> kFlagsICStateShift;
return static_cast<InlineCacheState>(bits);
}
PropertyType Code::ExtractTypeFromFlags(Flags flags) {
int bits = (flags & kFlagsTypeMask) >> kFlagsTypeShift;
return static_cast<PropertyType>(bits);
}
int Code::ExtractArgumentsCountFromFlags(Flags flags) {
return (flags & kFlagsArgumentsCountMask) >> kFlagsArgumentsCountShift;
}
Code::Flags Code::RemoveTypeFromFlags(Flags flags) {
int bits = flags & ~kFlagsTypeMask;
return static_cast<Flags>(bits);
}
Code* Code::GetCodeFromTargetAddress(Address address) {
HeapObject* code = HeapObject::FromAddress(address - Code::kHeaderSize);
// GetCodeFromTargetAddress might be called when marking objects during mark
// sweep. reinterpret_cast is therefore used instead of the more appropriate
// Code::cast. Code::cast does not work when the object's map is
// marked.
Code* result = reinterpret_cast<Code*>(code);
return result;
}
Object* Map::prototype() {
return READ_FIELD(this, kPrototypeOffset);
}
void Map::set_prototype(Object* value, WriteBarrierMode mode) {
ASSERT(value->IsNull() || value->IsJSObject());
WRITE_FIELD(this, kPrototypeOffset, value);
CONDITIONAL_WRITE_BARRIER(this, kPrototypeOffset, mode);
}
ACCESSORS(Map, instance_descriptors, DescriptorArray,
kInstanceDescriptorsOffset)
ACCESSORS(Map, code_cache, FixedArray, kCodeCacheOffset)
ACCESSORS(Map, constructor, Object, kConstructorOffset)
ACCESSORS(JSFunction, shared, SharedFunctionInfo, kSharedFunctionInfoOffset)
ACCESSORS(JSFunction, literals, FixedArray, kLiteralsOffset)
ACCESSORS(GlobalObject, builtins, JSBuiltinsObject, kBuiltinsOffset)
ACCESSORS(GlobalObject, global_context, Context, kGlobalContextOffset)
ACCESSORS(GlobalObject, global_receiver, JSObject, kGlobalReceiverOffset)
ACCESSORS(JSGlobalProxy, context, Object, kContextOffset)
ACCESSORS(AccessorInfo, getter, Object, kGetterOffset)
ACCESSORS(AccessorInfo, setter, Object, kSetterOffset)
ACCESSORS(AccessorInfo, data, Object, kDataOffset)
ACCESSORS(AccessorInfo, name, Object, kNameOffset)
ACCESSORS(AccessorInfo, flag, Smi, kFlagOffset)
ACCESSORS(AccessCheckInfo, named_callback, Object, kNamedCallbackOffset)
ACCESSORS(AccessCheckInfo, indexed_callback, Object, kIndexedCallbackOffset)
ACCESSORS(AccessCheckInfo, data, Object, kDataOffset)
ACCESSORS(InterceptorInfo, getter, Object, kGetterOffset)
ACCESSORS(InterceptorInfo, setter, Object, kSetterOffset)
ACCESSORS(InterceptorInfo, query, Object, kQueryOffset)
ACCESSORS(InterceptorInfo, deleter, Object, kDeleterOffset)
ACCESSORS(InterceptorInfo, enumerator, Object, kEnumeratorOffset)
ACCESSORS(InterceptorInfo, data, Object, kDataOffset)
ACCESSORS(CallHandlerInfo, callback, Object, kCallbackOffset)
ACCESSORS(CallHandlerInfo, data, Object, kDataOffset)
ACCESSORS(TemplateInfo, tag, Object, kTagOffset)
ACCESSORS(TemplateInfo, property_list, Object, kPropertyListOffset)
ACCESSORS(FunctionTemplateInfo, serial_number, Object, kSerialNumberOffset)
ACCESSORS(FunctionTemplateInfo, call_code, Object, kCallCodeOffset)
ACCESSORS(FunctionTemplateInfo, property_accessors, Object,
kPropertyAccessorsOffset)
ACCESSORS(FunctionTemplateInfo, prototype_template, Object,
kPrototypeTemplateOffset)
ACCESSORS(FunctionTemplateInfo, parent_template, Object, kParentTemplateOffset)
ACCESSORS(FunctionTemplateInfo, named_property_handler, Object,
kNamedPropertyHandlerOffset)
ACCESSORS(FunctionTemplateInfo, indexed_property_handler, Object,
kIndexedPropertyHandlerOffset)
ACCESSORS(FunctionTemplateInfo, instance_template, Object,
kInstanceTemplateOffset)
ACCESSORS(FunctionTemplateInfo, class_name, Object, kClassNameOffset)
ACCESSORS(FunctionTemplateInfo, signature, Object, kSignatureOffset)
