7976ca2cbc
git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@7271 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
5367 lines
185 KiB
C++
5367 lines
185 KiB
C++
// Copyright 2006-2009 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include "v8.h"
|
|
|
|
#include "ast.h"
|
|
#include "compiler.h"
|
|
#include "execution.h"
|
|
#include "factory.h"
|
|
#include "jsregexp.h"
|
|
#include "platform.h"
|
|
#include "string-search.h"
|
|
#include "runtime.h"
|
|
#include "compilation-cache.h"
|
|
#include "string-stream.h"
|
|
#include "parser.h"
|
|
#include "regexp-macro-assembler.h"
|
|
#include "regexp-macro-assembler-tracer.h"
|
|
#include "regexp-macro-assembler-irregexp.h"
|
|
#include "regexp-stack.h"
|
|
|
|
#ifndef V8_INTERPRETED_REGEXP
|
|
#if V8_TARGET_ARCH_IA32
|
|
#include "ia32/regexp-macro-assembler-ia32.h"
|
|
#elif V8_TARGET_ARCH_X64
|
|
#include "x64/regexp-macro-assembler-x64.h"
|
|
#elif V8_TARGET_ARCH_ARM
|
|
#include "arm/regexp-macro-assembler-arm.h"
|
|
#else
|
|
#error Unsupported target architecture.
|
|
#endif
|
|
#endif
|
|
|
|
#include "interpreter-irregexp.h"
|
|
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
Handle<Object> RegExpImpl::CreateRegExpLiteral(Handle<JSFunction> constructor,
|
|
Handle<String> pattern,
|
|
Handle<String> flags,
|
|
bool* has_pending_exception) {
|
|
// Call the construct code with 2 arguments.
|
|
Object** argv[2] = { Handle<Object>::cast(pattern).location(),
|
|
Handle<Object>::cast(flags).location() };
|
|
return Execution::New(constructor, 2, argv, has_pending_exception);
|
|
}
|
|
|
|
|
|
static JSRegExp::Flags RegExpFlagsFromString(Handle<String> str) {
|
|
int flags = JSRegExp::NONE;
|
|
for (int i = 0; i < str->length(); i++) {
|
|
switch (str->Get(i)) {
|
|
case 'i':
|
|
flags |= JSRegExp::IGNORE_CASE;
|
|
break;
|
|
case 'g':
|
|
flags |= JSRegExp::GLOBAL;
|
|
break;
|
|
case 'm':
|
|
flags |= JSRegExp::MULTILINE;
|
|
break;
|
|
}
|
|
}
|
|
return JSRegExp::Flags(flags);
|
|
}
|
|
|
|
|
|
static inline void ThrowRegExpException(Handle<JSRegExp> re,
|
|
Handle<String> pattern,
|
|
Handle<String> error_text,
|
|
const char* message) {
|
|
Isolate* isolate = re->GetIsolate();
|
|
Factory* factory = isolate->factory();
|
|
Handle<FixedArray> elements = factory->NewFixedArray(2);
|
|
elements->set(0, *pattern);
|
|
elements->set(1, *error_text);
|
|
Handle<JSArray> array = factory->NewJSArrayWithElements(elements);
|
|
Handle<Object> regexp_err = factory->NewSyntaxError(message, array);
|
|
isolate->Throw(*regexp_err);
|
|
}
|
|
|
|
|
|
// Generic RegExp methods. Dispatches to implementation specific methods.
|
|
|
|
|
|
Handle<Object> RegExpImpl::Compile(Handle<JSRegExp> re,
|
|
Handle<String> pattern,
|
|
Handle<String> flag_str) {
|
|
Isolate* isolate = re->GetIsolate();
|
|
JSRegExp::Flags flags = RegExpFlagsFromString(flag_str);
|
|
CompilationCache* compilation_cache = isolate->compilation_cache();
|
|
Handle<FixedArray> cached = compilation_cache->LookupRegExp(pattern, flags);
|
|
bool in_cache = !cached.is_null();
|
|
LOG(isolate, RegExpCompileEvent(re, in_cache));
|
|
|
|
Handle<Object> result;
|
|
if (in_cache) {
|
|
re->set_data(*cached);
|
|
return re;
|
|
}
|
|
pattern = FlattenGetString(pattern);
|
|
CompilationZoneScope zone_scope(DELETE_ON_EXIT);
|
|
PostponeInterruptsScope postpone(isolate);
|
|
RegExpCompileData parse_result;
|
|
FlatStringReader reader(isolate, pattern);
|
|
if (!RegExpParser::ParseRegExp(&reader, flags.is_multiline(),
|
|
&parse_result)) {
|
|
// Throw an exception if we fail to parse the pattern.
|
|
ThrowRegExpException(re,
|
|
pattern,
|
|
parse_result.error,
|
|
"malformed_regexp");
|
|
return Handle<Object>::null();
|
|
}
|
|
|
|
if (parse_result.simple && !flags.is_ignore_case()) {
|
|
// Parse-tree is a single atom that is equal to the pattern.
|
|
AtomCompile(re, pattern, flags, pattern);
|
|
} else if (parse_result.tree->IsAtom() &&
|
|
!flags.is_ignore_case() &&
|
|
parse_result.capture_count == 0) {
|
|
RegExpAtom* atom = parse_result.tree->AsAtom();
|
|
Vector<const uc16> atom_pattern = atom->data();
|
|
Handle<String> atom_string =
|
|
isolate->factory()->NewStringFromTwoByte(atom_pattern);
|
|
AtomCompile(re, pattern, flags, atom_string);
|
|
} else {
|
|
IrregexpInitialize(re, pattern, flags, parse_result.capture_count);
|
|
}
|
|
ASSERT(re->data()->IsFixedArray());
|
|
// Compilation succeeded so the data is set on the regexp
|
|
// and we can store it in the cache.
|
|
Handle<FixedArray> data(FixedArray::cast(re->data()));
|
|
compilation_cache->PutRegExp(pattern, flags, data);
|
|
|
|
return re;
|
|
}
|
|
|
|
|
|
Handle<Object> RegExpImpl::Exec(Handle<JSRegExp> regexp,
|
|
Handle<String> subject,
|
|
int index,
|
|
Handle<JSArray> last_match_info) {
|
|
switch (regexp->TypeTag()) {
|
|
case JSRegExp::ATOM:
|
|
return AtomExec(regexp, subject, index, last_match_info);
|
|
case JSRegExp::IRREGEXP: {
|
|
Handle<Object> result =
|
|
IrregexpExec(regexp, subject, index, last_match_info);
|
|
ASSERT(!result.is_null() || Isolate::Current()->has_pending_exception());
|
|
return result;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
return Handle<Object>::null();
|
|
}
|
|
}
|
|
|
|
|
|
// RegExp Atom implementation: Simple string search using indexOf.
|
|
|
|
|
|
void RegExpImpl::AtomCompile(Handle<JSRegExp> re,
|
|
Handle<String> pattern,
|
|
JSRegExp::Flags flags,
|
|
Handle<String> match_pattern) {
|
|
re->GetIsolate()->factory()->SetRegExpAtomData(re,
|
|
JSRegExp::ATOM,
|
|
pattern,
|
|
flags,
|
|
match_pattern);
|
|
}
|
|
|
|
|
|
static void SetAtomLastCapture(FixedArray* array,
|
|
String* subject,
|
|
int from,
|
|
int to) {
|
|
NoHandleAllocation no_handles;
|
|
RegExpImpl::SetLastCaptureCount(array, 2);
|
|
RegExpImpl::SetLastSubject(array, subject);
|
|
RegExpImpl::SetLastInput(array, subject);
|
|
RegExpImpl::SetCapture(array, 0, from);
|
|
RegExpImpl::SetCapture(array, 1, to);
|
|
}
|
|
|
|
/* template <typename SubjectChar>, typename PatternChar>
|
|
static int ReStringMatch(Vector<const SubjectChar> sub_vector,
|
|
Vector<const PatternChar> pat_vector,
|
|
int start_index) {
|
|
|
|
int pattern_length = pat_vector.length();
|
|
if (pattern_length == 0) return start_index;
|
|
|
|
int subject_length = sub_vector.length();
|
|
if (start_index + pattern_length > subject_length) return -1;
|
|
return SearchString(sub_vector, pat_vector, start_index);
|
|
}
|
|
*/
|
|
Handle<Object> RegExpImpl::AtomExec(Handle<JSRegExp> re,
|
|
Handle<String> subject,
|
|
int index,
|
|
Handle<JSArray> last_match_info) {
|
|
Isolate* isolate = re->GetIsolate();
|
|
|
|
ASSERT(0 <= index);
|
|
ASSERT(index <= subject->length());
|
|
|
|
if (!subject->IsFlat()) FlattenString(subject);
|
|
AssertNoAllocation no_heap_allocation; // ensure vectors stay valid
|
|
// Extract flattened substrings of cons strings before determining asciiness.
|
|
String* seq_sub = *subject;
|
|
if (seq_sub->IsConsString()) seq_sub = ConsString::cast(seq_sub)->first();
|
|
|
|
String* needle = String::cast(re->DataAt(JSRegExp::kAtomPatternIndex));
|
|
int needle_len = needle->length();
|
|
|
|
if (needle_len != 0) {
|
|
if (index + needle_len > subject->length())
|
|
return isolate->factory()->null_value();
|
|
|
|
// dispatch on type of strings
|
|
index = (needle->IsAsciiRepresentation()
|
|
? (seq_sub->IsAsciiRepresentation()
|
|
? SearchString(isolate,
|
|
seq_sub->ToAsciiVector(),
|
|
needle->ToAsciiVector(),
|
|
index)
|
|
: SearchString(isolate,
|
|
seq_sub->ToUC16Vector(),
|
|
needle->ToAsciiVector(),
|
|
index))
|
|
: (seq_sub->IsAsciiRepresentation()
|
|
? SearchString(isolate,
|
|
seq_sub->ToAsciiVector(),
|
|
needle->ToUC16Vector(),
|
|
index)
|
|
: SearchString(isolate,
|
|
seq_sub->ToUC16Vector(),
|
|
needle->ToUC16Vector(),
|
|
index)));
|
|
if (index == -1) return FACTORY->null_value();
|
|
}
|
|
ASSERT(last_match_info->HasFastElements());
|
|
|
|
{
|
|
NoHandleAllocation no_handles;
|
|
FixedArray* array = FixedArray::cast(last_match_info->elements());
|
|
SetAtomLastCapture(array, *subject, index, index + needle_len);
|
|
}
|
|
return last_match_info;
|
|
}
|
|
|
|
|
|
// Irregexp implementation.
|
|
|
|
// Ensures that the regexp object contains a compiled version of the
|
|
// source for either ASCII or non-ASCII strings.
|
|
// If the compiled version doesn't already exist, it is compiled
|
|
// from the source pattern.
|
|
// If compilation fails, an exception is thrown and this function
|
|
// returns false.
|
|
bool RegExpImpl::EnsureCompiledIrregexp(Handle<JSRegExp> re, bool is_ascii) {
|
|
Object* compiled_code = re->DataAt(JSRegExp::code_index(is_ascii));
|
|
#ifdef V8_INTERPRETED_REGEXP
|
|
if (compiled_code->IsByteArray()) return true;
|
|
#else // V8_INTERPRETED_REGEXP (RegExp native code)
|
|
if (compiled_code->IsCode()) return true;
|
|
#endif
|
|
return CompileIrregexp(re, is_ascii);
|
|
}
|
|
|
|
|
|
bool RegExpImpl::CompileIrregexp(Handle<JSRegExp> re, bool is_ascii) {
|
|
// Compile the RegExp.
|
|
Isolate* isolate = re->GetIsolate();
|
|
CompilationZoneScope zone_scope(DELETE_ON_EXIT);
|
|
PostponeInterruptsScope postpone(isolate);
|
|
Object* entry = re->DataAt(JSRegExp::code_index(is_ascii));
|
|
if (entry->IsJSObject()) {
|
|
// If it's a JSObject, a previous compilation failed and threw this object.
|
|
// Re-throw the object without trying again.
|
|
isolate->Throw(entry);
|
|
return false;
|
|
}
|
|
ASSERT(entry->IsTheHole());
|
|
|
|
JSRegExp::Flags flags = re->GetFlags();
|
|
|
|
Handle<String> pattern(re->Pattern());
|
|
if (!pattern->IsFlat()) {
|
|
FlattenString(pattern);
|
|
}
|
|
|
|
RegExpCompileData compile_data;
|
|
FlatStringReader reader(isolate, pattern);
|
|
if (!RegExpParser::ParseRegExp(&reader, flags.is_multiline(),
|
|
&compile_data)) {
|
|
// Throw an exception if we fail to parse the pattern.
|
|
// THIS SHOULD NOT HAPPEN. We already pre-parsed it successfully once.
|
|
ThrowRegExpException(re,
|
|
pattern,
|
|
compile_data.error,
|
|
"malformed_regexp");
|
|
return false;
|
|
}
|
|
RegExpEngine::CompilationResult result =
|
|
RegExpEngine::Compile(&compile_data,
|
|
flags.is_ignore_case(),
|
|
flags.is_multiline(),
|
|
pattern,
|
|
is_ascii);
|
|
if (result.error_message != NULL) {
|
|
// Unable to compile regexp.
|
|
Factory* factory = isolate->factory();
|
|
Handle<FixedArray> elements = factory->NewFixedArray(2);
|
|
elements->set(0, *pattern);
|
|
Handle<String> error_message =
|
|
factory->NewStringFromUtf8(CStrVector(result.error_message));
|
|
elements->set(1, *error_message);
|
|
Handle<JSArray> array = factory->NewJSArrayWithElements(elements);
|
|
Handle<Object> regexp_err =
|
|
factory->NewSyntaxError("malformed_regexp", array);
|
|
isolate->Throw(*regexp_err);
|
|
re->SetDataAt(JSRegExp::code_index(is_ascii), *regexp_err);
|
|
return false;
|
|
}
|
|
|
|
Handle<FixedArray> data = Handle<FixedArray>(FixedArray::cast(re->data()));
|
|
data->set(JSRegExp::code_index(is_ascii), result.code);
|
|
int register_max = IrregexpMaxRegisterCount(*data);
|
|
if (result.num_registers > register_max) {
|
|
SetIrregexpMaxRegisterCount(*data, result.num_registers);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
int RegExpImpl::IrregexpMaxRegisterCount(FixedArray* re) {
|
|
return Smi::cast(
|
|
re->get(JSRegExp::kIrregexpMaxRegisterCountIndex))->value();
|
|
}
|
|
|
|
|
|
void RegExpImpl::SetIrregexpMaxRegisterCount(FixedArray* re, int value) {
|
|
re->set(JSRegExp::kIrregexpMaxRegisterCountIndex, Smi::FromInt(value));
|
|
}
|
|
|
|
|
|
int RegExpImpl::IrregexpNumberOfCaptures(FixedArray* re) {
|
|
return Smi::cast(re->get(JSRegExp::kIrregexpCaptureCountIndex))->value();
|
|
}
|
|
|
|
|
|
int RegExpImpl::IrregexpNumberOfRegisters(FixedArray* re) {
|
|
return Smi::cast(re->get(JSRegExp::kIrregexpMaxRegisterCountIndex))->value();
|
|
}
|
|
|
|
|
|
ByteArray* RegExpImpl::IrregexpByteCode(FixedArray* re, bool is_ascii) {
|
|
return ByteArray::cast(re->get(JSRegExp::code_index(is_ascii)));
|
|
}
|
|
|
|
|
|
Code* RegExpImpl::IrregexpNativeCode(FixedArray* re, bool is_ascii) {
|
|
return Code::cast(re->get(JSRegExp::code_index(is_ascii)));
|
|
}
|
|
|
|
|
|
void RegExpImpl::IrregexpInitialize(Handle<JSRegExp> re,
|
|
Handle<String> pattern,
|
|
JSRegExp::Flags flags,
|
|
int capture_count) {
|
|
// Initialize compiled code entries to null.
|
|
re->GetIsolate()->factory()->SetRegExpIrregexpData(re,
|
|
JSRegExp::IRREGEXP,
|
|
pattern,
|
|
flags,
|
|
capture_count);
|
|
}
|
|
|
|
|
|
int RegExpImpl::IrregexpPrepare(Handle<JSRegExp> regexp,
|
|
Handle<String> subject) {
|
|
if (!subject->IsFlat()) {
|
|
FlattenString(subject);
|
|
}
|
|
// Check the asciiness of the underlying storage.
|
|
bool is_ascii;
|
|
{
|
|
AssertNoAllocation no_gc;
|
|
String* sequential_string = *subject;
|
|
if (subject->IsConsString()) {
|
|
sequential_string = ConsString::cast(*subject)->first();
|
|
}
|
|
is_ascii = sequential_string->IsAsciiRepresentation();
|
|
}
|
|
if (!EnsureCompiledIrregexp(regexp, is_ascii)) {
|
|
return -1;
|
|
}
|
|
#ifdef V8_INTERPRETED_REGEXP
|
|
// Byte-code regexp needs space allocated for all its registers.
|
|
return IrregexpNumberOfRegisters(FixedArray::cast(regexp->data()));
|
|
#else // V8_INTERPRETED_REGEXP
|
|
// Native regexp only needs room to output captures. Registers are handled
|
|
// internally.
|
|
return (IrregexpNumberOfCaptures(FixedArray::cast(regexp->data())) + 1) * 2;
|
|
#endif // V8_INTERPRETED_REGEXP
|
|
}
|
|
|
|
|
|
RegExpImpl::IrregexpResult RegExpImpl::IrregexpExecOnce(
|
|
Handle<JSRegExp> regexp,
|
|
Handle<String> subject,
|
|
int index,
|
|
Vector<int> output) {
|
|
Isolate* isolate = regexp->GetIsolate();
|
|
|
|
Handle<FixedArray> irregexp(FixedArray::cast(regexp->data()), isolate);
|
|
|
|
ASSERT(index >= 0);
|
|
ASSERT(index <= subject->length());
|
|
ASSERT(subject->IsFlat());
|
|
|
|
// A flat ASCII string might have a two-byte first part.
|
|
if (subject->IsConsString()) {
|
|
subject = Handle<String>(ConsString::cast(*subject)->first(), isolate);
|
|
}
|
|
|
|
#ifndef V8_INTERPRETED_REGEXP
|
|
ASSERT(output.length() >= (IrregexpNumberOfCaptures(*irregexp) + 1) * 2);
|
|
do {
|
|
bool is_ascii = subject->IsAsciiRepresentation();
|
|
Handle<Code> code(IrregexpNativeCode(*irregexp, is_ascii), isolate);
|
|
NativeRegExpMacroAssembler::Result res =
|
|
NativeRegExpMacroAssembler::Match(code,
|
|
subject,
|
|
output.start(),
|
|
output.length(),
|
|
index,
|
|
isolate);
|
|
if (res != NativeRegExpMacroAssembler::RETRY) {
|
|
ASSERT(res != NativeRegExpMacroAssembler::EXCEPTION ||
|
|
isolate->has_pending_exception());
|
|
STATIC_ASSERT(
|
|
static_cast<int>(NativeRegExpMacroAssembler::SUCCESS) == RE_SUCCESS);
|
|
STATIC_ASSERT(
|
|
static_cast<int>(NativeRegExpMacroAssembler::FAILURE) == RE_FAILURE);
|
|
STATIC_ASSERT(static_cast<int>(NativeRegExpMacroAssembler::EXCEPTION)
|
|
== RE_EXCEPTION);
|
|
return static_cast<IrregexpResult>(res);
|
|
}
|
|
// If result is RETRY, the string has changed representation, and we
|
|
// must restart from scratch.
|
|
// In this case, it means we must make sure we are prepared to handle
|
|
// the, potentially, different subject (the string can switch between
|
|
// being internal and external, and even between being ASCII and UC16,
|
|
// but the characters are always the same).
|
|
IrregexpPrepare(regexp, subject);
|
|
} while (true);
|
|
UNREACHABLE();
|
|
return RE_EXCEPTION;
|
|
#else // V8_INTERPRETED_REGEXP
|
|
|
|
ASSERT(output.length() >= IrregexpNumberOfRegisters(*irregexp));
|
|
bool is_ascii = subject->IsAsciiRepresentation();
|
|
// We must have done EnsureCompiledIrregexp, so we can get the number of
|
|
// registers.
|
|
int* register_vector = output.start();
|
|
int number_of_capture_registers =
|
|
(IrregexpNumberOfCaptures(*irregexp) + 1) * 2;
|
|
for (int i = number_of_capture_registers - 1; i >= 0; i--) {
|
|
register_vector[i] = -1;
|
|
}
|
|
Handle<ByteArray> byte_codes(IrregexpByteCode(*irregexp, is_ascii), isolate);
|
|
|
|
if (IrregexpInterpreter::Match(byte_codes,
|
|
subject,
|
|
register_vector,
|
|
index)) {
|
|
return RE_SUCCESS;
|
|
}
|
|
return RE_FAILURE;
|
|
#endif // V8_INTERPRETED_REGEXP
|
|
}
|
|
|
|
|
|
Handle<Object> RegExpImpl::IrregexpExec(Handle<JSRegExp> jsregexp,
|
|
Handle<String> subject,
|
|
int previous_index,
|
|
Handle<JSArray> last_match_info) {
|
|
ASSERT_EQ(jsregexp->TypeTag(), JSRegExp::IRREGEXP);
|
|
|
|
// Prepare space for the return values.
|
|
#ifdef V8_INTERPRETED_REGEXP
|
|
#ifdef DEBUG
|
|
if (FLAG_trace_regexp_bytecodes) {
|
|
String* pattern = jsregexp->Pattern();
|
|
PrintF("\n\nRegexp match: /%s/\n\n", *(pattern->ToCString()));
|
|
PrintF("\n\nSubject string: '%s'\n\n", *(subject->ToCString()));
|
|
}
|
|
#endif
|
|
#endif
|
|
int required_registers = RegExpImpl::IrregexpPrepare(jsregexp, subject);
|
|
if (required_registers < 0) {
|
|
// Compiling failed with an exception.
|
|
ASSERT(Isolate::Current()->has_pending_exception());
|
|
return Handle<Object>::null();
|
|
}
|
|
|
|
OffsetsVector registers(required_registers);
|
|
|
|
IrregexpResult res = RegExpImpl::IrregexpExecOnce(
|
|
jsregexp, subject, previous_index, Vector<int>(registers.vector(),
|
|
registers.length()));
|
|
if (res == RE_SUCCESS) {
|
|
int capture_register_count =
|
|
(IrregexpNumberOfCaptures(FixedArray::cast(jsregexp->data())) + 1) * 2;
|
|
last_match_info->EnsureSize(capture_register_count + kLastMatchOverhead);
|
|
AssertNoAllocation no_gc;
|
|
int* register_vector = registers.vector();
|
|
FixedArray* array = FixedArray::cast(last_match_info->elements());
|
|
for (int i = 0; i < capture_register_count; i += 2) {
|
|
SetCapture(array, i, register_vector[i]);
|
|
SetCapture(array, i + 1, register_vector[i + 1]);
|
|
}
|
|
SetLastCaptureCount(array, capture_register_count);
|
|
SetLastSubject(array, *subject);
|
|
SetLastInput(array, *subject);
|
|
return last_match_info;
|
|
}
|
|
if (res == RE_EXCEPTION) {
|
|
ASSERT(Isolate::Current()->has_pending_exception());
|
|
return Handle<Object>::null();
|
|
}
|
|
ASSERT(res == RE_FAILURE);
|
|
return Isolate::Current()->factory()->null_value();
|
|
}
|
|
|
|
|
|
// -------------------------------------------------------------------
|
|
// Implementation of the Irregexp regular expression engine.
|
|
//
|
|
// The Irregexp regular expression engine is intended to be a complete
|
|
// implementation of ECMAScript regular expressions. It generates either
|
|
// bytecodes or native code.
|
|
|
|
// The Irregexp regexp engine is structured in three steps.
|
|
// 1) The parser generates an abstract syntax tree. See ast.cc.
|
|
// 2) From the AST a node network is created. The nodes are all
|
|
// subclasses of RegExpNode. The nodes represent states when
|
|
// executing a regular expression. Several optimizations are
|
|
// performed on the node network.
|
|
// 3) From the nodes we generate either byte codes or native code
|
|
// that can actually execute the regular expression (perform
|
|
// the search). The code generation step is described in more
|
|
// detail below.
|
|
|
|
// Code generation.
|
|
//
|
|
// The nodes are divided into four main categories.
|
|
// * Choice nodes
|
|
// These represent places where the regular expression can
|
|
// match in more than one way. For example on entry to an
|
|
// alternation (foo|bar) or a repetition (*, +, ? or {}).
|
|
// * Action nodes
|
|
// These represent places where some action should be
|
|
// performed. Examples include recording the current position
|
|
// in the input string to a register (in order to implement
|
|
// captures) or other actions on register for example in order
|
|
// to implement the counters needed for {} repetitions.
|
|
// * Matching nodes
|
|
// These attempt to match some element part of the input string.
|
|
// Examples of elements include character classes, plain strings
|
|
// or back references.
|
|
// * End nodes
|
|
// These are used to implement the actions required on finding
|
|
// a successful match or failing to find a match.
|
|
//
|
|
// The code generated (whether as byte codes or native code) maintains
|
|
// some state as it runs. This consists of the following elements:
|
|
//
|
|
// * The capture registers. Used for string captures.
|
|
// * Other registers. Used for counters etc.
|
|
// * The current position.
|
|
// * The stack of backtracking information. Used when a matching node
|
|
// fails to find a match and needs to try an alternative.
|
|
//
|
|
// Conceptual regular expression execution model:
|
|
//
|
|
// There is a simple conceptual model of regular expression execution
|
|
// which will be presented first. The actual code generated is a more
|
|
// efficient simulation of the simple conceptual model:
|
|
//
|
|
// * Choice nodes are implemented as follows:
|
|
// For each choice except the last {
|
|
// push current position
|
|
// push backtrack code location
|
|
// <generate code to test for choice>
|
|
// backtrack code location:
|
|
// pop current position
|
|
// }
|
|
// <generate code to test for last choice>
|
|
//
|
|
// * Actions nodes are generated as follows
|
|
// <push affected registers on backtrack stack>
|
|
// <generate code to perform action>
|
|
// push backtrack code location
|
|
// <generate code to test for following nodes>
|
|
// backtrack code location:
|
|
// <pop affected registers to restore their state>
|
|
// <pop backtrack location from stack and go to it>
|
|
//
|
|
// * Matching nodes are generated as follows:
|
|
// if input string matches at current position
|
|
// update current position
|
|
// <generate code to test for following nodes>
|
|
// else
|
|
// <pop backtrack location from stack and go to it>
|
|
//
|
|
// Thus it can be seen that the current position is saved and restored
|
|
// by the choice nodes, whereas the registers are saved and restored by
|
|
// by the action nodes that manipulate them.
