0e41b8661f
R=bmeurer@chromium.org, ulan@chromium.org BUG= Review URL: https://codereview.chromium.org/400223002 git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@22498 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
5411 lines
191 KiB
C++
5411 lines
191 KiB
C++
// Copyright 2013 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "src/v8.h"
|
|
|
|
#if V8_TARGET_ARCH_ARM64
|
|
|
|
#include "src/bootstrapper.h"
|
|
#include "src/code-stubs.h"
|
|
#include "src/regexp-macro-assembler.h"
|
|
#include "src/stub-cache.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
void FastNewClosureStub::InitializeInterfaceDescriptor(
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
// cp: context
|
|
// x2: function info
|
|
Register registers[] = { cp, x2 };
|
|
descriptor->Initialize(
|
|
ARRAY_SIZE(registers), registers,
|
|
Runtime::FunctionForId(Runtime::kNewClosureFromStubFailure)->entry);
|
|
}
|
|
|
|
|
|
void FastNewContextStub::InitializeInterfaceDescriptor(
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
// cp: context
|
|
// x1: function
|
|
Register registers[] = { cp, x1 };
|
|
descriptor->Initialize(ARRAY_SIZE(registers), registers);
|
|
}
|
|
|
|
|
|
void ToNumberStub::InitializeInterfaceDescriptor(
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
// cp: context
|
|
// x0: value
|
|
Register registers[] = { cp, x0 };
|
|
descriptor->Initialize(ARRAY_SIZE(registers), registers);
|
|
}
|
|
|
|
|
|
void NumberToStringStub::InitializeInterfaceDescriptor(
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
// cp: context
|
|
// x0: value
|
|
Register registers[] = { cp, x0 };
|
|
descriptor->Initialize(
|
|
ARRAY_SIZE(registers), registers,
|
|
Runtime::FunctionForId(Runtime::kNumberToStringRT)->entry);
|
|
}
|
|
|
|
|
|
void FastCloneShallowArrayStub::InitializeInterfaceDescriptor(
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
// cp: context
|
|
// x3: array literals array
|
|
// x2: array literal index
|
|
// x1: constant elements
|
|
Register registers[] = { cp, x3, x2, x1 };
|
|
Representation representations[] = {
|
|
Representation::Tagged(),
|
|
Representation::Tagged(),
|
|
Representation::Smi(),
|
|
Representation::Tagged() };
|
|
descriptor->Initialize(
|
|
ARRAY_SIZE(registers), registers,
|
|
Runtime::FunctionForId(
|
|
Runtime::kCreateArrayLiteralStubBailout)->entry,
|
|
representations);
|
|
}
|
|
|
|
|
|
void FastCloneShallowObjectStub::InitializeInterfaceDescriptor(
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
// cp: context
|
|
// x3: object literals array
|
|
// x2: object literal index
|
|
// x1: constant properties
|
|
// x0: object literal flags
|
|
Register registers[] = { cp, x3, x2, x1, x0 };
|
|
descriptor->Initialize(
|
|
ARRAY_SIZE(registers), registers,
|
|
Runtime::FunctionForId(Runtime::kCreateObjectLiteral)->entry);
|
|
}
|
|
|
|
|
|
void CreateAllocationSiteStub::InitializeInterfaceDescriptor(
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
// cp: context
|
|
// x2: feedback vector
|
|
// x3: call feedback slot
|
|
Register registers[] = { cp, x2, x3 };
|
|
descriptor->Initialize(ARRAY_SIZE(registers), registers);
|
|
}
|
|
|
|
|
|
void RegExpConstructResultStub::InitializeInterfaceDescriptor(
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
// cp: context
|
|
// x2: length
|
|
// x1: index (of last match)
|
|
// x0: string
|
|
Register registers[] = { cp, x2, x1, x0 };
|
|
descriptor->Initialize(
|
|
ARRAY_SIZE(registers), registers,
|
|
Runtime::FunctionForId(Runtime::kRegExpConstructResult)->entry);
|
|
}
|
|
|
|
|
|
void TransitionElementsKindStub::InitializeInterfaceDescriptor(