ACCESSORS(FunctionTemplateInfo, instance_call_handler, Object,
kInstanceCallHandlerOffset)
ACCESSORS(FunctionTemplateInfo, access_check_info, Object,
kAccessCheckInfoOffset)
ACCESSORS(FunctionTemplateInfo, flag, Smi, kFlagOffset)
ACCESSORS(ObjectTemplateInfo, constructor, Object, kConstructorOffset)
ACCESSORS(ObjectTemplateInfo, internal_field_count, Object,
kInternalFieldCountOffset)
ACCESSORS(SignatureInfo, receiver, Object, kReceiverOffset)
ACCESSORS(SignatureInfo, args, Object, kArgsOffset)
ACCESSORS(TypeSwitchInfo, types, Object, kTypesOffset)
ACCESSORS(Script, source, Object, kSourceOffset)
ACCESSORS(Script, name, Object, kNameOffset)
ACCESSORS(Script, id, Object, kIdOffset)
ACCESSORS(Script, line_offset, Smi, kLineOffsetOffset)
ACCESSORS(Script, column_offset, Smi, kColumnOffsetOffset)
ACCESSORS(Script, wrapper, Proxy, kWrapperOffset)
ACCESSORS(Script, type, Smi, kTypeOffset)
ACCESSORS(Script, line_ends, Object, kLineEndsOffset)
ACCESSORS(DebugInfo, shared, SharedFunctionInfo, kSharedFunctionInfoIndex)
ACCESSORS(DebugInfo, original_code, Code, kOriginalCodeIndex)
ACCESSORS(DebugInfo, code, Code, kPatchedCodeIndex)
ACCESSORS(DebugInfo, break_points, FixedArray, kBreakPointsStateIndex)
ACCESSORS(BreakPointInfo, code_position, Smi, kCodePositionIndex)
ACCESSORS(BreakPointInfo, source_position, Smi, kSourcePositionIndex)
ACCESSORS(BreakPointInfo, statement_position, Smi, kStatementPositionIndex)
ACCESSORS(BreakPointInfo, break_point_objects, Object, kBreakPointObjectsIndex)
ACCESSORS(SharedFunctionInfo, name, Object, kNameOffset)
ACCESSORS(SharedFunctionInfo, instance_class_name, Object,
kInstanceClassNameOffset)
ACCESSORS(SharedFunctionInfo, function_data, Object,
kExternalReferenceDataOffset)
ACCESSORS(SharedFunctionInfo, lazy_load_data, Object, kLazyLoadDataOffset)
ACCESSORS(SharedFunctionInfo, script, Object, kScriptOffset)
ACCESSORS(SharedFunctionInfo, debug_info, Object, kDebugInfoOffset)
BOOL_ACCESSORS(FunctionTemplateInfo, flag, hidden_prototype,
kHiddenPrototypeBit)
BOOL_ACCESSORS(FunctionTemplateInfo, flag, undetectable, kUndetectableBit)
BOOL_ACCESSORS(FunctionTemplateInfo, flag, needs_access_check,
kNeedsAccessCheckBit)
BOOL_ACCESSORS(SharedFunctionInfo, start_position_and_type, is_expression,
kIsExpressionBit)
BOOL_ACCESSORS(SharedFunctionInfo, start_position_and_type, is_toplevel,
kIsTopLevelBit)
INT_ACCESSORS(SharedFunctionInfo, length, kLengthOffset)
INT_ACCESSORS(SharedFunctionInfo, formal_parameter_count,
kFormalParameterCountOffset)
INT_ACCESSORS(SharedFunctionInfo, expected_nof_properties,
kExpectedNofPropertiesOffset)
INT_ACCESSORS(SharedFunctionInfo, start_position_and_type,
kStartPositionAndTypeOffset)
INT_ACCESSORS(SharedFunctionInfo, end_position, kEndPositionOffset)
INT_ACCESSORS(SharedFunctionInfo, function_token_position,
kFunctionTokenPositionOffset)
void SharedFunctionInfo::DontAdaptArguments() {
ASSERT(code()->kind() == Code::BUILTIN);
set_formal_parameter_count(kDontAdaptArgumentsSentinel);
}
int SharedFunctionInfo::start_position() {
return start_position_and_type() >> kStartPositionShift;
}
void SharedFunctionInfo::set_start_position(int start_position) {
set_start_position_and_type((start_position << kStartPositionShift)
| (start_position_and_type() & ~kStartPositionMask));
}
Code* SharedFunctionInfo::code() {
return Code::cast(READ_FIELD(this, kCodeOffset));
}
void SharedFunctionInfo::set_code(Code* value, WriteBarrierMode mode) {
WRITE_FIELD(this, kCodeOffset, value);
CONDITIONAL_WRITE_BARRIER(this, kCodeOffset, mode);
}
bool SharedFunctionInfo::is_compiled() {
// TODO(1242782): Create a code kind for uncompiled code.