|
|
//
|
|
// The other interesting aspect of this model is that nodes are generated
|
|
// at the point where they are needed by a recursive call to Emit(). If
|
|
// the node has already been code generated then the Emit() call will
|
|
// generate a jump to the previously generated code instead. In order to
|
|
// limit recursion it is possible for the Emit() function to put the node
|
|
// on a work list for later generation and instead generate a jump. The
|
|
// destination of the jump is resolved later when the code is generated.
|
|
//
|
|
// Actual regular expression code generation.
|
|
//
|
|
// Code generation is actually more complicated than the above. In order
|
|
// to improve the efficiency of the generated code some optimizations are
|
|
// performed
|
|
//
|
|
// * Choice nodes have 1-character lookahead.
|
|
// A choice node looks at the following character and eliminates some of
|
|
// the choices immediately based on that character. This is not yet
|
|
// implemented.
|
|
// * Simple greedy loops store reduced backtracking information.
|
|
// A quantifier like /.*foo/m will greedily match the whole input. It will
|
|
// then need to backtrack to a point where it can match "foo". The naive
|
|
// implementation of this would push each character position onto the
|
|
// backtracking stack, then pop them off one by one. This would use space
|
|
// proportional to the length of the input string. However since the "."
|
|
// can only match in one way and always has a constant length (in this case
|
|
// of 1) it suffices to store the current position on the top of the stack
|
|
// once. Matching now becomes merely incrementing the current position and
|
|
// backtracking becomes decrementing the current position and checking the
|
|
// result against the stored current position. This is faster and saves
|
|
// space.
|
|
// * The current state is virtualized.
|
|
// This is used to defer expensive operations until it is clear that they
|
|
// are needed and to generate code for a node more than once, allowing
|
|
// specialized an efficient versions of the code to be created. This is
|
|
// explained in the section below.
|
|
//
|
|
// Execution state virtualization.
|
|
//
|
|
// Instead of emitting code, nodes that manipulate the state can record their
|
|
// manipulation in an object called the Trace. The Trace object can record a
|
|
// current position offset, an optional backtrack code location on the top of
|
|
// the virtualized backtrack stack and some register changes. When a node is
|
|
// to be emitted it can flush the Trace or update it. Flushing the Trace
|
|
// will emit code to bring the actual state into line with the virtual state.
|
|
// Avoiding flushing the state can postpone some work (eg updates of capture
|
|
// registers). Postponing work can save time when executing the regular
|
|
// expression since it may be found that the work never has to be done as a
|
|
// failure to match can occur. In addition it is much faster to jump to a
|
|
// known backtrack code location than it is to pop an unknown backtrack
|
|
// location from the stack and jump there.
|
|
//
|
|
// The virtual state found in the Trace affects code generation. For example
|
|
// the virtual state contains the difference between the actual current
|
|
// position and the virtual current position, and matching code needs to use
|
|
// this offset to attempt a match in the correct location of the input
|
|
// string. Therefore code generated for a non-trivial trace is specialized
|
|
// to that trace. The code generator therefore has the ability to generate
|
|
// code for each node several times. In order to limit the size of the
|
|
// generated code there is an arbitrary limit on how many specialized sets of
|
|
// code may be generated for a given node. If the limit is reached, the
|
|
// trace is flushed and a generic version of the code for a node is emitted.
|
|
// This is subsequently used for that node. The code emitted for non-generic
|
|
// trace is not recorded in the node and so it cannot currently be reused in
|
|
// the event that code generation is requested for an identical trace.
|
|
|
|
|
|
void RegExpTree::AppendToText(RegExpText* text) {
|
|
UNREACHABLE();
|
|
}
|
|
|
|
|
|
void RegExpAtom::AppendToText(RegExpText* text) {
|
|
text->AddElement(TextElement::Atom(this));
|
|
}
|
|
|
|
|
|
void RegExpCharacterClass::AppendToText(RegExpText* text) {
|
|
text->AddElement(TextElement::CharClass(this));
|
|
}
|
|
|
|
|
|
void RegExpText::AppendToText(RegExpText* text) {
|
|
for (int i = 0; i < elements()->length(); i++)
|
|
text->AddElement(elements()->at(i));
|
|
}
|
|
|
|
|
|
TextElement TextElement::Atom(RegExpAtom* atom) {
|
|
TextElement result = TextElement(ATOM);
|
|
result.data.u_atom = atom;
|
|
return result;
|
|
}
|
|
|
|
|
|
TextElement TextElement::CharClass(
|
|
RegExpCharacterClass* char_class) {
|
|
TextElement result = TextElement(CHAR_CLASS);
|
|
result.data.u_char_class = char_class;
|
|
return result;
|
|
}
|
|
|
|
|
|
int TextElement::length() {
|
|
if (type == ATOM) {
|
|
return data.u_atom->length();
|
|
} else {
|
|
ASSERT(type == CHAR_CLASS);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
|
|
DispatchTable* ChoiceNode::GetTable(bool ignore_case) {
|
|
if (table_ == NULL) {
|
|
table_ = new DispatchTable();
|
|
DispatchTableConstructor cons(table_, ignore_case);
|
|
cons.BuildTable(this);
|
|
}
|
|
return table_;
|
|
}
|
|
|
|
|
|
class RegExpCompiler {
|
|
public:
|
|
RegExpCompiler(int capture_count, bool ignore_case, bool is_ascii);
|
|
|
|
int AllocateRegister() {
|
|
if (next_register_ >= RegExpMacroAssembler::kMaxRegister) {
|
|
reg_exp_too_big_ = true;
|
|
return next_register_;
|
|
}
|
|
return next_register_++;
|
|
}
|
|
|
|
RegExpEngine::CompilationResult Assemble(RegExpMacroAssembler* assembler,
|
|
RegExpNode* start,
|
|
int capture_count,
|
|
Handle<String> pattern);
|
|
|
|
inline void AddWork(RegExpNode* node) { work_list_->Add(node); }
|
|
|
|
static const int kImplementationOffset = 0;
|
|
static const int kNumberOfRegistersOffset = 0;
|
|
static const int kCodeOffset = 1;
|
|
|
|
RegExpMacroAssembler* macro_assembler() { return macro_assembler_; }
|
|
EndNode* accept() { return accept_; }
|
|
|
|
static const int kMaxRecursion = 100;
|
|
inline int recursion_depth() { return recursion_depth_; }
|
|
inline void IncrementRecursionDepth() { recursion_depth_++; }
|
|
inline void DecrementRecursionDepth() { recursion_depth_--; }
|
|
|
|
void SetRegExpTooBig() { reg_exp_too_big_ = true; }
|
|
|
|
inline bool ignore_case() { return ignore_case_; }
|
|
inline bool ascii() { return ascii_; }
|
|
|
|
static const int kNoRegister = -1;
|
|
private:
|
|
EndNode* accept_;
|
|
int next_register_;
|
|
List<RegExpNode*>* work_list_;
|
|
int recursion_depth_;
|
|
RegExpMacroAssembler* macro_assembler_;
|
|
bool ignore_case_;
|
|
bool ascii_;
|
|
bool reg_exp_too_big_;
|
|
};
|
|
|
|
|
|
class RecursionCheck {
|
|
public:
|
|
explicit RecursionCheck(RegExpCompiler* compiler) : compiler_(compiler) {
|
|
compiler->IncrementRecursionDepth();
|
|
}
|
|
~RecursionCheck() { compiler_->DecrementRecursionDepth(); }
|
|
private:
|
|
RegExpCompiler* compiler_;
|
|
};
|
|
|
|
|
|
static RegExpEngine::CompilationResult IrregexpRegExpTooBig() {
|
|
return RegExpEngine::CompilationResult("RegExp too big");
|
|
}
|
|
|
|
|
|
// Attempts to compile the regexp using an Irregexp code generator. Returns
|
|
// a fixed array or a null handle depending on whether it succeeded.
|
|
RegExpCompiler::RegExpCompiler(int capture_count, bool ignore_case, bool ascii)
|
|
: next_register_(2 * (capture_count + 1)),
|
|
work_list_(NULL),
|
|
recursion_depth_(0),
|
|
ignore_case_(ignore_case),
|
|
ascii_(ascii),
|
|
reg_exp_too_big_(false) {
|
|
accept_ = new EndNode(EndNode::ACCEPT);
|
|
ASSERT(next_register_ - 1 <= RegExpMacroAssembler::kMaxRegister);
|
|
}
|
|
|
|
|
|
RegExpEngine::CompilationResult RegExpCompiler::Assemble(
|
|
RegExpMacroAssembler* macro_assembler,
|
|
RegExpNode* start,
|
|
int capture_count,
|
|
Handle<String> pattern) {
|
|
#ifdef DEBUG
|
|
if (FLAG_trace_regexp_assembler)
|
|
macro_assembler_ = new RegExpMacroAssemblerTracer(macro_assembler);
|
|
else
|
|
#endif
|
|
macro_assembler_ = macro_assembler;
|
|
List <RegExpNode*> work_list(0);
|
|
work_list_ = &work_list;
|
|
Label fail;
|
|
macro_assembler_->PushBacktrack(&fail);
|
|
Trace new_trace;
|
|
start->Emit(this, &new_trace);
|
|
macro_assembler_->Bind(&fail);
|
|
macro_assembler_->Fail();
|
|
while (!work_list.is_empty()) {
|
|
work_list.RemoveLast()->Emit(this, &new_trace);
|
|
}
|
|
if (reg_exp_too_big_) return IrregexpRegExpTooBig();
|
|
|
|
Handle<Object> code = macro_assembler_->GetCode(pattern);
|
|
work_list_ = NULL;
|
|
#ifdef DEBUG
|
|
if (FLAG_print_code) {
|
|
Handle<Code>::cast(code)->Disassemble(*pattern->ToCString());
|
|
}
|
|
if (FLAG_trace_regexp_assembler) {
|
|
delete macro_assembler_;
|
|
}
|
|
#endif
|
|
return RegExpEngine::CompilationResult(*code, next_register_);
|
|
}
|
|
|
|
|
|
bool Trace::DeferredAction::Mentions(int that) {
|
|
if (type() == ActionNode::CLEAR_CAPTURES) {
|
|
Interval range = static_cast<DeferredClearCaptures*>(this)->range();
|
|
return range.Contains(that);
|
|
} else {
|
|
return reg() == that;
|
|
}
|
|
}
|
|
|
|
|
|
bool Trace::mentions_reg(int reg) {
|
|
for (DeferredAction* action = actions_;
|
|
action != NULL;
|
|
action = action->next()) {
|
|
if (action->Mentions(reg))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool Trace::GetStoredPosition(int reg, int* cp_offset) {
|
|
ASSERT_EQ(0, *cp_offset);
|
|
for (DeferredAction* action = actions_;
|
|
action != NULL;
|
|
action = action->next()) {
|
|
if (action->Mentions(reg)) {
|
|
if (action->type() == ActionNode::STORE_POSITION) {
|
|
*cp_offset = static_cast<DeferredCapture*>(action)->cp_offset();
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
int Trace::FindAffectedRegisters(OutSet* affected_registers) {
|
|
int max_register = RegExpCompiler::kNoRegister;
|
|
for (DeferredAction* action = actions_;
|
|
action != NULL;
|
|
action = action->next()) {
|
|
if (action->type() == ActionNode::CLEAR_CAPTURES) {
|
|
Interval range = static_cast<DeferredClearCaptures*>(action)->range();
|
|
for (int i = range.from(); i <= range.to(); i++)
|
|
affected_registers->Set(i);
|
|
if (range.to() > max_register) max_register = range.to();
|
|
} else {
|
|
affected_registers->Set(action->reg());
|
|
if (action->reg() > max_register) max_register = action->reg();
|
|
}
|
|
}
|
|
return max_register;
|
|
}
|
|
|
|
|
|
void Trace::RestoreAffectedRegisters(RegExpMacroAssembler* assembler,
|
|
int max_register,
|
|
OutSet& registers_to_pop,
|
|
OutSet& registers_to_clear) {
|
|
for (int reg = max_register; reg >= 0; reg--) {
|
|
if (registers_to_pop.Get(reg)) assembler->PopRegister(reg);
|
|
else if (registers_to_clear.Get(reg)) {
|
|
int clear_to = reg;
|
|
while (reg > 0 && registers_to_clear.Get(reg - 1)) {
|
|
reg--;
|
|
}
|
|
assembler->ClearRegisters(reg, clear_to);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler,
|
|
int max_register,
|
|
OutSet& affected_registers,
|
|
OutSet* registers_to_pop,
|
|
OutSet* registers_to_clear) {
|
|
// The "+1" is to avoid a push_limit of zero if stack_limit_slack() is 1.
|
|
const int push_limit = (assembler->stack_limit_slack() + 1) / 2;
|
|
|
|
// Count pushes performed to force a stack limit check occasionally.
|
|
int pushes = 0;
|
|
|
|
for (int reg = 0; reg <= max_register; reg++) {
|
|
if (!affected_registers.Get(reg)) {
|
|
continue;
|
|
}
|
|
|
|
// The chronologically first deferred action in the trace
|
|
// is used to infer the action needed to restore a register
|
|
// to its previous state (or not, if it's safe to ignore it).
|
|
enum DeferredActionUndoType { IGNORE, RESTORE, CLEAR };
|
|
DeferredActionUndoType undo_action = IGNORE;
|
|
|
|
int value = 0;
|
|
bool absolute = false;
|
|
bool clear = false;
|
|
int store_position = -1;
|
|
// This is a little tricky because we are scanning the actions in reverse
|
|
// historical order (newest first).
|
|
for (DeferredAction* action = actions_;
|
|
action != NULL;
|
|
action = action->next()) {
|
|
if (action->Mentions(reg)) {
|
|
switch (action->type()) {
|
|
case ActionNode::SET_REGISTER: {
|
|
Trace::DeferredSetRegister* psr =
|
|
static_cast<Trace::DeferredSetRegister*>(action);
|
|
if (!absolute) {
|
|
value += psr->value();
|
|
absolute = true;
|
|
}
|
|
// SET_REGISTER is currently only used for newly introduced loop
|
|
// counters. They can have a significant previous value if they
|
|
// occour in a loop. TODO(lrn): Propagate this information, so
|
|
// we can set undo_action to IGNORE if we know there is no value to
|
|
// restore.
|
|
undo_action = RESTORE;
|
|
ASSERT_EQ(store_position, -1);
|
|
ASSERT(!clear);
|
|
break;
|
|
}
|
|
case ActionNode::INCREMENT_REGISTER:
|
|
if (!absolute) {
|
|
value++;
|
|
}
|
|
ASSERT_EQ(store_position, -1);
|
|
ASSERT(!clear);
|
|
undo_action = RESTORE;
|
|
break;
|
|
case ActionNode::STORE_POSITION: {
|
|
Trace::DeferredCapture* pc =
|
|
static_cast<Trace::DeferredCapture*>(action);
|
|
if (!clear && store_position == -1) {
|
|
store_position = pc->cp_offset();
|
|
}
|
|
|
|
// For captures we know that stores and clears alternate.
|
|
// Other register, are never cleared, and if the occur
|
|
// inside a loop, they might be assigned more than once.
|
|
if (reg <= 1) {
|
|
// Registers zero and one, aka "capture zero", is
|
|
// always set correctly if we succeed. There is no
|
|
// need to undo a setting on backtrack, because we
|
|
// will set it again or fail.
|
|
undo_action = IGNORE;
|
|
} else {
|
|
undo_action = pc->is_capture() ? CLEAR : RESTORE;
|
|
}
|
|
ASSERT(!absolute);
|
|
ASSERT_EQ(value, 0);
|
|
break;
|
|
}
|
|
case ActionNode::CLEAR_CAPTURES: {
|
|
// Since we're scanning in reverse order, if we've already
|
|
// set the position we have to ignore historically earlier
|
|
// clearing operations.
|
|
if (store_position == -1) {
|
|
clear = true;
|
|
}
|
|
undo_action = RESTORE;
|
|
ASSERT(!absolute);
|
|
ASSERT_EQ(value, 0);
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// Prepare for the undo-action (e.g., push if it's going to be popped).
|
|
if (undo_action == RESTORE) {
|
|
pushes++;
|
|
RegExpMacroAssembler::StackCheckFlag stack_check =
|
|
RegExpMacroAssembler::kNoStackLimitCheck;
|
|
if (pushes == push_limit) {
|
|
stack_check = RegExpMacroAssembler::kCheckStackLimit;
|
|
pushes = 0;
|
|
}
|
|
|
|
assembler->PushRegister(reg, stack_check);
|
|
registers_to_pop->Set(reg);
|
|
} else if (undo_action == CLEAR) {
|
|
registers_to_clear->Set(reg);
|
|
}
|
|
// Perform the chronologically last action (or accumulated increment)
|
|
// for the register.
|
|
if (store_position != -1) {
|
|
assembler->WriteCurrentPositionToRegister(reg, store_position);
|
|
} else if (clear) {
|
|
assembler->ClearRegisters(reg, reg);
|
|
} else if (absolute) {
|
|
assembler->SetRegister(reg, value);
|
|
} else if (value != 0) {
|
|
assembler->AdvanceRegister(reg, value);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// This is called as we come into a loop choice node and some other tricky
|
|
// nodes. It normalizes the state of the code generator to ensure we can
|
|
// generate generic code.
|
|
void Trace::Flush(RegExpCompiler* compiler, RegExpNode* successor) {
|
|
RegExpMacroAssembler* assembler = compiler->macro_assembler();
|
|
|
|
ASSERT(!is_trivial());
|
|
|
|
if (actions_ == NULL && backtrack() == NULL) {
|
|
// Here we just have some deferred cp advances to fix and we are back to
|
|
// a normal situation. We may also have to forget some information gained
|
|
// through a quick check that was already performed.
|
|
if (cp_offset_ != 0) assembler->AdvanceCurrentPosition(cp_offset_);
|
|
// Create a new trivial state and generate the node with that.
|
|
Trace new_state;
|
|
successor->Emit(compiler, &new_state);
|
|
return;
|
|
}
|
|
|
|
// Generate deferred actions here along with code to undo them again.
|
|
OutSet affected_registers;
|
|
|
|
if (backtrack() != NULL) {
|
|
// Here we have a concrete backtrack location. These are set up by choice
|
|
// nodes and so they indicate that we have a deferred save of the current
|
|
// position which we may need to emit here.
|
|
assembler->PushCurrentPosition();
|
|
}
|
|
|
|
int max_register = FindAffectedRegisters(&affected_registers);
|
|
OutSet registers_to_pop;
|
|
OutSet registers_to_clear;
|
|
PerformDeferredActions(assembler,
|
|
max_register,
|
|
affected_registers,
|
|
®isters_to_pop,
|
|
®isters_to_clear);
|
|
if (cp_offset_ != 0) {
|
|
assembler->AdvanceCurrentPosition(cp_offset_);
|
|
}
|
|
|
|
// Create a new trivial state and generate the node with that.
|
|
Label undo;
|
|
assembler->PushBacktrack(&undo);
|
|
Trace new_state;
|
|
successor->Emit(compiler, &new_state);
|
|
|
|
// On backtrack we need to restore state.
|
|
assembler->Bind(&undo);
|
|
RestoreAffectedRegisters(assembler,
|
|
max_register,
|
|
registers_to_pop,
|
|
registers_to_clear);
|
|
if (backtrack() == NULL) {
|
|
assembler->Backtrack();
|
|
} else {
|
|
assembler->PopCurrentPosition();
|
|
assembler->GoTo(backtrack());
|
|
}
|
|
}
|
|
|
|
|
|
void NegativeSubmatchSuccess::Emit(RegExpCompiler* compiler, Trace* trace) {
|
|
RegExpMacroAssembler* assembler = compiler->macro_assembler();
|
|
|
|
// Omit flushing the trace. We discard the entire stack frame anyway.
|
|
|
|
if (!label()->is_bound()) {
|
|
// We are completely independent of the trace, since we ignore it,
|
|
// so this code can be used as the generic version.
|
|
assembler->Bind(label());
|
|
}
|
|
|
|
// Throw away everything on the backtrack stack since the start
|
|
// of the negative submatch and restore the character position.
|
|
assembler->ReadCurrentPositionFromRegister(current_position_register_);
|
|
assembler->ReadStackPointerFromRegister(stack_pointer_register_);
|
|
if (clear_capture_count_ > 0) {
|
|
// Clear any captures that might have been performed during the success
|
|
// of the body of the negative look-ahead.
|
|
int clear_capture_end = clear_capture_start_ + clear_capture_count_ - 1;
|
|
assembler->ClearRegisters(clear_capture_start_, clear_capture_end);
|
|
}
|
|
// Now that we have unwound the stack we find at the top of the stack the
|
|
// backtrack that the BeginSubmatch node got.
|
|
assembler->Backtrack();
|
|
}
|
|
|
|
|
|
void EndNode::Emit(RegExpCompiler* compiler, Trace* trace) {
|
|
if (!trace->is_trivial()) {
|
|
trace->Flush(compiler, this);
|
|
return;
|
|
}
|
|
RegExpMacroAssembler* assembler = compiler->macro_assembler();
|
|
if (!label()->is_bound()) {
|
|
assembler->Bind(label());
|
|
}
|
|
switch (action_) {
|
|
case ACCEPT:
|
|
assembler->Succeed();
|
|
return;
|
|
case BACKTRACK:
|
|
assembler->GoTo(trace->backtrack());
|
|
return;
|
|
case NEGATIVE_SUBMATCH_SUCCESS:
|
|
// This case is handled in a different virtual method.
|
|
UNREACHABLE();
|
|
}
|
|
UNIMPLEMENTED();
|
|
}
|
|
|
|
|
|
void GuardedAlternative::AddGuard(Guard* guard) {
|
|
if (guards_ == NULL)
|
|
guards_ = new ZoneList<Guard*>(1);
|
|
guards_->Add(guard);
|
|
}
|
|
|
|
|
|
ActionNode* ActionNode::SetRegister(int reg,
|
|
int val,
|
|
RegExpNode* on_success) {
|
|
ActionNode* result = new ActionNode(SET_REGISTER, on_success);
|
|
result->data_.u_store_register.reg = reg;
|
|
result->data_.u_store_register.value = val;
|
|
return result;
|
|
}
|
|
|
|
|
|
ActionNode* ActionNode::IncrementRegister(int reg, RegExpNode* on_success) {
|
|
ActionNode* result = new ActionNode(INCREMENT_REGISTER, on_success);
|
|
result->data_.u_increment_register.reg = reg;
|
|
return result;
|
|
}
|
|
|
|
|
|
ActionNode* ActionNode::StorePosition(int reg,
|
|
bool is_capture,
|
|
RegExpNode* on_success) {
|
|
ActionNode* result = new ActionNode(STORE_POSITION, on_success);
|
|
result->data_.u_position_register.reg = reg;
|
|
result->data_.u_position_register.is_capture = is_capture;
|
|
return result;
|
|
}
|
|
|
|
|
|
ActionNode* ActionNode::ClearCaptures(Interval range,
|
|
RegExpNode* on_success) {
|
|
ActionNode* result = new ActionNode(CLEAR_CAPTURES, on_success);
|
|
result->data_.u_clear_captures.range_from = range.from();
|
|
result->data_.u_clear_captures.range_to = range.to();
|
|
return result;
|
|
}
|
|
|
|
|
|
ActionNode* ActionNode::BeginSubmatch(int stack_reg,
|
|
int position_reg,
|
|
RegExpNode* on_success) {
|
|
ActionNode* result = new ActionNode(BEGIN_SUBMATCH, on_success);
|
|
result->data_.u_submatch.stack_pointer_register = stack_reg;
|
|
result->data_.u_submatch.current_position_register = position_reg;
|
|
return result;
|
|
}
|
|
|
|
|
|
ActionNode* ActionNode::PositiveSubmatchSuccess(int stack_reg,
|
|
int position_reg,
|
|
int clear_register_count,
|
|
int clear_register_from,
|
|
RegExpNode* on_success) {
|
|
ActionNode* result = new ActionNode(POSITIVE_SUBMATCH_SUCCESS, on_success);
|
|
result->data_.u_submatch.stack_pointer_register = stack_reg;
|
|
result->data_.u_submatch.current_position_register = position_reg;
|
|
result->data_.u_submatch.clear_register_count = clear_register_count;
|
|
result->data_.u_submatch.clear_register_from = clear_register_from;
|
|
return result;
|
|
}
|
|
|
|
|
|
ActionNode* ActionNode::EmptyMatchCheck(int start_register,
|
|
int repetition_register,
|
|
int repetition_limit,
|
|
RegExpNode* on_success) {
|
|
ActionNode* result = new ActionNode(EMPTY_MATCH_CHECK, on_success);
|
|
result->data_.u_empty_match_check.start_register = start_register;
|
|
result->data_.u_empty_match_check.repetition_register = repetition_register;
|
|
result->data_.u_empty_match_check.repetition_limit = repetition_limit;
|
|
return result;
|
|
}
|
|
|
|
|
|
#define DEFINE_ACCEPT(Type) \
|
|
void Type##Node::Accept(NodeVisitor* visitor) { \
|
|
visitor->Visit##Type(this); \
|
|
}
|
|
FOR_EACH_NODE_TYPE(DEFINE_ACCEPT)
|
|
#undef DEFINE_ACCEPT
|
|
|
|
|
|
void LoopChoiceNode::Accept(NodeVisitor* visitor) {
|
|
visitor->VisitLoopChoice(this);
|
|
}
|
|
|
|
|
|
// -------------------------------------------------------------------
|
|
// Emit code.
|
|
|
|
|
|
void ChoiceNode::GenerateGuard(RegExpMacroAssembler* macro_assembler,
|
|
Guard* guard,
|
|
Trace* trace) {
|
|
switch (guard->op()) {
|
|
case Guard::LT:
|
|
ASSERT(!trace->mentions_reg(guard->reg()));
|
|
macro_assembler->IfRegisterGE(guard->reg(),
|
|
guard->value(),
|
|
trace->backtrack());
|
|
break;
|
|
case Guard::GEQ:
|
|
ASSERT(!trace->mentions_reg(guard->reg()));
|
|
macro_assembler->IfRegisterLT(guard->reg(),
|
|
guard->value(),
|
|
trace->backtrack());
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
// Returns the number of characters in the equivalence class, omitting those
|
|
// that cannot occur in the source string because it is ASCII.
|
|
static int GetCaseIndependentLetters(Isolate* isolate,
|
|
uc16 character,
|
|
bool ascii_subject,
|
|
unibrow::uchar* letters) {
|
|
int length =
|
|
isolate->jsregexp_uncanonicalize()->get(character, '\0', letters);
|
|
// Unibrow returns 0 or 1 for characters where case independence is
|
|
// trivial.
