v8/src/arm64/lithium-arm64.h
verwaest 16c8485a35 Remove PropertyCell space
Replaces StoreGlobalCell / LoadGlobalCell with NamedField variants that use write barriers.
BUG=

Review URL: https://codereview.chromium.org/1016803002

Cr-Commit-Position: refs/heads/master@{#27269}
2015-03-18 11:43:58 +00:00

3229 lines
90 KiB
C++

// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_ARM64_LITHIUM_ARM64_H_
#define V8_ARM64_LITHIUM_ARM64_H_
#include "src/hydrogen.h"
#include "src/lithium.h"
#include "src/lithium-allocator.h"
#include "src/safepoint-table.h"
#include "src/utils.h"
namespace v8 {
namespace internal {
// Forward declarations.
class LCodeGen;
#define LITHIUM_CONCRETE_INSTRUCTION_LIST(V) \
V(AccessArgumentsAt) \
V(AddE) \
V(AddI) \
V(AddS) \
V(Allocate) \
V(AllocateBlockContext) \
V(ApplyArguments) \
V(ArgumentsElements) \
V(ArgumentsLength) \
V(ArithmeticD) \
V(ArithmeticT) \
V(BitI) \
V(BitS) \
V(BoundsCheck) \
V(Branch) \
V(CallFunction) \
V(CallJSFunction) \
V(CallNew) \
V(CallNewArray) \
V(CallRuntime) \
V(CallStub) \
V(CallWithDescriptor) \
V(CheckInstanceType) \
V(CheckMapValue) \
V(CheckMaps) \
V(CheckNonSmi) \
V(CheckSmi) \
V(CheckValue) \
V(ClampDToUint8) \
V(ClampIToUint8) \
V(ClampTToUint8) \
V(ClassOfTestAndBranch) \
V(CmpHoleAndBranchD) \
V(CmpHoleAndBranchT) \
V(CmpMapAndBranch) \
V(CmpObjectEqAndBranch) \
V(CmpT) \
V(CompareMinusZeroAndBranch) \
V(CompareNumericAndBranch) \
V(ConstantD) \
V(ConstantE) \
V(ConstantI) \
V(ConstantS) \
V(ConstantT) \
V(ConstructDouble) \
V(Context) \
V(DateField) \
V(DebugBreak) \
V(DeclareGlobals) \
V(Deoptimize) \
V(DivByConstI) \
V(DivByPowerOf2I) \
V(DivI) \
V(DoubleBits) \
V(DoubleToIntOrSmi) \
V(Drop) \
V(Dummy) \
V(DummyUse) \
V(FlooringDivByConstI) \
V(FlooringDivByPowerOf2I) \
V(FlooringDivI) \
V(ForInCacheArray) \
V(ForInPrepareMap) \
V(FunctionLiteral) \
V(GetCachedArrayIndex) \
V(Goto) \
V(HasCachedArrayIndexAndBranch) \
V(HasInstanceTypeAndBranch) \
V(InnerAllocatedObject) \
V(InstanceOf) \
V(InstanceOfKnownGlobal) \
V(InstructionGap) \
V(Integer32ToDouble) \
V(InvokeFunction) \
V(IsConstructCallAndBranch) \
V(IsObjectAndBranch) \
V(IsSmiAndBranch) \
V(IsStringAndBranch) \
V(IsUndetectableAndBranch) \
V(Label) \
V(LazyBailout) \
V(LoadContextSlot) \
V(LoadFieldByIndex) \
V(LoadFunctionPrototype) \
V(LoadGlobalGeneric) \
V(LoadKeyedExternal) \
V(LoadKeyedFixed) \
V(LoadKeyedFixedDouble) \
V(LoadKeyedGeneric) \
V(LoadNamedField) \
V(LoadNamedGeneric) \
V(LoadRoot) \
V(MapEnumLength) \
V(MathAbs) \
V(MathAbsTagged) \
V(MathClz32) \
V(MathExp) \
V(MathFloorD) \
V(MathFloorI) \
V(MathFround) \
V(MathLog) \
V(MathMinMax) \
V(MathPowHalf) \
V(MathRoundD) \
V(MathRoundI) \
V(MathSqrt) \
V(ModByConstI) \
V(ModByPowerOf2I) \
V(ModI) \
V(MulConstIS) \
V(MulI) \
V(MulS) \
V(NumberTagD) \
V(NumberTagU) \
V(NumberUntagD) \
V(OsrEntry) \
V(Parameter) \
V(Power) \
V(PreparePushArguments) \
V(PushArguments) \
V(RegExpLiteral) \
V(Return) \
V(SeqStringGetChar) \
V(SeqStringSetChar) \
V(ShiftI) \
V(ShiftS) \
V(SmiTag) \
V(SmiUntag) \
V(StackCheck) \
V(StoreCodeEntry) \
V(StoreContextSlot) \
V(StoreFrameContext) \
V(StoreKeyedExternal) \
V(StoreKeyedFixed) \
V(StoreKeyedFixedDouble) \
V(StoreKeyedGeneric) \
V(StoreNamedField) \
V(StoreNamedGeneric) \
V(StringAdd) \
V(StringCharCodeAt) \
V(StringCharFromCode) \
V(StringCompareAndBranch) \
V(SubI) \
V(SubS) \
V(TaggedToI) \
V(TailCallThroughMegamorphicCache) \
V(ThisFunction) \
V(ToFastProperties) \
V(TransitionElementsKind) \
V(TrapAllocationMemento) \
V(TruncateDoubleToIntOrSmi) \
V(Typeof) \
V(TypeofIsAndBranch) \
V(Uint32ToDouble) \
V(UnknownOSRValue) \
V(WrapReceiver)
#define DECLARE_CONCRETE_INSTRUCTION(type, mnemonic) \
Opcode opcode() const FINAL { return LInstruction::k##type; } \
void CompileToNative(LCodeGen* generator) FINAL; \
const char* Mnemonic() const FINAL { return mnemonic; } \
static L##type* cast(LInstruction* instr) { \
DCHECK(instr->Is##type()); \
return reinterpret_cast<L##type*>(instr); \
}
#define DECLARE_HYDROGEN_ACCESSOR(type) \
H##type* hydrogen() const { \
return H##type::cast(this->hydrogen_value()); \
}
class LInstruction : public ZoneObject {
public:
LInstruction()
: environment_(NULL),
hydrogen_value_(NULL),
bit_field_(IsCallBits::encode(false)) { }
virtual ~LInstruction() { }
virtual void CompileToNative(LCodeGen* generator) = 0;
virtual const char* Mnemonic() const = 0;
virtual void PrintTo(StringStream* stream);
virtual void PrintDataTo(StringStream* stream);
virtual void PrintOutputOperandTo(StringStream* stream);
enum Opcode {
// Declare a unique enum value for each instruction.
#define DECLARE_OPCODE(type) k##type,
LITHIUM_CONCRETE_INSTRUCTION_LIST(DECLARE_OPCODE)
kNumberOfInstructions
#undef DECLARE_OPCODE
};
virtual Opcode opcode() const = 0;
// Declare non-virtual type testers for all leaf IR classes.
#define DECLARE_PREDICATE(type) \
bool Is##type() const { return opcode() == k##type; }
LITHIUM_CONCRETE_INSTRUCTION_LIST(DECLARE_PREDICATE)
#undef DECLARE_PREDICATE
// Declare virtual predicates for instructions that don't have
// an opcode.
virtual bool IsGap() const { return false; }
virtual bool IsControl() const { return false; }
// Try deleting this instruction if possible.
virtual bool TryDelete() { return false; }
void set_environment(LEnvironment* env) { environment_ = env; }
LEnvironment* environment() const { return environment_; }
bool HasEnvironment() const { return environment_ != NULL; }
void set_pointer_map(LPointerMap* p) { pointer_map_.set(p); }
LPointerMap* pointer_map() const { return pointer_map_.get(); }
bool HasPointerMap() const { return pointer_map_.is_set(); }
void set_hydrogen_value(HValue* value) { hydrogen_value_ = value; }
HValue* hydrogen_value() const { return hydrogen_value_; }
virtual void SetDeferredLazyDeoptimizationEnvironment(LEnvironment* env) { }
void MarkAsCall() { bit_field_ = IsCallBits::update(bit_field_, true); }
bool IsCall() const { return IsCallBits::decode(bit_field_); }
// Interface to the register allocator and iterators.
bool ClobbersTemps() const { return IsCall(); }
bool ClobbersRegisters() const { return IsCall(); }
virtual bool ClobbersDoubleRegisters(Isolate* isolate) const {
return IsCall();
}
bool IsMarkedAsCall() const { return IsCall(); }
virtual bool HasResult() const = 0;
virtual LOperand* result() const = 0;
virtual int InputCount() = 0;
virtual LOperand* InputAt(int i) = 0;
virtual int TempCount() = 0;
virtual LOperand* TempAt(int i) = 0;
LOperand* FirstInput() { return InputAt(0); }
LOperand* Output() { return HasResult() ? result() : NULL; }
virtual bool HasInterestingComment(LCodeGen* gen) const { return true; }
#ifdef DEBUG
void VerifyCall();
#endif
private:
class IsCallBits: public BitField<bool, 0, 1> {};
LEnvironment* environment_;
SetOncePointer<LPointerMap> pointer_map_;
HValue* hydrogen_value_;
int32_t bit_field_;
};
// R = number of result operands (0 or 1).
template<int R>
class LTemplateResultInstruction : public LInstruction {
public:
// Allow 0 or 1 output operands.
STATIC_ASSERT(R == 0 || R == 1);
bool HasResult() const FINAL { return (R != 0) && (result() != NULL); }
void set_result(LOperand* operand) { results_[0] = operand; }
LOperand* result() const OVERRIDE { return results_[0]; }
protected:
EmbeddedContainer<LOperand*, R> results_;
};
// R = number of result operands (0 or 1).
// I = number of input operands.
// T = number of temporary operands.
template<int R, int I, int T>
class LTemplateInstruction : public LTemplateResultInstruction<R> {
protected:
EmbeddedContainer<LOperand*, I> inputs_;
EmbeddedContainer<LOperand*, T> temps_;
private:
// Iterator support.
int InputCount() FINAL { return I; }
LOperand* InputAt(int i) FINAL { return inputs_[i]; }
int TempCount() FINAL { return T; }
LOperand* TempAt(int i) FINAL { return temps_[i]; }
};
class LTailCallThroughMegamorphicCache FINAL
: public LTemplateInstruction<0, 5, 0> {
public:
LTailCallThroughMegamorphicCache(LOperand* context, LOperand* receiver,
LOperand* name, LOperand* slot,
LOperand* vector) {
inputs_[0] = context;
inputs_[1] = receiver;
inputs_[2] = name;
inputs_[3] = slot;
inputs_[4] = vector;
}
LOperand* context() { return inputs_[0]; }
LOperand* receiver() { return inputs_[1]; }
LOperand* name() { return inputs_[2]; }
LOperand* slot() { return inputs_[3]; }
LOperand* vector() { return inputs_[4]; }
DECLARE_CONCRETE_INSTRUCTION(TailCallThroughMegamorphicCache,
"tail-call-through-megamorphic-cache")
DECLARE_HYDROGEN_ACCESSOR(TailCallThroughMegamorphicCache)
};
class LUnknownOSRValue FINAL : public LTemplateInstruction<1, 0, 0> {
public:
bool HasInterestingComment(LCodeGen* gen) const OVERRIDE { return false; }
DECLARE_CONCRETE_INSTRUCTION(UnknownOSRValue, "unknown-osr-value")
};
template<int I, int T>
class LControlInstruction : public LTemplateInstruction<0, I, T> {
public:
LControlInstruction() : false_label_(NULL), true_label_(NULL) { }
bool IsControl() const FINAL { return true; }
int SuccessorCount() { return hydrogen()->SuccessorCount(); }
HBasicBlock* SuccessorAt(int i) { return hydrogen()->SuccessorAt(i); }
int TrueDestination(LChunk* chunk) {
return chunk->LookupDestination(true_block_id());
}
int FalseDestination(LChunk* chunk) {
return chunk->LookupDestination(false_block_id());
}
Label* TrueLabel(LChunk* chunk) {
if (true_label_ == NULL) {
true_label_ = chunk->GetAssemblyLabel(TrueDestination(chunk));
}
return true_label_;
}
Label* FalseLabel(LChunk* chunk) {
if (false_label_ == NULL) {
false_label_ = chunk->GetAssemblyLabel(FalseDestination(chunk));
}
return false_label_;
}
protected:
int true_block_id() { return SuccessorAt(0)->block_id(); }
int false_block_id() { return SuccessorAt(1)->block_id(); }
private:
DECLARE_HYDROGEN_ACCESSOR(ControlInstruction);
Label* false_label_;
Label* true_label_;
};
class LGap : public LTemplateInstruction<0, 0, 0> {
public:
explicit LGap(HBasicBlock* block)
: block_(block) {
parallel_moves_[BEFORE] = NULL;
parallel_moves_[START] = NULL;
parallel_moves_[END] = NULL;
parallel_moves_[AFTER] = NULL;
}
// Can't use the DECLARE-macro here because of sub-classes.