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
// cp: context
|
|
// x0: value (js_array)
|
|
// x1: to_map
|
|
Register registers[] = { cp, x0, x1 };
|
|
Address entry =
|
|
Runtime::FunctionForId(Runtime::kTransitionElementsKind)->entry;
|
|
descriptor->Initialize(ARRAY_SIZE(registers), registers,
|
|
FUNCTION_ADDR(entry));
|
|
}
|
|
|
|
|
|
void CompareNilICStub::InitializeInterfaceDescriptor(
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
// cp: context
|
|
// x0: value to compare
|
|
Register registers[] = { cp, x0 };
|
|
descriptor->Initialize(ARRAY_SIZE(registers), registers,
|
|
FUNCTION_ADDR(CompareNilIC_Miss));
|
|
descriptor->SetMissHandler(
|
|
ExternalReference(IC_Utility(IC::kCompareNilIC_Miss), isolate()));
|
|
}
|
|
|
|
|
|
const Register InterfaceDescriptor::ContextRegister() { return cp; }
|
|
|
|
|
|
static void InitializeArrayConstructorDescriptor(
|
|
CodeStubInterfaceDescriptor* descriptor,
|
|
int constant_stack_parameter_count) {
|
|
// cp: context
|
|
// x1: function
|
|
// x2: allocation site with elements kind
|
|
// x0: number of arguments to the constructor function
|
|
Address deopt_handler = Runtime::FunctionForId(
|
|
Runtime::kArrayConstructor)->entry;
|
|
|
|
if (constant_stack_parameter_count == 0) {
|
|
Register registers[] = { cp, x1, x2 };
|
|
descriptor->Initialize(ARRAY_SIZE(registers), registers,
|
|
deopt_handler,
|
|
NULL,
|
|
constant_stack_parameter_count,
|
|
JS_FUNCTION_STUB_MODE);
|
|
} else {
|
|
// stack param count needs (constructor pointer, and single argument)
|
|
Register registers[] = { cp, x1, x2, x0 };
|
|
Representation representations[] = {
|
|
Representation::Tagged(),
|
|
Representation::Tagged(),
|
|
Representation::Tagged(),
|
|
Representation::Integer32() };
|
|
descriptor->Initialize(ARRAY_SIZE(registers), registers,
|
|
x0,
|
|
deopt_handler,
|
|
representations,
|
|
constant_stack_parameter_count,
|
|
JS_FUNCTION_STUB_MODE,
|
|
PASS_ARGUMENTS);
|
|
}
|
|
}
|
|
|
|
|
|
void ArrayNoArgumentConstructorStub::InitializeInterfaceDescriptor(
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
InitializeArrayConstructorDescriptor(descriptor, 0);
|
|
}
|
|
|
|
|
|
void ArraySingleArgumentConstructorStub::InitializeInterfaceDescriptor(
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
InitializeArrayConstructorDescriptor(descriptor, 1);
|
|
}
|
|
|
|
|
|
void ArrayNArgumentsConstructorStub::InitializeInterfaceDescriptor(
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
InitializeArrayConstructorDescriptor(descriptor, -1);
|
|
}
|
|
|
|
|
|
static void InitializeInternalArrayConstructorDescriptor(
|
|
CodeStubInterfaceDescriptor* descriptor,
|
|
int constant_stack_parameter_count) {
|
|
// cp: context
|
|
// x1: constructor function
|
|
// x0: number of arguments to the constructor function
|
|
Address deopt_handler = Runtime::FunctionForId(
|
|
Runtime::kInternalArrayConstructor)->entry;
|
|
|
|
if (constant_stack_parameter_count == 0) {
|
|
Register registers[] = { cp, x1 };
|
|
descriptor->Initialize(ARRAY_SIZE(registers), registers,
|
|
deopt_handler,
|
|
NULL,
|
|
constant_stack_parameter_count,
|
|
JS_FUNCTION_STUB_MODE);
|
|
} else {
|
|
// stack param count needs (constructor pointer, and single argument)
|
|
Register registers[] = { cp, x1, x0 };
|
|
Representation representations[] = {
|
|
Representation::Tagged(),
|
|
Representation::Tagged(),
|
|
Representation::Integer32() };
|
|
descriptor->Initialize(ARRAY_SIZE(registers), registers,
|
|
x0,
|
|
deopt_handler,
|
|
representations,
|
|
constant_stack_parameter_count,
|
|