|
|
if (length == 0) {
|
|
letters[0] = character;
|
|
length = 1;
|
|
}
|
|
if (!ascii_subject || character <= String::kMaxAsciiCharCode) {
|
|
return length;
|
|
}
|
|
// The standard requires that non-ASCII characters cannot have ASCII
|
|
// character codes in their equivalence class.
|
|
return 0;
|
|
}
|
|
|
|
|
|
static inline bool EmitSimpleCharacter(Isolate* isolate,
|
|
RegExpCompiler* compiler,
|
|
uc16 c,
|
|
Label* on_failure,
|
|
int cp_offset,
|
|
bool check,
|
|
bool preloaded) {
|
|
RegExpMacroAssembler* assembler = compiler->macro_assembler();
|
|
bool bound_checked = false;
|
|
if (!preloaded) {
|
|
assembler->LoadCurrentCharacter(
|
|
cp_offset,
|
|
on_failure,
|
|
check);
|
|
bound_checked = true;
|
|
}
|
|
assembler->CheckNotCharacter(c, on_failure);
|
|
return bound_checked;
|
|
}
|
|
|
|
|
|
// Only emits non-letters (things that don't have case). Only used for case
|
|
// independent matches.
|
|
static inline bool EmitAtomNonLetter(Isolate* isolate,
|
|
RegExpCompiler* compiler,
|
|
uc16 c,
|
|
Label* on_failure,
|
|
int cp_offset,
|
|
bool check,
|
|
bool preloaded) {
|
|
RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
|
|
bool ascii = compiler->ascii();
|
|
unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
|
|
int length = GetCaseIndependentLetters(isolate, c, ascii, chars);
|
|
if (length < 1) {
|
|
// This can't match. Must be an ASCII subject and a non-ASCII character.
|
|
// We do not need to do anything since the ASCII pass already handled this.
|
|
return false; // Bounds not checked.
|
|
}
|
|
bool checked = false;
|
|
// We handle the length > 1 case in a later pass.
|
|
if (length == 1) {
|
|
if (ascii && c > String::kMaxAsciiCharCodeU) {
|
|
// Can't match - see above.
|
|
return false; // Bounds not checked.
|
|
}
|
|
if (!preloaded) {
|
|
macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check);
|
|
checked = check;
|
|
}
|
|
macro_assembler->CheckNotCharacter(c, on_failure);
|
|
}
|
|
return checked;
|
|
}
|
|
|
|
|
|
static bool ShortCutEmitCharacterPair(RegExpMacroAssembler* macro_assembler,
|
|
bool ascii,
|
|
uc16 c1,
|
|
uc16 c2,
|
|
Label* on_failure) {
|
|
uc16 char_mask;
|
|
if (ascii) {
|
|
char_mask = String::kMaxAsciiCharCode;
|
|
} else {
|
|
char_mask = String::kMaxUC16CharCode;
|
|
}
|
|
uc16 exor = c1 ^ c2;
|
|
// Check whether exor has only one bit set.
|
|
if (((exor - 1) & exor) == 0) {
|
|
// If c1 and c2 differ only by one bit.
|
|
// Ecma262UnCanonicalize always gives the highest number last.
|
|
ASSERT(c2 > c1);
|
|
uc16 mask = char_mask ^ exor;
|
|
macro_assembler->CheckNotCharacterAfterAnd(c1, mask, on_failure);
|
|
return true;
|
|
}
|
|
ASSERT(c2 > c1);
|
|
uc16 diff = c2 - c1;
|
|
if (((diff - 1) & diff) == 0 && c1 >= diff) {
|
|
// If the characters differ by 2^n but don't differ by one bit then
|
|
// subtract the difference from the found character, then do the or
|
|
// trick. We avoid the theoretical case where negative numbers are
|
|
// involved in order to simplify code generation.
|
|
uc16 mask = char_mask ^ diff;
|
|
macro_assembler->CheckNotCharacterAfterMinusAnd(c1 - diff,
|
|
diff,
|
|
mask,
|
|
on_failure);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
typedef bool EmitCharacterFunction(Isolate* isolate,
|
|
RegExpCompiler* compiler,
|
|
uc16 c,
|
|
Label* on_failure,
|
|
int cp_offset,
|
|
bool check,
|
|
bool preloaded);
|
|
|
|
// Only emits letters (things that have case). Only used for case independent
|
|
// matches.
|
|
static inline bool EmitAtomLetter(Isolate* isolate,
|
|
RegExpCompiler* compiler,
|
|
uc16 c,
|
|
Label* on_failure,
|
|
int cp_offset,
|
|
bool check,
|
|
bool preloaded) {
|
|
RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
|
|
bool ascii = compiler->ascii();
|
|
unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
|
|
int length = GetCaseIndependentLetters(isolate, c, ascii, chars);
|
|
if (length <= 1) return false;
|
|
// We may not need to check against the end of the input string
|
|
// if this character lies before a character that matched.
|
|
if (!preloaded) {
|
|
macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check);
|
|
}
|
|
Label ok;
|
|
ASSERT(unibrow::Ecma262UnCanonicalize::kMaxWidth == 4);
|
|
switch (length) {
|
|
case 2: {
|
|
if (ShortCutEmitCharacterPair(macro_assembler,
|
|
ascii,
|
|
chars[0],
|
|
chars[1],
|
|
on_failure)) {
|
|
} else {
|
|
macro_assembler->CheckCharacter(chars[0], &ok);
|
|
macro_assembler->CheckNotCharacter(chars[1], on_failure);
|
|
macro_assembler->Bind(&ok);
|
|
}
|
|
break;
|
|
}
|
|
case 4:
|
|
macro_assembler->CheckCharacter(chars[3], &ok);
|
|
// Fall through!
|
|
case 3:
|
|
macro_assembler->CheckCharacter(chars[0], &ok);
|
|
macro_assembler->CheckCharacter(chars[1], &ok);
|
|
macro_assembler->CheckNotCharacter(chars[2], on_failure);
|
|
macro_assembler->Bind(&ok);
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
static void EmitCharClass(RegExpMacroAssembler* macro_assembler,
|
|
RegExpCharacterClass* cc,
|
|
bool ascii,
|
|
Label* on_failure,
|
|
int cp_offset,
|
|
bool check_offset,
|
|
bool preloaded) {
|
|
ZoneList<CharacterRange>* ranges = cc->ranges();
|
|
int max_char;
|
|
if (ascii) {
|
|
max_char = String::kMaxAsciiCharCode;
|
|
} else {
|
|
max_char = String::kMaxUC16CharCode;
|
|
}
|
|
|
|
Label success;
|
|
|
|
Label* char_is_in_class =
|
|
cc->is_negated() ? on_failure : &success;
|
|
|
|
int range_count = ranges->length();
|
|
|
|
int last_valid_range = range_count - 1;
|
|
while (last_valid_range >= 0) {
|
|
CharacterRange& range = ranges->at(last_valid_range);
|
|
if (range.from() <= max_char) {
|
|
break;
|
|
}
|
|
last_valid_range--;
|
|
}
|
|
|
|
if (last_valid_range < 0) {
|
|
if (!cc->is_negated()) {
|
|
// TODO(plesner): We can remove this when the node level does our
|
|
// ASCII optimizations for us.
|
|
macro_assembler->GoTo(on_failure);
|
|
}
|
|
if (check_offset) {
|
|
macro_assembler->CheckPosition(cp_offset, on_failure);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (last_valid_range == 0 &&
|
|
!cc->is_negated() &&
|
|
ranges->at(0).IsEverything(max_char)) {
|
|
// This is a common case hit by non-anchored expressions.
|
|
if (check_offset) {
|
|
macro_assembler->CheckPosition(cp_offset, on_failure);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (!preloaded) {
|
|
macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check_offset);
|
|
}
|
|
|
|
if (cc->is_standard() &&
|
|
macro_assembler->CheckSpecialCharacterClass(cc->standard_type(),
|
|
on_failure)) {
|
|
return;
|
|
}
|
|
|
|
for (int i = 0; i < last_valid_range; i++) {
|
|
CharacterRange& range = ranges->at(i);
|
|
Label next_range;
|
|
uc16 from = range.from();
|
|
uc16 to = range.to();
|
|
if (from > max_char) {
|
|
continue;
|
|
}
|
|
if (to > max_char) to = max_char;
|
|
if (to == from) {
|
|
macro_assembler->CheckCharacter(to, char_is_in_class);
|
|
} else {
|
|
if (from != 0) {
|
|
macro_assembler->CheckCharacterLT(from, &next_range);
|
|
}
|
|
if (to != max_char) {
|
|
macro_assembler->CheckCharacterLT(to + 1, char_is_in_class);
|
|
} else {
|
|
macro_assembler->GoTo(char_is_in_class);
|
|
}
|
|
}
|
|
macro_assembler->Bind(&next_range);
|
|
}
|
|
|
|
CharacterRange& range = ranges->at(last_valid_range);
|
|
uc16 from = range.from();
|
|
uc16 to = range.to();
|
|
|
|
if (to > max_char) to = max_char;
|
|
ASSERT(to >= from);
|
|
|
|
if (to == from) {
|
|
if (cc->is_negated()) {
|
|
macro_assembler->CheckCharacter(to, on_failure);
|
|
} else {
|
|
macro_assembler->CheckNotCharacter(to, on_failure);
|
|
}
|
|
} else {
|
|
if (from != 0) {
|
|
if (cc->is_negated()) {
|
|
macro_assembler->CheckCharacterLT(from, &success);
|
|
} else {
|
|
macro_assembler->CheckCharacterLT(from, on_failure);
|
|
}
|
|
}
|
|
if (to != String::kMaxUC16CharCode) {
|
|
if (cc->is_negated()) {
|
|
macro_assembler->CheckCharacterLT(to + 1, on_failure);
|
|
} else {
|
|
macro_assembler->CheckCharacterGT(to, on_failure);
|
|
}
|
|
} else {
|
|
if (cc->is_negated()) {
|
|
macro_assembler->GoTo(on_failure);
|
|
}
|
|
}
|
|
}
|
|
macro_assembler->Bind(&success);
|
|
}
|
|
|
|
|
|
RegExpNode::~RegExpNode() {
|
|
}
|
|
|
|
|
|
RegExpNode::LimitResult RegExpNode::LimitVersions(RegExpCompiler* compiler,
|
|
Trace* trace) {
|
|
// If we are generating a greedy loop then don't stop and don't reuse code.
|
|
if (trace->stop_node() != NULL) {
|
|
return CONTINUE;
|
|
}
|
|
|
|
RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
|
|
if (trace->is_trivial()) {
|
|
if (label_.is_bound()) {
|
|
// We are being asked to generate a generic version, but that's already
|
|
// been done so just go to it.
|
|
macro_assembler->GoTo(&label_);
|
|
return DONE;
|
|
}
|
|
if (compiler->recursion_depth() >= RegExpCompiler::kMaxRecursion) {
|
|
// To avoid too deep recursion we push the node to the work queue and just
|
|
// generate a goto here.
|
|
compiler->AddWork(this);
|
|
macro_assembler->GoTo(&label_);
|
|
return DONE;
|
|
}
|
|
// Generate generic version of the node and bind the label for later use.
|
|
macro_assembler->Bind(&label_);
|
|
return CONTINUE;
|
|
}
|
|
|
|
// We are being asked to make a non-generic version. Keep track of how many
|
|
// non-generic versions we generate so as not to overdo it.
|
|
trace_count_++;
|
|
if (FLAG_regexp_optimization &&
|
|
trace_count_ < kMaxCopiesCodeGenerated &&
|
|
compiler->recursion_depth() <= RegExpCompiler::kMaxRecursion) {
|
|
return CONTINUE;
|
|
}
|
|
|
|
// If we get here code has been generated for this node too many times or
|
|
// recursion is too deep. Time to switch to a generic version. The code for
|
|
// generic versions above can handle deep recursion properly.
|
|
trace->Flush(compiler, this);
|
|
return DONE;
|
|
}
|
|
|
|
|
|
int ActionNode::EatsAtLeast(int still_to_find,
|
|
int recursion_depth,
|
|
bool not_at_start) {
|
|
if (recursion_depth > RegExpCompiler::kMaxRecursion) return 0;
|
|
if (type_ == POSITIVE_SUBMATCH_SUCCESS) return 0; // Rewinds input!
|
|
return on_success()->EatsAtLeast(still_to_find,
|
|
recursion_depth + 1,
|
|
not_at_start);
|
|
}
|
|
|
|
|
|
int AssertionNode::EatsAtLeast(int still_to_find,
|
|
int recursion_depth,
|
|
bool not_at_start) {
|
|
if (recursion_depth > RegExpCompiler::kMaxRecursion) return 0;
|
|
// If we know we are not at the start and we are asked "how many characters
|
|
// will you match if you succeed?" then we can answer anything since false
|
|
// implies false. So lets just return the max answer (still_to_find) since
|
|
// that won't prevent us from preloading a lot of characters for the other
|
|
// branches in the node graph.
|
|
if (type() == AT_START && not_at_start) return still_to_find;
|
|
return on_success()->EatsAtLeast(still_to_find,
|
|
recursion_depth + 1,
|
|
not_at_start);
|
|
}
|
|
|
|
|
|
int BackReferenceNode::EatsAtLeast(int still_to_find,
|
|
int recursion_depth,
|
|
bool not_at_start) {
|
|
if (recursion_depth > RegExpCompiler::kMaxRecursion) return 0;
|
|
return on_success()->EatsAtLeast(still_to_find,
|
|
recursion_depth + 1,
|
|
not_at_start);
|
|
}
|
|
|
|
|
|
int TextNode::EatsAtLeast(int still_to_find,
|
|
int recursion_depth,
|
|
bool not_at_start) {
|
|
int answer = Length();
|
|
if (answer >= still_to_find) return answer;
|
|
if (recursion_depth > RegExpCompiler::kMaxRecursion) return answer;
|
|
// We are not at start after this node so we set the last argument to 'true'.
|
|
return answer + on_success()->EatsAtLeast(still_to_find - answer,
|
|
recursion_depth + 1,
|
|
true);
|
|
}
|
|
|
|
|
|
int NegativeLookaheadChoiceNode::EatsAtLeast(int still_to_find,
|
|
int recursion_depth,
|
|
bool not_at_start) {
|
|
if (recursion_depth > RegExpCompiler::kMaxRecursion) return 0;
|
|
// Alternative 0 is the negative lookahead, alternative 1 is what comes
|
|
// afterwards.
|
|
RegExpNode* node = alternatives_->at(1).node();
|
|
return node->EatsAtLeast(still_to_find, recursion_depth + 1, not_at_start);
|
|
}
|
|
|
|
|
|
void NegativeLookaheadChoiceNode::GetQuickCheckDetails(
|
|
QuickCheckDetails* details,
|
|
RegExpCompiler* compiler,
|
|
int filled_in,
|
|
bool not_at_start) {
|
|
// Alternative 0 is the negative lookahead, alternative 1 is what comes
|
|
// afterwards.
|
|
RegExpNode* node = alternatives_->at(1).node();
|
|
return node->GetQuickCheckDetails(details, compiler, filled_in, not_at_start);
|
|
}
|
|
|
|
|
|
int ChoiceNode::EatsAtLeastHelper(int still_to_find,
|
|
int recursion_depth,
|
|
RegExpNode* ignore_this_node,
|
|
bool not_at_start) {
|
|
if (recursion_depth > RegExpCompiler::kMaxRecursion) return 0;
|
|
int min = 100;
|
|
int choice_count = alternatives_->length();
|
|
for (int i = 0; i < choice_count; i++) {
|
|
RegExpNode* node = alternatives_->at(i).node();
|
|
if (node == ignore_this_node) continue;
|
|
int node_eats_at_least = node->EatsAtLeast(still_to_find,
|
|
recursion_depth + 1,
|
|
not_at_start);
|
|
if (node_eats_at_least < min) min = node_eats_at_least;
|
|
}
|
|
return min;
|
|
}
|
|
|
|
|
|
int LoopChoiceNode::EatsAtLeast(int still_to_find,
|
|
int recursion_depth,
|
|
bool not_at_start) {
|
|
return EatsAtLeastHelper(still_to_find,
|
|
recursion_depth,
|
|
loop_node_,
|
|
not_at_start);
|
|
}
|
|
|
|
|
|
int ChoiceNode::EatsAtLeast(int still_to_find,
|
|
int recursion_depth,
|
|
bool not_at_start) {
|
|
return EatsAtLeastHelper(still_to_find,
|
|
recursion_depth,
|
|
NULL,
|
|
not_at_start);
|
|
}
|
|
|
|
|
|
// Takes the left-most 1-bit and smears it out, setting all bits to its right.
|
|
static inline uint32_t SmearBitsRight(uint32_t v) {
|
|
v |= v >> 1;
|
|
v |= v >> 2;
|
|
v |= v >> 4;
|
|
v |= v >> 8;
|
|
v |= v >> 16;
|
|
return v;
|
|
}
|
|
|
|
|
|
bool QuickCheckDetails::Rationalize(bool asc) {
|
|
bool found_useful_op = false;
|
|
uint32_t char_mask;
|
|
if (asc) {
|
|
char_mask = String::kMaxAsciiCharCode;
|
|
} else {
|
|
char_mask = String::kMaxUC16CharCode;
|
|
}
|
|
mask_ = 0;
|
|
value_ = 0;
|
|
int char_shift = 0;
|
|
for (int i = 0; i < characters_; i++) {
|
|
Position* pos = &positions_[i];
|
|
if ((pos->mask & String::kMaxAsciiCharCode) != 0) {
|
|
found_useful_op = true;
|
|
}
|
|
mask_ |= (pos->mask & char_mask) << char_shift;
|
|
value_ |= (pos->value & char_mask) << char_shift;
|
|
char_shift += asc ? 8 : 16;
|
|
}
|
|
return found_useful_op;
|
|
}
|
|
|
|
|
|
bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler,
|
|
Trace* trace,
|
|
bool preload_has_checked_bounds,
|
|
Label* on_possible_success,
|
|
QuickCheckDetails* details,
|
|
bool fall_through_on_failure) {
|
|
if (details->characters() == 0) return false;
|
|
GetQuickCheckDetails(details, compiler, 0, trace->at_start() == Trace::FALSE);
|
|
if (details->cannot_match()) return false;
|
|
if (!details->Rationalize(compiler->ascii())) return false;
|
|
ASSERT(details->characters() == 1 ||
|
|
compiler->macro_assembler()->CanReadUnaligned());
|
|
uint32_t mask = details->mask();
|
|
uint32_t value = details->value();
|
|
|
|
RegExpMacroAssembler* assembler = compiler->macro_assembler();
|
|
|
|
if (trace->characters_preloaded() != details->characters()) {
|
|
assembler->LoadCurrentCharacter(trace->cp_offset(),
|
|
trace->backtrack(),
|
|
!preload_has_checked_bounds,
|
|
details->characters());
|
|
}
|
|
|
|
|
|
bool need_mask = true;
|
|
|
|
if (details->characters() == 1) {
|
|
// If number of characters preloaded is 1 then we used a byte or 16 bit
|
|
// load so the value is already masked down.
|
|
uint32_t char_mask;
|
|
if (compiler->ascii()) {
|
|
char_mask = String::kMaxAsciiCharCode;
|
|
} else {
|
|
char_mask = String::kMaxUC16CharCode;
|
|
}
|
|
if ((mask & char_mask) == char_mask) need_mask = false;
|
|
mask &= char_mask;
|
|
} else {
|
|
// For 2-character preloads in ASCII mode or 1-character preloads in
|
|
// TWO_BYTE mode we also use a 16 bit load with zero extend.
|
|
if (details->characters() == 2 && compiler->ascii()) {
|
|
if ((mask & 0x7f7f) == 0x7f7f) need_mask = false;
|
|
} else if (details->characters() == 1 && !compiler->ascii()) {
|
|
if ((mask & 0xffff) == 0xffff) need_mask = false;
|
|
} else {
|
|
if (mask == 0xffffffff) need_mask = false;
|
|
}
|
|
}
|
|
|
|
if (fall_through_on_failure) {
|
|
if (need_mask) {
|
|
assembler->CheckCharacterAfterAnd(value, mask, on_possible_success);
|
|
} else {
|
|
assembler->CheckCharacter(value, on_possible_success);
|
|
}
|
|
} else {
|
|
if (need_mask) {
|
|
assembler->CheckNotCharacterAfterAnd(value, mask, trace->backtrack());
|
|
} else {
|
|
assembler->CheckNotCharacter(value, trace->backtrack());
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
// Here is the meat of GetQuickCheckDetails (see also the comment on the
|
|
// super-class in the .h file).
|
|
//
|
|
// We iterate along the text object, building up for each character a
|
|
// mask and value that can be used to test for a quick failure to match.
|
|
// The masks and values for the positions will be combined into a single
|
|
// machine word for the current character width in order to be used in
|
|
// generating a quick check.
|
|
void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
|
|
RegExpCompiler* compiler,
|
|
int characters_filled_in,
|
|
bool not_at_start) {
|
|
Isolate* isolate = Isolate::Current();
|
|
ASSERT(characters_filled_in < details->characters());
|
|
int characters = details->characters();
|
|
int char_mask;
|
|
int char_shift;
|
|
if (compiler->ascii()) {
|
|
char_mask = String::kMaxAsciiCharCode;
|
|
char_shift = 8;
|
|
} else {
|
|
char_mask = String::kMaxUC16CharCode;
|
|
char_shift = 16;
|
|
}
|
|
for (int k = 0; k < elms_->length(); k++) {
|
|
TextElement elm = elms_->at(k);
|
|
if (elm.type == TextElement::ATOM) {
|
|
Vector<const uc16> quarks = elm.data.u_atom->data();
|
|
for (int i = 0; i < characters && i < quarks.length(); i++) {
|
|
QuickCheckDetails::Position* pos =
|
|
details->positions(characters_filled_in);
|
|
uc16 c = quarks[i];
|
|
if (c > char_mask) {
|
|
// If we expect a non-ASCII character from an ASCII string,
|
|
// there is no way we can match. Not even case independent
|
|
// matching can turn an ASCII character into non-ASCII or
|
|
// vice versa.
|
|
details->set_cannot_match();
|
|
pos->determines_perfectly = false;
|
|
return;
|
|
}
|
|
if (compiler->ignore_case()) {
|
|
unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
|
|
int length = GetCaseIndependentLetters(isolate, c, compiler->ascii(),
|
|
chars);
|
|
ASSERT(length != 0); // Can only happen if c > char_mask (see above).
|
|
if (length == 1) {
|
|
// This letter has no case equivalents, so it's nice and simple
|
|
// and the mask-compare will determine definitely whether we have
|
|
// a match at this character position.
|
|
pos->mask = char_mask;
|
|
pos->value = c;
|
|
pos->determines_perfectly = true;
|
|
} else {
|
|
uint32_t common_bits = char_mask;
|
|
uint32_t bits = chars[0];
|
|
for (int j = 1; j < length; j++) {
|
|
uint32_t differing_bits = ((chars[j] & common_bits) ^ bits);
|
|
common_bits ^= differing_bits;
|
|
bits &= common_bits;
|
|
}
|
|
// If length is 2 and common bits has only one zero in it then
|
|
// our mask and compare instruction will determine definitely
|
|
// whether we have a match at this character position. Otherwise
|
|
// it can only be an approximate check.
|
|
uint32_t one_zero = (common_bits | ~char_mask);
|
|
if (length == 2 && ((~one_zero) & ((~one_zero) - 1)) == 0) {
|
|
pos->determines_perfectly = true;
|
|
}
|
|
pos->mask = common_bits;
|
|
pos->value = bits;
|
|
}
|
|
} else {
|
|
// Don't ignore case. Nice simple case where the mask-compare will
|
|
// determine definitely whether we have a match at this character
|
|
// position.
|
|
pos->mask = char_mask;
|
|
pos->value = c;
|
|
pos->determines_perfectly = true;
|
|
}
|
|
characters_filled_in++;
|
|
ASSERT(characters_filled_in <= details->characters());
|
|
if (characters_filled_in == details->characters()) {
|
|
return;
|
|
}
|
|
}
|
|
} else {
|
|
QuickCheckDetails::Position* pos =
|
|
details->positions(characters_filled_in);
|
|
RegExpCharacterClass* tree = elm.data.u_char_class;
|
|
ZoneList<CharacterRange>* ranges = tree->ranges();
|
|
if (tree->is_negated()) {
|
|
// A quick check uses multi-character mask and compare. There is no
|
|
// useful way to incorporate a negative char class into this scheme
|
|
// so we just conservatively create a mask and value that will always
|
|
// succeed.
|
|
pos->mask = 0;
|
|
pos->value = 0;
|
|
} else {
|
|
int first_range = 0;
|
|
while (ranges->at(first_range).from() > char_mask) {
|
|
first_range++;
|
|
if (first_range == ranges->length()) {
|
|
details->set_cannot_match();
|
|
pos->determines_perfectly = false;
|
|
return;
|
|
}
|
|
}
|
|
CharacterRange range = ranges->at(first_range);
|
|
uc16 from = range.from();
|
|
uc16 to = range.to();
|
|
if (to > char_mask) {
|
|
to = char_mask;
|
|
}
|
|
uint32_t differing_bits = (from ^ to);
|
|
// A mask and compare is only perfect if the differing bits form a
|
|
// number like 00011111 with one single block of trailing 1s.
|
|
if ((differing_bits & (differing_bits + 1)) == 0 &&
|
|
from + differing_bits == to) {
|
|
pos->determines_perfectly = true;
|
|
}
|
|
uint32_t common_bits = ~SmearBitsRight(differing_bits);
|
|
uint32_t bits = (from & common_bits);
|
|
for (int i = first_range + 1; i < ranges->length(); i++) {
|
|
CharacterRange range = ranges->at(i);
|
|
uc16 from = range.from();
|
|
uc16 to = range.to();
|
|
if (from > char_mask) continue;
|
|
if (to > char_mask) to = char_mask;
|
|
// Here we are combining more ranges into the mask and compare
|
|
// value. With each new range the mask becomes more sparse and
|
|
// so the chances of a false positive rise. A character class
|
|
// with multiple ranges is assumed never to be equivalent to a
|
|
// mask and compare operation.