bool IsGap() const OVERRIDE { return true; }
void PrintDataTo(StringStream* stream) OVERRIDE;
static LGap* cast(LInstruction* instr) {
DCHECK(instr->IsGap());
return reinterpret_cast<LGap*>(instr);
}
bool IsRedundant() const;
HBasicBlock* block() const { return block_; }
enum InnerPosition {
BEFORE,
START,
END,
AFTER,
FIRST_INNER_POSITION = BEFORE,
LAST_INNER_POSITION = AFTER
};
LParallelMove* GetOrCreateParallelMove(InnerPosition pos, Zone* zone) {
if (parallel_moves_[pos] == NULL) {
parallel_moves_[pos] = new(zone) LParallelMove(zone);
}
return parallel_moves_[pos];
}
LParallelMove* GetParallelMove(InnerPosition pos) {
return parallel_moves_[pos];
}
private:
LParallelMove* parallel_moves_[LAST_INNER_POSITION + 1];
HBasicBlock* block_;
};
class LInstructionGap FINAL : public LGap {
public:
explicit LInstructionGap(HBasicBlock* block) : LGap(block) { }
bool HasInterestingComment(LCodeGen* gen) const OVERRIDE {
return !IsRedundant();
}
DECLARE_CONCRETE_INSTRUCTION(InstructionGap, "gap")
};
class LDrop FINAL : public LTemplateInstruction<0, 0, 0> {
public:
explicit LDrop(int count) : count_(count) { }
int count() const { return count_; }
DECLARE_CONCRETE_INSTRUCTION(Drop, "drop")
private:
int count_;
};
class LDummy FINAL : public LTemplateInstruction<1, 0, 0> {
public:
LDummy() {}
DECLARE_CONCRETE_INSTRUCTION(Dummy, "dummy")
};
class LDummyUse FINAL : public LTemplateInstruction<1, 1, 0> {
public:
explicit LDummyUse(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(DummyUse, "dummy-use")
};
class LGoto FINAL : public LTemplateInstruction<0, 0, 0> {
public:
explicit LGoto(HBasicBlock* block) : block_(block) { }
bool HasInterestingComment(LCodeGen* gen) const OVERRIDE;
DECLARE_CONCRETE_INSTRUCTION(Goto, "goto")
void PrintDataTo(StringStream* stream) OVERRIDE;
bool IsControl() const OVERRIDE { return true; }
int block_id() const { return block_->block_id(); }
private:
HBasicBlock* block_;
};
class LLazyBailout FINAL : public LTemplateInstruction<0, 0, 0> {
public:
LLazyBailout() : gap_instructions_size_(0) { }
DECLARE_CONCRETE_INSTRUCTION(LazyBailout, "lazy-bailout")
void set_gap_instructions_size(int gap_instructions_size) {
gap_instructions_size_ = gap_instructions_size;
}
int gap_instructions_size() { return gap_instructions_size_; }
private:
int gap_instructions_size_;
};
class LLabel FINAL : public LGap {
public:
explicit LLabel(HBasicBlock* block)
: LGap(block), replacement_(NULL) { }
bool HasInterestingComment(LCodeGen* gen) const OVERRIDE { return false; }
DECLARE_CONCRETE_INSTRUCTION(Label, "label")
void PrintDataTo(StringStream* stream) OVERRIDE;
int block_id() const { return block()->block_id(); }
bool is_loop_header() const { return block()->IsLoopHeader(); }
bool is_osr_entry() const { return block()->is_osr_entry(); }
Label* label() { return &label_; }
LLabel* replacement() const { return replacement_; }
void set_replacement(LLabel* label) { replacement_ = label; }
bool HasReplacement() const { return replacement_ != NULL; }
private:
Label label_;
LLabel* replacement_;
};
class LOsrEntry FINAL : public LTemplateInstruction<0, 0, 0> {
public:
LOsrEntry() {}
bool HasInterestingComment(LCodeGen* gen) const OVERRIDE { return false; }
DECLARE_CONCRETE_INSTRUCTION(OsrEntry, "osr-entry")
};
class LAccessArgumentsAt FINAL : public LTemplateInstruction<1, 3, 0> {
public:
LAccessArgumentsAt(LOperand* arguments,
LOperand* length,
LOperand* index) {
inputs_[0] = arguments;
inputs_[1] = length;
inputs_[2] = index;
}
DECLARE_CONCRETE_INSTRUCTION(AccessArgumentsAt, "access-arguments-at")
LOperand* arguments() { return inputs_[0]; }
LOperand* length() { return inputs_[1]; }
LOperand* index() { return inputs_[2]; }
void PrintDataTo(StringStream* stream) OVERRIDE;
};
class LAddE FINAL : public LTemplateInstruction<1, 2, 0> {
public:
LAddE(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
LOperand* left() { return inputs_[0]; }
LOperand* right() { return inputs_[1]; }
DECLARE_CONCRETE_INSTRUCTION(AddE, "add-e")
DECLARE_HYDROGEN_ACCESSOR(Add)
};
class LAddI FINAL : public LTemplateInstruction<1, 2, 0> {
public:
LAddI(LOperand* left, LOperand* right)
: shift_(NO_SHIFT), shift_amount_(0) {
inputs_[0] = left;
inputs_[1] = right;
}
LAddI(LOperand* left, LOperand* right, Shift shift, LOperand* shift_amount)
: shift_(shift), shift_amount_(shift_amount) {
inputs_[0] = left;
inputs_[1] = right;
}
LOperand* left() { return inputs_[0]; }
LOperand* right() { return inputs_[1]; }
Shift shift() const { return shift_; }
LOperand* shift_amount() const { return shift_amount_; }
DECLARE_CONCRETE_INSTRUCTION(AddI, "add-i")
DECLARE_HYDROGEN_ACCESSOR(Add)
protected:
Shift shift_;
LOperand* shift_amount_;
};
class LAddS FINAL : public LTemplateInstruction<1, 2, 0> {
public:
LAddS(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
LOperand* left() { return inputs_[0]; }
LOperand* right() { return inputs_[1]; }
DECLARE_CONCRETE_INSTRUCTION(AddS, "add-s")
DECLARE_HYDROGEN_ACCESSOR(Add)
};
class LAllocate FINAL : public LTemplateInstruction<1, 2, 3> {
public:
LAllocate(LOperand* context,
LOperand* size,
LOperand* temp1,
LOperand* temp2,
LOperand* temp3) {
inputs_[0] = context;
inputs_[1] = size;
temps_[0] = temp1;
temps_[1] = temp2;
temps_[2] = temp3;
}
LOperand* context() { return inputs_[0]; }
LOperand* size() { return inputs_[1]; }
LOperand* temp1() { return temps_[0]; }
LOperand* temp2() { return temps_[1]; }
LOperand* temp3() { return temps_[2]; }
DECLARE_CONCRETE_INSTRUCTION(Allocate, "allocate")
DECLARE_HYDROGEN_ACCESSOR(Allocate)
};
class LApplyArguments FINAL : public LTemplateInstruction<1, 4, 0> {
public:
LApplyArguments(LOperand* function,
LOperand* receiver,
LOperand* length,
LOperand* elements) {
inputs_[0] = function;
inputs_[1] = receiver;
inputs_[2] = length;
inputs_[3] = elements;
}
DECLARE_CONCRETE_INSTRUCTION(ApplyArguments, "apply-arguments")
LOperand* function() { return inputs_[0]; }
LOperand* receiver() { return inputs_[1]; }
LOperand* length() { return inputs_[2]; }
LOperand* elements() { return inputs_[3]; }
};
class LArgumentsElements FINAL : public LTemplateInstruction<1, 0, 1> {
public:
explicit LArgumentsElements(LOperand* temp) {
temps_[0] = temp;
}
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(ArgumentsElements, "arguments-elements")
DECLARE_HYDROGEN_ACCESSOR(ArgumentsElements)
};
class LArgumentsLength FINAL : public LTemplateInstruction<1, 1, 0> {
public:
explicit LArgumentsLength(LOperand* elements) {
inputs_[0] = elements;
}
LOperand* elements() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(ArgumentsLength, "arguments-length")
};
class LArithmeticD FINAL : public LTemplateInstruction<1, 2, 0> {
public:
LArithmeticD(Token::Value op,
LOperand* left,
LOperand* right)
: op_(op) {
inputs_[0] = left;
inputs_[1] = right;
}
Token::Value op() const { return op_; }
LOperand* left() { return inputs_[0]; }
LOperand* right() { return inputs_[1]; }
Opcode opcode() const OVERRIDE { return LInstruction::kArithmeticD; }
void CompileToNative(LCodeGen* generator) OVERRIDE;
const char* Mnemonic() const OVERRIDE;
private:
Token::Value op_;
};
class LArithmeticT FINAL : public LTemplateInstruction<1, 3, 0> {
public:
LArithmeticT(Token::Value op,
LOperand* context,
LOperand* left,
LOperand* right)
: op_(op) {
inputs_[0] = context;
inputs_[1] = left;
inputs_[2] = right;
}
LOperand* context() { return inputs_[0]; }
LOperand* left() { return inputs_[1]; }
LOperand* right() { return inputs_[2]; }
Token::Value op() const { return op_; }
Opcode opcode() const OVERRIDE { return LInstruction::kArithmeticT; }
void CompileToNative(LCodeGen* generator) OVERRIDE;
const char* Mnemonic() const OVERRIDE;
private:
Token::Value op_;
};
class LBoundsCheck FINAL : public LTemplateInstruction<0, 2, 0> {
public:
explicit LBoundsCheck(LOperand* index, LOperand* length) {
inputs_[0] = index;
inputs_[1] = length;
}
LOperand* index() { return inputs_[0]; }
LOperand* length() { return inputs_[1]; }
DECLARE_CONCRETE_INSTRUCTION(BoundsCheck, "bounds-check")
DECLARE_HYDROGEN_ACCESSOR(BoundsCheck)
};
class LBitI FINAL : public LTemplateInstruction<1, 2, 0> {
public:
LBitI(LOperand* left, LOperand* right)
: shift_(NO_SHIFT), shift_amount_(0) {
inputs_[0] = left;
inputs_[1] = right;
}
LBitI(LOperand* left, LOperand* right, Shift shift, LOperand* shift_amount)
: shift_(shift), shift_amount_(shift_amount) {
inputs_[0] = left;
inputs_[1] = right;
}
LOperand* left() { return inputs_[0]; }
LOperand* right() { return inputs_[1]; }
Shift shift() const { return shift_; }
LOperand* shift_amount() const { return shift_amount_; }
Token::Value op() const { return hydrogen()->op(); }
DECLARE_CONCRETE_INSTRUCTION(BitI, "bit-i")
DECLARE_HYDROGEN_ACCESSOR(Bitwise)
protected:
Shift shift_;
LOperand* shift_amount_;
};
class LBitS FINAL : public LTemplateInstruction<1, 2, 0> {
public:
LBitS(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
LOperand* left() { return inputs_[0]; }
LOperand* right() { return inputs_[1]; }
Token::Value op() const { return hydrogen()->op(); }