JS_FUNCTION_STUB_MODE,
|
|
PASS_ARGUMENTS);
|
|
}
|
|
}
|
|
|
|
|
|
void InternalArrayNoArgumentConstructorStub::InitializeInterfaceDescriptor(
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
InitializeInternalArrayConstructorDescriptor(descriptor, 0);
|
|
}
|
|
|
|
|
|
void InternalArraySingleArgumentConstructorStub::InitializeInterfaceDescriptor(
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
InitializeInternalArrayConstructorDescriptor(descriptor, 1);
|
|
}
|
|
|
|
|
|
void InternalArrayNArgumentsConstructorStub::InitializeInterfaceDescriptor(
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
InitializeInternalArrayConstructorDescriptor(descriptor, -1);
|
|
}
|
|
|
|
|
|
void ToBooleanStub::InitializeInterfaceDescriptor(
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
// cp: context
|
|
// x0: value
|
|
Register registers[] = { cp, x0 };
|
|
descriptor->Initialize(ARRAY_SIZE(registers), registers,
|
|
FUNCTION_ADDR(ToBooleanIC_Miss));
|
|
descriptor->SetMissHandler(
|
|
ExternalReference(IC_Utility(IC::kToBooleanIC_Miss), isolate()));
|
|
}
|
|
|
|
|
|
void BinaryOpICStub::InitializeInterfaceDescriptor(
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
// cp: context
|
|
// x1: left operand
|
|
// x0: right operand
|
|
Register registers[] = { cp, x1, x0 };
|
|
descriptor->Initialize(ARRAY_SIZE(registers), registers,
|
|
FUNCTION_ADDR(BinaryOpIC_Miss));
|
|
descriptor->SetMissHandler(
|
|
ExternalReference(IC_Utility(IC::kBinaryOpIC_Miss), isolate()));
|
|
}
|
|
|
|
|
|
void BinaryOpWithAllocationSiteStub::InitializeInterfaceDescriptor(
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
// cp: context
|
|
// x2: allocation site
|
|
// x1: left operand
|
|
// x0: right operand
|
|
Register registers[] = { cp, x2, x1, x0 };
|
|
descriptor->Initialize(ARRAY_SIZE(registers), registers,
|
|
FUNCTION_ADDR(BinaryOpIC_MissWithAllocationSite));
|
|
}
|
|
|
|
|
|
void StringAddStub::InitializeInterfaceDescriptor(
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
// cp: context
|
|
// x1: left operand
|
|
// x0: right operand
|
|
Register registers[] = { cp, x1, x0 };
|
|
descriptor->Initialize(
|
|
ARRAY_SIZE(registers), registers,
|
|
Runtime::FunctionForId(Runtime::kStringAdd)->entry);
|
|
}
|
|
|
|
|
|
void CallDescriptors::InitializeForIsolate(Isolate* isolate) {
|
|
static PlatformInterfaceDescriptor default_descriptor =
|
|
PlatformInterfaceDescriptor(CAN_INLINE_TARGET_ADDRESS);
|
|
|
|
static PlatformInterfaceDescriptor noInlineDescriptor =
|
|
PlatformInterfaceDescriptor(NEVER_INLINE_TARGET_ADDRESS);
|
|
|
|
{
|
|
CallInterfaceDescriptor* descriptor =
|
|
isolate->call_descriptor(Isolate::ArgumentAdaptorCall);
|
|
Register registers[] = { cp, // context
|
|
x1, // JSFunction
|
|
x0, // actual number of arguments
|
|
x2, // expected number of arguments
|
|
};
|
|
Representation representations[] = {
|
|
Representation::Tagged(), // context
|
|
Representation::Tagged(), // JSFunction
|
|
Representation::Integer32(), // actual number of arguments
|
|
Representation::Integer32(), // expected number of arguments
|
|
};
|
|
descriptor->Initialize(ARRAY_SIZE(registers), registers,
|
|
representations, &default_descriptor);
|
|
}
|
|
{
|
|
CallInterfaceDescriptor* descriptor =
|
|
isolate->call_descriptor(Isolate::KeyedCall);
|
|
Register registers[] = { cp, // context
|
|
x2, // key
|
|
};
|
|
Representation representations[] = {
|
|
Representation::Tagged(), // context
|
|
Representation::Tagged(), // key
|
|
};
|
|
descriptor->Initialize(ARRAY_SIZE(registers), registers,
|
|
representations, &noInlineDescriptor);
|
|
}
|