|
|
pos->determines_perfectly = false;
|
|
uint32_t new_common_bits = (from ^ to);
|
|
new_common_bits = ~SmearBitsRight(new_common_bits);
|
|
common_bits &= new_common_bits;
|
|
bits &= new_common_bits;
|
|
uint32_t differing_bits = (from & common_bits) ^ bits;
|
|
common_bits ^= differing_bits;
|
|
bits &= common_bits;
|
|
}
|
|
pos->mask = common_bits;
|
|
pos->value = bits;
|
|
}
|
|
characters_filled_in++;
|
|
ASSERT(characters_filled_in <= details->characters());
|
|
if (characters_filled_in == details->characters()) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
ASSERT(characters_filled_in != details->characters());
|
|
on_success()-> GetQuickCheckDetails(details,
|
|
compiler,
|
|
characters_filled_in,
|
|
true);
|
|
}
|
|
|
|
|
|
void QuickCheckDetails::Clear() {
|
|
for (int i = 0; i < characters_; i++) {
|
|
positions_[i].mask = 0;
|
|
positions_[i].value = 0;
|
|
positions_[i].determines_perfectly = false;
|
|
}
|
|
characters_ = 0;
|
|
}
|
|
|
|
|
|
void QuickCheckDetails::Advance(int by, bool ascii) {
|
|
ASSERT(by >= 0);
|
|
if (by >= characters_) {
|
|
Clear();
|
|
return;
|
|
}
|
|
for (int i = 0; i < characters_ - by; i++) {
|
|
positions_[i] = positions_[by + i];
|
|
}
|
|
for (int i = characters_ - by; i < characters_; i++) {
|
|
positions_[i].mask = 0;
|
|
positions_[i].value = 0;
|
|
positions_[i].determines_perfectly = false;
|
|
}
|
|
characters_ -= by;
|
|
// We could change mask_ and value_ here but we would never advance unless
|
|
// they had already been used in a check and they won't be used again because
|
|
// it would gain us nothing. So there's no point.
|
|
}
|
|
|
|
|
|
void QuickCheckDetails::Merge(QuickCheckDetails* other, int from_index) {
|
|
ASSERT(characters_ == other->characters_);
|
|
if (other->cannot_match_) {
|
|
return;
|
|
}
|
|
if (cannot_match_) {
|
|
*this = *other;
|
|
return;
|
|
}
|
|
for (int i = from_index; i < characters_; i++) {
|
|
QuickCheckDetails::Position* pos = positions(i);
|
|
QuickCheckDetails::Position* other_pos = other->positions(i);
|
|
if (pos->mask != other_pos->mask ||
|
|
pos->value != other_pos->value ||
|
|
!other_pos->determines_perfectly) {
|
|
// Our mask-compare operation will be approximate unless we have the
|
|
// exact same operation on both sides of the alternation.
|
|
pos->determines_perfectly = false;
|
|
}
|
|
pos->mask &= other_pos->mask;
|
|
pos->value &= pos->mask;
|
|
other_pos->value &= pos->mask;
|
|
uc16 differing_bits = (pos->value ^ other_pos->value);
|
|
pos->mask &= ~differing_bits;
|
|
pos->value &= pos->mask;
|
|
}
|
|
}
|
|
|
|
|
|
class VisitMarker {
|
|
public:
|
|
explicit VisitMarker(NodeInfo* info) : info_(info) {
|
|
ASSERT(!info->visited);
|
|
info->visited = true;
|
|
}
|
|
~VisitMarker() {
|
|
info_->visited = false;
|
|
}
|
|
private:
|
|
NodeInfo* info_;
|
|
};
|
|
|
|
|
|
void LoopChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
|
|
RegExpCompiler* compiler,
|
|
int characters_filled_in,
|
|
bool not_at_start) {
|
|
if (body_can_be_zero_length_ || info()->visited) return;
|
|
VisitMarker marker(info());
|
|
return ChoiceNode::GetQuickCheckDetails(details,
|
|
compiler,
|
|
characters_filled_in,
|
|
not_at_start);
|
|
}
|
|
|
|
|
|
void ChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
|
|
RegExpCompiler* compiler,
|
|
int characters_filled_in,
|
|
bool not_at_start) {
|
|
not_at_start = (not_at_start || not_at_start_);
|
|
int choice_count = alternatives_->length();
|
|
ASSERT(choice_count > 0);
|
|
alternatives_->at(0).node()->GetQuickCheckDetails(details,
|
|
compiler,
|
|
characters_filled_in,
|
|
not_at_start);
|
|
for (int i = 1; i < choice_count; i++) {
|
|
QuickCheckDetails new_details(details->characters());
|
|
RegExpNode* node = alternatives_->at(i).node();
|
|
node->GetQuickCheckDetails(&new_details, compiler,
|
|
characters_filled_in,
|
|
not_at_start);
|
|
// Here we merge the quick match details of the two branches.
|
|
details->Merge(&new_details, characters_filled_in);
|
|
}
|
|
}
|
|
|
|
|
|
// Check for [0-9A-Z_a-z].
|
|
static void EmitWordCheck(RegExpMacroAssembler* assembler,
|
|
Label* word,
|
|
Label* non_word,
|
|
bool fall_through_on_word) {
|
|
if (assembler->CheckSpecialCharacterClass(
|
|
fall_through_on_word ? 'w' : 'W',
|
|
fall_through_on_word ? non_word : word)) {
|
|
// Optimized implementation available.
|
|
return;
|
|
}
|
|
assembler->CheckCharacterGT('z', non_word);
|
|
assembler->CheckCharacterLT('0', non_word);
|
|
assembler->CheckCharacterGT('a' - 1, word);
|
|
assembler->CheckCharacterLT('9' + 1, word);
|
|
assembler->CheckCharacterLT('A', non_word);
|
|
assembler->CheckCharacterLT('Z' + 1, word);
|
|
if (fall_through_on_word) {
|
|
assembler->CheckNotCharacter('_', non_word);
|
|
} else {
|
|
assembler->CheckCharacter('_', word);
|
|
}
|
|
}
|
|
|
|
|
|
// Emit the code to check for a ^ in multiline mode (1-character lookbehind
|
|
// that matches newline or the start of input).
|
|
static void EmitHat(RegExpCompiler* compiler,
|
|
RegExpNode* on_success,
|
|
Trace* trace) {
|
|
RegExpMacroAssembler* assembler = compiler->macro_assembler();
|
|
// We will be loading the previous character into the current character
|
|
// register.
|
|
Trace new_trace(*trace);
|
|
new_trace.InvalidateCurrentCharacter();
|
|
|
|
Label ok;
|
|
if (new_trace.cp_offset() == 0) {
|
|
// The start of input counts as a newline in this context, so skip to
|
|
// ok if we are at the start.
|
|
assembler->CheckAtStart(&ok);
|
|
}
|
|
// We already checked that we are not at the start of input so it must be
|
|
// OK to load the previous character.
|
|
assembler->LoadCurrentCharacter(new_trace.cp_offset() -1,
|
|
new_trace.backtrack(),
|
|
false);
|
|
if (!assembler->CheckSpecialCharacterClass('n',
|
|
new_trace.backtrack())) {
|
|
// Newline means \n, \r, 0x2028 or 0x2029.
|
|
if (!compiler->ascii()) {
|
|
assembler->CheckCharacterAfterAnd(0x2028, 0xfffe, &ok);
|
|
}
|
|
assembler->CheckCharacter('\n', &ok);
|
|
assembler->CheckNotCharacter('\r', new_trace.backtrack());
|
|
}
|
|
assembler->Bind(&ok);
|
|
on_success->Emit(compiler, &new_trace);
|
|
}
|
|
|
|
|
|
// Emit the code to handle \b and \B (word-boundary or non-word-boundary)
|
|
// when we know whether the next character must be a word character or not.
|
|
static void EmitHalfBoundaryCheck(AssertionNode::AssertionNodeType type,
|
|
RegExpCompiler* compiler,
|
|
RegExpNode* on_success,
|
|
Trace* trace) {
|
|
RegExpMacroAssembler* assembler = compiler->macro_assembler();
|
|
Label done;
|
|
|
|
Trace new_trace(*trace);
|
|
|
|
bool expect_word_character = (type == AssertionNode::AFTER_WORD_CHARACTER);
|
|
Label* on_word = expect_word_character ? &done : new_trace.backtrack();
|
|
Label* on_non_word = expect_word_character ? new_trace.backtrack() : &done;
|
|
|
|
// Check whether previous character was a word character.
|
|
switch (trace->at_start()) {
|
|
case Trace::TRUE:
|
|
if (expect_word_character) {
|
|
assembler->GoTo(on_non_word);
|
|
}
|
|
break;
|
|
case Trace::UNKNOWN:
|
|
ASSERT_EQ(0, trace->cp_offset());
|
|
assembler->CheckAtStart(on_non_word);
|
|
// Fall through.
|
|
case Trace::FALSE:
|
|
int prev_char_offset = trace->cp_offset() - 1;
|
|
assembler->LoadCurrentCharacter(prev_char_offset, NULL, false, 1);
|
|
EmitWordCheck(assembler, on_word, on_non_word, expect_word_character);
|
|
// We may or may not have loaded the previous character.
|
|
new_trace.InvalidateCurrentCharacter();
|
|
}
|
|
|
|
assembler->Bind(&done);
|
|
|
|
on_success->Emit(compiler, &new_trace);
|
|
}
|
|
|
|
|
|
// Emit the code to handle \b and \B (word-boundary or non-word-boundary).
|
|
static void EmitBoundaryCheck(AssertionNode::AssertionNodeType type,
|
|
RegExpCompiler* compiler,
|
|
RegExpNode* on_success,
|
|
Trace* trace) {
|
|
RegExpMacroAssembler* assembler = compiler->macro_assembler();
|
|
Label before_non_word;
|
|
Label before_word;
|
|
if (trace->characters_preloaded() != 1) {
|
|
assembler->LoadCurrentCharacter(trace->cp_offset(), &before_non_word);
|
|
}
|
|
// Fall through on non-word.
|
|
EmitWordCheck(assembler, &before_word, &before_non_word, false);
|
|
|
|
// We will be loading the previous character into the current character
|
|
// register.
|
|
Trace new_trace(*trace);
|
|
new_trace.InvalidateCurrentCharacter();
|
|
|
|
Label ok;
|
|
Label* boundary;
|
|
Label* not_boundary;
|
|
if (type == AssertionNode::AT_BOUNDARY) {
|
|
boundary = &ok;
|
|
not_boundary = new_trace.backtrack();
|
|
} else {
|
|
not_boundary = &ok;
|
|
boundary = new_trace.backtrack();
|
|
}
|
|
|
|
// Next character is not a word character.
|
|
assembler->Bind(&before_non_word);
|
|
if (new_trace.cp_offset() == 0) {
|
|
// The start of input counts as a non-word character, so the question is
|
|
// decided if we are at the start.
|
|
assembler->CheckAtStart(not_boundary);
|
|
}
|
|
// We already checked that we are not at the start of input so it must be
|
|
// OK to load the previous character.
|
|
assembler->LoadCurrentCharacter(new_trace.cp_offset() - 1,
|
|
&ok, // Unused dummy label in this call.
|
|
false);
|
|
// Fall through on non-word.
|
|
EmitWordCheck(assembler, boundary, not_boundary, false);
|
|
assembler->GoTo(not_boundary);
|
|
|
|
// Next character is a word character.
|
|
assembler->Bind(&before_word);
|
|
if (new_trace.cp_offset() == 0) {
|
|
// The start of input counts as a non-word character, so the question is
|
|
// decided if we are at the start.
|
|
assembler->CheckAtStart(boundary);
|
|
}
|
|
// We already checked that we are not at the start of input so it must be
|
|
// OK to load the previous character.
|
|
assembler->LoadCurrentCharacter(new_trace.cp_offset() - 1,
|
|
&ok, // Unused dummy label in this call.
|
|
false);
|
|
bool fall_through_on_word = (type == AssertionNode::AT_NON_BOUNDARY);
|
|
EmitWordCheck(assembler, not_boundary, boundary, fall_through_on_word);
|
|
|
|
assembler->Bind(&ok);
|
|
|
|
on_success->Emit(compiler, &new_trace);
|
|
}
|
|
|
|
|
|
void AssertionNode::GetQuickCheckDetails(QuickCheckDetails* details,
|
|
RegExpCompiler* compiler,
|
|
int filled_in,
|
|
bool not_at_start) {
|
|
if (type_ == AT_START && not_at_start) {
|
|
details->set_cannot_match();
|
|
return;
|
|
}
|
|
return on_success()->GetQuickCheckDetails(details,
|
|
compiler,
|
|
filled_in,
|
|
not_at_start);
|
|
}
|
|
|
|
|
|
void AssertionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
|
|
RegExpMacroAssembler* assembler = compiler->macro_assembler();
|
|
switch (type_) {
|
|
case AT_END: {
|
|
Label ok;
|
|
assembler->CheckPosition(trace->cp_offset(), &ok);
|
|
assembler->GoTo(trace->backtrack());
|
|
assembler->Bind(&ok);
|
|
break;
|
|
}
|
|
case AT_START: {
|
|
if (trace->at_start() == Trace::FALSE) {
|
|
assembler->GoTo(trace->backtrack());
|
|
return;
|
|
}
|
|
if (trace->at_start() == Trace::UNKNOWN) {
|
|
assembler->CheckNotAtStart(trace->backtrack());
|
|
Trace at_start_trace = *trace;
|
|
at_start_trace.set_at_start(true);
|
|
on_success()->Emit(compiler, &at_start_trace);
|
|
return;
|
|
}
|
|
}
|
|
break;
|
|
case AFTER_NEWLINE:
|
|
EmitHat(compiler, on_success(), trace);
|
|
return;
|
|
case AT_BOUNDARY:
|
|
case AT_NON_BOUNDARY: {
|
|
EmitBoundaryCheck(type_, compiler, on_success(), trace);
|
|
return;
|
|
}
|
|
case AFTER_WORD_CHARACTER:
|
|
case AFTER_NONWORD_CHARACTER: {
|
|
EmitHalfBoundaryCheck(type_, compiler, on_success(), trace);
|
|
}
|
|
}
|
|
on_success()->Emit(compiler, trace);
|
|
}
|
|
|
|
|
|
static bool DeterminedAlready(QuickCheckDetails* quick_check, int offset) {
|
|
if (quick_check == NULL) return false;
|
|
if (offset >= quick_check->characters()) return false;
|
|
return quick_check->positions(offset)->determines_perfectly;
|
|
}
|
|
|
|
|
|
static void UpdateBoundsCheck(int index, int* checked_up_to) {
|
|
if (index > *checked_up_to) {
|
|
*checked_up_to = index;
|
|
}
|
|
}
|
|
|
|
|
|
// We call this repeatedly to generate code for each pass over the text node.
|
|
// The passes are in increasing order of difficulty because we hope one
|
|
// of the first passes will fail in which case we are saved the work of the
|
|
// later passes. for example for the case independent regexp /%[asdfghjkl]a/
|
|
// we will check the '%' in the first pass, the case independent 'a' in the
|
|
// second pass and the character class in the last pass.
|
|
//
|
|
// The passes are done from right to left, so for example to test for /bar/
|
|
// we will first test for an 'r' with offset 2, then an 'a' with offset 1
|
|
// and then a 'b' with offset 0. This means we can avoid the end-of-input
|
|
// bounds check most of the time. In the example we only need to check for
|
|
// end-of-input when loading the putative 'r'.
|
|
//
|
|
// A slight complication involves the fact that the first character may already
|
|
// be fetched into a register by the previous node. In this case we want to
|
|
// do the test for that character first. We do this in separate passes. The
|
|
// 'preloaded' argument indicates that we are doing such a 'pass'. If such a
|
|
// pass has been performed then subsequent passes will have true in
|
|
// first_element_checked to indicate that that character does not need to be
|
|
// checked again.
|
|
//
|
|
// In addition to all this we are passed a Trace, which can
|
|
// contain an AlternativeGeneration object. In this AlternativeGeneration
|
|
// object we can see details of any quick check that was already passed in
|
|
// order to get to the code we are now generating. The quick check can involve
|
|
// loading characters, which means we do not need to recheck the bounds
|
|
// up to the limit the quick check already checked. In addition the quick
|
|
// check can have involved a mask and compare operation which may simplify
|
|
// or obviate the need for further checks at some character positions.
|
|
void TextNode::TextEmitPass(RegExpCompiler* compiler,
|
|
TextEmitPassType pass,
|
|
bool preloaded,
|
|
Trace* trace,
|
|
bool first_element_checked,
|
|
int* checked_up_to) {
|
|
Isolate* isolate = Isolate::Current();
|
|
RegExpMacroAssembler* assembler = compiler->macro_assembler();
|
|
bool ascii = compiler->ascii();
|
|
Label* backtrack = trace->backtrack();
|
|
QuickCheckDetails* quick_check = trace->quick_check_performed();
|
|
int element_count = elms_->length();
|
|
for (int i = preloaded ? 0 : element_count - 1; i >= 0; i--) {
|
|
TextElement elm = elms_->at(i);
|
|
int cp_offset = trace->cp_offset() + elm.cp_offset;
|
|
if (elm.type == TextElement::ATOM) {
|
|
Vector<const uc16> quarks = elm.data.u_atom->data();
|
|
for (int j = preloaded ? 0 : quarks.length() - 1; j >= 0; j--) {
|
|
if (first_element_checked && i == 0 && j == 0) continue;
|
|
if (DeterminedAlready(quick_check, elm.cp_offset + j)) continue;
|
|
EmitCharacterFunction* emit_function = NULL;
|
|
switch (pass) {
|
|
case NON_ASCII_MATCH:
|
|
ASSERT(ascii);
|
|
if (quarks[j] > String::kMaxAsciiCharCode) {
|
|
assembler->GoTo(backtrack);
|
|
return;
|
|
}
|
|
break;
|
|
case NON_LETTER_CHARACTER_MATCH:
|
|
emit_function = &EmitAtomNonLetter;
|
|
break;
|
|
case SIMPLE_CHARACTER_MATCH:
|
|
emit_function = &EmitSimpleCharacter;
|
|
break;
|
|
case CASE_CHARACTER_MATCH:
|
|
emit_function = &EmitAtomLetter;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
if (emit_function != NULL) {
|
|
bool bound_checked = emit_function(isolate,
|
|
compiler,
|
|
quarks[j],
|
|
backtrack,
|
|
cp_offset + j,
|
|
*checked_up_to < cp_offset + j,
|
|
preloaded);
|
|
if (bound_checked) UpdateBoundsCheck(cp_offset + j, checked_up_to);
|
|
}
|
|
}
|
|
} else {
|
|
ASSERT_EQ(elm.type, TextElement::CHAR_CLASS);
|
|
if (pass == CHARACTER_CLASS_MATCH) {
|
|
if (first_element_checked && i == 0) continue;
|
|
if (DeterminedAlready(quick_check, elm.cp_offset)) continue;
|
|
RegExpCharacterClass* cc = elm.data.u_char_class;
|
|
EmitCharClass(assembler,
|
|
cc,
|
|
ascii,
|
|
backtrack,
|
|
cp_offset,
|
|
*checked_up_to < cp_offset,
|
|
preloaded);
|
|
UpdateBoundsCheck(cp_offset, checked_up_to);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
int TextNode::Length() {
|
|
TextElement elm = elms_->last();
|
|
ASSERT(elm.cp_offset >= 0);
|
|
if (elm.type == TextElement::ATOM) {
|
|
return elm.cp_offset + elm.data.u_atom->data().length();
|
|
} else {
|
|
return elm.cp_offset + 1;
|
|
}
|
|
}
|
|
|
|
|
|
bool TextNode::SkipPass(int int_pass, bool ignore_case) {
|
|
TextEmitPassType pass = static_cast<TextEmitPassType>(int_pass);
|
|
if (ignore_case) {
|
|
return pass == SIMPLE_CHARACTER_MATCH;
|
|
} else {
|
|
return pass == NON_LETTER_CHARACTER_MATCH || pass == CASE_CHARACTER_MATCH;
|
|
}
|
|
}
|
|
|
|
|
|
// This generates the code to match a text node. A text node can contain
|
|
// straight character sequences (possibly to be matched in a case-independent
|
|
// way) and character classes. For efficiency we do not do this in a single
|
|
// pass from left to right. Instead we pass over the text node several times,
|
|
// emitting code for some character positions every time. See the comment on
|
|
// TextEmitPass for details.
|
|
void TextNode::Emit(RegExpCompiler* compiler, Trace* trace) {
|
|
LimitResult limit_result = LimitVersions(compiler, trace);
|
|
if (limit_result == DONE) return;
|
|
ASSERT(limit_result == CONTINUE);
|
|
|
|
if (trace->cp_offset() + Length() > RegExpMacroAssembler::kMaxCPOffset) {
|
|
compiler->SetRegExpTooBig();
|
|
return;
|
|
}
|
|
|
|
if (compiler->ascii()) {
|
|
int dummy = 0;
|
|
TextEmitPass(compiler, NON_ASCII_MATCH, false, trace, false, &dummy);
|
|
}
|
|
|
|
bool first_elt_done = false;
|
|
int bound_checked_to = trace->cp_offset() - 1;
|
|
bound_checked_to += trace->bound_checked_up_to();
|
|
|
|
// If a character is preloaded into the current character register then
|
|
// check that now.
|
|
if (trace->characters_preloaded() == 1) {
|
|
for (int pass = kFirstRealPass; pass <= kLastPass; pass++) {
|
|
if (!SkipPass(pass, compiler->ignore_case())) {
|
|
TextEmitPass(compiler,
|
|
static_cast<TextEmitPassType>(pass),
|
|
true,
|
|
trace,
|
|
false,
|
|
&bound_checked_to);
|
|
}
|
|
}
|
|
first_elt_done = true;
|
|
}
|
|
|
|
for (int pass = kFirstRealPass; pass <= kLastPass; pass++) {
|
|
if (!SkipPass(pass, compiler->ignore_case())) {
|
|
TextEmitPass(compiler,
|
|
static_cast<TextEmitPassType>(pass),
|
|
false,
|
|
trace,
|
|
first_elt_done,
|
|
&bound_checked_to);
|
|
}
|
|
}
|
|
|
|
Trace successor_trace(*trace);
|
|
successor_trace.set_at_start(false);
|
|
successor_trace.AdvanceCurrentPositionInTrace(Length(), compiler);
|
|
RecursionCheck rc(compiler);
|
|
on_success()->Emit(compiler, &successor_trace);
|
|
}
|
|
|
|
|
|
void Trace::InvalidateCurrentCharacter() {
|
|
characters_preloaded_ = 0;
|
|
}
|
|
|
|
|
|
void Trace::AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler) {
|
|
ASSERT(by > 0);
|
|
// We don't have an instruction for shifting the current character register
|
|
// down or for using a shifted value for anything so lets just forget that
|
|
// we preloaded any characters into it.
|
|
characters_preloaded_ = 0;
|
|
// Adjust the offsets of the quick check performed information. This
|
|
// information is used to find out what we already determined about the
|
|
// characters by means of mask and compare.
|
|
quick_check_performed_.Advance(by, compiler->ascii());
|
|
cp_offset_ += by;
|
|
if (cp_offset_ > RegExpMacroAssembler::kMaxCPOffset) {
|
|
compiler->SetRegExpTooBig();
|
|
cp_offset_ = 0;
|
|
}
|
|
bound_checked_up_to_ = Max(0, bound_checked_up_to_ - by);
|
|
}
|
|
|
|
|
|
void TextNode::MakeCaseIndependent(bool is_ascii) {
|
|
int element_count = elms_->length();
|
|
for (int i = 0; i < element_count; i++) {
|
|
TextElement elm = elms_->at(i);
|
|
if (elm.type == TextElement::CHAR_CLASS) {
|
|
RegExpCharacterClass* cc = elm.data.u_char_class;
|
|
// None of the standard character classses is different in the case
|
|
// independent case and it slows us down if we don't know that.
|
|
if (cc->is_standard()) continue;
|
|
ZoneList<CharacterRange>* ranges = cc->ranges();
|
|
int range_count = ranges->length();
|
|
for (int j = 0; j < range_count; j++) {
|
|
ranges->at(j).AddCaseEquivalents(ranges, is_ascii);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
int TextNode::GreedyLoopTextLength() {
|
|
TextElement elm = elms_->at(elms_->length() - 1);
|
|
if (elm.type == TextElement::CHAR_CLASS) {
|
|
return elm.cp_offset + 1;
|
|
} else {
|
|
return elm.cp_offset + elm.data.u_atom->data().length();
|
|
}
|
|
}
|
|
|
|
|
|
// Finds the fixed match length of a sequence of nodes that goes from
|
|
// this alternative and back to this choice node. If there are variable
|
|
// length nodes or other complications in the way then return a sentinel
|
|
// value indicating that a greedy loop cannot be constructed.
|
|
int ChoiceNode::GreedyLoopTextLength(GuardedAlternative* alternative) {
|
|
int length = 0;
|
|
RegExpNode* node = alternative->node();
|
|
// Later we will generate code for all these text nodes using recursion
|
|
// so we have to limit the max number.
|
|
int recursion_depth = 0;
|
|
while (node != this) {
|
|
if (recursion_depth++ > RegExpCompiler::kMaxRecursion) {
|
|
return kNodeIsTooComplexForGreedyLoops;
|
|
}
|
|
int node_length = node->GreedyLoopTextLength();
|
|
if (node_length == kNodeIsTooComplexForGreedyLoops) {
|
|
return kNodeIsTooComplexForGreedyLoops;
|
|
}
|
|
length += node_length;
|
|
SeqRegExpNode* seq_node = static_cast<SeqRegExpNode*>(node);
|
|
node = seq_node->on_success();
|
|
}
|
|
return length;
|
|
}
|
|
|
|
|
|
void LoopChoiceNode::AddLoopAlternative(GuardedAlternative alt) {
|
|
ASSERT_EQ(loop_node_, NULL);
|
|
AddAlternative(alt);
|
|
loop_node_ = alt.node();
|
|
}
|
|
|
|
|
|
void LoopChoiceNode::AddContinueAlternative(GuardedAlternative alt) {
|
|
ASSERT_EQ(continue_node_, NULL);
|
|
AddAlternative(alt);
|
|
continue_node_ = alt.node();
|
|
}
|
|
|
|
|
|
void LoopChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
|
|
RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
|
|
if (trace->stop_node() == this) {
|
|
int text_length = GreedyLoopTextLength(&(alternatives_->at(0)));
|
|
ASSERT(text_length != kNodeIsTooComplexForGreedyLoops);
|
|
// Update the counter-based backtracking info on the stack. This is an
|
|
// optimization for greedy loops (see below).
|
|
ASSERT(trace->cp_offset() == text_length);
|
|
macro_assembler->AdvanceCurrentPosition(text_length);
|
|
macro_assembler->GoTo(trace->loop_label());
|
|
return;
|
|
}
|
|
ASSERT(trace->stop_node() == NULL);
|
|
if (!trace->is_trivial()) {
|
|
trace->Flush(compiler, this);
|
|
return;
|
|
}
|
|
ChoiceNode::Emit(compiler, trace);
|
|
}
|
|
|
|
|
|
int ChoiceNode::CalculatePreloadCharacters(RegExpCompiler* compiler,
|
|
bool not_at_start) {
|
|
int preload_characters = EatsAtLeast(4, 0, not_at_start);
|
|
if (compiler->macro_assembler()->CanReadUnaligned()) {
|
|
bool ascii = compiler->ascii();
|
|
if (ascii) {
|
|
if (preload_characters > 4) preload_characters = 4;
|
|
// We can't preload 3 characters because there is no machine instruction
|
|
// to do that. We can't just load 4 because we could be reading
|
|
// beyond the end of the string, which could cause a memory fault.