DECLARE_CONCRETE_INSTRUCTION(BitS, "bit-s")
DECLARE_HYDROGEN_ACCESSOR(Bitwise)
};
class LBranch FINAL : public LControlInstruction<1, 2> {
public:
explicit LBranch(LOperand* value, LOperand *temp1, LOperand *temp2) {
inputs_[0] = value;
temps_[0] = temp1;
temps_[1] = temp2;
}
LOperand* value() { return inputs_[0]; }
LOperand* temp1() { return temps_[0]; }
LOperand* temp2() { return temps_[1]; }
DECLARE_CONCRETE_INSTRUCTION(Branch, "branch")
DECLARE_HYDROGEN_ACCESSOR(Branch)
void PrintDataTo(StringStream* stream) OVERRIDE;
};
class LCallJSFunction FINAL : public LTemplateInstruction<1, 1, 0> {
public:
explicit LCallJSFunction(LOperand* function) {
inputs_[0] = function;
}
LOperand* function() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(CallJSFunction, "call-js-function")
DECLARE_HYDROGEN_ACCESSOR(CallJSFunction)
void PrintDataTo(StringStream* stream) OVERRIDE;
int arity() const { return hydrogen()->argument_count() - 1; }
};
class LCallFunction FINAL : public LTemplateInstruction<1, 2, 2> {
public:
LCallFunction(LOperand* context, LOperand* function, LOperand* slot,
LOperand* vector) {
inputs_[0] = context;
inputs_[1] = function;
temps_[0] = slot;
temps_[1] = vector;
}
LOperand* context() { return inputs_[0]; }
LOperand* function() { return inputs_[1]; }
LOperand* temp_slot() { return temps_[0]; }
LOperand* temp_vector() { return temps_[1]; }
DECLARE_CONCRETE_INSTRUCTION(CallFunction, "call-function")
DECLARE_HYDROGEN_ACCESSOR(CallFunction)
int arity() const { return hydrogen()->argument_count() - 1; }
void PrintDataTo(StringStream* stream) OVERRIDE;
};
class LCallNew FINAL : public LTemplateInstruction<1, 2, 0> {
public:
LCallNew(LOperand* context, LOperand* constructor) {
inputs_[0] = context;
inputs_[1] = constructor;
}
LOperand* context() { return inputs_[0]; }
LOperand* constructor() { return inputs_[1]; }
DECLARE_CONCRETE_INSTRUCTION(CallNew, "call-new")
DECLARE_HYDROGEN_ACCESSOR(CallNew)
void PrintDataTo(StringStream* stream) OVERRIDE;
int arity() const { return hydrogen()->argument_count() - 1; }
};
class LCallNewArray FINAL : public LTemplateInstruction<1, 2, 0> {
public:
LCallNewArray(LOperand* context, LOperand* constructor) {
inputs_[0] = context;
inputs_[1] = constructor;
}
LOperand* context() { return inputs_[0]; }
LOperand* constructor() { return inputs_[1]; }
DECLARE_CONCRETE_INSTRUCTION(CallNewArray, "call-new-array")
DECLARE_HYDROGEN_ACCESSOR(CallNewArray)
void PrintDataTo(StringStream* stream) OVERRIDE;
int arity() const { return hydrogen()->argument_count() - 1; }
};
class LCallRuntime FINAL : public LTemplateInstruction<1, 1, 0> {
public:
explicit LCallRuntime(LOperand* context) {
inputs_[0] = context;
}
LOperand* context() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(CallRuntime, "call-runtime")
DECLARE_HYDROGEN_ACCESSOR(CallRuntime)
bool ClobbersDoubleRegisters(Isolate* isolate) const OVERRIDE {
return save_doubles() == kDontSaveFPRegs;
}
const Runtime::Function* function() const { return hydrogen()->function(); }
int arity() const { return hydrogen()->argument_count(); }
SaveFPRegsMode save_doubles() const { return hydrogen()->save_doubles(); }
};
class LCallStub FINAL : public LTemplateInstruction<1, 1, 0> {
public:
explicit LCallStub(LOperand* context) {
inputs_[0] = context;
}
LOperand* context() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(CallStub, "call-stub")
DECLARE_HYDROGEN_ACCESSOR(CallStub)
};
class LCheckInstanceType FINAL : public LTemplateInstruction<0, 1, 1> {
public:
explicit LCheckInstanceType(LOperand* value, LOperand* temp) {
inputs_[0] = value;
temps_[0] = temp;
}
LOperand* value() { return inputs_[0]; }
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(CheckInstanceType, "check-instance-type")
DECLARE_HYDROGEN_ACCESSOR(CheckInstanceType)
};
class LCheckMaps FINAL : public LTemplateInstruction<0, 1, 1> {
public:
explicit LCheckMaps(LOperand* value = NULL, LOperand* temp = NULL) {
inputs_[0] = value;
temps_[0] = temp;
}
LOperand* value() { return inputs_[0]; }
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(CheckMaps, "check-maps")
DECLARE_HYDROGEN_ACCESSOR(CheckMaps)
};
class LCheckNonSmi FINAL : public LTemplateInstruction<0, 1, 0> {
public:
explicit LCheckNonSmi(LOperand* value) {
inputs_[0] = value;
}
LOperand* value() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(CheckNonSmi, "check-non-smi")
DECLARE_HYDROGEN_ACCESSOR(CheckHeapObject)
};
class LCheckSmi FINAL : public LTemplateInstruction<1, 1, 0> {
public:
explicit LCheckSmi(LOperand* value) {
inputs_[0] = value;
}
LOperand* value() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(CheckSmi, "check-smi")
};
class LCheckValue FINAL : public LTemplateInstruction<0, 1, 0> {
public:
explicit LCheckValue(LOperand* value) {
inputs_[0] = value;
}
LOperand* value() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(CheckValue, "check-value")
DECLARE_HYDROGEN_ACCESSOR(CheckValue)
};
class LClampDToUint8 FINAL : public LTemplateInstruction<1, 1, 0> {
public:
explicit LClampDToUint8(LOperand* unclamped) {
inputs_[0] = unclamped;
}
LOperand* unclamped() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(ClampDToUint8, "clamp-d-to-uint8")
};
class LClampIToUint8 FINAL : public LTemplateInstruction<1, 1, 0> {
public:
explicit LClampIToUint8(LOperand* unclamped) {
inputs_[0] = unclamped;
}
LOperand* unclamped() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(ClampIToUint8, "clamp-i-to-uint8")
};
class LClampTToUint8 FINAL : public LTemplateInstruction<1, 1, 1> {
public:
LClampTToUint8(LOperand* unclamped, LOperand* temp1) {
inputs_[0] = unclamped;
temps_[0] = temp1;
}
LOperand* unclamped() { return inputs_[0]; }
LOperand* temp1() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(ClampTToUint8, "clamp-t-to-uint8")
};
class LDoubleBits FINAL : public LTemplateInstruction<1, 1, 0> {
public:
explicit LDoubleBits(LOperand* value) {
inputs_[0] = value;
}
LOperand* value() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(DoubleBits, "double-bits")
DECLARE_HYDROGEN_ACCESSOR(DoubleBits)
};
class LConstructDouble FINAL : public LTemplateInstruction<1, 2, 0> {
public:
LConstructDouble(LOperand* hi, LOperand* lo) {
inputs_[0] = hi;
inputs_[1] = lo;
}
LOperand* hi() { return inputs_[0]; }
LOperand* lo() { return inputs_[1]; }
DECLARE_CONCRETE_INSTRUCTION(ConstructDouble, "construct-double")
};
class LClassOfTestAndBranch FINAL : public LControlInstruction<1, 2> {
public:
LClassOfTestAndBranch(LOperand* value, LOperand* temp1, LOperand* temp2) {
inputs_[0] = value;
temps_[0] = temp1;
temps_[1] = temp2;
}
LOperand* value() { return inputs_[0]; }
LOperand* temp1() { return temps_[0]; }
LOperand* temp2() { return temps_[1]; }
DECLARE_CONCRETE_INSTRUCTION(ClassOfTestAndBranch,
"class-of-test-and-branch")
DECLARE_HYDROGEN_ACCESSOR(ClassOfTestAndBranch)
void PrintDataTo(StringStream* stream) OVERRIDE;
};
class LCmpHoleAndBranchD FINAL : public LControlInstruction<1, 1> {
public:
explicit LCmpHoleAndBranchD(LOperand* object, LOperand* temp) {
inputs_[0] = object;
temps_[0] = temp;
}
LOperand* object() { return inputs_[0]; }
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(CmpHoleAndBranchD, "cmp-hole-and-branch-d")
DECLARE_HYDROGEN_ACCESSOR(CompareHoleAndBranch)
};
class LCmpHoleAndBranchT FINAL : public LControlInstruction<1, 0> {
public:
explicit LCmpHoleAndBranchT(LOperand* object) {
inputs_[0] = object;
}
LOperand* object() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(CmpHoleAndBranchT, "cmp-hole-and-branch-t")
DECLARE_HYDROGEN_ACCESSOR(CompareHoleAndBranch)
};
class LCmpMapAndBranch FINAL : public LControlInstruction<1, 1> {
public:
LCmpMapAndBranch(LOperand* value, LOperand* temp) {
inputs_[0] = value;
temps_[0] = temp;
}
LOperand* value() { return inputs_[0]; }
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(CmpMapAndBranch, "cmp-map-and-branch")
DECLARE_HYDROGEN_ACCESSOR(CompareMap)
Handle<Map> map() const { return hydrogen()->map().handle(); }
};
class LCmpObjectEqAndBranch FINAL : public LControlInstruction<2, 0> {
public:
LCmpObjectEqAndBranch(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
LOperand* left() { return inputs_[0]; }
LOperand* right() { return inputs_[1]; }
DECLARE_CONCRETE_INSTRUCTION(CmpObjectEqAndBranch, "cmp-object-eq-and-branch")
DECLARE_HYDROGEN_ACCESSOR(CompareObjectEqAndBranch)
};
class LCmpT FINAL : public LTemplateInstruction<1, 3, 0> {
public:
LCmpT(LOperand* context, LOperand* left, LOperand* right) {
inputs_[0] = context;
inputs_[1] = left;
inputs_[2] = right;
}
LOperand* context() { return inputs_[0]; }
LOperand* left() { return inputs_[1]; }
LOperand* right() { return inputs_[2]; }
DECLARE_CONCRETE_INSTRUCTION(CmpT, "cmp-t")
DECLARE_HYDROGEN_ACCESSOR(CompareGeneric)
Token::Value op() const { return hydrogen()->token(); }
};
class LCompareMinusZeroAndBranch FINAL : public LControlInstruction<1, 1> {
public:
LCompareMinusZeroAndBranch(LOperand* value, LOperand* temp) {
inputs_[0] = value;
temps_[0] = temp;
}
LOperand* value() { return inputs_[0]; }