|
{
|
|
CallInterfaceDescriptor* descriptor =
|
|
isolate->call_descriptor(Isolate::NamedCall);
|
|
Register registers[] = { cp, // context
|
|
x2, // name
|
|
};
|
|
Representation representations[] = {
|
|
Representation::Tagged(), // context
|
|
Representation::Tagged(), // name
|
|
};
|
|
descriptor->Initialize(ARRAY_SIZE(registers), registers,
|
|
representations, &noInlineDescriptor);
|
|
}
|
|
{
|
|
CallInterfaceDescriptor* descriptor =
|
|
isolate->call_descriptor(Isolate::CallHandler);
|
|
Register registers[] = { cp, // context
|
|
x0, // receiver
|
|
};
|
|
Representation representations[] = {
|
|
Representation::Tagged(), // context
|
|
Representation::Tagged(), // receiver
|
|
};
|
|
descriptor->Initialize(ARRAY_SIZE(registers), registers,
|
|
representations, &default_descriptor);
|
|
}
|
|
{
|
|
CallInterfaceDescriptor* descriptor =
|
|
isolate->call_descriptor(Isolate::ApiFunctionCall);
|
|
Register registers[] = { cp, // context
|
|
x0, // callee
|
|
x4, // call_data
|
|
x2, // holder
|
|
x1, // api_function_address
|
|
};
|
|
Representation representations[] = {
|
|
Representation::Tagged(), // context
|
|
Representation::Tagged(), // callee
|
|
Representation::Tagged(), // call_data
|
|
Representation::Tagged(), // holder
|
|
Representation::External(), // api_function_address
|
|
};
|
|
descriptor->Initialize(ARRAY_SIZE(registers), registers,
|
|
representations, &default_descriptor);
|
|
}
|
|
}
|
|
|
|
|
|
#define __ ACCESS_MASM(masm)
|
|
|
|
|
|
void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm) {
|
|
// Update the static counter each time a new code stub is generated.
|
|
isolate()->counters()->code_stubs()->Increment();
|
|
|
|
CodeStubInterfaceDescriptor* descriptor = GetInterfaceDescriptor();
|
|
int param_count = descriptor->GetEnvironmentParameterCount();
|
|
{
|
|
// Call the runtime system in a fresh internal frame.
|
|
FrameScope scope(masm, StackFrame::INTERNAL);
|
|
ASSERT((param_count == 0) ||
|
|
x0.Is(descriptor->GetEnvironmentParameterRegister(param_count - 1)));
|
|
|
|
// Push arguments
|
|
MacroAssembler::PushPopQueue queue(masm);
|
|
for (int i = 0; i < param_count; ++i) {
|
|
queue.Queue(descriptor->GetEnvironmentParameterRegister(i));
|
|
}
|
|
queue.PushQueued();
|
|
|
|
ExternalReference miss = descriptor->miss_handler();
|
|
__ CallExternalReference(miss, param_count);
|
|
}
|
|
|
|
__ Ret();
|
|
}
|
|
|
|
|
|
void DoubleToIStub::Generate(MacroAssembler* masm) {
|
|
Label done;
|
|
Register input = source();
|
|
Register result = destination();
|
|
ASSERT(is_truncating());
|
|
|
|
ASSERT(result.Is64Bits());
|
|
ASSERT(jssp.Is(masm->StackPointer()));
|
|
|
|
int double_offset = offset();
|
|
|
|
DoubleRegister double_scratch = d0; // only used if !skip_fastpath()
|
|
Register scratch1 = GetAllocatableRegisterThatIsNotOneOf(input, result);
|
|
Register scratch2 =
|
|
GetAllocatableRegisterThatIsNotOneOf(input, result, scratch1);
|
|
|
|
__ Push(scratch1, scratch2);
|
|
// Account for saved regs if input is jssp.
|
|
if (input.is(jssp)) double_offset += 2 * kPointerSize;
|
|
|
|
if (!skip_fastpath()) {
|
|
__ Push(double_scratch);
|
|
if (input.is(jssp)) double_offset += 1 * kDoubleSize;
|
|
__ Ldr(double_scratch, MemOperand(input, double_offset));
|
|
// Try to convert with a FPU convert instruction. This handles all
|
|
// non-saturating cases.
|
|
__ TryConvertDoubleToInt64(result, double_scratch, &done);
|
|
__ Fmov(result, double_scratch);
|
|
} else {
|
|
__ Ldr(result, MemOperand(input, double_offset));
|
|
}
|
|
|
|
// If we reach here we need to manually convert the input to an int32.