|
|
if (preload_characters == 3) preload_characters = 2;
|
|
} else {
|
|
if (preload_characters > 2) preload_characters = 2;
|
|
}
|
|
} else {
|
|
if (preload_characters > 1) preload_characters = 1;
|
|
}
|
|
return preload_characters;
|
|
}
|
|
|
|
|
|
// This class is used when generating the alternatives in a choice node. It
|
|
// records the way the alternative is being code generated.
|
|
class AlternativeGeneration: public Malloced {
|
|
public:
|
|
AlternativeGeneration()
|
|
: possible_success(),
|
|
expects_preload(false),
|
|
after(),
|
|
quick_check_details() { }
|
|
Label possible_success;
|
|
bool expects_preload;
|
|
Label after;
|
|
QuickCheckDetails quick_check_details;
|
|
};
|
|
|
|
|
|
// Creates a list of AlternativeGenerations. If the list has a reasonable
|
|
// size then it is on the stack, otherwise the excess is on the heap.
|
|
class AlternativeGenerationList {
|
|
public:
|
|
explicit AlternativeGenerationList(int count)
|
|
: alt_gens_(count) {
|
|
for (int i = 0; i < count && i < kAFew; i++) {
|
|
alt_gens_.Add(a_few_alt_gens_ + i);
|
|
}
|
|
for (int i = kAFew; i < count; i++) {
|
|
alt_gens_.Add(new AlternativeGeneration());
|
|
}
|
|
}
|
|
~AlternativeGenerationList() {
|
|
for (int i = kAFew; i < alt_gens_.length(); i++) {
|
|
delete alt_gens_[i];
|
|
alt_gens_[i] = NULL;
|
|
}
|
|
}
|
|
|
|
AlternativeGeneration* at(int i) {
|
|
return alt_gens_[i];
|
|
}
|
|
private:
|
|
static const int kAFew = 10;
|
|
ZoneList<AlternativeGeneration*> alt_gens_;
|
|
AlternativeGeneration a_few_alt_gens_[kAFew];
|
|
};
|
|
|
|
|
|
/* Code generation for choice nodes.
|
|
*
|
|
* We generate quick checks that do a mask and compare to eliminate a
|
|
* choice. If the quick check succeeds then it jumps to the continuation to
|
|
* do slow checks and check subsequent nodes. If it fails (the common case)
|
|
* it falls through to the next choice.
|
|
*
|
|
* Here is the desired flow graph. Nodes directly below each other imply
|
|
* fallthrough. Alternatives 1 and 2 have quick checks. Alternative
|
|
* 3 doesn't have a quick check so we have to call the slow check.
|
|
* Nodes are marked Qn for quick checks and Sn for slow checks. The entire
|
|
* regexp continuation is generated directly after the Sn node, up to the
|
|
* next GoTo if we decide to reuse some already generated code. Some
|
|
* nodes expect preload_characters to be preloaded into the current
|
|
* character register. R nodes do this preloading. Vertices are marked
|
|
* F for failures and S for success (possible success in the case of quick
|
|
* nodes). L, V, < and > are used as arrow heads.
|
|
*
|
|
* ----------> R
|
|
* |
|
|
* V
|
|
* Q1 -----> S1
|
|
* | S /
|
|
* F| /
|
|
* | F/
|
|
* | /
|
|
* | R
|
|
* | /
|
|
* V L
|
|
* Q2 -----> S2
|
|
* | S /
|
|
* F| /
|
|
* | F/
|
|
* | /
|
|
* | R
|
|
* | /
|
|
* V L
|
|
* S3
|
|
* |
|
|
* F|
|
|
* |
|
|
* R
|
|
* |
|
|
* backtrack V
|
|
* <----------Q4
|
|
* \ F |
|
|
* \ |S
|
|
* \ F V
|
|
* \-----S4
|
|
*
|
|
* For greedy loops we reverse our expectation and expect to match rather
|
|
* than fail. Therefore we want the loop code to look like this (U is the
|
|
* unwind code that steps back in the greedy loop). The following alternatives
|
|
* look the same as above.
|
|
* _____
|
|
* / \
|
|
* V |
|
|
* ----------> S1 |
|
|
* /| |
|
|
* / |S |
|
|
* F/ \_____/
|
|
* /
|
|
* |<-----------
|
|
* | \
|
|
* V \
|
|
* Q2 ---> S2 \
|
|
* | S / |
|
|
* F| / |
|
|
* | F/ |
|
|
* | / |
|
|
* | R |
|
|
* | / |
|
|
* F VL |
|
|
* <------U |
|
|
* back |S |
|
|
* \______________/
|
|
*/
|
|
|
|
|
|
void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
|
|
RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
|
|
int choice_count = alternatives_->length();
|
|
#ifdef DEBUG
|
|
for (int i = 0; i < choice_count - 1; i++) {
|
|
GuardedAlternative alternative = alternatives_->at(i);
|
|
ZoneList<Guard*>* guards = alternative.guards();
|
|
int guard_count = (guards == NULL) ? 0 : guards->length();
|
|
for (int j = 0; j < guard_count; j++) {
|
|
ASSERT(!trace->mentions_reg(guards->at(j)->reg()));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
LimitResult limit_result = LimitVersions(compiler, trace);
|
|
if (limit_result == DONE) return;
|
|
ASSERT(limit_result == CONTINUE);
|
|
|
|
int new_flush_budget = trace->flush_budget() / choice_count;
|
|
if (trace->flush_budget() == 0 && trace->actions() != NULL) {
|
|
trace->Flush(compiler, this);
|
|
return;
|
|
}
|
|
|
|
RecursionCheck rc(compiler);
|
|
|
|
Trace* current_trace = trace;
|
|
|
|
int text_length = GreedyLoopTextLength(&(alternatives_->at(0)));
|
|
bool greedy_loop = false;
|
|
Label greedy_loop_label;
|
|
Trace counter_backtrack_trace;
|
|
counter_backtrack_trace.set_backtrack(&greedy_loop_label);
|
|
if (not_at_start()) counter_backtrack_trace.set_at_start(false);
|
|
|
|
if (choice_count > 1 && text_length != kNodeIsTooComplexForGreedyLoops) {
|
|
// Here we have special handling for greedy loops containing only text nodes
|
|
// and other simple nodes. These are handled by pushing the current
|
|
// position on the stack and then incrementing the current position each
|
|
// time around the switch. On backtrack we decrement the current position
|
|
// and check it against the pushed value. This avoids pushing backtrack
|
|
// information for each iteration of the loop, which could take up a lot of
|
|
// space.
|
|
greedy_loop = true;
|
|
ASSERT(trace->stop_node() == NULL);
|
|
macro_assembler->PushCurrentPosition();
|
|
current_trace = &counter_backtrack_trace;
|
|
Label greedy_match_failed;
|
|
Trace greedy_match_trace;
|
|
if (not_at_start()) greedy_match_trace.set_at_start(false);
|
|
greedy_match_trace.set_backtrack(&greedy_match_failed);
|
|
Label loop_label;
|
|
macro_assembler->Bind(&loop_label);
|
|
greedy_match_trace.set_stop_node(this);
|
|
greedy_match_trace.set_loop_label(&loop_label);
|
|
alternatives_->at(0).node()->Emit(compiler, &greedy_match_trace);
|
|
macro_assembler->Bind(&greedy_match_failed);
|
|
}
|
|
|
|
Label second_choice; // For use in greedy matches.
|
|
macro_assembler->Bind(&second_choice);
|
|
|
|
int first_normal_choice = greedy_loop ? 1 : 0;
|
|
|
|
int preload_characters =
|
|
CalculatePreloadCharacters(compiler,
|
|
current_trace->at_start() == Trace::FALSE);
|
|
bool preload_is_current =
|
|
(current_trace->characters_preloaded() == preload_characters);
|
|
bool preload_has_checked_bounds = preload_is_current;
|
|
|
|
AlternativeGenerationList alt_gens(choice_count);
|
|
|
|
// For now we just call all choices one after the other. The idea ultimately
|
|
// is to use the Dispatch table to try only the relevant ones.
|
|
for (int i = first_normal_choice; i < choice_count; i++) {
|
|
GuardedAlternative alternative = alternatives_->at(i);
|
|
AlternativeGeneration* alt_gen = alt_gens.at(i);
|
|
alt_gen->quick_check_details.set_characters(preload_characters);
|
|
ZoneList<Guard*>* guards = alternative.guards();
|
|
int guard_count = (guards == NULL) ? 0 : guards->length();
|
|
Trace new_trace(*current_trace);
|
|
new_trace.set_characters_preloaded(preload_is_current ?
|
|
preload_characters :
|
|
0);
|
|
if (preload_has_checked_bounds) {
|
|
new_trace.set_bound_checked_up_to(preload_characters);
|
|
}
|
|
new_trace.quick_check_performed()->Clear();
|
|
if (not_at_start_) new_trace.set_at_start(Trace::FALSE);
|
|
alt_gen->expects_preload = preload_is_current;
|
|
bool generate_full_check_inline = false;
|
|
if (FLAG_regexp_optimization &&
|
|
try_to_emit_quick_check_for_alternative(i) &&
|
|
alternative.node()->EmitQuickCheck(compiler,
|
|
&new_trace,
|
|
preload_has_checked_bounds,
|
|
&alt_gen->possible_success,
|
|
&alt_gen->quick_check_details,
|
|
i < choice_count - 1)) {
|
|
// Quick check was generated for this choice.
|
|
preload_is_current = true;
|
|
preload_has_checked_bounds = true;
|
|
// On the last choice in the ChoiceNode we generated the quick
|
|
// check to fall through on possible success. So now we need to
|
|
// generate the full check inline.
|
|
if (i == choice_count - 1) {
|
|
macro_assembler->Bind(&alt_gen->possible_success);
|
|
new_trace.set_quick_check_performed(&alt_gen->quick_check_details);
|
|
new_trace.set_characters_preloaded(preload_characters);
|
|
new_trace.set_bound_checked_up_to(preload_characters);
|
|
generate_full_check_inline = true;
|
|
}
|
|
} else if (alt_gen->quick_check_details.cannot_match()) {
|
|
if (i == choice_count - 1 && !greedy_loop) {
|
|
macro_assembler->GoTo(trace->backtrack());
|
|
}
|
|
continue;
|
|
} else {
|
|
// No quick check was generated. Put the full code here.
|
|
// If this is not the first choice then there could be slow checks from
|
|
// previous cases that go here when they fail. There's no reason to
|
|
// insist that they preload characters since the slow check we are about
|
|
// to generate probably can't use it.
|
|
if (i != first_normal_choice) {
|
|
alt_gen->expects_preload = false;
|
|
new_trace.InvalidateCurrentCharacter();
|
|
}
|
|
if (i < choice_count - 1) {
|
|
new_trace.set_backtrack(&alt_gen->after);
|
|
}
|
|
generate_full_check_inline = true;
|
|
}
|
|
if (generate_full_check_inline) {
|
|
if (new_trace.actions() != NULL) {
|
|
new_trace.set_flush_budget(new_flush_budget);
|
|
}
|
|
for (int j = 0; j < guard_count; j++) {
|
|
GenerateGuard(macro_assembler, guards->at(j), &new_trace);
|
|
}
|
|
alternative.node()->Emit(compiler, &new_trace);
|
|
preload_is_current = false;
|
|
}
|
|
macro_assembler->Bind(&alt_gen->after);
|
|
}
|
|
if (greedy_loop) {
|
|
macro_assembler->Bind(&greedy_loop_label);
|
|
// If we have unwound to the bottom then backtrack.
|
|
macro_assembler->CheckGreedyLoop(trace->backtrack());
|
|
// Otherwise try the second priority at an earlier position.
|
|
macro_assembler->AdvanceCurrentPosition(-text_length);
|
|
macro_assembler->GoTo(&second_choice);
|
|
}
|
|
|
|
// At this point we need to generate slow checks for the alternatives where
|
|
// the quick check was inlined. We can recognize these because the associated
|
|
// label was bound.
|
|
for (int i = first_normal_choice; i < choice_count - 1; i++) {
|
|
AlternativeGeneration* alt_gen = alt_gens.at(i);
|
|
Trace new_trace(*current_trace);
|
|
// If there are actions to be flushed we have to limit how many times
|
|
// they are flushed. Take the budget of the parent trace and distribute
|
|
// it fairly amongst the children.
|
|
if (new_trace.actions() != NULL) {
|
|
new_trace.set_flush_budget(new_flush_budget);
|
|
}
|
|
EmitOutOfLineContinuation(compiler,
|
|
&new_trace,
|
|
alternatives_->at(i),
|
|
alt_gen,
|
|
preload_characters,
|
|
alt_gens.at(i + 1)->expects_preload);
|
|
}
|
|
}
|
|
|
|
|
|
void ChoiceNode::EmitOutOfLineContinuation(RegExpCompiler* compiler,
|
|
Trace* trace,
|
|
GuardedAlternative alternative,
|
|
AlternativeGeneration* alt_gen,
|
|
int preload_characters,
|
|
bool next_expects_preload) {
|
|
if (!alt_gen->possible_success.is_linked()) return;
|
|
|
|
RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
|
|
macro_assembler->Bind(&alt_gen->possible_success);
|
|
Trace out_of_line_trace(*trace);
|
|
out_of_line_trace.set_characters_preloaded(preload_characters);
|
|
out_of_line_trace.set_quick_check_performed(&alt_gen->quick_check_details);
|
|
if (not_at_start_) out_of_line_trace.set_at_start(Trace::FALSE);
|
|
ZoneList<Guard*>* guards = alternative.guards();
|
|
int guard_count = (guards == NULL) ? 0 : guards->length();
|
|
if (next_expects_preload) {
|
|
Label reload_current_char;
|
|
out_of_line_trace.set_backtrack(&reload_current_char);
|
|
for (int j = 0; j < guard_count; j++) {
|
|
GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace);
|
|
}
|
|
alternative.node()->Emit(compiler, &out_of_line_trace);
|
|
macro_assembler->Bind(&reload_current_char);
|
|
// Reload the current character, since the next quick check expects that.
|
|
// We don't need to check bounds here because we only get into this
|
|
// code through a quick check which already did the checked load.
|
|
macro_assembler->LoadCurrentCharacter(trace->cp_offset(),
|
|
NULL,
|
|
false,
|
|
preload_characters);
|
|
macro_assembler->GoTo(&(alt_gen->after));
|
|
} else {
|
|
out_of_line_trace.set_backtrack(&(alt_gen->after));
|
|
for (int j = 0; j < guard_count; j++) {
|
|
GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace);
|
|
}
|
|
alternative.node()->Emit(compiler, &out_of_line_trace);
|
|
}
|
|
}
|
|
|
|
|
|
void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
|
|
RegExpMacroAssembler* assembler = compiler->macro_assembler();
|
|
LimitResult limit_result = LimitVersions(compiler, trace);
|
|
if (limit_result == DONE) return;
|
|
ASSERT(limit_result == CONTINUE);
|
|
|
|
RecursionCheck rc(compiler);
|
|
|
|
switch (type_) {
|
|
case STORE_POSITION: {
|
|
Trace::DeferredCapture
|
|
new_capture(data_.u_position_register.reg,
|
|
data_.u_position_register.is_capture,
|
|
trace);
|
|
Trace new_trace = *trace;
|
|
new_trace.add_action(&new_capture);
|
|
on_success()->Emit(compiler, &new_trace);
|
|
break;
|
|
}
|
|
case INCREMENT_REGISTER: {
|
|
Trace::DeferredIncrementRegister
|
|
new_increment(data_.u_increment_register.reg);
|
|
Trace new_trace = *trace;
|
|
new_trace.add_action(&new_increment);
|
|
on_success()->Emit(compiler, &new_trace);
|
|
break;
|
|
}
|
|
case SET_REGISTER: {
|
|
Trace::DeferredSetRegister
|
|
new_set(data_.u_store_register.reg, data_.u_store_register.value);
|
|
Trace new_trace = *trace;
|
|
new_trace.add_action(&new_set);
|
|
on_success()->Emit(compiler, &new_trace);
|
|
break;
|
|
}
|
|
case CLEAR_CAPTURES: {
|
|
Trace::DeferredClearCaptures
|
|
new_capture(Interval(data_.u_clear_captures.range_from,
|
|
data_.u_clear_captures.range_to));
|
|
Trace new_trace = *trace;
|
|
new_trace.add_action(&new_capture);
|
|
on_success()->Emit(compiler, &new_trace);
|
|
break;
|
|
}
|
|
case BEGIN_SUBMATCH:
|
|
if (!trace->is_trivial()) {
|
|
trace->Flush(compiler, this);
|
|
} else {
|
|
assembler->WriteCurrentPositionToRegister(
|
|
data_.u_submatch.current_position_register, 0);
|
|
assembler->WriteStackPointerToRegister(
|
|
data_.u_submatch.stack_pointer_register);
|
|
on_success()->Emit(compiler, trace);
|
|
}
|
|
break;
|
|
case EMPTY_MATCH_CHECK: {
|
|
int start_pos_reg = data_.u_empty_match_check.start_register;
|
|
int stored_pos = 0;
|
|
int rep_reg = data_.u_empty_match_check.repetition_register;
|
|
bool has_minimum = (rep_reg != RegExpCompiler::kNoRegister);
|
|
bool know_dist = trace->GetStoredPosition(start_pos_reg, &stored_pos);
|
|
if (know_dist && !has_minimum && stored_pos == trace->cp_offset()) {
|
|
// If we know we haven't advanced and there is no minimum we
|
|
// can just backtrack immediately.
|
|
assembler->GoTo(trace->backtrack());
|
|
} else if (know_dist && stored_pos < trace->cp_offset()) {
|
|
// If we know we've advanced we can generate the continuation
|
|
// immediately.
|
|
on_success()->Emit(compiler, trace);
|
|
} else if (!trace->is_trivial()) {
|
|
trace->Flush(compiler, this);
|
|
} else {
|
|
Label skip_empty_check;
|
|
// If we have a minimum number of repetitions we check the current
|
|
// number first and skip the empty check if it's not enough.
|
|
if (has_minimum) {
|
|
int limit = data_.u_empty_match_check.repetition_limit;
|
|
assembler->IfRegisterLT(rep_reg, limit, &skip_empty_check);
|
|
}
|
|
// If the match is empty we bail out, otherwise we fall through
|
|
// to the on-success continuation.