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(CompareMinusZeroAndBranch,
"cmp-minus-zero-and-branch")
DECLARE_HYDROGEN_ACCESSOR(CompareMinusZeroAndBranch)
};
class LCompareNumericAndBranch FINAL : public LControlInstruction<2, 0> {
public:
LCompareNumericAndBranch(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
LOperand* left() { return inputs_[0]; }
LOperand* right() { return inputs_[1]; }
DECLARE_CONCRETE_INSTRUCTION(CompareNumericAndBranch,
"compare-numeric-and-branch")
DECLARE_HYDROGEN_ACCESSOR(CompareNumericAndBranch)
Token::Value op() const { return hydrogen()->token(); }
bool is_double() const {
return hydrogen()->representation().IsDouble();
}
void PrintDataTo(StringStream* stream) OVERRIDE;
};
class LConstantD FINAL : public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(ConstantD, "constant-d")
DECLARE_HYDROGEN_ACCESSOR(Constant)
double value() const { return hydrogen()->DoubleValue(); }
};
class LConstantE FINAL : public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(ConstantE, "constant-e")
DECLARE_HYDROGEN_ACCESSOR(Constant)
ExternalReference value() const {
return hydrogen()->ExternalReferenceValue();
}
};
class LConstantI FINAL : public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(ConstantI, "constant-i")
DECLARE_HYDROGEN_ACCESSOR(Constant)
int32_t value() const { return hydrogen()->Integer32Value(); }
};
class LConstantS FINAL : public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(ConstantS, "constant-s")
DECLARE_HYDROGEN_ACCESSOR(Constant)
Smi* value() const { return Smi::FromInt(hydrogen()->Integer32Value()); }
};
class LConstantT FINAL : public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(ConstantT, "constant-t")
DECLARE_HYDROGEN_ACCESSOR(Constant)
Handle<Object> value(Isolate* isolate) const {
return hydrogen()->handle(isolate);
}
};
class LContext FINAL : public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(Context, "context")
DECLARE_HYDROGEN_ACCESSOR(Context)
};
class LDateField FINAL : public LTemplateInstruction<1, 1, 0> {
public:
LDateField(LOperand* date, Smi* index) : index_(index) {
inputs_[0] = date;
}
LOperand* date() { return inputs_[0]; }
Smi* index() const { return index_; }
DECLARE_CONCRETE_INSTRUCTION(DateField, "date-field")
DECLARE_HYDROGEN_ACCESSOR(DateField)
private:
Smi* index_;
};
class LDebugBreak FINAL : public LTemplateInstruction<0, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(DebugBreak, "break")
};
class LDeclareGlobals FINAL : public LTemplateInstruction<0, 1, 0> {
public:
explicit LDeclareGlobals(LOperand* context) {
inputs_[0] = context;
}
LOperand* context() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(DeclareGlobals, "declare-globals")
DECLARE_HYDROGEN_ACCESSOR(DeclareGlobals)
};
class LDeoptimize FINAL : public LTemplateInstruction<0, 0, 0> {
public:
bool IsControl() const OVERRIDE { return true; }
DECLARE_CONCRETE_INSTRUCTION(Deoptimize, "deoptimize")
DECLARE_HYDROGEN_ACCESSOR(Deoptimize)
};
class LDivByPowerOf2I FINAL : public LTemplateInstruction<1, 1, 0> {
public:
LDivByPowerOf2I(LOperand* dividend, int32_t divisor) {
inputs_[0] = dividend;
divisor_ = divisor;
}
LOperand* dividend() { return inputs_[0]; }
int32_t divisor() const { return divisor_; }
DECLARE_CONCRETE_INSTRUCTION(DivByPowerOf2I, "div-by-power-of-2-i")
DECLARE_HYDROGEN_ACCESSOR(Div)
private:
int32_t divisor_;
};
class LDivByConstI FINAL : public LTemplateInstruction<1, 1, 1> {
public:
LDivByConstI(LOperand* dividend, int32_t divisor, LOperand* temp) {
inputs_[0] = dividend;
divisor_ = divisor;
temps_[0] = temp;
}
LOperand* dividend() { return inputs_[0]; }
int32_t divisor() const { return divisor_; }
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(DivByConstI, "div-by-const-i")
DECLARE_HYDROGEN_ACCESSOR(Div)
private:
int32_t divisor_;
};
class LDivI FINAL : public LTemplateInstruction<1, 2, 1> {
public:
LDivI(LOperand* dividend, LOperand* divisor, LOperand* temp) {
inputs_[0] = dividend;
inputs_[1] = divisor;
temps_[0] = temp;
}
LOperand* dividend() { return inputs_[0]; }
LOperand* divisor() { return inputs_[1]; }
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(DivI, "div-i")
DECLARE_HYDROGEN_ACCESSOR(BinaryOperation)
};
class LDoubleToIntOrSmi FINAL : public LTemplateInstruction<1, 1, 0> {
public:
explicit LDoubleToIntOrSmi(LOperand* value) {
inputs_[0] = value;
}
LOperand* value() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(DoubleToIntOrSmi, "double-to-int-or-smi")
DECLARE_HYDROGEN_ACCESSOR(UnaryOperation)
bool tag_result() { return hydrogen()->representation().IsSmi(); }
};
class LForInCacheArray FINAL : public LTemplateInstruction<1, 1, 0> {
public:
explicit LForInCacheArray(LOperand* map) {
inputs_[0] = map;
}
LOperand* map() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(ForInCacheArray, "for-in-cache-array")
int idx() {
return HForInCacheArray::cast(this->hydrogen_value())->idx();
}
};
class LForInPrepareMap FINAL : public LTemplateInstruction<1, 2, 0> {
public:
LForInPrepareMap(LOperand* context, LOperand* object) {
inputs_[0] = context;
inputs_[1] = object;
}
LOperand* context() { return inputs_[0]; }
LOperand* object() { return inputs_[1]; }
DECLARE_CONCRETE_INSTRUCTION(ForInPrepareMap, "for-in-prepare-map")
};
class LGetCachedArrayIndex FINAL : public LTemplateInstruction<1, 1, 0> {
public:
explicit LGetCachedArrayIndex(LOperand* value) {
inputs_[0] = value;
}
LOperand* value() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(GetCachedArrayIndex, "get-cached-array-index")
DECLARE_HYDROGEN_ACCESSOR(GetCachedArrayIndex)
};
class LHasCachedArrayIndexAndBranch FINAL
: public LControlInstruction<1, 1> {
public:
LHasCachedArrayIndexAndBranch(LOperand* value, LOperand* temp) {
inputs_[0] = value;
temps_[0] = temp;
}
LOperand* value() { return inputs_[0]; }
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(HasCachedArrayIndexAndBranch,
"has-cached-array-index-and-branch")
DECLARE_HYDROGEN_ACCESSOR(HasCachedArrayIndexAndBranch)
void PrintDataTo(StringStream* stream) OVERRIDE;
};
class LHasInstanceTypeAndBranch FINAL : public LControlInstruction<1, 1> {
public:
LHasInstanceTypeAndBranch(LOperand* value, LOperand* temp) {
inputs_[0] = value;
temps_[0] = temp;
}
LOperand* value() { return inputs_[0]; }
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(HasInstanceTypeAndBranch,
"has-instance-type-and-branch")
DECLARE_HYDROGEN_ACCESSOR(HasInstanceTypeAndBranch)
void PrintDataTo(StringStream* stream) OVERRIDE;
};
class LInnerAllocatedObject FINAL : public LTemplateInstruction<1, 2, 0> {
public:
LInnerAllocatedObject(LOperand* base_object, LOperand* offset) {
inputs_[0] = base_object;
inputs_[1] = offset;
}
LOperand* base_object() const { return inputs_[0]; }
LOperand* offset() const { return inputs_[1]; }
void PrintDataTo(StringStream* stream) OVERRIDE;
DECLARE_CONCRETE_INSTRUCTION(InnerAllocatedObject, "inner-allocated-object")
};
class LInstanceOf FINAL : public LTemplateInstruction<1, 3, 0> {
public:
LInstanceOf(LOperand* context, LOperand* left, LOperand* right) {
inputs_[0] = context;
inputs_[1] = left;
inputs_[2] = right;
}
LOperand* context() { return inputs_[0]; }
LOperand* left() { return inputs_[1]; }
LOperand* right() { return inputs_[2]; }
DECLARE_CONCRETE_INSTRUCTION(InstanceOf, "instance-of")
};
class LInstanceOfKnownGlobal FINAL : public LTemplateInstruction<1, 2, 0> {
public:
LInstanceOfKnownGlobal(LOperand* context, LOperand* value) {
inputs_[0] = context;
inputs_[1] = value;
}
LOperand* context() { return inputs_[0]; }
LOperand* value() { return inputs_[1]; }
DECLARE_CONCRETE_INSTRUCTION(InstanceOfKnownGlobal,
"instance-of-known-global")
DECLARE_HYDROGEN_ACCESSOR(InstanceOfKnownGlobal)
Handle<JSFunction> function() const { return hydrogen()->function(); }
LEnvironment* GetDeferredLazyDeoptimizationEnvironment() {
return lazy_deopt_env_;
}
virtual void SetDeferredLazyDeoptimizationEnvironment(
LEnvironment* env) OVERRIDE {
lazy_deopt_env_ = env;
}
private:
LEnvironment* lazy_deopt_env_;
};
class LInteger32ToDouble FINAL : public LTemplateInstruction<1, 1, 0> {
public:
explicit LInteger32ToDouble(LOperand* value) {
inputs_[0] = value;
}
LOperand* value() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(Integer32ToDouble, "int32-to-double")
};
class LCallWithDescriptor FINAL : public LTemplateResultInstruction<1> {
public:
LCallWithDescriptor(CallInterfaceDescriptor descriptor,
const ZoneList<LOperand*>& operands, Zone* zone)
: descriptor_(descriptor),
inputs_(descriptor.GetRegisterParameterCount() + 1, zone) {
DCHECK(descriptor.GetRegisterParameterCount() + 1 == operands.length());
inputs_.AddAll(operands, zone);
}
LOperand* target() const { return inputs_[0]; }
CallInterfaceDescriptor descriptor() { return descriptor_; }
DECLARE_HYDROGEN_ACCESSOR(CallWithDescriptor)
private:
DECLARE_CONCRETE_INSTRUCTION(CallWithDescriptor, "call-with-descriptor")
void PrintDataTo(StringStream* stream) OVERRIDE;
int arity() const { return hydrogen()->argument_count() - 1; }
CallInterfaceDescriptor descriptor_;
ZoneList<LOperand*> inputs_;
// Iterator support.