|
|
|
|
// Extract the exponent.
|
|
Register exponent = scratch1;
|
|
__ Ubfx(exponent, result, HeapNumber::kMantissaBits,
|
|
HeapNumber::kExponentBits);
|
|
|
|
// It the exponent is >= 84 (kMantissaBits + 32), the result is always 0 since
|
|
// the mantissa gets shifted completely out of the int32_t result.
|
|
__ Cmp(exponent, HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 32);
|
|
__ CzeroX(result, ge);
|
|
__ B(ge, &done);
|
|
|
|
// The Fcvtzs sequence handles all cases except where the conversion causes
|
|
// signed overflow in the int64_t target. Since we've already handled
|
|
// exponents >= 84, we can guarantee that 63 <= exponent < 84.
|
|
|
|
if (masm->emit_debug_code()) {
|
|
__ Cmp(exponent, HeapNumber::kExponentBias + 63);
|
|
// Exponents less than this should have been handled by the Fcvt case.
|
|
__ Check(ge, kUnexpectedValue);
|
|
}
|
|
|
|
// Isolate the mantissa bits, and set the implicit '1'.
|
|
Register mantissa = scratch2;
|
|
__ Ubfx(mantissa, result, 0, HeapNumber::kMantissaBits);
|
|
__ Orr(mantissa, mantissa, 1UL << HeapNumber::kMantissaBits);
|
|
|
|
// Negate the mantissa if necessary.
|
|
__ Tst(result, kXSignMask);
|
|
__ Cneg(mantissa, mantissa, ne);
|
|
|
|
// Shift the mantissa bits in the correct place. We know that we have to shift
|
|
// it left here, because exponent >= 63 >= kMantissaBits.
|
|
__ Sub(exponent, exponent,
|
|
HeapNumber::kExponentBias + HeapNumber::kMantissaBits);
|
|
__ Lsl(result, mantissa, exponent);
|
|
|
|
__ Bind(&done);
|
|
if (!skip_fastpath()) {
|
|
__ Pop(double_scratch);
|
|
}
|
|
__ Pop(scratch2, scratch1);
|
|
__ Ret();
|
|
}
|
|
|
|
|
|
// See call site for description.
|
|
static void EmitIdenticalObjectComparison(MacroAssembler* masm,
|
|
Register left,
|
|
Register right,
|
|
Register scratch,
|
|
FPRegister double_scratch,
|
|
Label* slow,
|
|
Condition cond) {
|
|
ASSERT(!AreAliased(left, right, scratch));
|
|
Label not_identical, return_equal, heap_number;
|
|
Register result = x0;
|
|
|
|
__ Cmp(right, left);
|
|
__ B(ne, ¬_identical);
|
|
|
|
// Test for NaN. Sadly, we can't just compare to factory::nan_value(),
|
|
// so we do the second best thing - test it ourselves.
|
|
// They are both equal and they are not both Smis so both of them are not
|
|
// Smis. If it's not a heap number, then return equal.
|
|
if ((cond == lt) || (cond == gt)) {
|
|
__ JumpIfObjectType(right, scratch, scratch, FIRST_SPEC_OBJECT_TYPE, slow,
|
|
ge);
|
|
} else {
|
|
Register right_type = scratch;
|
|
__ JumpIfObjectType(right, right_type, right_type, HEAP_NUMBER_TYPE,
|
|
&heap_number);
|
|
// Comparing JS objects with <=, >= is complicated.
|
|
if (cond != eq) {
|
|
__ Cmp(right_type, FIRST_SPEC_OBJECT_TYPE);
|
|
__ B(ge, slow);
|
|
// Normally here we fall through to return_equal, but undefined is
|
|
// special: (undefined == undefined) == true, but
|
|
// (undefined <= undefined) == false! See ECMAScript 11.8.5.
|
|
if ((cond == le) || (cond == ge)) {
|
|
__ Cmp(right_type, ODDBALL_TYPE);
|
|
__ B(ne, &return_equal);
|
|
__ JumpIfNotRoot(right, Heap::kUndefinedValueRootIndex, &return_equal);
|
|
if (cond == le) {
|
|
// undefined <= undefined should fail.
|
|
__ Mov(result, GREATER);
|
|
} else {
|
|
// undefined >= undefined should fail.