return code()->kind() != Code::STUB;
}
bool JSFunction::IsBoilerplate() {
return map() == Heap::boilerplate_function_map();
}
bool JSFunction::IsLoaded() {
return shared()->lazy_load_data() == Heap::undefined_value();
}
Code* JSFunction::code() {
return shared()->code();
}
void JSFunction::set_code(Code* value) {
shared()->set_code(value);
}
Context* JSFunction::context() {
return Context::cast(READ_FIELD(this, kContextOffset));
}
Object* JSFunction::unchecked_context() {
return READ_FIELD(this, kContextOffset);
}
void JSFunction::set_context(Object* value) {
ASSERT(value == Heap::undefined_value() || value->IsContext());
WRITE_FIELD(this, kContextOffset, value);
WRITE_BARRIER(this, kContextOffset);
}
ACCESSORS(JSFunction, prototype_or_initial_map, Object,
kPrototypeOrInitialMapOffset)
Map* JSFunction::initial_map() {
return Map::cast(prototype_or_initial_map());
}
void JSFunction::set_initial_map(Map* value) {
set_prototype_or_initial_map(value);
}
bool JSFunction::has_initial_map() {
return prototype_or_initial_map()->IsMap();
}
bool JSFunction::has_instance_prototype() {
return has_initial_map() || !prototype_or_initial_map()->IsTheHole();
}
bool JSFunction::has_prototype() {
return map()->has_non_instance_prototype() || has_instance_prototype();
}
Object* JSFunction::instance_prototype() {
ASSERT(has_instance_prototype());
if (has_initial_map()) return initial_map()->prototype();
// When there is no initial map and the prototype is a JSObject, the
// initial map field is used for the prototype field.
return prototype_or_initial_map();
}
Object* JSFunction::prototype() {
ASSERT(has_prototype());
// If the function's prototype property has been set to a non-JSObject
// value, that value is stored in the constructor field of the map.
if (map()->has_non_instance_prototype()) return map()->constructor();
return instance_prototype();
}
bool JSFunction::is_compiled() {
return shared()->is_compiled();
}
int JSFunction::NumberOfLiterals() {
return literals()->length();
}
Object* JSBuiltinsObject::javascript_builtin(Builtins::JavaScript id) {
ASSERT(0 <= id && id < kJSBuiltinsCount);
return READ_FIELD(this, kJSBuiltinsOffset + (id * kPointerSize));
}
void JSBuiltinsObject::set_javascript_builtin(Builtins::JavaScript id,
Object* value) {
ASSERT(0 <= id && id < kJSBuiltinsCount);
WRITE_FIELD(this, kJSBuiltinsOffset + (id * kPointerSize), value);
WRITE_BARRIER(this, kJSBuiltinsOffset + (id * kPointerSize));
}
Address Proxy::proxy() {
return AddressFrom<Address>(READ_INT_FIELD(this, kProxyOffset));
}
void Proxy::set_proxy(Address value) {
WRITE_INT_FIELD(this, kProxyOffset, OffsetFrom(value));
}
void Proxy::ProxyIterateBody(ObjectVisitor* visitor) {
visitor->VisitExternalReference(
reinterpret_cast<Address *>(FIELD_ADDR(this, kProxyOffset)));
}
ACCESSORS(JSValue, value, Object, kValueOffset)
JSValue* JSValue::cast(Object* obj) {
ASSERT(obj->IsJSValue());
ASSERT(HeapObject::cast(obj)->Size() == JSValue::kSize);
return reinterpret_cast<JSValue*>(obj);
}
INT_ACCESSORS(Code, instruction_size, kInstructionSizeOffset)
INT_ACCESSORS(Code, relocation_size, kRelocationSizeOffset)
INT_ACCESSORS(Code, sinfo_size, kSInfoSizeOffset)
Code::ICTargetState Code::ic_flag() {
return static_cast<ICTargetState>(READ_BYTE_FIELD(this, kICFlagOffset));