int InputCount() FINAL { return inputs_.length(); }
LOperand* InputAt(int i) FINAL { return inputs_[i]; }
int TempCount() FINAL { return 0; }
LOperand* TempAt(int i) FINAL { return NULL; }
};
class LInvokeFunction FINAL : public LTemplateInstruction<1, 2, 0> {
public:
LInvokeFunction(LOperand* context, LOperand* function) {
inputs_[0] = context;
inputs_[1] = function;
}
LOperand* context() { return inputs_[0]; }
LOperand* function() { return inputs_[1]; }
DECLARE_CONCRETE_INSTRUCTION(InvokeFunction, "invoke-function")
DECLARE_HYDROGEN_ACCESSOR(InvokeFunction)
void PrintDataTo(StringStream* stream) OVERRIDE;
int arity() const { return hydrogen()->argument_count() - 1; }
};
class LIsConstructCallAndBranch FINAL : public LControlInstruction<0, 2> {
public:
LIsConstructCallAndBranch(LOperand* temp1, LOperand* temp2) {
temps_[0] = temp1;
temps_[1] = temp2;
}
LOperand* temp1() { return temps_[0]; }
LOperand* temp2() { return temps_[1]; }
DECLARE_CONCRETE_INSTRUCTION(IsConstructCallAndBranch,
"is-construct-call-and-branch")
};
class LIsObjectAndBranch FINAL : public LControlInstruction<1, 2> {
public:
LIsObjectAndBranch(LOperand* value, LOperand* temp1, LOperand* temp2) {
inputs_[0] = value;
temps_[0] = temp1;
temps_[1] = temp2;
}
LOperand* value() { return inputs_[0]; }
LOperand* temp1() { return temps_[0]; }
LOperand* temp2() { return temps_[1]; }
DECLARE_CONCRETE_INSTRUCTION(IsObjectAndBranch, "is-object-and-branch")
DECLARE_HYDROGEN_ACCESSOR(IsObjectAndBranch)
void PrintDataTo(StringStream* stream) OVERRIDE;
};
class LIsStringAndBranch FINAL : public LControlInstruction<1, 1> {
public:
LIsStringAndBranch(LOperand* value, LOperand* temp) {
inputs_[0] = value;
temps_[0] = temp;
}
LOperand* value() { return inputs_[0]; }
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(IsStringAndBranch, "is-string-and-branch")
DECLARE_HYDROGEN_ACCESSOR(IsStringAndBranch)
void PrintDataTo(StringStream* stream) OVERRIDE;
};
class LIsSmiAndBranch FINAL : public LControlInstruction<1, 0> {
public:
explicit LIsSmiAndBranch(LOperand* value) {
inputs_[0] = value;
}
LOperand* value() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(IsSmiAndBranch, "is-smi-and-branch")
DECLARE_HYDROGEN_ACCESSOR(IsSmiAndBranch)
void PrintDataTo(StringStream* stream) OVERRIDE;
};
class LIsUndetectableAndBranch FINAL : public LControlInstruction<1, 1> {
public:
explicit LIsUndetectableAndBranch(LOperand* value, LOperand* temp) {
inputs_[0] = value;
temps_[0] = temp;
}
LOperand* value() { return inputs_[0]; }
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(IsUndetectableAndBranch,
"is-undetectable-and-branch")
DECLARE_HYDROGEN_ACCESSOR(IsUndetectableAndBranch)
void PrintDataTo(StringStream* stream) OVERRIDE;
};
class LLoadContextSlot FINAL : public LTemplateInstruction<1, 1, 0> {
public:
explicit LLoadContextSlot(LOperand* context) {
inputs_[0] = context;
}
LOperand* context() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(LoadContextSlot, "load-context-slot")
DECLARE_HYDROGEN_ACCESSOR(LoadContextSlot)
int slot_index() const { return hydrogen()->slot_index(); }
void PrintDataTo(StringStream* stream) OVERRIDE;
};
class LLoadNamedField FINAL : public LTemplateInstruction<1, 1, 0> {
public:
explicit LLoadNamedField(LOperand* object) {
inputs_[0] = object;
}
LOperand* object() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(LoadNamedField, "load-named-field")
DECLARE_HYDROGEN_ACCESSOR(LoadNamedField)
};
class LFunctionLiteral FINAL : public LTemplateInstruction<1, 1, 0> {
public:
explicit LFunctionLiteral(LOperand* context) {
inputs_[0] = context;
}
LOperand* context() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(FunctionLiteral, "function-literal")
DECLARE_HYDROGEN_ACCESSOR(FunctionLiteral)
};
class LLoadFunctionPrototype FINAL : public LTemplateInstruction<1, 1, 1> {
public:
LLoadFunctionPrototype(LOperand* function, LOperand* temp) {
inputs_[0] = function;
temps_[0] = temp;
}
LOperand* function() { return inputs_[0]; }
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(LoadFunctionPrototype, "load-function-prototype")
DECLARE_HYDROGEN_ACCESSOR(LoadFunctionPrototype)
};
class LLoadGlobalGeneric FINAL : public LTemplateInstruction<1, 2, 1> {
public:
LLoadGlobalGeneric(LOperand* context, LOperand* global_object,
LOperand* vector) {
inputs_[0] = context;
inputs_[1] = global_object;
temps_[0] = vector;
}
LOperand* context() { return inputs_[0]; }
LOperand* global_object() { return inputs_[1]; }
LOperand* temp_vector() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(LoadGlobalGeneric, "load-global-generic")
DECLARE_HYDROGEN_ACCESSOR(LoadGlobalGeneric)
Handle<Object> name() const { return hydrogen()->name(); }
bool for_typeof() const { return hydrogen()->for_typeof(); }
};
template<int T>
class LLoadKeyed : public LTemplateInstruction<1, 2, T> {
public:
LLoadKeyed(LOperand* elements, LOperand* key) {
this->inputs_[0] = elements;
this->inputs_[1] = key;
}
LOperand* elements() { return this->inputs_[0]; }
LOperand* key() { return this->inputs_[1]; }
ElementsKind elements_kind() const {
return this->hydrogen()->elements_kind();
}
bool is_external() const {
return this->hydrogen()->is_external();
}
bool is_fixed_typed_array() const {
return hydrogen()->is_fixed_typed_array();
}
bool is_typed_elements() const {
return is_external() || is_fixed_typed_array();
}
uint32_t base_offset() const {
return this->hydrogen()->base_offset();
}
void PrintDataTo(StringStream* stream) OVERRIDE {
this->elements()->PrintTo(stream);
stream->Add("[");
this->key()->PrintTo(stream);
if (this->base_offset() != 0) {
stream->Add(" + %d]", this->base_offset());
} else {
stream->Add("]");
}
}
DECLARE_HYDROGEN_ACCESSOR(LoadKeyed)
};
class LLoadKeyedExternal: public LLoadKeyed<1> {
public:
LLoadKeyedExternal(LOperand* elements, LOperand* key, LOperand* temp) :
LLoadKeyed<1>(elements, key) {
temps_[0] = temp;
}
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(LoadKeyedExternal, "load-keyed-external");
};
class LLoadKeyedFixed: public LLoadKeyed<1> {
public:
LLoadKeyedFixed(LOperand* elements, LOperand* key, LOperand* temp) :
LLoadKeyed<1>(elements, key) {
temps_[0] = temp;
}
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(LoadKeyedFixed, "load-keyed-fixed");
};
class LLoadKeyedFixedDouble: public LLoadKeyed<1> {
public:
LLoadKeyedFixedDouble(LOperand* elements, LOperand* key, LOperand* temp) :
LLoadKeyed<1>(elements, key) {
temps_[0] = temp;
}
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(LoadKeyedFixedDouble, "load-keyed-fixed-double");
};
class LLoadKeyedGeneric FINAL : public LTemplateInstruction<1, 3, 1> {
public:
LLoadKeyedGeneric(LOperand* context, LOperand* object, LOperand* key,
LOperand* vector) {
inputs_[0] = context;
inputs_[1] = object;
inputs_[2] = key;
temps_[0] = vector;
}
LOperand* context() { return inputs_[0]; }
LOperand* object() { return inputs_[1]; }
LOperand* key() { return inputs_[2]; }
LOperand* temp_vector() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(LoadKeyedGeneric, "load-keyed-generic")
DECLARE_HYDROGEN_ACCESSOR(LoadKeyedGeneric)
};
class LLoadNamedGeneric FINAL : public LTemplateInstruction<1, 2, 1> {
public:
LLoadNamedGeneric(LOperand* context, LOperand* object, LOperand* vector) {
inputs_[0] = context;
inputs_[1] = object;
temps_[0] = vector;
}
LOperand* context() { return inputs_[0]; }
LOperand* object() { return inputs_[1]; }
LOperand* temp_vector() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(LoadNamedGeneric, "load-named-generic")
DECLARE_HYDROGEN_ACCESSOR(LoadNamedGeneric)
Handle<Object> name() const { return hydrogen()->name(); }
};
class LLoadRoot FINAL : public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(LoadRoot, "load-root")
DECLARE_HYDROGEN_ACCESSOR(LoadRoot)
Heap::RootListIndex index() const { return hydrogen()->index(); }
};
class LMapEnumLength FINAL : public LTemplateInstruction<1, 1, 0> {
public:
explicit LMapEnumLength(LOperand* value) {
inputs_[0] = value;
}
LOperand* value() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(MapEnumLength, "map-enum-length")
};
template<int T>
class LUnaryMathOperation : public LTemplateInstruction<1, 1, T> {
public:
explicit LUnaryMathOperation(LOperand* value) {
this->inputs_[0] = value;
}
LOperand* value() { return this->inputs_[0]; }
BuiltinFunctionId op() const { return this->hydrogen()->op(); }
void PrintDataTo(StringStream* stream) OVERRIDE;
DECLARE_HYDROGEN_ACCESSOR(UnaryMathOperation)
};
class LMathAbs FINAL : public LUnaryMathOperation<0> {
public:
explicit LMathAbs(LOperand* value) : LUnaryMathOperation<0>(value) {}
DECLARE_CONCRETE_INSTRUCTION(MathAbs, "math-abs")
};
class LMathAbsTagged: public LTemplateInstruction<1, 2, 3> {
public:
LMathAbsTagged(LOperand* context, LOperand* value,
LOperand* temp1, LOperand* temp2, LOperand* temp3) {
inputs_[0] = context;
inputs_[1] = value;
temps_[0] = temp1;
temps_[1] = temp2;
temps_[2] = temp3;
}
LOperand* context() { return inputs_[0]; }
LOperand* value() { return inputs_[1]; }
LOperand* temp1() { return temps_[0]; }
LOperand* temp2() { return temps_[1]; }
LOperand* temp3() { return temps_[2]; }
DECLARE_CONCRETE_INSTRUCTION(MathAbsTagged, "math-abs-tagged")
DECLARE_HYDROGEN_ACCESSOR(UnaryMathOperation)
};
class LMathExp FINAL : public LUnaryMathOperation<4> {
public:
LMathExp(LOperand* value,
LOperand* double_temp1,
LOperand* temp1,
LOperand* temp2,
LOperand* temp3)
: LUnaryMathOperation<4>(value) {
temps_[0] = double_temp1;
temps_[1] = temp1;
temps_[2] = temp2;
temps_[3] = temp3;
ExternalReference::InitializeMathExpData();
}
LOperand* double_temp1() { return temps_[0]; }
LOperand* temp1() { return temps_[1]; }
LOperand* temp2() { return temps_[2]; }
LOperand* temp3() { return temps_[3]; }
DECLARE_CONCRETE_INSTRUCTION(MathExp, "math-exp")
};
// Math.floor with a double result.
class LMathFloorD FINAL : public LUnaryMathOperation<0> {
public:
explicit LMathFloorD(LOperand* value) : LUnaryMathOperation<0>(value) { }
DECLARE_CONCRETE_INSTRUCTION(MathFloorD, "math-floor-d")
};
// Math.floor with an integer result.
class LMathFloorI FINAL : public LUnaryMathOperation<0> {
public:
explicit LMathFloorI(LOperand* value) : LUnaryMathOperation<0>(value) { }
DECLARE_CONCRETE_INSTRUCTION(MathFloorI, "math-floor-i")
};
class LFlooringDivByPowerOf2I FINAL : public LTemplateInstruction<1, 1, 0> {
public:
LFlooringDivByPowerOf2I(LOperand* dividend, int32_t divisor) {
inputs_[0] = dividend;
divisor_ = divisor;
}
LOperand* dividend() { return inputs_[0]; }
int32_t divisor() const { return divisor_; }
DECLARE_CONCRETE_INSTRUCTION(FlooringDivByPowerOf2I,
"flooring-div-by-power-of-2-i")
DECLARE_HYDROGEN_ACCESSOR(MathFloorOfDiv)
private:
int32_t divisor_;
};
class LFlooringDivByConstI FINAL : public LTemplateInstruction<1, 1, 2> {
public:
LFlooringDivByConstI(LOperand* dividend, int32_t divisor, LOperand* temp) {
inputs_[0] = dividend;
divisor_ = divisor;
temps_[0] = temp;
}
LOperand* dividend() { return inputs_[0]; }
int32_t divisor() const { return divisor_; }
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(FlooringDivByConstI, "flooring-div-by-const-i")
DECLARE_HYDROGEN_ACCESSOR(MathFloorOfDiv)
private:
int32_t divisor_;
};
class LFlooringDivI FINAL : public LTemplateInstruction<1, 2, 1> {
public:
LFlooringDivI(LOperand* dividend, LOperand* divisor, LOperand* temp) {
inputs_[0] = dividend;
inputs_[1] = divisor;
temps_[0] = temp;
}
LOperand* dividend() { return inputs_[0]; }
LOperand* divisor() { return inputs_[1]; }
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(FlooringDivI, "flooring-div-i")
DECLARE_HYDROGEN_ACCESSOR(MathFloorOfDiv)
};
class LMathLog FINAL : public LUnaryMathOperation<0> {
public:
explicit LMathLog(LOperand* value) : LUnaryMathOperation<0>(value) { }
DECLARE_CONCRETE_INSTRUCTION(MathLog, "math-log")
};
class LMathClz32 FINAL : public LUnaryMathOperation<0> {
public:
explicit LMathClz32(LOperand* value) : LUnaryMathOperation<0>(value) { }
DECLARE_CONCRETE_INSTRUCTION(MathClz32, "math-clz32")
};
class LMathMinMax FINAL : public LTemplateInstruction<1, 2, 0> {
public:
LMathMinMax(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
LOperand* left() { return inputs_[0]; }
LOperand* right() { return inputs_[1]; }
DECLARE_CONCRETE_INSTRUCTION(MathMinMax, "math-min-max")
DECLARE_HYDROGEN_ACCESSOR(MathMinMax)
};
class LMathPowHalf FINAL : public LUnaryMathOperation<0> {
public:
explicit LMathPowHalf(LOperand* value) : LUnaryMathOperation<0>(value) { }
DECLARE_CONCRETE_INSTRUCTION(MathPowHalf, "math-pow-half")
};
// Math.round with an integer result.