|
|
assembler->IfRegisterEqPos(data_.u_empty_match_check.start_register,
|
|
trace->backtrack());
|
|
assembler->Bind(&skip_empty_check);
|
|
on_success()->Emit(compiler, trace);
|
|
}
|
|
break;
|
|
}
|
|
case POSITIVE_SUBMATCH_SUCCESS: {
|
|
if (!trace->is_trivial()) {
|
|
trace->Flush(compiler, this);
|
|
return;
|
|
}
|
|
assembler->ReadCurrentPositionFromRegister(
|
|
data_.u_submatch.current_position_register);
|
|
assembler->ReadStackPointerFromRegister(
|
|
data_.u_submatch.stack_pointer_register);
|
|
int clear_register_count = data_.u_submatch.clear_register_count;
|
|
if (clear_register_count == 0) {
|
|
on_success()->Emit(compiler, trace);
|
|
return;
|
|
}
|
|
int clear_registers_from = data_.u_submatch.clear_register_from;
|
|
Label clear_registers_backtrack;
|
|
Trace new_trace = *trace;
|
|
new_trace.set_backtrack(&clear_registers_backtrack);
|
|
on_success()->Emit(compiler, &new_trace);
|
|
|
|
assembler->Bind(&clear_registers_backtrack);
|
|
int clear_registers_to = clear_registers_from + clear_register_count - 1;
|
|
assembler->ClearRegisters(clear_registers_from, clear_registers_to);
|
|
|
|
ASSERT(trace->backtrack() == NULL);
|
|
assembler->Backtrack();
|
|
return;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
|
|
void BackReferenceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
|
|
RegExpMacroAssembler* assembler = compiler->macro_assembler();
|
|
if (!trace->is_trivial()) {
|
|
trace->Flush(compiler, this);
|
|
return;
|
|
}
|
|
|
|
LimitResult limit_result = LimitVersions(compiler, trace);
|
|
if (limit_result == DONE) return;
|
|
ASSERT(limit_result == CONTINUE);
|
|
|
|
RecursionCheck rc(compiler);
|
|
|
|
ASSERT_EQ(start_reg_ + 1, end_reg_);
|
|
if (compiler->ignore_case()) {
|
|
assembler->CheckNotBackReferenceIgnoreCase(start_reg_,
|
|
trace->backtrack());
|
|
} else {
|
|
assembler->CheckNotBackReference(start_reg_, trace->backtrack());
|
|
}
|
|
on_success()->Emit(compiler, trace);
|
|
}
|
|
|
|
|
|
// -------------------------------------------------------------------
|
|
// Dot/dotty output
|
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
|
|
class DotPrinter: public NodeVisitor {
|
|
public:
|
|
explicit DotPrinter(bool ignore_case)
|
|
: ignore_case_(ignore_case),
|
|
stream_(&alloc_) { }
|
|
void PrintNode(const char* label, RegExpNode* node);
|
|
void Visit(RegExpNode* node);
|
|
void PrintAttributes(RegExpNode* from);
|
|
StringStream* stream() { return &stream_; }
|
|
void PrintOnFailure(RegExpNode* from, RegExpNode* to);
|
|
#define DECLARE_VISIT(Type) \
|
|
virtual void Visit##Type(Type##Node* that);
|
|
FOR_EACH_NODE_TYPE(DECLARE_VISIT)
|
|
#undef DECLARE_VISIT
|
|
private:
|
|
bool ignore_case_;
|
|
HeapStringAllocator alloc_;
|
|
StringStream stream_;
|
|
};
|
|
|
|
|
|
void DotPrinter::PrintNode(const char* label, RegExpNode* node) {
|
|
stream()->Add("digraph G {\n graph [label=\"");
|
|
for (int i = 0; label[i]; i++) {
|
|
switch (label[i]) {
|
|
case '\\':
|
|
stream()->Add("\\\\");
|
|
break;
|
|
case '"':
|
|
stream()->Add("\"");
|
|
break;
|
|
default:
|
|
stream()->Put(label[i]);
|
|
break;
|
|
}
|
|
}
|
|
stream()->Add("\"];\n");
|
|
Visit(node);
|
|
stream()->Add("}\n");
|
|
printf("%s", *(stream()->ToCString()));
|
|
}
|
|
|
|
|
|
void DotPrinter::Visit(RegExpNode* node) {
|
|
if (node->info()->visited) return;
|
|
node->info()->visited = true;
|
|
node->Accept(this);
|
|
}
|
|
|
|
|
|
void DotPrinter::PrintOnFailure(RegExpNode* from, RegExpNode* on_failure) {
|
|
stream()->Add(" n%p -> n%p [style=dotted];\n", from, on_failure);
|
|
Visit(on_failure);
|
|
}
|
|
|
|
|
|
class TableEntryBodyPrinter {
|
|
public:
|
|
TableEntryBodyPrinter(StringStream* stream, ChoiceNode* choice)
|
|
: stream_(stream), choice_(choice) { }
|
|
void Call(uc16 from, DispatchTable::Entry entry) {
|
|
OutSet* out_set = entry.out_set();
|
|
for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
|
|
if (out_set->Get(i)) {
|
|
stream()->Add(" n%p:s%io%i -> n%p;\n",
|
|
choice(),
|
|
from,
|
|
i,
|
|
choice()->alternatives()->at(i).node());
|
|
}
|
|
}
|
|
}
|
|
private:
|
|
StringStream* stream() { return stream_; }
|
|
ChoiceNode* choice() { return choice_; }
|
|
StringStream* stream_;
|
|
ChoiceNode* choice_;
|
|
};
|
|
|
|
|
|
class TableEntryHeaderPrinter {
|
|
public:
|
|
explicit TableEntryHeaderPrinter(StringStream* stream)
|
|
: first_(true), stream_(stream) { }
|
|
void Call(uc16 from, DispatchTable::Entry entry) {
|
|
if (first_) {
|
|
first_ = false;
|
|
} else {
|
|
stream()->Add("|");
|
|
}
|
|
stream()->Add("{\\%k-\\%k|{", from, entry.to());
|
|
OutSet* out_set = entry.out_set();
|
|
int priority = 0;
|
|
for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
|
|
if (out_set->Get(i)) {
|
|
if (priority > 0) stream()->Add("|");
|
|
stream()->Add("<s%io%i> %i", from, i, priority);
|
|
priority++;
|
|
}
|
|
}
|
|
stream()->Add("}}");
|
|
}
|
|
private:
|
|
bool first_;
|
|
StringStream* stream() { return stream_; }
|
|
StringStream* stream_;
|
|
};
|
|
|
|
|
|
class AttributePrinter {
|
|
public:
|
|
explicit AttributePrinter(DotPrinter* out)
|
|
: out_(out), first_(true) { }
|
|
void PrintSeparator() {
|
|
if (first_) {
|
|
first_ = false;
|
|
} else {
|
|
out_->stream()->Add("|");
|
|
}
|
|
}
|
|
void PrintBit(const char* name, bool value) {
|
|
if (!value) return;
|
|
PrintSeparator();
|
|
out_->stream()->Add("{%s}", name);
|
|
}
|
|
void PrintPositive(const char* name, int value) {
|
|
if (value < 0) return;
|
|
PrintSeparator();
|
|
out_->stream()->Add("{%s|%x}", name, value);
|
|
}
|
|
private:
|
|
DotPrinter* out_;
|
|
bool first_;
|
|
};
|
|
|
|
|
|
void DotPrinter::PrintAttributes(RegExpNode* that) {
|
|
stream()->Add(" a%p [shape=Mrecord, color=grey, fontcolor=grey, "
|
|
"margin=0.1, fontsize=10, label=\"{",
|
|
that);
|
|
AttributePrinter printer(this);
|
|
NodeInfo* info = that->info();
|
|
printer.PrintBit("NI", info->follows_newline_interest);
|
|
printer.PrintBit("WI", info->follows_word_interest);
|
|
printer.PrintBit("SI", info->follows_start_interest);
|
|
Label* label = that->label();
|
|
if (label->is_bound())
|
|
printer.PrintPositive("@", label->pos());
|
|
stream()->Add("}\"];\n");
|
|
stream()->Add(" a%p -> n%p [style=dashed, color=grey, "
|
|
"arrowhead=none];\n", that, that);
|
|
}
|
|
|
|
|
|
static const bool kPrintDispatchTable = false;
|
|
void DotPrinter::VisitChoice(ChoiceNode* that) {
|
|
if (kPrintDispatchTable) {
|
|
stream()->Add(" n%p [shape=Mrecord, label=\"", that);
|
|
TableEntryHeaderPrinter header_printer(stream());
|
|
that->GetTable(ignore_case_)->ForEach(&header_printer);
|
|
stream()->Add("\"]\n", that);
|
|
PrintAttributes(that);
|
|
TableEntryBodyPrinter body_printer(stream(), that);
|
|
that->GetTable(ignore_case_)->ForEach(&body_printer);
|
|
} else {
|
|
stream()->Add(" n%p [shape=Mrecord, label=\"?\"];\n", that);
|
|
for (int i = 0; i < that->alternatives()->length(); i++) {
|
|
GuardedAlternative alt = that->alternatives()->at(i);
|
|
stream()->Add(" n%p -> n%p;\n", that, alt.node());
|
|
}
|
|
}
|
|
for (int i = 0; i < that->alternatives()->length(); i++) {
|
|
GuardedAlternative alt = that->alternatives()->at(i);
|
|
alt.node()->Accept(this);
|
|
}
|
|
}
|
|
|
|
|
|
void DotPrinter::VisitText(TextNode* that) {
|
|
stream()->Add(" n%p [label=\"", that);
|
|
for (int i = 0; i < that->elements()->length(); i++) {
|
|
if (i > 0) stream()->Add(" ");
|
|
TextElement elm = that->elements()->at(i);
|
|
switch (elm.type) {
|
|
case TextElement::ATOM: {
|
|
stream()->Add("'%w'", elm.data.u_atom->data());
|
|
break;
|
|
}
|
|
case TextElement::CHAR_CLASS: {
|
|
RegExpCharacterClass* node = elm.data.u_char_class;
|
|
stream()->Add("[");
|
|
if (node->is_negated())
|
|
stream()->Add("^");
|
|
for (int j = 0; j < node->ranges()->length(); j++) {
|
|
CharacterRange range = node->ranges()->at(j);
|
|
stream()->Add("%k-%k", range.from(), range.to());
|
|
}
|
|
stream()->Add("]");
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
stream()->Add("\", shape=box, peripheries=2];\n");
|
|
PrintAttributes(that);
|
|
stream()->Add(" n%p -> n%p;\n", that, that->on_success());
|
|
Visit(that->on_success());
|
|
}
|
|
|
|
|
|
void DotPrinter::VisitBackReference(BackReferenceNode* that) {
|
|
stream()->Add(" n%p [label=\"$%i..$%i\", shape=doubleoctagon];\n",
|
|
that,
|
|
that->start_register(),
|
|
that->end_register());
|
|
PrintAttributes(that);
|
|
stream()->Add(" n%p -> n%p;\n", that, that->on_success());
|
|
Visit(that->on_success());
|
|
}
|
|
|
|
|
|
void DotPrinter::VisitEnd(EndNode* that) {
|
|
stream()->Add(" n%p [style=bold, shape=point];\n", that);
|
|
PrintAttributes(that);
|
|
}
|
|
|
|
|
|
void DotPrinter::VisitAssertion(AssertionNode* that) {
|
|
stream()->Add(" n%p [", that);
|
|
switch (that->type()) {
|
|
case AssertionNode::AT_END:
|
|
stream()->Add("label=\"$\", shape=septagon");
|
|
break;
|
|
case AssertionNode::AT_START:
|
|
stream()->Add("label=\"^\", shape=septagon");
|
|
break;
|
|
case AssertionNode::AT_BOUNDARY:
|
|
stream()->Add("label=\"\\b\", shape=septagon");
|
|
break;
|
|
case AssertionNode::AT_NON_BOUNDARY:
|
|
stream()->Add("label=\"\\B\", shape=septagon");
|
|
break;
|
|
case AssertionNode::AFTER_NEWLINE:
|
|
stream()->Add("label=\"(?<=\\n)\", shape=septagon");
|
|
break;
|
|
case AssertionNode::AFTER_WORD_CHARACTER:
|
|
stream()->Add("label=\"(?<=\\w)\", shape=septagon");
|
|
break;
|
|
case AssertionNode::AFTER_NONWORD_CHARACTER:
|
|
stream()->Add("label=\"(?<=\\W)\", shape=septagon");
|
|
break;
|
|
}
|
|
stream()->Add("];\n");
|
|
PrintAttributes(that);
|
|
RegExpNode* successor = that->on_success();
|
|
stream()->Add(" n%p -> n%p;\n", that, successor);
|
|
Visit(successor);
|
|
}
|
|
|
|
|
|
void DotPrinter::VisitAction(ActionNode* that) {
|
|
stream()->Add(" n%p [", that);
|
|
switch (that->type_) {
|
|
case ActionNode::SET_REGISTER:
|
|
stream()->Add("label=\"$%i:=%i\", shape=octagon",
|
|
that->data_.u_store_register.reg,
|
|
that->data_.u_store_register.value);
|
|
break;
|
|
case ActionNode::INCREMENT_REGISTER:
|
|
stream()->Add("label=\"$%i++\", shape=octagon",
|
|
that->data_.u_increment_register.reg);
|
|
break;
|
|
case ActionNode::STORE_POSITION:
|
|
stream()->Add("label=\"$%i:=$pos\", shape=octagon",
|
|
that->data_.u_position_register.reg);
|
|
break;
|
|
case ActionNode::BEGIN_SUBMATCH:
|
|
stream()->Add("label=\"$%i:=$pos,begin\", shape=septagon",
|
|
that->data_.u_submatch.current_position_register);
|
|
break;
|
|
case ActionNode::POSITIVE_SUBMATCH_SUCCESS:
|
|
stream()->Add("label=\"escape\", shape=septagon");
|
|
break;
|
|
case ActionNode::EMPTY_MATCH_CHECK:
|
|
stream()->Add("label=\"$%i=$pos?,$%i<%i?\", shape=septagon",
|
|
that->data_.u_empty_match_check.start_register,
|
|
that->data_.u_empty_match_check.repetition_register,
|
|
that->data_.u_empty_match_check.repetition_limit);
|
|
break;
|
|
case ActionNode::CLEAR_CAPTURES: {
|
|
stream()->Add("label=\"clear $%i to $%i\", shape=septagon",
|
|
that->data_.u_clear_captures.range_from,
|
|
that->data_.u_clear_captures.range_to);
|
|
break;
|
|
}
|
|
}
|
|
stream()->Add("];\n");
|
|
PrintAttributes(that);
|
|
RegExpNode* successor = that->on_success();
|
|
stream()->Add(" n%p -> n%p;\n", that, successor);
|
|
Visit(successor);
|
|
}
|
|
|
|
|
|
class DispatchTableDumper {
|
|
public:
|
|
explicit DispatchTableDumper(StringStream* stream) : stream_(stream) { }
|
|
void Call(uc16 key, DispatchTable::Entry entry);
|
|
StringStream* stream() { return stream_; }
|
|
private:
|
|
StringStream* stream_;
|
|
};
|
|
|
|
|
|
void DispatchTableDumper::Call(uc16 key, DispatchTable::Entry entry) {
|
|
stream()->Add("[%k-%k]: {", key, entry.to());
|
|
OutSet* set = entry.out_set();
|
|
bool first = true;
|
|
for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
|
|
if (set->Get(i)) {
|
|
if (first) {
|
|
first = false;
|
|
} else {
|
|
stream()->Add(", ");
|
|
}
|
|
stream()->Add("%i", i);
|
|
}
|
|
}
|
|
stream()->Add("}\n");
|
|
}
|
|
|
|
|
|
void DispatchTable::Dump() {
|
|
HeapStringAllocator alloc;
|
|
StringStream stream(&alloc);
|
|
DispatchTableDumper dumper(&stream);
|
|
tree()->ForEach(&dumper);
|
|
OS::PrintError("%s", *stream.ToCString());
|
|
}
|
|
|
|
|
|
void RegExpEngine::DotPrint(const char* label,
|
|
RegExpNode* node,
|
|
bool ignore_case) {
|
|
DotPrinter printer(ignore_case);
|
|
printer.PrintNode(label, node);
|
|
}
|
|
|
|
|
|
#endif // DEBUG
|
|
|
|
|
|
// -------------------------------------------------------------------
|
|
// Tree to graph conversion
|
|
|
|
static const int kSpaceRangeCount = 20;
|
|
static const int kSpaceRangeAsciiCount = 4;
|
|
static const uc16 kSpaceRanges[kSpaceRangeCount] = { 0x0009, 0x000D, 0x0020,
|
|
0x0020, 0x00A0, 0x00A0, 0x1680, 0x1680, 0x180E, 0x180E, 0x2000, 0x200A,
|
|
0x2028, 0x2029, 0x202F, 0x202F, 0x205F, 0x205F, 0x3000, 0x3000 };
|
|
|
|
static const int kWordRangeCount = 8;
|
|
static const uc16 kWordRanges[kWordRangeCount] = { '0', '9', 'A', 'Z', '_',
|
|
'_', 'a', 'z' };
|
|
|
|
static const int kDigitRangeCount = 2;
|
|
static const uc16 kDigitRanges[kDigitRangeCount] = { '0', '9' };
|
|
|
|
static const int kLineTerminatorRangeCount = 6;
|
|
static const uc16 kLineTerminatorRanges[kLineTerminatorRangeCount] = { 0x000A,
|
|
0x000A, 0x000D, 0x000D, 0x2028, 0x2029 };
|
|
|
|
RegExpNode* RegExpAtom::ToNode(RegExpCompiler* compiler,
|
|
RegExpNode* on_success) {
|
|
ZoneList<TextElement>* elms = new ZoneList<TextElement>(1);
|
|
elms->Add(TextElement::Atom(this));
|
|
return new TextNode(elms, on_success);
|
|
}
|
|
|
|
|
|
RegExpNode* RegExpText::ToNode(RegExpCompiler* compiler,
|
|
RegExpNode* on_success) {
|
|
return new TextNode(elements(), on_success);
|
|
}
|
|
|
|
static bool CompareInverseRanges(ZoneList<CharacterRange>* ranges,
|
|
const uc16* special_class,
|
|
int length) {
|
|
ASSERT(ranges->length() != 0);
|
|
ASSERT(length != 0);
|
|
ASSERT(special_class[0] != 0);
|
|
if (ranges->length() != (length >> 1) + 1) {
|
|
return false;
|
|
}
|
|
CharacterRange range = ranges->at(0);
|
|
if (range.from() != 0) {
|
|
return false;
|
|
}
|
|
for (int i = 0; i < length; i += 2) {
|
|
if (special_class[i] != (range.to() + 1)) {
|
|
return false;
|
|
}
|
|
range = ranges->at((i >> 1) + 1);
|
|
if (special_class[i+1] != range.from() - 1) {
|
|
return false;
|
|
}
|
|
}
|
|
if (range.to() != 0xffff) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
static bool CompareRanges(ZoneList<CharacterRange>* ranges,
|
|
const uc16* special_class,
|
|
int length) {
|
|
if (ranges->length() * 2 != length) {
|
|
return false;
|
|
}
|
|
for (int i = 0; i < length; i += 2) {
|
|
CharacterRange range = ranges->at(i >> 1);
|
|
if (range.from() != special_class[i] || range.to() != special_class[i+1]) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
bool RegExpCharacterClass::is_standard() {
|
|
// TODO(lrn): Remove need for this function, by not throwing away information
|
|
// along the way.
|
|
if (is_negated_) {
|
|
return false;
|
|
}
|
|
if (set_.is_standard()) {
|
|
return true;
|
|
}
|
|
if (CompareRanges(set_.ranges(), kSpaceRanges, kSpaceRangeCount)) {
|
|
set_.set_standard_set_type('s');
|
|
return true;
|
|
}
|
|
if (CompareInverseRanges(set_.ranges(), kSpaceRanges, kSpaceRangeCount)) {
|
|
set_.set_standard_set_type('S');
|
|
return true;
|
|
}
|
|
if (CompareInverseRanges(set_.ranges(),
|
|
kLineTerminatorRanges,
|
|
kLineTerminatorRangeCount)) {
|
|
set_.set_standard_set_type('.');
|
|
return true;
|
|
}
|
|
if (CompareRanges(set_.ranges(),
|
|
kLineTerminatorRanges,
|
|
kLineTerminatorRangeCount)) {
|
|
set_.set_standard_set_type('n');
|
|
return true;
|
|
}
|
|
if (CompareRanges(set_.ranges(), kWordRanges, kWordRangeCount)) {
|
|
set_.set_standard_set_type('w');
|
|
return true;
|
|
}
|
|
if (CompareInverseRanges(set_.ranges(), kWordRanges, kWordRangeCount)) {
|
|
set_.set_standard_set_type('W');
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
RegExpNode* RegExpCharacterClass::ToNode(RegExpCompiler* compiler,
|
|
RegExpNode* on_success) {
|
|
return new TextNode(this, on_success);
|
|
}
|
|
|
|
|
|
RegExpNode* RegExpDisjunction::ToNode(RegExpCompiler* compiler,
|
|
RegExpNode* on_success) {
|
|
ZoneList<RegExpTree*>* alternatives = this->alternatives();
|
|
int length = alternatives->length();
|
|
ChoiceNode* result = new ChoiceNode(length);
|
|
for (int i = 0; i < length; i++) {
|
|
GuardedAlternative alternative(alternatives->at(i)->ToNode(compiler,
|
|
on_success));
|
|
result->AddAlternative(alternative);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
RegExpNode* RegExpQuantifier::ToNode(RegExpCompiler* compiler,
|
|
RegExpNode* on_success) {
|
|
return ToNode(min(),
|
|
max(),
|
|
is_greedy(),
|
|
body(),
|
|
compiler,
|
|
on_success);
|
|
}
|
|
|
|
|
|
RegExpNode* RegExpQuantifier::ToNode(int min,
|
|
int max,
|
|
bool is_greedy,
|
|
RegExpTree* body,
|
|
RegExpCompiler* compiler,
|
|
RegExpNode* on_success,
|
|
bool not_at_start) {
|
|
// x{f, t} becomes this:
|
|
//
|
|
// (r++)<-.
|
|
// | `
|
|
// | (x)
|
|
// v ^
|
|
// (r=0)-->(?)---/ [if r < t]
|
|
// |
|
|
// [if r >= f] \----> ...
|
|
//
|
|
|
|
// 15.10.2.5 RepeatMatcher algorithm.
|
|
// The parser has already eliminated the case where max is 0. In the case
|
|
// where max_match is zero the parser has removed the quantifier if min was
|
|
// > 0 and removed the atom if min was 0. See AddQuantifierToAtom.
|
|
|
|
// If we know that we cannot match zero length then things are a little
|
|
// simpler since we don't need to make the special zero length match check
|
|
// from step 2.1. If the min and max are small we can unroll a little in
|
|
// this case.
|
|
static const int kMaxUnrolledMinMatches = 3; // Unroll (foo)+ and (foo){3,}
|
|
static const int kMaxUnrolledMaxMatches = 3; // Unroll (foo)? and (foo){x,3}
|
|
if (max == 0) return on_success; // This can happen due to recursion.
|
|
bool body_can_be_empty = (body->min_match() == 0);
|
|
int body_start_reg = RegExpCompiler::kNoRegister;
|
|
Interval capture_registers = body->CaptureRegisters();
|
|
bool needs_capture_clearing = !capture_registers.is_empty();
|
|
if (body_can_be_empty) {
|
|
body_start_reg = compiler->AllocateRegister();
|
|
} else if (FLAG_regexp_optimization && !needs_capture_clearing) {
|
|
// Only unroll if there are no captures and the body can't be
|
|
// empty.
|
|
if (min > 0 && min <= kMaxUnrolledMinMatches) {
|
|
int new_max = (max == kInfinity) ? max : max - min;
|
|
// Recurse once to get the loop or optional matches after the fixed ones.
|
|
RegExpNode* answer = ToNode(
|
|
0, new_max, is_greedy, body, compiler, on_success, true);
|
|
// Unroll the forced matches from 0 to min. This can cause chains of
|
|
// TextNodes (which the parser does not generate). These should be
|
|
// combined if it turns out they hinder good code generation.
|
|
for (int i = 0; i < min; i++) {
|
|
answer = body->ToNode(compiler, answer);
|
|
}
|
|
return answer;
|
|
}
|
|
if (max <= kMaxUnrolledMaxMatches) {
|
|
ASSERT(min == 0);
|
|
// Unroll the optional matches up to max.
|
|
RegExpNode* answer = on_success;
|
|
for (int i = 0; i < max; i++) {
|
|
ChoiceNode* alternation = new ChoiceNode(2);
|
|
if (is_greedy) {
|
|
alternation->AddAlternative(GuardedAlternative(body->ToNode(compiler,
|
|
answer)));
|
|
alternation->AddAlternative(GuardedAlternative(on_success));
|
|
} else {
|
|
alternation->AddAlternative(GuardedAlternative(on_success));
|
|
alternation->AddAlternative(GuardedAlternative(body->ToNode(compiler,
|
|
answer)));
|
|
}
|
|
answer = alternation;
|
|
if (not_at_start) alternation->set_not_at_start();
|
|
}
|
|
return answer;
|
|
}
|
|
}
|
|
bool has_min = min > 0;
|
|
bool has_max = max < RegExpTree::kInfinity;
|
|
bool needs_counter = has_min || has_max;
|
|
int reg_ctr = needs_counter
|
|
? compiler->AllocateRegister()
|
|
: RegExpCompiler::kNoRegister;
|
|
LoopChoiceNode* center = new LoopChoiceNode(body->min_match() == 0);
|
|
if (not_at_start) center->set_not_at_start();
|
|
RegExpNode* loop_return = needs_counter
|
|
? static_cast<RegExpNode*>(ActionNode::IncrementRegister(reg_ctr, center))
|
|
: static_cast<RegExpNode*>(center);
|
|
if (body_can_be_empty) {
|
|
// If the body can be empty we need to check if it was and then
|
|
// backtrack.
|
|
loop_return = ActionNode::EmptyMatchCheck(body_start_reg,
|
|
reg_ctr,
|
|
min,
|
|
loop_return);
|
|
}
|
|
RegExpNode* body_node = body->ToNode(compiler, loop_return);
|
|
if (body_can_be_empty) {
|
|
// If the body can be empty we need to store the start position
|
|
// so we can bail out if it was empty.
|
|
body_node = ActionNode::StorePosition(body_start_reg, false, body_node);
|
|
}
|
|
if (needs_capture_clearing) {
|
|
// Before entering the body of this loop we need to clear captures.
|
|
body_node = ActionNode::ClearCaptures(capture_registers, body_node);
|
|
}
|
|
GuardedAlternative body_alt(body_node);
|
|
if (has_max) {
|
|
Guard* body_guard = new Guard(reg_ctr, Guard::LT, max);
|
|
body_alt.AddGuard(body_guard);
|
|
}
|
|
GuardedAlternative rest_alt(on_success);
|
|
if (has_min) {
|
|
Guard* rest_guard = new Guard(reg_ctr, Guard::GEQ, min);
|
|
rest_alt.AddGuard(rest_guard);
|
|
}
|
|
if (is_greedy) {
|
|
center->AddLoopAlternative(body_alt);
|
|
center->AddContinueAlternative(rest_alt);
|
|
} else {
|
|
center->AddContinueAlternative(rest_alt);
|
|
center->AddLoopAlternative(body_alt);
|
|
}
|
|
if (needs_counter) {
|
|
return ActionNode::SetRegister(reg_ctr, 0, center);
|
|
} else {
|
|
return center;
|
|
}
|
|
}
|
|
|
|
|
|
RegExpNode* RegExpAssertion::ToNode(RegExpCompiler* compiler,
|
|
RegExpNode* on_success) {
|
|
NodeInfo info;
|
|
switch (type()) {
|
|
case START_OF_LINE:
|
|
return AssertionNode::AfterNewline(on_success);
|
|
case START_OF_INPUT:
|
|
return AssertionNode::AtStart(on_success);
|
|
case BOUNDARY:
|
|
return AssertionNode::AtBoundary(on_success);
|
|
case NON_BOUNDARY:
|
|
return AssertionNode::AtNonBoundary(on_success);
|
|
case END_OF_INPUT:
|
|
return AssertionNode::AtEnd(on_success);
|
|
case END_OF_LINE: {
|
|
// Compile $ in multiline regexps as an alternation with a positive
|
|
// lookahead in one side and an end-of-input on the other side.
|
|
// We need two registers for the lookahead.
|
|
int stack_pointer_register = compiler->AllocateRegister();
|
|
int position_register = compiler->AllocateRegister();
|
|
// The ChoiceNode to distinguish between a newline and end-of-input.
|
|
ChoiceNode* result = new ChoiceNode(2);
|
|
// Create a newline atom.
|
|
ZoneList<CharacterRange>* newline_ranges =
|
|
new ZoneList<CharacterRange>(3);
|
|
CharacterRange::AddClassEscape('n', newline_ranges);
|
|
RegExpCharacterClass* newline_atom = new RegExpCharacterClass('n');
|
|
TextNode* newline_matcher = new TextNode(
|
|
newline_atom,
|
|
ActionNode::PositiveSubmatchSuccess(stack_pointer_register,
|
|
position_register,
|
|
0, // No captures inside.
|
|
-1, // Ignored if no captures.
|
|
on_success));
|
|
// Create an end-of-input matcher.
|
|
RegExpNode* end_of_line = ActionNode::BeginSubmatch(
|
|
stack_pointer_register,
|
|
position_register,
|
|
newline_matcher);
|
|
// Add the two alternatives to the ChoiceNode.
|
|
GuardedAlternative eol_alternative(end_of_line);
|
|
result->AddAlternative(eol_alternative);
|
|
GuardedAlternative end_alternative(AssertionNode::AtEnd(on_success));
|
|
result->AddAlternative(end_alternative);
|
|
return result;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
return on_success;
|
|
}
|
|
|
|
|
|
RegExpNode* RegExpBackReference::ToNode(RegExpCompiler* compiler,
|
|
RegExpNode* on_success) {
|
|
return new BackReferenceNode(RegExpCapture::StartRegister(index()),
|
|
RegExpCapture::EndRegister(index()),
|
|
on_success);
|
|
}
|
|
|
|
|
|
RegExpNode* RegExpEmpty::ToNode(RegExpCompiler* compiler,
|
|
RegExpNode* on_success) {
|
|
return on_success;
|
|
}
|
|
|
|
|
|
RegExpNode* RegExpLookahead::ToNode(RegExpCompiler* compiler,
|
|
RegExpNode* on_success) {
|
|
int stack_pointer_register = compiler->AllocateRegister();
|
|
int position_register = compiler->AllocateRegister();
|
|
|
|
const int registers_per_capture = 2;
|
|
const int register_of_first_capture = 2;
|
|
int register_count = capture_count_ * registers_per_capture;
|
|
int register_start =
|
|
register_of_first_capture + capture_from_ * registers_per_capture;
|
|
|
|
RegExpNode* success;
|
|
if (is_positive()) {
|
|
RegExpNode* node = ActionNode::BeginSubmatch(
|
|
stack_pointer_register,
|
|
position_register,
|
|
body()->ToNode(
|
|
compiler,
|
|
ActionNode::PositiveSubmatchSuccess(stack_pointer_register,
|
|
position_register,
|
|
register_count,
|
|
register_start,
|
|
on_success)));
|
|
return node;
|
|
} else {
|
|
// We use a ChoiceNode for a negative lookahead because it has most of
|
|
// the characteristics we need. It has the body of the lookahead as its
|
|
// first alternative and the expression after the lookahead of the second
|
|
// alternative. If the first alternative succeeds then the
|
|
// NegativeSubmatchSuccess will unwind the stack including everything the
|
|
// choice node set up and backtrack. If the first alternative fails then
|
|
// the second alternative is tried, which is exactly the desired result
|
|
// for a negative lookahead. The NegativeLookaheadChoiceNode is a special
|
|
// ChoiceNode that knows to ignore the first exit when calculating quick
|
|
// checks.
|
|
GuardedAlternative body_alt(
|
|
body()->ToNode(
|
|
compiler,
|
|
success = new NegativeSubmatchSuccess(stack_pointer_register,
|
|
position_register,
|
|
register_count,
|
|
register_start)));
|
|
ChoiceNode* choice_node =
|
|
new NegativeLookaheadChoiceNode(body_alt,
|
|
GuardedAlternative(on_success));
|
|
return ActionNode::BeginSubmatch(stack_pointer_register,
|
|
position_register,
|
|
choice_node);
|
|
}
|
|
}
|
|
|
|
|
|
RegExpNode* RegExpCapture::ToNode(RegExpCompiler* compiler,
|
|
RegExpNode* on_success) {
|
|
return ToNode(body(), index(), compiler, on_success);
|
|
}
|
|
|
|
|
|
RegExpNode* RegExpCapture::ToNode(RegExpTree* body,
|
|
int index,
|
|
RegExpCompiler* compiler,
|
|
RegExpNode* on_success) {
|
|
int start_reg = RegExpCapture::StartRegister(index);
|
|
int end_reg = RegExpCapture::EndRegister(index);
|
|
RegExpNode* store_end = ActionNode::StorePosition(end_reg, true, on_success);
|
|
RegExpNode* body_node = body->ToNode(compiler, store_end);
|
|
return ActionNode::StorePosition(start_reg, true, body_node);
|
|
}
|
|
|
|
|
|
RegExpNode* RegExpAlternative::ToNode(RegExpCompiler* compiler,
|
|
RegExpNode* on_success) {
|
|
ZoneList<RegExpTree*>* children = nodes();
|
|
RegExpNode* current = on_success;
|
|
for (int i = children->length() - 1; i >= 0; i--) {
|
|
current = children->at(i)->ToNode(compiler, current);
|
|
}
|
|
return current;
|
|
}
|
|
|
|
|
|
static void AddClass(const uc16* elmv,
|
|
int elmc,
|
|
ZoneList<CharacterRange>* ranges) {
|
|
for (int i = 0; i < elmc; i += 2) {
|
|
ASSERT(elmv[i] <= elmv[i + 1]);
|
|
ranges->Add(CharacterRange(elmv[i], elmv[i + 1]));
|
|
}
|
|
}
|
|
|
|
|
|
static void AddClassNegated(const uc16 *elmv,
|
|
int elmc,
|
|
ZoneList<CharacterRange>* ranges) {
|
|
ASSERT(elmv[0] != 0x0000);
|
|
ASSERT(elmv[elmc-1] != String::kMaxUC16CharCode);
|
|
uc16 last = 0x0000;
|
|
for (int i = 0; i < elmc; i += 2) {
|
|
ASSERT(last <= elmv[i] - 1);
|
|
ASSERT(elmv[i] <= elmv[i + 1]);
|
|
ranges->Add(CharacterRange(last, elmv[i] - 1));
|
|
last = elmv[i + 1] + 1;
|
|
}
|
|
ranges->Add(CharacterRange(last, String::kMaxUC16CharCode));
|
|
}
|
|
|
|
|
|
void CharacterRange::AddClassEscape(uc16 type,
|
|
ZoneList<CharacterRange>* ranges) {
|
|
switch (type) {
|
|
case 's':
|
|
AddClass(kSpaceRanges, kSpaceRangeCount, ranges);
|
|
break;
|
|
case 'S':
|
|
AddClassNegated(kSpaceRanges, kSpaceRangeCount, ranges);
|
|
break;
|
|
case 'w':
|
|
AddClass(kWordRanges, kWordRangeCount, ranges);
|
|
break;
|
|
case 'W':
|
|
AddClassNegated(kWordRanges, kWordRangeCount, ranges);
|
|
break;
|
|
case 'd':
|
|
AddClass(kDigitRanges, kDigitRangeCount, ranges);
|
|
break;
|
|
case 'D':
|
|
AddClassNegated(kDigitRanges, kDigitRangeCount, ranges);
|
|
break;
|
|
case '.':
|
|
AddClassNegated(kLineTerminatorRanges,
|
|
kLineTerminatorRangeCount,
|
|
ranges);
|
|
break;
|
|
// This is not a character range as defined by the spec but a
|
|
// convenient shorthand for a character class that matches any
|
|
// character.