}
void Code::set_ic_flag(ICTargetState value) {
WRITE_BYTE_FIELD(this, kICFlagOffset, value);
}
byte* Code::instruction_start() {
return FIELD_ADDR(this, kHeaderSize);
}
int Code::body_size() {
return RoundUp(instruction_size() + relocation_size(), kObjectAlignment);
}
byte* Code::relocation_start() {
return FIELD_ADDR(this, kHeaderSize + instruction_size());
}
byte* Code::entry() {
return instruction_start();
}
bool Code::contains(byte* pc) {
return (instruction_start() <= pc) &&
(pc < instruction_start() + instruction_size());
}
byte* Code::sinfo_start() {
return FIELD_ADDR(this, kHeaderSize + body_size());
}
ACCESSORS(JSArray, length, Object, kLengthOffset)
ACCESSORS(JSRegExp, data, Object, kDataOffset)
JSRegExp::Type JSRegExp::TypeTag() {
Object* data = this->data();
if (data->IsUndefined()) return JSRegExp::NOT_COMPILED;
Smi* smi = Smi::cast(FixedArray::cast(data)->get(kTagIndex));
return static_cast<JSRegExp::Type>(smi->value());
}
int JSRegExp::CaptureCount() {
switch (TypeTag()) {
case ATOM:
return 0;
case IRREGEXP:
return Smi::cast(DataAt(kIrregexpCaptureCountIndex))->value();
default:
UNREACHABLE();
return -1;
}
}
JSRegExp::Flags JSRegExp::GetFlags() {
ASSERT(this->data()->IsFixedArray());
Object* data = this->data();
Smi* smi = Smi::cast(FixedArray::cast(data)->get(kFlagsIndex));
return Flags(smi->value());
}
String* JSRegExp::Pattern() {
ASSERT(this->data()->IsFixedArray());
Object* data = this->data();
String* pattern= String::cast(FixedArray::cast(data)->get(kSourceIndex));
return pattern;
}
Object* JSRegExp::DataAt(int index) {
ASSERT(TypeTag() != NOT_COMPILED);
return FixedArray::cast(data())->get(index);
}
void JSRegExp::SetDataAt(int index, Object* value) {
ASSERT(TypeTag() != NOT_COMPILED);
ASSERT(index >= kDataIndex); // Only implementation data can be set this way.
FixedArray::cast(data())->set(index, value);
}
bool JSObject::HasFastElements() {
return !elements()->IsDictionary();
}
bool JSObject::HasNamedInterceptor() {
return map()->has_named_interceptor();
}
bool JSObject::HasIndexedInterceptor() {
return map()->has_indexed_interceptor();
}
Dictionary* JSObject::property_dictionary() {
ASSERT(!HasFastProperties());
return Dictionary::cast(properties());
}
Dictionary* JSObject::element_dictionary() {
ASSERT(!HasFastElements());
return Dictionary::cast(elements());
}
bool String::HasHashCode() {
return (length_field() & kHashComputedMask) != 0;
}
uint32_t String::Hash() {
// Fast case: has hash code already been computed?
uint32_t field = length_field();
if (field & kHashComputedMask) return field >> kHashShift;
// Slow case: compute hash code and set it.
return ComputeAndSetHash();
}
StringHasher::StringHasher(int length)
: length_(length),
raw_running_hash_(0),
array_index_(0),
is_array_index_(0 < length_ && length_ <= String::kMaxArrayIndexSize),
is_first_char_(true),
is_valid_(true) { }
bool StringHasher::has_trivial_hash() {
return length_ > String::kMaxMediumStringSize;
}
void StringHasher::AddCharacter(uc32 c) {
// Use the Jenkins one-at-a-time hash function to update the hash
// for the given character.
raw_running_hash_ += c;
raw_running_hash_ += (raw_running_hash_ << 10);
raw_running_hash_ ^= (raw_running_hash_ >> 6);
// Incremental array index computation.