class LMathRoundD FINAL : public LUnaryMathOperation<0> {
public:
explicit LMathRoundD(LOperand* value)
: LUnaryMathOperation<0>(value) {
}
DECLARE_CONCRETE_INSTRUCTION(MathRoundD, "math-round-d")
};
// Math.round with an integer result.
class LMathRoundI FINAL : public LUnaryMathOperation<1> {
public:
LMathRoundI(LOperand* value, LOperand* temp1)
: LUnaryMathOperation<1>(value) {
temps_[0] = temp1;
}
LOperand* temp1() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(MathRoundI, "math-round-i")
};
class LMathFround FINAL : public LUnaryMathOperation<0> {
public:
explicit LMathFround(LOperand* value) : LUnaryMathOperation<0>(value) {}
DECLARE_CONCRETE_INSTRUCTION(MathFround, "math-fround")
};
class LMathSqrt FINAL : public LUnaryMathOperation<0> {
public:
explicit LMathSqrt(LOperand* value) : LUnaryMathOperation<0>(value) { }
DECLARE_CONCRETE_INSTRUCTION(MathSqrt, "math-sqrt")
};
class LModByPowerOf2I FINAL : public LTemplateInstruction<1, 1, 0> {
public:
LModByPowerOf2I(LOperand* dividend, int32_t divisor) {
inputs_[0] = dividend;
divisor_ = divisor;
}
LOperand* dividend() { return inputs_[0]; }
int32_t divisor() const { return divisor_; }
DECLARE_CONCRETE_INSTRUCTION(ModByPowerOf2I, "mod-by-power-of-2-i")
DECLARE_HYDROGEN_ACCESSOR(Mod)
private:
int32_t divisor_;
};
class LModByConstI FINAL : public LTemplateInstruction<1, 1, 1> {
public:
LModByConstI(LOperand* dividend, int32_t divisor, LOperand* temp) {
inputs_[0] = dividend;
divisor_ = divisor;
temps_[0] = temp;
}
LOperand* dividend() { return inputs_[0]; }
int32_t divisor() const { return divisor_; }
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(ModByConstI, "mod-by-const-i")
DECLARE_HYDROGEN_ACCESSOR(Mod)
private:
int32_t divisor_;
};
class LModI FINAL : public LTemplateInstruction<1, 2, 0> {
public:
LModI(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
LOperand* left() { return inputs_[0]; }
LOperand* right() { return inputs_[1]; }
DECLARE_CONCRETE_INSTRUCTION(ModI, "mod-i")
DECLARE_HYDROGEN_ACCESSOR(Mod)
};
class LMulConstIS FINAL : public LTemplateInstruction<1, 2, 0> {
public:
LMulConstIS(LOperand* left, LConstantOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
LOperand* left() { return inputs_[0]; }
LConstantOperand* right() { return LConstantOperand::cast(inputs_[1]); }
DECLARE_CONCRETE_INSTRUCTION(MulConstIS, "mul-const-i-s")
DECLARE_HYDROGEN_ACCESSOR(Mul)
};
class LMulI FINAL : public LTemplateInstruction<1, 2, 0> {
public:
LMulI(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
LOperand* left() { return inputs_[0]; }
LOperand* right() { return inputs_[1]; }
DECLARE_CONCRETE_INSTRUCTION(MulI, "mul-i")
DECLARE_HYDROGEN_ACCESSOR(Mul)
};
class LMulS FINAL : public LTemplateInstruction<1, 2, 0> {
public:
LMulS(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
LOperand* left() { return inputs_[0]; }
LOperand* right() { return inputs_[1]; }
DECLARE_CONCRETE_INSTRUCTION(MulI, "mul-s")
DECLARE_HYDROGEN_ACCESSOR(Mul)
};
class LNumberTagD FINAL : public LTemplateInstruction<1, 1, 2> {
public:
LNumberTagD(LOperand* value, LOperand* temp1, LOperand* temp2) {
inputs_[0] = value;
temps_[0] = temp1;
temps_[1] = temp2;
}
LOperand* value() { return inputs_[0]; }
LOperand* temp1() { return temps_[0]; }
LOperand* temp2() { return temps_[1]; }
DECLARE_CONCRETE_INSTRUCTION(NumberTagD, "number-tag-d")
DECLARE_HYDROGEN_ACCESSOR(Change)
};
class LNumberTagU FINAL : public LTemplateInstruction<1, 1, 2> {
public:
explicit LNumberTagU(LOperand* value,
LOperand* temp1,
LOperand* temp2) {
inputs_[0] = value;
temps_[0] = temp1;
temps_[1] = temp2;
}
LOperand* value() { return inputs_[0]; }
LOperand* temp1() { return temps_[0]; }
LOperand* temp2() { return temps_[1]; }
DECLARE_CONCRETE_INSTRUCTION(NumberTagU, "number-tag-u")
};
class LNumberUntagD FINAL : public LTemplateInstruction<1, 1, 1> {
public:
LNumberUntagD(LOperand* value, LOperand* temp) {
inputs_[0] = value;
temps_[0] = temp;
}
LOperand* value() { return inputs_[0]; }
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(NumberUntagD, "double-untag")
DECLARE_HYDROGEN_ACCESSOR(Change)
};
class LParameter FINAL : public LTemplateInstruction<1, 0, 0> {
public:
bool HasInterestingComment(LCodeGen* gen) const OVERRIDE { return false; }
DECLARE_CONCRETE_INSTRUCTION(Parameter, "parameter")
};
class LPower FINAL : public LTemplateInstruction<1, 2, 0> {
public:
LPower(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
LOperand* left() { return inputs_[0]; }
LOperand* right() { return inputs_[1]; }
DECLARE_CONCRETE_INSTRUCTION(Power, "power")
DECLARE_HYDROGEN_ACCESSOR(Power)
};
class LPreparePushArguments FINAL : public LTemplateInstruction<0, 0, 0> {
public:
explicit LPreparePushArguments(int argc) : argc_(argc) {}
inline int argc() const { return argc_; }
DECLARE_CONCRETE_INSTRUCTION(PreparePushArguments, "prepare-push-arguments")
protected:
int argc_;
};
class LPushArguments FINAL : public LTemplateResultInstruction<0> {
public:
explicit LPushArguments(Zone* zone,
int capacity = kRecommendedMaxPushedArgs)
: zone_(zone), inputs_(capacity, zone) {}
LOperand* argument(int i) { return inputs_[i]; }
int ArgumentCount() const { return inputs_.length(); }
void AddArgument(LOperand* arg) { inputs_.Add(arg, zone_); }
DECLARE_CONCRETE_INSTRUCTION(PushArguments, "push-arguments")
// It is better to limit the number of arguments pushed simultaneously to
// avoid pressure on the register allocator.
static const int kRecommendedMaxPushedArgs = 4;
bool ShouldSplitPush() const {
return inputs_.length() >= kRecommendedMaxPushedArgs;
}
protected:
Zone* zone_;
ZoneList<LOperand*> inputs_;
private:
// Iterator support.
int InputCount() FINAL { return inputs_.length(); }
LOperand* InputAt(int i) FINAL { return inputs_[i]; }
int TempCount() FINAL { return 0; }
LOperand* TempAt(int i) FINAL { return NULL; }
};
class LRegExpLiteral FINAL : public LTemplateInstruction<1, 1, 0> {
public:
explicit LRegExpLiteral(LOperand* context) {
inputs_[0] = context;
}
LOperand* context() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(RegExpLiteral, "regexp-literal")
DECLARE_HYDROGEN_ACCESSOR(RegExpLiteral)
};
class LReturn FINAL : public LTemplateInstruction<0, 3, 0> {
public:
LReturn(LOperand* value, LOperand* context, LOperand* parameter_count) {
inputs_[0] = value;
inputs_[1] = context;
inputs_[2] = parameter_count;
}
LOperand* value() { return inputs_[0]; }
LOperand* parameter_count() { return inputs_[2]; }
bool has_constant_parameter_count() {
return parameter_count()->IsConstantOperand();
}
LConstantOperand* constant_parameter_count() {
DCHECK(has_constant_parameter_count());
return LConstantOperand::cast(parameter_count());
}
DECLARE_CONCRETE_INSTRUCTION(Return, "return")
};
class LSeqStringGetChar FINAL : public LTemplateInstruction<1, 2, 1> {
public:
LSeqStringGetChar(LOperand* string,
LOperand* index,
LOperand* temp) {
inputs_[0] = string;
inputs_[1] = index;
temps_[0] = temp;
}
LOperand* string() { return inputs_[0]; }
LOperand* index() { return inputs_[1]; }
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(SeqStringGetChar, "seq-string-get-char")
DECLARE_HYDROGEN_ACCESSOR(SeqStringGetChar)
};
class LSeqStringSetChar FINAL : public LTemplateInstruction<1, 4, 1> {
public:
LSeqStringSetChar(LOperand* context,
LOperand* string,
LOperand* index,
LOperand* value,
LOperand* temp) {
inputs_[0] = context;
inputs_[1] = string;
inputs_[2] = index;
inputs_[3] = value;
temps_[0] = temp;
}
LOperand* context() { return inputs_[0]; }
LOperand* string() { return inputs_[1]; }
LOperand* index() { return inputs_[2]; }
LOperand* value() { return inputs_[3]; }
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(SeqStringSetChar, "seq-string-set-char")
DECLARE_HYDROGEN_ACCESSOR(SeqStringSetChar)
};
class LSmiTag FINAL : public LTemplateInstruction<1, 1, 0> {
public:
explicit LSmiTag(LOperand* value) {
inputs_[0] = value;
}
LOperand* value() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(SmiTag, "smi-tag")
DECLARE_HYDROGEN_ACCESSOR(Change)
};
class LSmiUntag FINAL : public LTemplateInstruction<1, 1, 0> {
public:
LSmiUntag(LOperand* value, bool needs_check)
: needs_check_(needs_check) {
inputs_[0] = value;
}
LOperand* value() { return inputs_[0]; }
bool needs_check() const { return needs_check_; }
DECLARE_CONCRETE_INSTRUCTION(SmiUntag, "smi-untag")
private:
bool needs_check_;
};
class LStackCheck FINAL : public LTemplateInstruction<0, 1, 0> {
public:
explicit LStackCheck(LOperand* context) {
inputs_[0] = context;
}
LOperand* context() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(StackCheck, "stack-check")
DECLARE_HYDROGEN_ACCESSOR(StackCheck)
Label* done_label() { return &done_label_; }
private:
Label done_label_;
};
template<int T>
class LStoreKeyed : public LTemplateInstruction<0, 3, T> {
public:
LStoreKeyed(LOperand* elements, LOperand* key, LOperand* value) {
this->inputs_[0] = elements;
this->inputs_[1] = key;
this->inputs_[2] = value;
}
bool is_external() const { return this->hydrogen()->is_external(); }
bool is_fixed_typed_array() const {
return hydrogen()->is_fixed_typed_array();
}
bool is_typed_elements() const {
return is_external() || is_fixed_typed_array();
}
LOperand* elements() { return this->inputs_[0]; }
LOperand* key() { return this->inputs_[1]; }
LOperand* value() { return this->inputs_[2]; }
ElementsKind elements_kind() const {
return this->hydrogen()->elements_kind();
}
bool NeedsCanonicalization() {
if (hydrogen()->value()->IsAdd() || hydrogen()->value()->IsSub() ||
hydrogen()->value()->IsMul() || hydrogen()->value()->IsDiv()) {
return false;
}
return this->hydrogen()->NeedsCanonicalization();
}
uint32_t base_offset() const { return this->hydrogen()->base_offset(); }
void PrintDataTo(StringStream* stream) OVERRIDE {
this->elements()->PrintTo(stream);
stream->Add("[");
this->key()->PrintTo(stream);
if (this->base_offset() != 0) {
stream->Add(" + %d] <-", this->base_offset());
} else {
stream->Add("] <- ");
}
if (this->value() == NULL) {
DCHECK(hydrogen()->IsConstantHoleStore() &&
hydrogen()->value()->representation().IsDouble());