|
|
case '*':
|
|
ranges->Add(CharacterRange::Everything());
|
|
break;
|
|
// This is the set of characters matched by the $ and ^ symbols
|
|
// in multiline mode.
|
|
case 'n':
|
|
AddClass(kLineTerminatorRanges,
|
|
kLineTerminatorRangeCount,
|
|
ranges);
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
|
|
Vector<const uc16> CharacterRange::GetWordBounds() {
|
|
return Vector<const uc16>(kWordRanges, kWordRangeCount);
|
|
}
|
|
|
|
|
|
class CharacterRangeSplitter {
|
|
public:
|
|
CharacterRangeSplitter(ZoneList<CharacterRange>** included,
|
|
ZoneList<CharacterRange>** excluded)
|
|
: included_(included),
|
|
excluded_(excluded) { }
|
|
void Call(uc16 from, DispatchTable::Entry entry);
|
|
|
|
static const int kInBase = 0;
|
|
static const int kInOverlay = 1;
|
|
|
|
private:
|
|
ZoneList<CharacterRange>** included_;
|
|
ZoneList<CharacterRange>** excluded_;
|
|
};
|
|
|
|
|
|
void CharacterRangeSplitter::Call(uc16 from, DispatchTable::Entry entry) {
|
|
if (!entry.out_set()->Get(kInBase)) return;
|
|
ZoneList<CharacterRange>** target = entry.out_set()->Get(kInOverlay)
|
|
? included_
|
|
: excluded_;
|
|
if (*target == NULL) *target = new ZoneList<CharacterRange>(2);
|
|
(*target)->Add(CharacterRange(entry.from(), entry.to()));
|
|
}
|
|
|
|
|
|
void CharacterRange::Split(ZoneList<CharacterRange>* base,
|
|
Vector<const uc16> overlay,
|
|
ZoneList<CharacterRange>** included,
|
|
ZoneList<CharacterRange>** excluded) {
|
|
ASSERT_EQ(NULL, *included);
|
|
ASSERT_EQ(NULL, *excluded);
|
|
DispatchTable table;
|
|
for (int i = 0; i < base->length(); i++)
|
|
table.AddRange(base->at(i), CharacterRangeSplitter::kInBase);
|
|
for (int i = 0; i < overlay.length(); i += 2) {
|
|
table.AddRange(CharacterRange(overlay[i], overlay[i+1]),
|
|
CharacterRangeSplitter::kInOverlay);
|
|
}
|
|
CharacterRangeSplitter callback(included, excluded);
|
|
table.ForEach(&callback);
|
|
}
|
|
|
|
|
|
static void AddUncanonicals(Isolate* isolate,
|
|
ZoneList<CharacterRange>* ranges,
|
|
int bottom,
|
|
int top);
|
|
|
|
|
|
void CharacterRange::AddCaseEquivalents(ZoneList<CharacterRange>* ranges,
|
|
bool is_ascii) {
|
|
Isolate* isolate = Isolate::Current();
|
|
uc16 bottom = from();
|
|
uc16 top = to();
|
|
if (is_ascii) {
|
|
if (bottom > String::kMaxAsciiCharCode) return;
|
|
if (top > String::kMaxAsciiCharCode) top = String::kMaxAsciiCharCode;
|
|
}
|
|
unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
|
|
if (top == bottom) {
|
|
// If this is a singleton we just expand the one character.
|
|
int length = isolate->jsregexp_uncanonicalize()->get(bottom, '\0', chars);
|
|
for (int i = 0; i < length; i++) {
|
|
uc32 chr = chars[i];
|
|
if (chr != bottom) {
|
|
ranges->Add(CharacterRange::Singleton(chars[i]));
|
|
}
|
|
}
|
|
} else {
|
|
// If this is a range we expand the characters block by block,
|
|
// expanding contiguous subranges (blocks) one at a time.
|
|
// The approach is as follows. For a given start character we
|
|
// look up the remainder of the block that contains it (represented
|
|
// by the end point), for instance we find 'z' if the character
|
|
// is 'c'. A block is characterized by the property
|
|
// that all characters uncanonicalize in the same way, except that
|
|
// each entry in the result is incremented by the distance from the first
|
|
// element. So a-z is a block because 'a' uncanonicalizes to ['a', 'A'] and
|
|
// the k'th letter uncanonicalizes to ['a' + k, 'A' + k].
|
|
// Once we've found the end point we look up its uncanonicalization
|
|
// and produce a range for each element. For instance for [c-f]
|
|
// we look up ['z', 'Z'] and produce [c-f] and [C-F]. We then only
|
|
// add a range if it is not already contained in the input, so [c-f]
|
|
// will be skipped but [C-F] will be added. If this range is not
|
|
// completely contained in a block we do this for all the blocks
|
|
// covered by the range (handling characters that is not in a block
|
|
// as a "singleton block").
|
|
unibrow::uchar range[unibrow::Ecma262UnCanonicalize::kMaxWidth];
|
|
int pos = bottom;
|
|
while (pos < top) {
|
|
int length = isolate->jsregexp_canonrange()->get(pos, '\0', range);
|
|
uc16 block_end;
|
|
if (length == 0) {
|
|
block_end = pos;
|
|
} else {
|
|
ASSERT_EQ(1, length);
|
|
block_end = range[0];
|
|
}
|
|
int end = (block_end > top) ? top : block_end;
|
|
length = isolate->jsregexp_uncanonicalize()->get(block_end, '\0', range);
|
|
for (int i = 0; i < length; i++) {
|
|
uc32 c = range[i];
|
|
uc16 range_from = c - (block_end - pos);
|
|
uc16 range_to = c - (block_end - end);
|
|
if (!(bottom <= range_from && range_to <= top)) {
|
|
ranges->Add(CharacterRange(range_from, range_to));
|
|
}
|
|
}
|
|
pos = end + 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
bool CharacterRange::IsCanonical(ZoneList<CharacterRange>* ranges) {
|
|
ASSERT_NOT_NULL(ranges);
|
|
int n = ranges->length();
|
|
if (n <= 1) return true;
|
|
int max = ranges->at(0).to();
|
|
for (int i = 1; i < n; i++) {
|
|
CharacterRange next_range = ranges->at(i);
|
|
if (next_range.from() <= max + 1) return false;
|
|
max = next_range.to();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
SetRelation CharacterRange::WordCharacterRelation(
|
|
ZoneList<CharacterRange>* range) {
|
|
ASSERT(IsCanonical(range));
|
|
int i = 0; // Word character range index.
|
|
int j = 0; // Argument range index.
|
|
ASSERT_NE(0, kWordRangeCount);
|
|
SetRelation result;
|
|
if (range->length() == 0) {
|
|
result.SetElementsInSecondSet();
|
|
return result;
|
|
}
|
|
CharacterRange argument_range = range->at(0);
|
|
CharacterRange word_range = CharacterRange(kWordRanges[0], kWordRanges[1]);
|
|
while (i < kWordRangeCount && j < range->length()) {
|
|
// Check the two ranges for the five cases:
|
|
// - no overlap.
|
|
// - partial overlap (there are elements in both ranges that isn't
|
|
// in the other, and there are also elements that are in both).
|
|
// - argument range entirely inside word range.
|
|
// - word range entirely inside argument range.
|
|
// - ranges are completely equal.
|
|
|
|
// First check for no overlap. The earlier range is not in the other set.
|
|
if (argument_range.from() > word_range.to()) {
|
|
// Ranges are disjoint. The earlier word range contains elements that
|
|
// cannot be in the argument set.
|
|
result.SetElementsInSecondSet();
|
|
} else if (word_range.from() > argument_range.to()) {
|
|
// Ranges are disjoint. The earlier argument range contains elements that
|
|
// cannot be in the word set.
|
|
result.SetElementsInFirstSet();
|
|
} else if (word_range.from() <= argument_range.from() &&
|
|
word_range.to() >= argument_range.from()) {
|
|
result.SetElementsInBothSets();
|
|
// argument range completely inside word range.
|
|
if (word_range.from() < argument_range.from() ||
|
|
word_range.to() > argument_range.from()) {
|
|
result.SetElementsInSecondSet();
|
|
}
|
|
} else if (word_range.from() >= argument_range.from() &&
|
|
word_range.to() <= argument_range.from()) {
|
|
result.SetElementsInBothSets();
|
|
result.SetElementsInFirstSet();
|
|
} else {
|
|
// There is overlap, and neither is a subrange of the other
|
|
result.SetElementsInFirstSet();
|
|
result.SetElementsInSecondSet();
|
|
result.SetElementsInBothSets();
|
|
}
|
|
if (result.NonTrivialIntersection()) {
|
|
// The result is as (im)precise as we can possibly make it.
|
|
return result;
|
|
}
|
|
// Progress the range(s) with minimal to-character.
|
|
uc16 word_to = word_range.to();
|
|
uc16 argument_to = argument_range.to();
|
|
if (argument_to <= word_to) {
|
|
j++;
|
|
if (j < range->length()) {
|
|
argument_range = range->at(j);
|
|
}
|
|
}
|
|
if (word_to <= argument_to) {
|
|
i += 2;
|
|
if (i < kWordRangeCount) {
|
|
word_range = CharacterRange(kWordRanges[i], kWordRanges[i + 1]);
|
|
}
|
|
}
|
|
}
|
|
// Check if anything wasn't compared in the loop.
|
|
if (i < kWordRangeCount) {
|
|
// word range contains something not in argument range.
|
|
result.SetElementsInSecondSet();
|
|
} else if (j < range->length()) {
|
|
// Argument range contains something not in word range.
|
|
result.SetElementsInFirstSet();
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
static void AddUncanonicals(Isolate* isolate,
|
|
ZoneList<CharacterRange>* ranges,
|
|
int bottom,
|
|
int top) {
|
|
unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
|
|
// Zones with no case mappings. There is a DEBUG-mode loop to assert that
|
|
// this table is correct.
|
|
// 0x0600 - 0x0fff
|
|
// 0x1100 - 0x1cff
|
|
// 0x2000 - 0x20ff
|
|
// 0x2200 - 0x23ff
|
|
// 0x2500 - 0x2bff
|
|
// 0x2e00 - 0xa5ff
|
|
// 0xa800 - 0xfaff
|
|
// 0xfc00 - 0xfeff
|
|
const int boundary_count = 18;
|
|
int boundaries[] = {
|
|
0x600, 0x1000, 0x1100, 0x1d00, 0x2000, 0x2100, 0x2200, 0x2400, 0x2500,
|
|
0x2c00, 0x2e00, 0xa600, 0xa800, 0xfb00, 0xfc00, 0xff00};
|
|
|
|
// Special ASCII rule from spec can save us some work here.
|
|
if (bottom == 0x80 && top == 0xffff) return;
|
|
|
|
if (top <= boundaries[0]) {
|
|
CharacterRange range(bottom, top);
|
|
range.AddCaseEquivalents(ranges, false);
|
|
return;
|
|
}
|
|
|
|
// Split up very large ranges. This helps remove ranges where there are no
|
|
// case mappings.
|
|
for (int i = 0; i < boundary_count; i++) {
|
|
if (bottom < boundaries[i] && top >= boundaries[i]) {
|
|
AddUncanonicals(isolate, ranges, bottom, boundaries[i] - 1);
|
|
AddUncanonicals(isolate, ranges, boundaries[i], top);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If we are completely in a zone with no case mappings then we are done.
|
|
for (int i = 0; i < boundary_count; i += 2) {
|
|
if (bottom >= boundaries[i] && top < boundaries[i + 1]) {
|
|
#ifdef DEBUG
|
|
for (int j = bottom; j <= top; j++) {
|
|
unsigned current_char = j;
|
|
int length = isolate->jsregexp_uncanonicalize()->get(current_char,
|
|
'\0', chars);
|
|
for (int k = 0; k < length; k++) {
|
|
ASSERT(chars[k] == current_char);
|
|
}
|
|
}
|
|
#endif
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Step through the range finding equivalent characters.
|
|
ZoneList<unibrow::uchar> *characters = new ZoneList<unibrow::uchar>(100);
|
|
for (int i = bottom; i <= top; i++) {
|
|
int length = isolate->jsregexp_uncanonicalize()->get(i, '\0', chars);
|
|
for (int j = 0; j < length; j++) {
|
|
uc32 chr = chars[j];
|
|
if (chr != i && (chr < bottom || chr > top)) {
|
|
characters->Add(chr);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Step through the equivalent characters finding simple ranges and
|
|
// adding ranges to the character class.
|
|
if (characters->length() > 0) {
|
|
int new_from = characters->at(0);
|
|
int new_to = new_from;
|
|
for (int i = 1; i < characters->length(); i++) {
|
|
int chr = characters->at(i);
|
|
if (chr == new_to + 1) {
|
|
new_to++;
|
|
} else {
|
|
if (new_to == new_from) {
|
|
ranges->Add(CharacterRange::Singleton(new_from));
|
|
} else {
|
|
ranges->Add(CharacterRange(new_from, new_to));
|
|
}
|
|
new_from = new_to = chr;
|
|
}
|
|
}
|
|
if (new_to == new_from) {
|
|
ranges->Add(CharacterRange::Singleton(new_from));
|
|
} else {
|
|
ranges->Add(CharacterRange(new_from, new_to));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
ZoneList<CharacterRange>* CharacterSet::ranges() {
|
|
if (ranges_ == NULL) {
|
|
ranges_ = new ZoneList<CharacterRange>(2);
|
|
CharacterRange::AddClassEscape(standard_set_type_, ranges_);
|
|
}
|
|
return ranges_;
|
|
}
|
|
|
|
|
|
// Move a number of elements in a zonelist to another position
|
|
// in the same list. Handles overlapping source and target areas.
|
|
static void MoveRanges(ZoneList<CharacterRange>* list,
|
|
int from,
|
|
int to,
|
|
int count) {
|
|
// Ranges are potentially overlapping.
|
|
if (from < to) {
|
|
for (int i = count - 1; i >= 0; i--) {
|
|
list->at(to + i) = list->at(from + i);
|
|
}
|
|
} else {
|
|
for (int i = 0; i < count; i++) {
|
|
list->at(to + i) = list->at(from + i);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static int InsertRangeInCanonicalList(ZoneList<CharacterRange>* list,
|
|
int count,
|
|
CharacterRange insert) {
|
|
// Inserts a range into list[0..count[, which must be sorted
|
|
// by from value and non-overlapping and non-adjacent, using at most
|
|
// list[0..count] for the result. Returns the number of resulting
|
|
// canonicalized ranges. Inserting a range may collapse existing ranges into
|
|
// fewer ranges, so the return value can be anything in the range 1..count+1.
|
|
uc16 from = insert.from();
|
|
uc16 to = insert.to();
|
|
int start_pos = 0;
|
|
int end_pos = count;
|
|
for (int i = count - 1; i >= 0; i--) {
|
|
CharacterRange current = list->at(i);
|
|
if (current.from() > to + 1) {
|
|
end_pos = i;
|
|
} else if (current.to() + 1 < from) {
|
|
start_pos = i + 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Inserted range overlaps, or is adjacent to, ranges at positions
|
|
// [start_pos..end_pos[. Ranges before start_pos or at or after end_pos are
|
|
// not affected by the insertion.
|
|
// If start_pos == end_pos, the range must be inserted before start_pos.
|
|
// if start_pos < end_pos, the entire range from start_pos to end_pos
|
|
// must be merged with the insert range.
|
|
|
|
if (start_pos == end_pos) {
|
|
// Insert between existing ranges at position start_pos.
|
|
if (start_pos < count) {
|
|
MoveRanges(list, start_pos, start_pos + 1, count - start_pos);
|
|
}
|
|
list->at(start_pos) = insert;
|
|
return count + 1;
|
|
}
|
|
if (start_pos + 1 == end_pos) {
|
|
// Replace single existing range at position start_pos.
|
|
CharacterRange to_replace = list->at(start_pos);
|
|
int new_from = Min(to_replace.from(), from);
|
|
int new_to = Max(to_replace.to(), to);
|
|
list->at(start_pos) = CharacterRange(new_from, new_to);
|
|
return count;
|
|
}
|
|
// Replace a number of existing ranges from start_pos to end_pos - 1.
|
|
// Move the remaining ranges down.
|
|
|
|
int new_from = Min(list->at(start_pos).from(), from);
|
|
int new_to = Max(list->at(end_pos - 1).to(), to);
|
|
if (end_pos < count) {
|
|
MoveRanges(list, end_pos, start_pos + 1, count - end_pos);
|
|
}
|
|
list->at(start_pos) = CharacterRange(new_from, new_to);
|
|
return count - (end_pos - start_pos) + 1;
|
|
}
|
|
|
|
|
|
void CharacterSet::Canonicalize() {
|
|
// Special/default classes are always considered canonical. The result
|
|
// of calling ranges() will be sorted.
|
|
if (ranges_ == NULL) return;
|
|
CharacterRange::Canonicalize(ranges_);
|
|
}
|
|
|
|
|
|
void CharacterRange::Canonicalize(ZoneList<CharacterRange>* character_ranges) {
|
|
if (character_ranges->length() <= 1) return;
|
|
// Check whether ranges are already canonical (increasing, non-overlapping,
|
|
// non-adjacent).
|
|
int n = character_ranges->length();
|
|
int max = character_ranges->at(0).to();
|
|
int i = 1;
|
|
while (i < n) {
|
|
CharacterRange current = character_ranges->at(i);
|
|
if (current.from() <= max + 1) {
|
|
break;
|
|
}
|
|
max = current.to();
|
|
i++;
|
|
}
|
|
// Canonical until the i'th range. If that's all of them, we are done.
|
|
if (i == n) return;
|
|
|
|
// The ranges at index i and forward are not canonicalized. Make them so by
|
|
// doing the equivalent of insertion sort (inserting each into the previous
|
|
// list, in order).
|
|
// Notice that inserting a range can reduce the number of ranges in the
|
|
// result due to combining of adjacent and overlapping ranges.
|
|
int read = i; // Range to insert.
|
|
int num_canonical = i; // Length of canonicalized part of list.
|
|
do {
|
|
num_canonical = InsertRangeInCanonicalList(character_ranges,
|
|
num_canonical,
|
|
character_ranges->at(read));
|
|
read++;
|
|
} while (read < n);
|
|
character_ranges->Rewind(num_canonical);
|
|
|
|
ASSERT(CharacterRange::IsCanonical(character_ranges));
|
|
}
|
|
|
|
|
|
// Utility function for CharacterRange::Merge. Adds a range at the end of
|
|
// a canonicalized range list, if necessary merging the range with the last
|
|
// range of the list.
|
|
static void AddRangeToSet(ZoneList<CharacterRange>* set, CharacterRange range) {
|
|
if (set == NULL) return;
|
|
ASSERT(set->length() == 0 || set->at(set->length() - 1).to() < range.from());
|
|
int n = set->length();
|
|
if (n > 0) {
|
|
CharacterRange lastRange = set->at(n - 1);
|
|
if (lastRange.to() == range.from() - 1) {
|
|
set->at(n - 1) = CharacterRange(lastRange.from(), range.to());
|
|
return;
|
|
}
|
|
}
|
|
set->Add(range);
|
|
}
|
|
|
|
|
|
static void AddRangeToSelectedSet(int selector,
|
|
ZoneList<CharacterRange>* first_set,
|
|
ZoneList<CharacterRange>* second_set,
|
|
ZoneList<CharacterRange>* intersection_set,
|
|
CharacterRange range) {
|
|
switch (selector) {
|
|
case kInsideFirst:
|
|
AddRangeToSet(first_set, range);
|
|
break;
|
|
case kInsideSecond:
|
|
AddRangeToSet(second_set, range);
|
|
break;
|
|
case kInsideBoth:
|
|
AddRangeToSet(intersection_set, range);
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void CharacterRange::Merge(ZoneList<CharacterRange>* first_set,
|
|
ZoneList<CharacterRange>* second_set,
|
|
ZoneList<CharacterRange>* first_set_only_out,
|
|
ZoneList<CharacterRange>* second_set_only_out,
|
|
ZoneList<CharacterRange>* both_sets_out) {
|
|
// Inputs are canonicalized.
|
|
ASSERT(CharacterRange::IsCanonical(first_set));
|
|
ASSERT(CharacterRange::IsCanonical(second_set));
|
|
// Outputs are empty, if applicable.
|
|
ASSERT(first_set_only_out == NULL || first_set_only_out->length() == 0);
|
|
ASSERT(second_set_only_out == NULL || second_set_only_out->length() == 0);
|
|
ASSERT(both_sets_out == NULL || both_sets_out->length() == 0);
|
|
|
|
// Merge sets by iterating through the lists in order of lowest "from" value,
|
|
// and putting intervals into one of three sets.
|
|
|
|
if (first_set->length() == 0) {
|
|
second_set_only_out->AddAll(*second_set);
|
|
return;
|
|
}
|
|
if (second_set->length() == 0) {
|
|
first_set_only_out->AddAll(*first_set);
|
|
return;
|
|
}
|
|
// Indices into input lists.
|
|
int i1 = 0;
|
|
int i2 = 0;
|
|
// Cache length of input lists.
|
|
int n1 = first_set->length();
|
|
int n2 = second_set->length();
|
|
// Current range. May be invalid if state is kInsideNone.
|
|
int from = 0;
|
|
int to = -1;
|
|
// Where current range comes from.
|
|
int state = kInsideNone;
|
|
|
|
while (i1 < n1 || i2 < n2) {
|
|
CharacterRange next_range;
|
|
int range_source;
|
|
if (i2 == n2 ||
|
|
(i1 < n1 && first_set->at(i1).from() < second_set->at(i2).from())) {
|
|
// Next smallest element is in first set.
|
|
next_range = first_set->at(i1++);
|
|
range_source = kInsideFirst;
|
|
} else {
|
|
// Next smallest element is in second set.
|
|
next_range = second_set->at(i2++);
|
|
range_source = kInsideSecond;
|
|
}
|
|
if (to < next_range.from()) {
|
|
// Ranges disjoint: |current| |next|
|
|
AddRangeToSelectedSet(state,
|
|
first_set_only_out,
|
|
second_set_only_out,
|
|
both_sets_out,
|
|
CharacterRange(from, to));
|
|
from = next_range.from();
|
|
to = next_range.to();
|
|
state = range_source;
|
|
} else {
|
|
if (from < next_range.from()) {
|
|
AddRangeToSelectedSet(state,
|
|
first_set_only_out,
|
|
second_set_only_out,
|
|
both_sets_out,
|
|
CharacterRange(from, next_range.from()-1));
|
|
}
|
|
if (to < next_range.to()) {
|
|
// Ranges overlap: |current|
|
|
// |next|
|
|
AddRangeToSelectedSet(state | range_source,
|
|
first_set_only_out,
|
|
second_set_only_out,
|
|
both_sets_out,
|
|
CharacterRange(next_range.from(), to));
|
|
from = to + 1;
|
|
to = next_range.to();
|
|
state = range_source;
|
|
} else {
|
|
// Range included: |current| , possibly ending at same character.
|
|
// |next|
|
|
AddRangeToSelectedSet(
|
|
state | range_source,
|
|
first_set_only_out,
|
|
second_set_only_out,
|
|
both_sets_out,
|
|
CharacterRange(next_range.from(), next_range.to()));
|
|
from = next_range.to() + 1;
|
|
// If ranges end at same character, both ranges are consumed completely.