|
|
__ Mov(result, LESS);
|
|
}
|
|
__ Ret();
|
|
}
|
|
}
|
|
}
|
|
|
|
__ Bind(&return_equal);
|
|
if (cond == lt) {
|
|
__ Mov(result, GREATER); // Things aren't less than themselves.
|
|
} else if (cond == gt) {
|
|
__ Mov(result, LESS); // Things aren't greater than themselves.
|
|
} else {
|
|
__ Mov(result, EQUAL); // Things are <=, >=, ==, === themselves.
|
|
}
|
|
__ Ret();
|
|
|
|
// Cases lt and gt have been handled earlier, and case ne is never seen, as
|
|
// it is handled in the parser (see Parser::ParseBinaryExpression). We are
|
|
// only concerned with cases ge, le and eq here.
|
|
if ((cond != lt) && (cond != gt)) {
|
|
ASSERT((cond == ge) || (cond == le) || (cond == eq));
|
|
__ Bind(&heap_number);
|
|
// Left and right are identical pointers to a heap number object. Return
|
|
// non-equal if the heap number is a NaN, and equal otherwise. Comparing
|
|
// the number to itself will set the overflow flag iff the number is NaN.
|
|
__ Ldr(double_scratch, FieldMemOperand(right, HeapNumber::kValueOffset));
|
|
__ Fcmp(double_scratch, double_scratch);
|
|
__ B(vc, &return_equal); // Not NaN, so treat as normal heap number.
|
|
|
|
if (cond == le) {
|
|
__ Mov(result, GREATER);
|
|
} else {
|
|
__ Mov(result, LESS);
|
|
}
|
|
__ Ret();
|
|
}
|
|
|
|
// No fall through here.
|
|
if (FLAG_debug_code) {
|
|
__ Unreachable();
|
|
}
|
|
|
|
__ Bind(¬_identical);
|
|
}
|
|
|
|
|
|
// See call site for description.
|
|
static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
|
|
Register left,
|
|
Register right,
|
|
Register left_type,
|
|
Register right_type,
|
|
Register scratch) {
|
|
ASSERT(!AreAliased(left, right, left_type, right_type, scratch));
|
|
|
|
if (masm->emit_debug_code()) {
|
|
// We assume that the arguments are not identical.
|
|
__ Cmp(left, right);
|
|
__ Assert(ne, kExpectedNonIdenticalObjects);
|
|
}
|
|
|
|
// If either operand is a JS object or an oddball value, then they are not
|
|
// equal since their pointers are different.
|
|
// There is no test for undetectability in strict equality.
|
|
STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
|
|
Label right_non_object;
|
|
|
|
__ Cmp(right_type, FIRST_SPEC_OBJECT_TYPE);
|
|
__ B(lt, &right_non_object);
|
|
|
|
// Return non-zero - x0 already contains a non-zero pointer.
|
|
ASSERT(left.is(x0) || right.is(x0));
|
|
Label return_not_equal;
|
|
__ Bind(&return_not_equal);
|
|
__ Ret();
|
|
|
|
__ Bind(&right_non_object);
|
|
|
|
// Check for oddballs: true, false, null, undefined.
|
|
__ Cmp(right_type, ODDBALL_TYPE);
|
|
|
|
// If right is not ODDBALL, test left. Otherwise, set eq condition.
|
|
__ Ccmp(left_type, ODDBALL_TYPE, ZFlag, ne);
|
|
|
|
// If right or left is not ODDBALL, test left >= FIRST_SPEC_OBJECT_TYPE.
|
|
// Otherwise, right or left is ODDBALL, so set a ge condition.
|
|
__ Ccmp(left_type, FIRST_SPEC_OBJECT_TYPE, NVFlag, ne);
|
|
|
|
__ B(ge, &return_not_equal);
|
|
|
|
// Internalized strings are unique, so they can only be equal if they are the
|
|
// same object. We have already tested that case, so if left and right are
|
|
// both internalized strings, they cannot be equal.
|
|
STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0));
|
|
__ Orr(scratch, left_type, right_type);
|
|
__ TestAndBranchIfAllClear(
|
|
scratch, kIsNotStringMask | kIsNotInternalizedMask, &return_not_equal);
|
|
}
|
|
|
|
|
|
// See call site for description.