stream->Add("<the hole(nan)>");
} else {
this->value()->PrintTo(stream);
}
}
DECLARE_HYDROGEN_ACCESSOR(StoreKeyed)
};
class LStoreKeyedExternal FINAL : public LStoreKeyed<1> {
public:
LStoreKeyedExternal(LOperand* elements, LOperand* key, LOperand* value,
LOperand* temp) :
LStoreKeyed<1>(elements, key, value) {
temps_[0] = temp;
}
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(StoreKeyedExternal, "store-keyed-external")
};
class LStoreKeyedFixed FINAL : public LStoreKeyed<1> {
public:
LStoreKeyedFixed(LOperand* elements, LOperand* key, LOperand* value,
LOperand* temp) :
LStoreKeyed<1>(elements, key, value) {
temps_[0] = temp;
}
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(StoreKeyedFixed, "store-keyed-fixed")
};
class LStoreKeyedFixedDouble FINAL : public LStoreKeyed<1> {
public:
LStoreKeyedFixedDouble(LOperand* elements, LOperand* key, LOperand* value,
LOperand* temp) :
LStoreKeyed<1>(elements, key, value) {
temps_[0] = temp;
}
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(StoreKeyedFixedDouble,
"store-keyed-fixed-double")
};
class LStoreKeyedGeneric FINAL : public LTemplateInstruction<0, 4, 0> {
public:
LStoreKeyedGeneric(LOperand* context,
LOperand* obj,
LOperand* key,
LOperand* value) {
inputs_[0] = context;
inputs_[1] = obj;
inputs_[2] = key;
inputs_[3] = value;
}
LOperand* context() { return inputs_[0]; }
LOperand* object() { return inputs_[1]; }
LOperand* key() { return inputs_[2]; }
LOperand* value() { return inputs_[3]; }
DECLARE_CONCRETE_INSTRUCTION(StoreKeyedGeneric, "store-keyed-generic")
DECLARE_HYDROGEN_ACCESSOR(StoreKeyedGeneric)
void PrintDataTo(StringStream* stream) OVERRIDE;
LanguageMode language_mode() { return hydrogen()->language_mode(); }
};
class LStoreNamedField FINAL : public LTemplateInstruction<0, 2, 2> {
public:
LStoreNamedField(LOperand* object, LOperand* value,
LOperand* temp0, LOperand* temp1) {
inputs_[0] = object;
inputs_[1] = value;
temps_[0] = temp0;
temps_[1] = temp1;
}
LOperand* object() { return inputs_[0]; }
LOperand* value() { return inputs_[1]; }
LOperand* temp0() { return temps_[0]; }
LOperand* temp1() { return temps_[1]; }
DECLARE_CONCRETE_INSTRUCTION(StoreNamedField, "store-named-field")
DECLARE_HYDROGEN_ACCESSOR(StoreNamedField)
void PrintDataTo(StringStream* stream) OVERRIDE;
Representation representation() const {
return hydrogen()->field_representation();
}
};
class LStoreNamedGeneric FINAL: public LTemplateInstruction<0, 3, 0> {
public:
LStoreNamedGeneric(LOperand* context, LOperand* object, LOperand* value) {
inputs_[0] = context;
inputs_[1] = object;
inputs_[2] = value;
}
LOperand* context() { return inputs_[0]; }
LOperand* object() { return inputs_[1]; }
LOperand* value() { return inputs_[2]; }
DECLARE_CONCRETE_INSTRUCTION(StoreNamedGeneric, "store-named-generic")
DECLARE_HYDROGEN_ACCESSOR(StoreNamedGeneric)
void PrintDataTo(StringStream* stream) OVERRIDE;
Handle<Object> name() const { return hydrogen()->name(); }
LanguageMode language_mode() { return hydrogen()->language_mode(); }
};
class LStringAdd FINAL : public LTemplateInstruction<1, 3, 0> {
public:
LStringAdd(LOperand* context, LOperand* left, LOperand* right) {
inputs_[0] = context;
inputs_[1] = left;
inputs_[2] = right;
}
LOperand* context() { return inputs_[0]; }
LOperand* left() { return inputs_[1]; }
LOperand* right() { return inputs_[2]; }
DECLARE_CONCRETE_INSTRUCTION(StringAdd, "string-add")
DECLARE_HYDROGEN_ACCESSOR(StringAdd)
};
class LStringCharCodeAt FINAL : public LTemplateInstruction<1, 3, 0> {
public:
LStringCharCodeAt(LOperand* context, LOperand* string, LOperand* index) {
inputs_[0] = context;
inputs_[1] = string;
inputs_[2] = index;
}
LOperand* context() { return inputs_[0]; }
LOperand* string() { return inputs_[1]; }
LOperand* index() { return inputs_[2]; }
DECLARE_CONCRETE_INSTRUCTION(StringCharCodeAt, "string-char-code-at")
DECLARE_HYDROGEN_ACCESSOR(StringCharCodeAt)
};
class LStringCharFromCode FINAL : public LTemplateInstruction<1, 2, 0> {
public:
LStringCharFromCode(LOperand* context, LOperand* char_code) {
inputs_[0] = context;
inputs_[1] = char_code;
}
LOperand* context() { return inputs_[0]; }
LOperand* char_code() { return inputs_[1]; }
DECLARE_CONCRETE_INSTRUCTION(StringCharFromCode, "string-char-from-code")
DECLARE_HYDROGEN_ACCESSOR(StringCharFromCode)
};
class LStringCompareAndBranch FINAL : public LControlInstruction<3, 0> {
public:
LStringCompareAndBranch(LOperand* context, LOperand* left, LOperand* right) {
inputs_[0] = context;
inputs_[1] = left;
inputs_[2] = right;
}
LOperand* context() { return inputs_[0]; }
LOperand* left() { return inputs_[1]; }
LOperand* right() { return inputs_[2]; }
DECLARE_CONCRETE_INSTRUCTION(StringCompareAndBranch,
"string-compare-and-branch")
DECLARE_HYDROGEN_ACCESSOR(StringCompareAndBranch)
Token::Value op() const { return hydrogen()->token(); }
void PrintDataTo(StringStream* stream) OVERRIDE;
};
// Truncating conversion from a tagged value to an int32.
class LTaggedToI FINAL : public LTemplateInstruction<1, 1, 2> {
public:
explicit LTaggedToI(LOperand* value, LOperand* temp1, LOperand* temp2) {
inputs_[0] = value;
temps_[0] = temp1;
temps_[1] = temp2;
}
LOperand* value() { return inputs_[0]; }
LOperand* temp1() { return temps_[0]; }
LOperand* temp2() { return temps_[1]; }
DECLARE_CONCRETE_INSTRUCTION(TaggedToI, "tagged-to-i")
DECLARE_HYDROGEN_ACCESSOR(Change)
bool truncating() { return hydrogen()->CanTruncateToInt32(); }
};
class LShiftI FINAL : public LTemplateInstruction<1, 2, 0> {
public:
LShiftI(Token::Value op, LOperand* left, LOperand* right, bool can_deopt)
: op_(op), can_deopt_(can_deopt) {
inputs_[0] = left;
inputs_[1] = right;
}
Token::Value op() const { return op_; }
LOperand* left() { return inputs_[0]; }
LOperand* right() { return inputs_[1]; }
bool can_deopt() const { return can_deopt_; }
DECLARE_CONCRETE_INSTRUCTION(ShiftI, "shift-i")
private:
Token::Value op_;
bool can_deopt_;
};
class LShiftS FINAL : public LTemplateInstruction<1, 2, 0> {
public:
LShiftS(Token::Value op, LOperand* left, LOperand* right, bool can_deopt)
: op_(op), can_deopt_(can_deopt) {
inputs_[0] = left;
inputs_[1] = right;
}
Token::Value op() const { return op_; }
LOperand* left() { return inputs_[0]; }
LOperand* right() { return inputs_[1]; }
bool can_deopt() const { return can_deopt_; }
DECLARE_CONCRETE_INSTRUCTION(ShiftS, "shift-s")
private:
Token::Value op_;
bool can_deopt_;
};
class LStoreCodeEntry FINAL: public LTemplateInstruction<0, 2, 1> {
public:
LStoreCodeEntry(LOperand* function, LOperand* code_object,
LOperand* temp) {
inputs_[0] = function;
inputs_[1] = code_object;
temps_[0] = temp;
}
LOperand* function() { return inputs_[0]; }
LOperand* code_object() { return inputs_[1]; }
LOperand* temp() { return temps_[0]; }
void PrintDataTo(StringStream* stream) OVERRIDE;
DECLARE_CONCRETE_INSTRUCTION(StoreCodeEntry, "store-code-entry")
DECLARE_HYDROGEN_ACCESSOR(StoreCodeEntry)
};
class LStoreContextSlot FINAL : public LTemplateInstruction<0, 2, 1> {
public:
LStoreContextSlot(LOperand* context, LOperand* value, LOperand* temp) {
inputs_[0] = context;
inputs_[1] = value;
temps_[0] = temp;
}
LOperand* context() { return inputs_[0]; }
LOperand* value() { return inputs_[1]; }
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(StoreContextSlot, "store-context-slot")
DECLARE_HYDROGEN_ACCESSOR(StoreContextSlot)
int slot_index() { return hydrogen()->slot_index(); }
void PrintDataTo(StringStream* stream) OVERRIDE;
};
class LSubI FINAL : public LTemplateInstruction<1, 2, 0> {
public:
LSubI(LOperand* left, LOperand* right)
: shift_(NO_SHIFT), shift_amount_(0) {
inputs_[0] = left;
inputs_[1] = right;
}
LSubI(LOperand* left, LOperand* right, Shift shift, LOperand* shift_amount)
: shift_(shift), shift_amount_(shift_amount) {
inputs_[0] = left;
inputs_[1] = right;
}
LOperand* left() { return inputs_[0]; }
LOperand* right() { return inputs_[1]; }
Shift shift() const { return shift_; }
LOperand* shift_amount() const { return shift_amount_; }
DECLARE_CONCRETE_INSTRUCTION(SubI, "sub-i")
DECLARE_HYDROGEN_ACCESSOR(Sub)
protected:
Shift shift_;
LOperand* shift_amount_;
};
class LSubS: public LTemplateInstruction<1, 2, 0> {
public:
LSubS(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
LOperand* left() { return inputs_[0]; }
LOperand* right() { return inputs_[1]; }
DECLARE_CONCRETE_INSTRUCTION(SubS, "sub-s")
DECLARE_HYDROGEN_ACCESSOR(Sub)
};
class LThisFunction FINAL : public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(ThisFunction, "this-function")
DECLARE_HYDROGEN_ACCESSOR(ThisFunction)
};
class LToFastProperties FINAL : public LTemplateInstruction<1, 1, 0> {
public:
explicit LToFastProperties(LOperand* value) {
inputs_[0] = value;
}
LOperand* value() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(ToFastProperties, "to-fast-properties")
DECLARE_HYDROGEN_ACCESSOR(ToFastProperties)
};
class LTransitionElementsKind FINAL : public LTemplateInstruction<0, 2, 2> {
public:
LTransitionElementsKind(LOperand* object,
LOperand* context,
LOperand* temp1,
LOperand* temp2) {
inputs_[0] = object;
inputs_[1] = context;
temps_[0] = temp1;
temps_[1] = temp2;
}
LOperand* object() { return inputs_[0]; }
LOperand* context() { return inputs_[1]; }
LOperand* temp1() { return temps_[0]; }
LOperand* temp2() { return temps_[1]; }
DECLARE_CONCRETE_INSTRUCTION(TransitionElementsKind,
"transition-elements-kind")
DECLARE_HYDROGEN_ACCESSOR(TransitionElementsKind)
void PrintDataTo(StringStream* stream) OVERRIDE;
Handle<Map> original_map() { return hydrogen()->original_map().handle(); }
Handle<Map> transitioned_map() {
return hydrogen()->transitioned_map().handle();
}
ElementsKind from_kind() const { return hydrogen()->from_kind(); }
ElementsKind to_kind() const { return hydrogen()->to_kind(); }
};
class LTrapAllocationMemento FINAL : public LTemplateInstruction<0, 1, 2> {
public:
LTrapAllocationMemento(LOperand* object, LOperand* temp1, LOperand* temp2) {
inputs_[0] = object;
temps_[0] = temp1;
temps_[1] = temp2;
}
LOperand* object() { return inputs_[0]; }
LOperand* temp1() { return temps_[0]; }