|
|
if (next_range.to() == to) state = kInsideNone;
|
|
}
|
|
}
|
|
}
|
|
AddRangeToSelectedSet(state,
|
|
first_set_only_out,
|
|
second_set_only_out,
|
|
both_sets_out,
|
|
CharacterRange(from, to));
|
|
}
|
|
|
|
|
|
void CharacterRange::Negate(ZoneList<CharacterRange>* ranges,
|
|
ZoneList<CharacterRange>* negated_ranges) {
|
|
ASSERT(CharacterRange::IsCanonical(ranges));
|
|
ASSERT_EQ(0, negated_ranges->length());
|
|
int range_count = ranges->length();
|
|
uc16 from = 0;
|
|
int i = 0;
|
|
if (range_count > 0 && ranges->at(0).from() == 0) {
|
|
from = ranges->at(0).to();
|
|
i = 1;
|
|
}
|
|
while (i < range_count) {
|
|
CharacterRange range = ranges->at(i);
|
|
negated_ranges->Add(CharacterRange(from + 1, range.from() - 1));
|
|
from = range.to();
|
|
i++;
|
|
}
|
|
if (from < String::kMaxUC16CharCode) {
|
|
negated_ranges->Add(CharacterRange(from + 1, String::kMaxUC16CharCode));
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// -------------------------------------------------------------------
|
|
// Interest propagation
|
|
|
|
|
|
RegExpNode* RegExpNode::TryGetSibling(NodeInfo* info) {
|
|
for (int i = 0; i < siblings_.length(); i++) {
|
|
RegExpNode* sibling = siblings_.Get(i);
|
|
if (sibling->info()->Matches(info))
|
|
return sibling;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
RegExpNode* RegExpNode::EnsureSibling(NodeInfo* info, bool* cloned) {
|
|
ASSERT_EQ(false, *cloned);
|
|
siblings_.Ensure(this);
|
|
RegExpNode* result = TryGetSibling(info);
|
|
if (result != NULL) return result;
|
|
result = this->Clone();
|
|
NodeInfo* new_info = result->info();
|
|
new_info->ResetCompilationState();
|
|
new_info->AddFromPreceding(info);
|
|
AddSibling(result);
|
|
*cloned = true;
|
|
return result;
|
|
}
|
|
|
|
|
|
template <class C>
|
|
static RegExpNode* PropagateToEndpoint(C* node, NodeInfo* info) {
|
|
NodeInfo full_info(*node->info());
|
|
full_info.AddFromPreceding(info);
|
|
bool cloned = false;
|
|
return RegExpNode::EnsureSibling(node, &full_info, &cloned);
|
|
}
|
|
|
|
|
|
// -------------------------------------------------------------------
|
|
// Splay tree
|
|
|
|
|
|
OutSet* OutSet::Extend(unsigned value) {
|
|
if (Get(value))
|
|
return this;
|
|
if (successors() != NULL) {
|
|
for (int i = 0; i < successors()->length(); i++) {
|
|
OutSet* successor = successors()->at(i);
|
|
if (successor->Get(value))
|
|
return successor;
|
|
}
|
|
} else {
|
|
successors_ = new ZoneList<OutSet*>(2);
|
|
}
|
|
OutSet* result = new OutSet(first_, remaining_);
|
|
result->Set(value);
|
|
successors()->Add(result);
|
|
return result;
|
|
}
|
|
|
|
|
|
void OutSet::Set(unsigned value) {
|
|
if (value < kFirstLimit) {
|
|
first_ |= (1 << value);
|
|
} else {
|
|
if (remaining_ == NULL)
|
|
remaining_ = new ZoneList<unsigned>(1);
|
|
if (remaining_->is_empty() || !remaining_->Contains(value))
|
|
remaining_->Add(value);
|
|
}
|
|
}
|
|
|
|
|
|
bool OutSet::Get(unsigned value) {
|
|
if (value < kFirstLimit) {
|
|
return (first_ & (1 << value)) != 0;
|
|
} else if (remaining_ == NULL) {
|
|
return false;
|
|
} else {
|
|
return remaining_->Contains(value);
|
|
}
|
|
}
|
|
|
|
|
|
const uc16 DispatchTable::Config::kNoKey = unibrow::Utf8::kBadChar;
|
|
const DispatchTable::Entry DispatchTable::Config::kNoValue;
|
|
|
|
|
|
void DispatchTable::AddRange(CharacterRange full_range, int value) {
|
|
CharacterRange current = full_range;
|
|
if (tree()->is_empty()) {
|
|
// If this is the first range we just insert into the table.
|
|
ZoneSplayTree<Config>::Locator loc;
|
|
ASSERT_RESULT(tree()->Insert(current.from(), &loc));
|
|
loc.set_value(Entry(current.from(), current.to(), empty()->Extend(value)));
|
|
return;
|
|
}
|
|
// First see if there is a range to the left of this one that
|
|
// overlaps.
|
|
ZoneSplayTree<Config>::Locator loc;
|
|
if (tree()->FindGreatestLessThan(current.from(), &loc)) {
|
|
Entry* entry = &loc.value();
|
|
// If we've found a range that overlaps with this one, and it
|
|
// starts strictly to the left of this one, we have to fix it
|
|
// because the following code only handles ranges that start on
|
|
// or after the start point of the range we're adding.
|
|
if (entry->from() < current.from() && entry->to() >= current.from()) {
|
|
// Snap the overlapping range in half around the start point of
|
|
// the range we're adding.
|
|
CharacterRange left(entry->from(), current.from() - 1);
|
|
CharacterRange right(current.from(), entry->to());
|
|
// The left part of the overlapping range doesn't overlap.
|
|
// Truncate the whole entry to be just the left part.
|
|
entry->set_to(left.to());
|
|
// The right part is the one that overlaps. We add this part
|
|
// to the map and let the next step deal with merging it with
|
|
// the range we're adding.
|
|
ZoneSplayTree<Config>::Locator loc;
|
|
ASSERT_RESULT(tree()->Insert(right.from(), &loc));
|
|
loc.set_value(Entry(right.from(),
|
|
right.to(),
|
|
entry->out_set()));
|
|
}
|
|
}
|
|
while (current.is_valid()) {
|
|
if (tree()->FindLeastGreaterThan(current.from(), &loc) &&
|
|
(loc.value().from() <= current.to()) &&
|
|
(loc.value().to() >= current.from())) {
|
|
Entry* entry = &loc.value();
|
|
// We have overlap. If there is space between the start point of
|
|
// the range we're adding and where the overlapping range starts
|
|
// then we have to add a range covering just that space.
|
|
if (current.from() < entry->from()) {
|
|
ZoneSplayTree<Config>::Locator ins;
|
|
ASSERT_RESULT(tree()->Insert(current.from(), &ins));
|
|
ins.set_value(Entry(current.from(),
|
|
entry->from() - 1,
|
|
empty()->Extend(value)));
|
|
current.set_from(entry->from());
|
|
}
|
|
ASSERT_EQ(current.from(), entry->from());
|
|
// If the overlapping range extends beyond the one we want to add
|
|
// we have to snap the right part off and add it separately.
|
|
if (entry->to() > current.to()) {
|
|
ZoneSplayTree<Config>::Locator ins;
|
|
ASSERT_RESULT(tree()->Insert(current.to() + 1, &ins));
|
|
ins.set_value(Entry(current.to() + 1,
|
|
entry->to(),
|
|
entry->out_set()));
|
|
entry->set_to(current.to());
|
|
}
|
|
ASSERT(entry->to() <= current.to());
|
|
// The overlapping range is now completely contained by the range
|
|
// we're adding so we can just update it and move the start point
|
|
// of the range we're adding just past it.
|
|
entry->AddValue(value);
|
|
// Bail out if the last interval ended at 0xFFFF since otherwise
|
|
// adding 1 will wrap around to 0.
|
|
if (entry->to() == String::kMaxUC16CharCode)
|
|
break;
|
|
ASSERT(entry->to() + 1 > current.from());
|
|
current.set_from(entry->to() + 1);
|
|
} else {
|
|
// There is no overlap so we can just add the range
|
|
ZoneSplayTree<Config>::Locator ins;
|
|
ASSERT_RESULT(tree()->Insert(current.from(), &ins));
|
|
ins.set_value(Entry(current.from(),
|
|
current.to(),
|
|
empty()->Extend(value)));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
OutSet* DispatchTable::Get(uc16 value) {
|
|
ZoneSplayTree<Config>::Locator loc;
|
|
if (!tree()->FindGreatestLessThan(value, &loc))
|
|
return empty();
|
|
Entry* entry = &loc.value();
|
|
if (value <= entry->to())
|
|
return entry->out_set();
|
|
else
|
|
return empty();
|
|
}
|
|
|
|
|
|
// -------------------------------------------------------------------
|
|
// Analysis
|
|
|
|
|
|
void Analysis::EnsureAnalyzed(RegExpNode* that) {
|
|
StackLimitCheck check(Isolate::Current());
|
|
if (check.HasOverflowed()) {
|
|
fail("Stack overflow");
|
|
return;
|
|
}
|
|
if (that->info()->been_analyzed || that->info()->being_analyzed)
|
|
return;
|
|
that->info()->being_analyzed = true;
|
|
that->Accept(this);
|
|
that->info()->being_analyzed = false;
|
|
that->info()->been_analyzed = true;
|
|
}
|
|
|
|
|
|
void Analysis::VisitEnd(EndNode* that) {
|
|
// nothing to do
|
|
}
|
|
|
|
|
|
void TextNode::CalculateOffsets() {
|
|
int element_count = elements()->length();
|
|
// Set up the offsets of the elements relative to the start. This is a fixed
|
|
// quantity since a TextNode can only contain fixed-width things.
|
|
int cp_offset = 0;
|
|
for (int i = 0; i < element_count; i++) {
|
|
TextElement& elm = elements()->at(i);
|
|
elm.cp_offset = cp_offset;
|
|
if (elm.type == TextElement::ATOM) {
|
|
cp_offset += elm.data.u_atom->data().length();
|
|
} else {
|
|
cp_offset++;
|
|
Vector<const uc16> quarks = elm.data.u_atom->data();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void Analysis::VisitText(TextNode* that) {
|
|
if (ignore_case_) {
|
|
that->MakeCaseIndependent(is_ascii_);
|
|
}
|
|
EnsureAnalyzed(that->on_success());
|
|
if (!has_failed()) {
|
|
that->CalculateOffsets();
|
|
}
|
|
}
|
|
|
|
|
|
void Analysis::VisitAction(ActionNode* that) {
|
|
RegExpNode* target = that->on_success();
|
|
EnsureAnalyzed(target);
|
|
if (!has_failed()) {
|
|
// If the next node is interested in what it follows then this node
|
|
// has to be interested too so it can pass the information on.
|
|
that->info()->AddFromFollowing(target->info());
|
|
}
|
|
}
|
|
|
|
|
|
void Analysis::VisitChoice(ChoiceNode* that) {
|
|
NodeInfo* info = that->info();
|
|
for (int i = 0; i < that->alternatives()->length(); i++) {
|
|
RegExpNode* node = that->alternatives()->at(i).node();
|
|
EnsureAnalyzed(node);
|
|
if (has_failed()) return;
|
|
// Anything the following nodes need to know has to be known by
|
|
// this node also, so it can pass it on.
|
|
info->AddFromFollowing(node->info());
|
|
}
|
|
}
|
|
|
|
|
|
void Analysis::VisitLoopChoice(LoopChoiceNode* that) {
|
|
NodeInfo* info = that->info();
|
|
for (int i = 0; i < that->alternatives()->length(); i++) {
|
|
RegExpNode* node = that->alternatives()->at(i).node();
|
|
if (node != that->loop_node()) {
|
|
EnsureAnalyzed(node);
|
|
if (has_failed()) return;
|
|
info->AddFromFollowing(node->info());
|
|
}
|
|
}
|
|
// Check the loop last since it may need the value of this node
|
|
// to get a correct result.
|
|
EnsureAnalyzed(that->loop_node());
|
|
if (!has_failed()) {
|
|
info->AddFromFollowing(that->loop_node()->info());
|
|
}
|
|
}
|
|
|
|
|
|
void Analysis::VisitBackReference(BackReferenceNode* that) {
|
|
EnsureAnalyzed(that->on_success());
|
|
}
|
|
|
|
|
|
void Analysis::VisitAssertion(AssertionNode* that) {
|
|
EnsureAnalyzed(that->on_success());
|
|
AssertionNode::AssertionNodeType type = that->type();
|
|
if (type == AssertionNode::AT_BOUNDARY ||
|
|
type == AssertionNode::AT_NON_BOUNDARY) {
|
|
// Check if the following character is known to be a word character
|
|
// or known to not be a word character.
|
|
ZoneList<CharacterRange>* following_chars = that->FirstCharacterSet();
|
|
|
|
CharacterRange::Canonicalize(following_chars);
|
|
|
|
SetRelation word_relation =
|
|
CharacterRange::WordCharacterRelation(following_chars);
|
|
if (word_relation.Disjoint()) {
|
|
// Includes the case where following_chars is empty (e.g., end-of-input).
|
|
// Following character is definitely *not* a word character.
|
|
type = (type == AssertionNode::AT_BOUNDARY) ?
|
|
AssertionNode::AFTER_WORD_CHARACTER :
|
|
AssertionNode::AFTER_NONWORD_CHARACTER;
|
|
that->set_type(type);
|
|
} else if (word_relation.ContainedIn()) {
|
|
// Following character is definitely a word character.
|
|
type = (type == AssertionNode::AT_BOUNDARY) ?
|
|
AssertionNode::AFTER_NONWORD_CHARACTER :
|
|
AssertionNode::AFTER_WORD_CHARACTER;
|
|
that->set_type(type);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
ZoneList<CharacterRange>* RegExpNode::FirstCharacterSet() {
|
|
if (first_character_set_ == NULL) {
|
|
if (ComputeFirstCharacterSet(kFirstCharBudget) < 0) {
|
|
// If we can't find an exact solution within the budget, we
|
|
// set the value to the set of every character, i.e., all characters
|
|
// are possible.
|
|
ZoneList<CharacterRange>* all_set = new ZoneList<CharacterRange>(1);
|
|
all_set->Add(CharacterRange::Everything());
|
|
first_character_set_ = all_set;
|
|
}
|
|
}
|
|
return first_character_set_;
|
|
}
|
|
|
|
|
|
int RegExpNode::ComputeFirstCharacterSet(int budget) {
|
|
// Default behavior is to not be able to determine the first character.
|
|
return kComputeFirstCharacterSetFail;
|
|
}
|
|
|
|
|
|
int LoopChoiceNode::ComputeFirstCharacterSet(int budget) {
|
|
budget--;
|
|
if (budget >= 0) {
|
|
// Find loop min-iteration. It's the value of the guarded choice node
|
|
// with a GEQ guard, if any.
|
|
int min_repetition = 0;
|
|
|
|
for (int i = 0; i <= 1; i++) {
|
|
GuardedAlternative alternative = alternatives()->at(i);
|
|
ZoneList<Guard*>* guards = alternative.guards();
|
|
if (guards != NULL && guards->length() > 0) {
|
|
Guard* guard = guards->at(0);
|
|
if (guard->op() == Guard::GEQ) {
|
|
min_repetition = guard->value();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
budget = loop_node()->ComputeFirstCharacterSet(budget);
|
|
if (budget >= 0) {
|
|
ZoneList<CharacterRange>* character_set =
|
|
loop_node()->first_character_set();
|
|
if (body_can_be_zero_length() || min_repetition == 0) {
|
|
budget = continue_node()->ComputeFirstCharacterSet(budget);
|
|
if (budget < 0) return budget;
|
|
ZoneList<CharacterRange>* body_set =
|
|
continue_node()->first_character_set();
|
|
ZoneList<CharacterRange>* union_set =
|
|
new ZoneList<CharacterRange>(Max(character_set->length(),
|
|
body_set->length()));
|
|
CharacterRange::Merge(character_set,
|
|
body_set,
|
|
union_set,
|
|
union_set,
|
|
union_set);
|
|
character_set = union_set;
|
|
}
|
|
set_first_character_set(character_set);
|
|
}
|
|
}
|
|
return budget;
|
|
}
|
|
|
|
|
|
int NegativeLookaheadChoiceNode::ComputeFirstCharacterSet(int budget) {
|
|
budget--;
|
|
if (budget >= 0) {
|
|
GuardedAlternative successor = this->alternatives()->at(1);
|
|
RegExpNode* successor_node = successor.node();
|
|
budget = successor_node->ComputeFirstCharacterSet(budget);
|
|
if (budget >= 0) {
|
|
set_first_character_set(successor_node->first_character_set());
|
|
}
|
|
}
|
|
return budget;
|
|
}
|
|
|
|
|
|
// The first character set of an EndNode is unknowable. Just use the
|
|
// default implementation that fails and returns all characters as possible.
|
|
|
|
|
|
int AssertionNode::ComputeFirstCharacterSet(int budget) {
|
|
budget -= 1;
|
|
if (budget >= 0) {
|
|
switch (type_) {
|
|
case AT_END: {
|
|
set_first_character_set(new ZoneList<CharacterRange>(0));
|
|
break;
|
|
}
|
|
case AT_START:
|
|
case AT_BOUNDARY:
|
|
case AT_NON_BOUNDARY:
|
|
case AFTER_NEWLINE:
|
|
case AFTER_NONWORD_CHARACTER:
|
|
case AFTER_WORD_CHARACTER: {
|
|
ASSERT_NOT_NULL(on_success());
|
|
budget = on_success()->ComputeFirstCharacterSet(budget);
|
|
if (budget >= 0) {
|
|
set_first_character_set(on_success()->first_character_set());
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return budget;
|
|
}
|
|
|
|
|
|
int ActionNode::ComputeFirstCharacterSet(int budget) {
|
|
if (type_ == POSITIVE_SUBMATCH_SUCCESS) return kComputeFirstCharacterSetFail;
|
|
budget--;
|
|
if (budget >= 0) {
|
|
ASSERT_NOT_NULL(on_success());
|
|
budget = on_success()->ComputeFirstCharacterSet(budget);
|
|
if (budget >= 0) {
|
|
set_first_character_set(on_success()->first_character_set());
|
|
}
|
|
}
|
|
return budget;
|
|
}
|
|
|
|
|
|
int BackReferenceNode::ComputeFirstCharacterSet(int budget) {
|
|
// We don't know anything about the first character of a backreference
|
|
// at this point.
|
|
// The potential first characters are the first characters of the capture,
|
|
// and the first characters of the on_success node, depending on whether the
|
|
// capture can be empty and whether it is known to be participating or known
|
|
// not to be.
|
|
return kComputeFirstCharacterSetFail;
|
|
}
|
|
|
|
|
|
int TextNode::ComputeFirstCharacterSet(int budget) {
|
|
budget--;
|
|
if (budget >= 0) {
|
|
ASSERT_NE(0, elements()->length());
|
|
TextElement text = elements()->at(0);
|
|
if (text.type == TextElement::ATOM) {
|
|
RegExpAtom* atom = text.data.u_atom;
|
|
ASSERT_NE(0, atom->length());
|
|
uc16 first_char = atom->data()[0];
|
|
ZoneList<CharacterRange>* range = new ZoneList<CharacterRange>(1);
|
|
range->Add(CharacterRange(first_char, first_char));
|
|
set_first_character_set(range);
|
|
} else {
|
|
ASSERT(text.type == TextElement::CHAR_CLASS);
|
|
RegExpCharacterClass* char_class = text.data.u_char_class;
|
|
ZoneList<CharacterRange>* ranges = char_class->ranges();
|
|
// TODO(lrn): Canonicalize ranges when they are created
|
|
// instead of waiting until now.
|
|
CharacterRange::Canonicalize(ranges);
|
|
if (char_class->is_negated()) {
|
|
int length = ranges->length();
|
|
int new_length = length + 1;
|
|
if (length > 0) {
|
|
if (ranges->at(0).from() == 0) new_length--;
|
|
if (ranges->at(length - 1).to() == String::kMaxUC16CharCode) {
|
|
new_length--;
|
|
}
|
|
}
|
|
ZoneList<CharacterRange>* negated_ranges =
|
|
new ZoneList<CharacterRange>(new_length);
|
|
CharacterRange::Negate(ranges, negated_ranges);
|
|
set_first_character_set(negated_ranges);
|
|
} else {
|
|
set_first_character_set(ranges);
|
|
}
|
|
}
|
|
}
|
|
return budget;
|
|
}
|
|
|
|
|
|
|
|
// -------------------------------------------------------------------
|
|
// Dispatch table construction
|
|
|
|
|
|
void DispatchTableConstructor::VisitEnd(EndNode* that) {
|
|
AddRange(CharacterRange::Everything());
|
|
}
|
|
|
|
|
|
void DispatchTableConstructor::BuildTable(ChoiceNode* node) {
|
|
node->set_being_calculated(true);
|
|
ZoneList<GuardedAlternative>* alternatives = node->alternatives();
|
|
for (int i = 0; i < alternatives->length(); i++) {
|
|
set_choice_index(i);
|
|
alternatives->at(i).node()->Accept(this);
|
|
}
|
|
node->set_being_calculated(false);
|
|
}
|
|
|
|
|
|
class AddDispatchRange {
|
|
public:
|
|
explicit AddDispatchRange(DispatchTableConstructor* constructor)
|
|
: constructor_(constructor) { }
|
|
void Call(uc32 from, DispatchTable::Entry entry);
|
|
private:
|
|
DispatchTableConstructor* constructor_;
|
|
};
|
|
|
|
|
|
void AddDispatchRange::Call(uc32 from, DispatchTable::Entry entry) {
|
|
CharacterRange range(from, entry.to());
|
|
constructor_->AddRange(range);
|
|
}
|
|
|
|
|
|
void DispatchTableConstructor::VisitChoice(ChoiceNode* node) {
|
|
if (node->being_calculated())
|
|
return;
|
|
DispatchTable* table = node->GetTable(ignore_case_);
|
|
AddDispatchRange adder(this);
|
|
table->ForEach(&adder);
|
|
}
|
|
|
|
|
|
void DispatchTableConstructor::VisitBackReference(BackReferenceNode* that) {
|
|
// TODO(160): Find the node that we refer back to and propagate its start
|
|
// set back to here. For now we just accept anything.
|
|
AddRange(CharacterRange::Everything());
|
|
}
|
|
|
|
|
|
void DispatchTableConstructor::VisitAssertion(AssertionNode* that) {
|
|
RegExpNode* target = that->on_success();
|
|
target->Accept(this);
|
|
}
|
|
|
|
|
|
static int CompareRangeByFrom(const CharacterRange* a,
|
|
const CharacterRange* b) {
|
|
return Compare<uc16>(a->from(), b->from());
|
|
}
|
|
|
|
|
|
void DispatchTableConstructor::AddInverse(ZoneList<CharacterRange>* ranges) {
|
|
ranges->Sort(CompareRangeByFrom);
|
|
uc16 last = 0;
|
|
for (int i = 0; i < ranges->length(); i++) {
|
|
CharacterRange range = ranges->at(i);
|
|
if (last < range.from())
|
|
AddRange(CharacterRange(last, range.from() - 1));
|
|
if (range.to() >= last) {
|
|
if (range.to() == String::kMaxUC16CharCode) {
|
|
return;
|
|
} else {
|
|
last = range.to() + 1;
|
|
}
|
|
}
|
|
}
|
|
AddRange(CharacterRange(last, String::kMaxUC16CharCode));
|
|
}
|
|
|
|
|
|
void DispatchTableConstructor::VisitText(TextNode* that) {
|
|
TextElement elm = that->elements()->at(0);
|
|
switch (elm.type) {
|
|
case TextElement::ATOM: {
|
|
uc16 c = elm.data.u_atom->data()[0];
|
|
AddRange(CharacterRange(c, c));
|
|
break;
|
|
}
|
|
case TextElement::CHAR_CLASS: {
|
|
RegExpCharacterClass* tree = elm.data.u_char_class;
|
|
ZoneList<CharacterRange>* ranges = tree->ranges();
|
|
if (tree->is_negated()) {
|
|
AddInverse(ranges);
|
|
} else {
|
|
for (int i = 0; i < ranges->length(); i++)
|
|
AddRange(ranges->at(i));
|
|
}
|
|
break;
|
|
}
|
|
default: {
|
|
UNIMPLEMENTED();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void DispatchTableConstructor::VisitAction(ActionNode* that) {
|
|
RegExpNode* target = that->on_success();
|
|
target->Accept(this);
|
|
}
|
|
|
|
|
|
RegExpEngine::CompilationResult RegExpEngine::Compile(RegExpCompileData* data,
|
|
bool ignore_case,
|
|
bool is_multiline,
|
|
Handle<String> pattern,
|
|
bool is_ascii) {
|
|
if ((data->capture_count + 1) * 2 - 1 > RegExpMacroAssembler::kMaxRegister) {
|
|
return IrregexpRegExpTooBig();
|
|
}
|
|
RegExpCompiler compiler(data->capture_count, ignore_case, is_ascii);
|
|
// Wrap the body of the regexp in capture #0.
|
|
RegExpNode* captured_body = RegExpCapture::ToNode(data->tree,
|
|
0,
|
|
&compiler,
|
|
compiler.accept());
|
|
RegExpNode* node = captured_body;
|
|
bool is_end_anchored = data->tree->IsAnchoredAtEnd();
|
|
bool is_start_anchored = data->tree->IsAnchoredAtStart();
|
|
int max_length = data->tree->max_match();
|
|
if (!is_start_anchored) {
|
|
// Add a .*? at the beginning, outside the body capture, unless
|
|
// this expression is anchored at the beginning.
|
|
RegExpNode* loop_node =
|
|
RegExpQuantifier::ToNode(0,
|
|
RegExpTree::kInfinity,
|
|
false,
|
|
new RegExpCharacterClass('*'),
|
|
&compiler,
|
|
captured_body,
|
|
data->contains_anchor);
|
|
|
|
if (data->contains_anchor) {
|
|
// Unroll loop once, to take care of the case that might start
|
|
// at the start of input.
|
|
ChoiceNode* first_step_node = new ChoiceNode(2);
|
|
first_step_node->AddAlternative(GuardedAlternative(captured_body));
|
|
first_step_node->AddAlternative(GuardedAlternative(
|
|
new TextNode(new RegExpCharacterClass('*'), loop_node)));
|
|
node = first_step_node;
|
|
} else {
|
|
node = loop_node;
|
|
}
|
|
}
|
|
data->node = node;
|
|
Analysis analysis(ignore_case, is_ascii);
|
|
analysis.EnsureAnalyzed(node);
|
|
if (analysis.has_failed()) {
|
|
const char* error_message = analysis.error_message();
|
|
return CompilationResult(error_message);
|
|
}
|
|
|
|
NodeInfo info = *node->info();
|
|
|
|
// Create the correct assembler for the architecture.
|
|
#ifndef V8_INTERPRETED_REGEXP
|
|
// Native regexp implementation.
|
|
|
|
NativeRegExpMacroAssembler::Mode mode =
|
|
is_ascii ? NativeRegExpMacroAssembler::ASCII
|
|
: NativeRegExpMacroAssembler::UC16;
|
|
|
|
#if V8_TARGET_ARCH_IA32
|
|
RegExpMacroAssemblerIA32 macro_assembler(mode, (data->capture_count + 1) * 2);
|
|
#elif V8_TARGET_ARCH_X64
|
|
RegExpMacroAssemblerX64 macro_assembler(mode, (data->capture_count + 1) * 2);
|
|
#elif V8_TARGET_ARCH_ARM
|
|
RegExpMacroAssemblerARM macro_assembler(mode, (data->capture_count + 1) * 2);
|
|
#endif
|
|
|
|
#else // V8_INTERPRETED_REGEXP
|
|
// Interpreted regexp implementation.
|
|
EmbeddedVector<byte, 1024> codes;
|
|
RegExpMacroAssemblerIrregexp macro_assembler(codes);
|
|
#endif // V8_INTERPRETED_REGEXP
|
|
|
|
// Inserted here, instead of in Assembler, because it depends on information
|
|
// in the AST that isn't replicated in the Node structure.
|
|
static const int kMaxBacksearchLimit = 1024;
|
|
if (is_end_anchored &&
|
|
!is_start_anchored &&
|
|
max_length < kMaxBacksearchLimit) {
|
|
macro_assembler.SetCurrentPositionFromEnd(max_length);
|
|
}
|
|
|
|
return compiler.Assemble(¯o_assembler,
|
|
node,
|
|
data->capture_count,
|
|
pattern);
|
|
}
|
|
|
|
|
|
}} // namespace v8::internal
|