|
|
static void EmitSmiNonsmiComparison(MacroAssembler* masm,
|
|
Register left,
|
|
Register right,
|
|
FPRegister left_d,
|
|
FPRegister right_d,
|
|
Register scratch,
|
|
Label* slow,
|
|
bool strict) {
|
|
ASSERT(!AreAliased(left, right, scratch));
|
|
ASSERT(!AreAliased(left_d, right_d));
|
|
ASSERT((left.is(x0) && right.is(x1)) ||
|
|
(right.is(x0) && left.is(x1)));
|
|
Register result = x0;
|
|
|
|
Label right_is_smi, done;
|
|
__ JumpIfSmi(right, &right_is_smi);
|
|
|
|
// Left is the smi. Check whether right is a heap number.
|
|
if (strict) {
|
|
// If right is not a number and left is a smi, then strict equality cannot
|
|
// succeed. Return non-equal.
|
|
Label is_heap_number;
|
|
__ JumpIfObjectType(right, scratch, scratch, HEAP_NUMBER_TYPE,
|
|
&is_heap_number);
|
|
// Register right is a non-zero pointer, which is a valid NOT_EQUAL result.
|
|
if (!right.is(result)) {
|
|
__ Mov(result, NOT_EQUAL);
|
|
}
|
|
__ Ret();
|
|
__ Bind(&is_heap_number);
|
|
} else {
|
|
// Smi compared non-strictly with a non-smi, non-heap-number. Call the
|
|
// runtime.
|
|
__ JumpIfNotObjectType(right, scratch, scratch, HEAP_NUMBER_TYPE, slow);
|
|
}
|
|
|
|
// Left is the smi. Right is a heap number. Load right value into right_d, and
|
|
// convert left smi into double in left_d.
|
|
__ Ldr(right_d, FieldMemOperand(right, HeapNumber::kValueOffset));
|
|
__ SmiUntagToDouble(left_d, left);
|
|
__ B(&done);
|
|
|
|
__ Bind(&right_is_smi);
|
|
// Right is a smi. Check whether the non-smi left is a heap number.
|
|
if (strict) {
|
|
// If left is not a number and right is a smi then strict equality cannot
|
|
// succeed. Return non-equal.
|
|
Label is_heap_number;
|
|
__ JumpIfObjectType(left, scratch, scratch, HEAP_NUMBER_TYPE,
|
|
&is_heap_number);
|
|
// Register left is a non-zero pointer, which is a valid NOT_EQUAL result.
|
|
if (!left.is(result)) {
|
|
__ Mov(result, NOT_EQUAL);
|
|
}
|
|
__ Ret();
|
|
__ Bind(&is_heap_number);
|
|
} else {
|
|
// Smi compared non-strictly with a non-smi, non-heap-number. Call the
|
|
// runtime.
|
|
__ JumpIfNotObjectType(left, scratch, scratch, HEAP_NUMBER_TYPE, slow);
|
|
}
|
|
|
|
// Right is the smi. Left is a heap number. Load left value into left_d, and
|
|
// convert right smi into double in right_d.
|
|
__ Ldr(left_d, FieldMemOperand(left, HeapNumber::kValueOffset));
|
|
__ SmiUntagToDouble(right_d, right);
|
|
|
|
// Fall through to both_loaded_as_doubles.
|
|
__ Bind(&done);
|
|
}
|
|
|
|
|
|
// Fast negative check for internalized-to-internalized equality.
|
|
// See call site for description.
|
|
static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm,
|
|
Register left,
|
|
Register right,
|
|
Register left_map,
|
|
Register right_map,
|
|
Register left_type,
|
|
Register right_type,
|
|
Label* possible_strings,
|
|
Label* not_both_strings) {
|
|
ASSERT(!AreAliased(left, right, left_map, right_map, left_type, right_type));
|
|
Register result = x0;
|
|
|
|
Label object_test;
|
|
STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0));
|
|
// TODO(all): reexamine this branch sequence for optimisation wrt branch
|
|
// prediction.
|
|
__ Tbnz(right_type, MaskToBit(kIsNotStringMask), &object_test);
|
|
__ Tbnz(right_type, MaskToBit(kIsNotInternalizedMask), possible_strings);
|
|
__ Tbnz(left_type, MaskToBit(kIsNotStringMask), not_both_strings);
|
|
__ Tbnz(left_type, MaskToBit(kIsNotInternalizedMask), possible_strings);
|
|
|
|
// Both are internalized. We already checked that they weren't the same
|
|
// pointer, so they are not equal.
