v8/test/mjsunit/compiler/promise-resolve-stable-maps.js
Frank Emrich c9b4f3c4a7 [dict-proto] TF support for constants in dictionary mode protos, pt. 4
This CL is part of a  series that implements Turbofan support for
property accesses satisfying the following conditions:
1. The holder is a dictionary mode object.
2. The holder is a prototype.
3. The access is a load.

This feature will only be enabled if the build flag
v8_dict_property_const_tracking is set.

This particular CL modifies existing mjsunit tests whose assumptions
don't hold if v8_dict_property_const_tracking is enabled. This is
done by adding special handling for the case that
%IsDictPropertyConstTrackingEnabled() holds.

Bug: v8:11248
Change-Id: Ia36be73e4659a988b2471f0c8151b0442f3a98f5
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2780292
Commit-Queue: Igor Sheludko <ishell@chromium.org>
Reviewed-by: Georg Neis <neis@chromium.org>
Cr-Commit-Position: refs/heads/master@{#73745}
2021-03-31 14:53:45 +00:00

78 lines
2.2 KiB
JavaScript

// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Flags: --allow-natives-syntax --opt --noalways-opt
// Test that JSResolvePromise takes a proper stability dependency
// on the resolutions map if the infer receiver maps are unreliable
// (as is the case for HeapConstants).
(function() {
// We need an object literal which gets a stable map initially.
function makeObjectWithStableMap() {
return {a:1, b:1, c:1};
}
const a = makeObjectWithStableMap();
function foo() {
return Promise.resolve(a);
}
%PrepareFunctionForOptimization(foo);
assertInstanceof(foo(), Promise);
assertInstanceof(foo(), Promise);
%OptimizeFunctionOnNextCall(foo);
assertInstanceof(foo(), Promise);
assertOptimized(foo);
// Now invalidate the stability of a's map.
const b = makeObjectWithStableMap();
b.d = 1;
if (%IsDictPropertyConstTrackingEnabled()) {
// TODO(v8:11457) In this mode we weren't able to inline the access, yet, so
// it stays optimized. See related TODO in
// JSNativeContextSpecialization::ReduceJSResolvePromise.
return;
}
// This should deoptimize foo.
assertUnoptimized(foo);
})();
// Same test with async functions.
(function() {
// We need an object literal which gets a stable map initially,
// it needs to be different from the above, otherwise the map
// is already not stable when we get here.
function makeObjectWithStableMap() {
return {x:1, y:1};
}
const a = makeObjectWithStableMap();
async function foo() {
return a;
}
%PrepareFunctionForOptimization(foo);
assertInstanceof(foo(), Promise);
assertInstanceof(foo(), Promise);
%OptimizeFunctionOnNextCall(foo);
assertInstanceof(foo(), Promise);
assertOptimized(foo);
// Now invalidate the stability of a's map.
const b = makeObjectWithStableMap();
b.z = 1;
if (%IsDictPropertyConstTrackingEnabled()) {
// TODO(v8:11457) In this mode we weren't able to inline the access, yet, so
// it stays optimized. See related TODO in
// JSNativeContextSpecialization::ReduceJSResolvePromise.
return;
}
// This should deoptimize foo.
assertUnoptimized(foo);
})();