LOperand* temp2() { return temps_[1]; }
DECLARE_CONCRETE_INSTRUCTION(TrapAllocationMemento, "trap-allocation-memento")
};
class LTruncateDoubleToIntOrSmi FINAL
: public LTemplateInstruction<1, 1, 0> {
public:
explicit LTruncateDoubleToIntOrSmi(LOperand* value) {
inputs_[0] = value;
}
LOperand* value() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(TruncateDoubleToIntOrSmi,
"truncate-double-to-int-or-smi")
DECLARE_HYDROGEN_ACCESSOR(UnaryOperation)
bool tag_result() { return hydrogen()->representation().IsSmi(); }
};
class LTypeof FINAL : public LTemplateInstruction<1, 2, 0> {
public:
LTypeof(LOperand* context, LOperand* value) {
inputs_[0] = context;
inputs_[1] = value;
}
LOperand* context() { return inputs_[0]; }
LOperand* value() { return inputs_[1]; }
DECLARE_CONCRETE_INSTRUCTION(Typeof, "typeof")
};
class LTypeofIsAndBranch FINAL : public LControlInstruction<1, 2> {
public:
LTypeofIsAndBranch(LOperand* value, LOperand* temp1, LOperand* temp2) {
inputs_[0] = value;
temps_[0] = temp1;
temps_[1] = temp2;
}
LOperand* value() { return inputs_[0]; }
LOperand* temp1() { return temps_[0]; }
LOperand* temp2() { return temps_[1]; }
DECLARE_CONCRETE_INSTRUCTION(TypeofIsAndBranch, "typeof-is-and-branch")
DECLARE_HYDROGEN_ACCESSOR(TypeofIsAndBranch)
Handle<String> type_literal() const { return hydrogen()->type_literal(); }
void PrintDataTo(StringStream* stream) OVERRIDE;
};
class LUint32ToDouble FINAL : public LTemplateInstruction<1, 1, 0> {
public:
explicit LUint32ToDouble(LOperand* value) {
inputs_[0] = value;
}
LOperand* value() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(Uint32ToDouble, "uint32-to-double")
};
class LCheckMapValue FINAL : public LTemplateInstruction<0, 2, 1> {
public:
LCheckMapValue(LOperand* value, LOperand* map, LOperand* temp) {
inputs_[0] = value;
inputs_[1] = map;
temps_[0] = temp;
}
LOperand* value() { return inputs_[0]; }
LOperand* map() { return inputs_[1]; }
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(CheckMapValue, "check-map-value")
};
class LLoadFieldByIndex FINAL : public LTemplateInstruction<1, 2, 0> {
public:
LLoadFieldByIndex(LOperand* object, LOperand* index) {
inputs_[0] = object;
inputs_[1] = index;
}
LOperand* object() { return inputs_[0]; }
LOperand* index() { return inputs_[1]; }
DECLARE_CONCRETE_INSTRUCTION(LoadFieldByIndex, "load-field-by-index")
};
class LStoreFrameContext: public LTemplateInstruction<0, 1, 0> {
public:
explicit LStoreFrameContext(LOperand* context) {
inputs_[0] = context;
}
LOperand* context() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(StoreFrameContext, "store-frame-context")
};
class LAllocateBlockContext: public LTemplateInstruction<1, 2, 0> {
public:
LAllocateBlockContext(LOperand* context, LOperand* function) {
inputs_[0] = context;
inputs_[1] = function;
}
LOperand* context() { return inputs_[0]; }
LOperand* function() { return inputs_[1]; }
Handle<ScopeInfo> scope_info() { return hydrogen()->scope_info(); }
DECLARE_CONCRETE_INSTRUCTION(AllocateBlockContext, "allocate-block-context")
DECLARE_HYDROGEN_ACCESSOR(AllocateBlockContext)
};
class LWrapReceiver FINAL : public LTemplateInstruction<1, 2, 0> {
public:
LWrapReceiver(LOperand* receiver, LOperand* function) {
inputs_[0] = receiver;
inputs_[1] = function;
}
DECLARE_CONCRETE_INSTRUCTION(WrapReceiver, "wrap-receiver")
DECLARE_HYDROGEN_ACCESSOR(WrapReceiver)
LOperand* receiver() { return inputs_[0]; }
LOperand* function() { return inputs_[1]; }
};
class LChunkBuilder;
class LPlatformChunk FINAL : public LChunk {
public:
LPlatformChunk(CompilationInfo* info, HGraph* graph)
: LChunk(info, graph) { }
int GetNextSpillIndex();
LOperand* GetNextSpillSlot(RegisterKind kind);
};
class LChunkBuilder FINAL : public LChunkBuilderBase {
public:
LChunkBuilder(CompilationInfo* info, HGraph* graph, LAllocator* allocator)
: LChunkBuilderBase(info, graph),
current_instruction_(NULL),
current_block_(NULL),
allocator_(allocator) {}
// Build the sequence for the graph.
LPlatformChunk* Build();
// Declare methods that deal with the individual node types.
#define DECLARE_DO(type) LInstruction* Do##type(H##type* node);
HYDROGEN_CONCRETE_INSTRUCTION_LIST(DECLARE_DO)
#undef DECLARE_DO
LInstruction* DoDivByPowerOf2I(HDiv* instr);
LInstruction* DoDivByConstI(HDiv* instr);
LInstruction* DoDivI(HBinaryOperation* instr);
LInstruction* DoModByPowerOf2I(HMod* instr);
LInstruction* DoModByConstI(HMod* instr);
LInstruction* DoModI(HMod* instr);
LInstruction* DoFlooringDivByPowerOf2I(HMathFloorOfDiv* instr);
LInstruction* DoFlooringDivByConstI(HMathFloorOfDiv* instr);
LInstruction* DoFlooringDivI(HMathFloorOfDiv* instr);
static bool HasMagicNumberForDivision(int32_t divisor);
private:
// Methods for getting operands for Use / Define / Temp.
LUnallocated* ToUnallocated(Register reg);
LUnallocated* ToUnallocated(DoubleRegister reg);
// Methods for setting up define-use relationships.
MUST_USE_RESULT LOperand* Use(HValue* value, LUnallocated* operand);
MUST_USE_RESULT LOperand* UseFixed(HValue* value, Register fixed_register);
MUST_USE_RESULT LOperand* UseFixedDouble(HValue* value,
DoubleRegister fixed_register);
// A value that is guaranteed to be allocated to a register.
// The operand created by UseRegister is guaranteed to be live until the end
// of the instruction. This means that register allocator will not reuse its
// register for any other operand inside instruction.
MUST_USE_RESULT LOperand* UseRegister(HValue* value);
// The operand created by UseRegisterAndClobber is guaranteed to be live until
// the end of the end of the instruction, and it may also be used as a scratch
// register by the instruction implementation.
//
// This behaves identically to ARM's UseTempRegister. However, it is renamed
// to discourage its use in ARM64, since in most cases it is better to
// allocate a temporary register for the Lithium instruction.
MUST_USE_RESULT LOperand* UseRegisterAndClobber(HValue* value);
// The operand created by UseRegisterAtStart is guaranteed to be live only at
// instruction start. The register allocator is free to assign the same
// register to some other operand used inside instruction (i.e. temporary or
// output).
MUST_USE_RESULT LOperand* UseRegisterAtStart(HValue* value);
// An input operand in a register or a constant operand.
MUST_USE_RESULT LOperand* UseRegisterOrConstant(HValue* value);
MUST_USE_RESULT LOperand* UseRegisterOrConstantAtStart(HValue* value);
// A constant operand.
MUST_USE_RESULT LConstantOperand* UseConstant(HValue* value);
// An input operand in register, stack slot or a constant operand.
// Will not be moved to a register even if one is freely available.
virtual MUST_USE_RESULT LOperand* UseAny(HValue* value);
// Temporary operand that must be in a register.
MUST_USE_RESULT LUnallocated* TempRegister();
// Temporary operand that must be in a double register.
MUST_USE_RESULT LUnallocated* TempDoubleRegister();
MUST_USE_RESULT LOperand* FixedTemp(Register reg);
// Temporary operand that must be in a fixed double register.
MUST_USE_RESULT LOperand* FixedTemp(DoubleRegister reg);
// Methods for setting up define-use relationships.
// Return the same instruction that they are passed.
LInstruction* Define(LTemplateResultInstruction<1>* instr,
LUnallocated* result);
LInstruction* DefineAsRegister(LTemplateResultInstruction<1>* instr);
LInstruction* DefineAsSpilled(LTemplateResultInstruction<1>* instr,
int index);
LInstruction* DefineSameAsFirst(LTemplateResultInstruction<1>* instr);
LInstruction* DefineFixed(LTemplateResultInstruction<1>* instr,
Register reg);
LInstruction* DefineFixedDouble(LTemplateResultInstruction<1>* instr,
DoubleRegister reg);
enum CanDeoptimize { CAN_DEOPTIMIZE_EAGERLY, CANNOT_DEOPTIMIZE_EAGERLY };
// By default we assume that instruction sequences generated for calls
// cannot deoptimize eagerly and we do not attach environment to this
// instruction.
LInstruction* MarkAsCall(
LInstruction* instr,
HInstruction* hinstr,
CanDeoptimize can_deoptimize = CANNOT_DEOPTIMIZE_EAGERLY);
LInstruction* AssignPointerMap(LInstruction* instr);
LInstruction* AssignEnvironment(LInstruction* instr);
void VisitInstruction(HInstruction* current);
void AddInstruction(LInstruction* instr, HInstruction* current);
void DoBasicBlock(HBasicBlock* block);
int JSShiftAmountFromHConstant(HValue* constant) {
return HConstant::cast(constant)->Integer32Value() & 0x1f;
}
bool LikelyFitsImmField(HInstruction* instr, int imm) {
if (instr->IsAdd() || instr->IsSub()) {
return Assembler::IsImmAddSub(imm) || Assembler::IsImmAddSub(-imm);
} else {
DCHECK(instr->IsBitwise());
unsigned unused_n, unused_imm_s, unused_imm_r;
return Assembler::IsImmLogical(imm, kWRegSizeInBits,
&unused_n, &unused_imm_s, &unused_imm_r);
}
}
// Indicates if a sequence of the form
// lsl x8, x9, #imm
// add x0, x1, x8
// can be replaced with:
// add x0, x1, x9 LSL #imm
// If this is not possible, the function returns NULL. Otherwise it returns a
// pointer to the shift instruction that would be optimized away.
HBitwiseBinaryOperation* CanTransformToShiftedOp(HValue* val,
HValue** left = NULL);
// Checks if all uses of the shift operation can optimize it away.
bool ShiftCanBeOptimizedAway(HBitwiseBinaryOperation* shift);
// Attempts to merge the binary operation and an eventual previous shift
// operation into a single operation. Returns the merged instruction on
// success, and NULL otherwise.
LInstruction* TryDoOpWithShiftedRightOperand(HBinaryOperation* op);
LInstruction* DoShiftedBinaryOp(HBinaryOperation* instr,
HValue* left,
HBitwiseBinaryOperation* shift);
LInstruction* DoShift(Token::Value op, HBitwiseBinaryOperation* instr);
LInstruction* DoArithmeticD(Token::Value op,
HArithmeticBinaryOperation* instr);
LInstruction* DoArithmeticT(Token::Value op,
HBinaryOperation* instr);
HInstruction* current_instruction_;
HBasicBlock* current_block_;
LAllocator* allocator_;
DISALLOW_COPY_AND_ASSIGN(LChunkBuilder);
};
#undef DECLARE_HYDROGEN_ACCESSOR
#undef DECLARE_CONCRETE_INSTRUCTION
} } // namespace v8::internal
#endif // V8_ARM64_LITHIUM_ARM64_H_