if (is_array_index_) {
if (c < '0' || c > '9') {
is_array_index_ = false;
} else {
int d = c - '0';
if (is_first_char_) {
is_first_char_ = false;
if (c == '0' && length_ > 1) {
is_array_index_ = false;
return;
}
}
if (array_index_ > 429496729U - ((d + 2) >> 3)) {
is_array_index_ = false;
} else {
array_index_ = array_index_ * 10 + d;
}
}
}
}
void StringHasher::AddCharacterNoIndex(uc32 c) {
ASSERT(!is_array_index());
raw_running_hash_ += c;
raw_running_hash_ += (raw_running_hash_ << 10);
raw_running_hash_ ^= (raw_running_hash_ >> 6);
}
uint32_t StringHasher::GetHash() {
// Get the calculated raw hash value and do some more bit ops to distribute
// the hash further. Ensure that we never return zero as the hash value.
uint32_t result = raw_running_hash_;
result += (result << 3);
result ^= (result >> 11);
result += (result << 15);
if (result == 0) {
result = 27;
}
return result;
}
bool String::AsArrayIndex(uint32_t* index) {
uint32_t field = length_field();
if ((field & kHashComputedMask) && !(field & kIsArrayIndexMask)) return false;
return SlowAsArrayIndex(index);
}
Object* JSObject::GetPrototype() {
return JSObject::cast(this)->map()->prototype();
}
PropertyAttributes JSObject::GetPropertyAttribute(String* key) {
return GetPropertyAttributeWithReceiver(this, key);
}
bool JSObject::HasElement(uint32_t index) {
return HasElementWithReceiver(this, index);
}
bool AccessorInfo::all_can_read() {
return BooleanBit::get(flag(), kAllCanReadBit);
}
void AccessorInfo::set_all_can_read(bool value) {
set_flag(BooleanBit::set(flag(), kAllCanReadBit, value));
}
bool AccessorInfo::all_can_write() {
return BooleanBit::get(flag(), kAllCanWriteBit);
}
void AccessorInfo::set_all_can_write(bool value) {
set_flag(BooleanBit::set(flag(), kAllCanWriteBit, value));
}
bool AccessorInfo::prohibits_overwriting() {
return BooleanBit::get(flag(), kProhibitsOverwritingBit);
}
void AccessorInfo::set_prohibits_overwriting(bool value) {
set_flag(BooleanBit::set(flag(), kProhibitsOverwritingBit, value));
}
PropertyAttributes AccessorInfo::property_attributes() {
return AttributesField::decode(static_cast<uint32_t>(flag()->value()));
}
void AccessorInfo::set_property_attributes(PropertyAttributes attributes) {
ASSERT(AttributesField::is_valid(attributes));
int rest_value = flag()->value() & ~AttributesField::mask();
set_flag(Smi::FromInt(rest_value | AttributesField::encode(attributes)));
}
void Dictionary::SetEntry(int entry,
Object* key,
Object* value,
PropertyDetails details) {
ASSERT(!key->IsString() || details.index() > 0);
int index = EntryToIndex(entry);
WriteBarrierMode mode = GetWriteBarrierMode();
set(index, key, mode);
set(index+1, value, mode);
fast_set(this, index+2, details.AsSmi());
}
void Map::ClearCodeCache() {
// No write barrier is needed since empty_fixed_array is not in new space.
// Please note this function is used during marking:
// - MarkCompactCollector::MarkUnmarkedObject
ASSERT(!Heap::InNewSpace(Heap::empty_fixed_array()));
WRITE_FIELD(this, kCodeCacheOffset, Heap::empty_fixed_array());
}
void JSArray::SetContent(FixedArray* storage) {
set_length(Smi::FromInt(storage->length()), SKIP_WRITE_BARRIER);
set_elements(storage);
}
Object* FixedArray::Copy() {
if (length() == 0) return this;
return Heap::CopyFixedArray(this);
}
#undef CAST_ACCESSOR
#undef INT_ACCESSORS
#undef SMI_ACCESSORS
#undef ACCESSORS
#undef FIELD_ADDR
#undef READ_FIELD
#undef WRITE_FIELD
#undef WRITE_BARRIER
#undef CONDITIONAL_WRITE_BARRIER
#undef READ_MEMADDR_FIELD
#undef WRITE_MEMADDR_FIELD
#undef READ_DOUBLE_FIELD
#undef WRITE_DOUBLE_FIELD
#undef READ_INT_FIELD
#undef WRITE_INT_FIELD
#undef READ_SHORT_FIELD
#undef WRITE_SHORT_FIELD
#undef READ_BYTE_FIELD
#undef WRITE_BYTE_FIELD
} } // namespace v8::internal
#endif // V8_OBJECTS_INL_H_