|
|
__ Mov(result, NOT_EQUAL);
|
|
__ Ret();
|
|
|
|
__ Bind(&object_test);
|
|
|
|
__ Cmp(right_type, FIRST_SPEC_OBJECT_TYPE);
|
|
|
|
// If right >= FIRST_SPEC_OBJECT_TYPE, test left.
|
|
// Otherwise, right < FIRST_SPEC_OBJECT_TYPE, so set lt condition.
|
|
__ Ccmp(left_type, FIRST_SPEC_OBJECT_TYPE, NFlag, ge);
|
|
|
|
__ B(lt, not_both_strings);
|
|
|
|
// If both objects are undetectable, they are equal. Otherwise, they are not
|
|
// equal, since they are different objects and an object is not equal to
|
|
// undefined.
|
|
|
|
// Returning here, so we can corrupt right_type and left_type.
|
|
Register right_bitfield = right_type;
|
|
Register left_bitfield = left_type;
|
|
__ Ldrb(right_bitfield, FieldMemOperand(right_map, Map::kBitFieldOffset));
|
|
__ Ldrb(left_bitfield, FieldMemOperand(left_map, Map::kBitFieldOffset));
|
|
__ And(result, right_bitfield, left_bitfield);
|
|
__ And(result, result, 1 << Map::kIsUndetectable);
|
|
__ Eor(result, result, 1 << Map::kIsUndetectable);
|
|
__ Ret();
|
|
}
|
|
|
|
|
|
static void ICCompareStub_CheckInputType(MacroAssembler* masm,
|
|
Register input,
|
|
Register scratch,
|
|
CompareIC::State expected,
|
|
Label* fail) {
|
|
Label ok;
|
|
if (expected == CompareIC::SMI) {
|
|
__ JumpIfNotSmi(input, fail);
|
|
} else if (expected == CompareIC::NUMBER) {
|
|
__ JumpIfSmi(input, &ok);
|
|
__ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail,
|
|
DONT_DO_SMI_CHECK);
|
|
}
|
|
// We could be strict about internalized/non-internalized here, but as long as
|
|
// hydrogen doesn't care, the stub doesn't have to care either.
|
|
__ Bind(&ok);
|
|
}
|
|
|
|
|
|
void ICCompareStub::GenerateGeneric(MacroAssembler* masm) {
|
|
Register lhs = x1;
|
|
Register rhs = x0;
|
|
Register result = x0;
|
|
Condition cond = GetCondition();
|
|
|
|
Label miss;
|
|
ICCompareStub_CheckInputType(masm, lhs, x2, left_, &miss);
|
|
ICCompareStub_CheckInputType(masm, rhs, x3, right_, &miss);
|
|
|
|
Label slow; // Call builtin.
|
|
Label not_smis, both_loaded_as_doubles;
|
|
Label not_two_smis, smi_done;
|
|
__ JumpIfEitherNotSmi(lhs, rhs, ¬_two_smis);
|
|
__ SmiUntag(lhs);
|
|
__ Sub(result, lhs, Operand::UntagSmi(rhs));
|
|
__ Ret();
|
|
|
|
__ Bind(¬_two_smis);
|
|
|
|
// NOTICE! This code is only reached after a smi-fast-case check, so it is
|
|
// certain that at least one operand isn't a smi.
|
|
|
|
// Handle the case where the objects are identical. Either returns the answer
|
|
// or goes to slow. Only falls through if the objects were not identical.
|
|
EmitIdenticalObjectComparison(masm, lhs, rhs, x10, d0, &slow, cond);
|
|
|
|
// If either is a smi (we know that at least one is not a smi), then they can
|
|
// only be strictly equal if the other is a HeapNumber.
|
|
__ JumpIfBothNotSmi(lhs, rhs, ¬_smis);
|
|
|
|
// Exactly one operand is a smi. EmitSmiNonsmiComparison generates code that
|
|
// can:
|
|
// 1) Return the answer.
|
|
// 2) Branch to the slow case.
|
|
// 3) Fall through to both_loaded_as_doubles.
|
|
// In case 3, we have found out that we were dealing with a number-number
|
|
// comparison. The double values of the numbers have been loaded, right into
|
|
// rhs_d, left into lhs_d.
|
|
FPRegister rhs_d = d0;
|
|
FPRegister lhs_d = d1;
|
|
EmitSmiNonsmiComparison(masm, lhs, rhs, lhs_d, rhs_d, x10, &slow, strict());
|
|
|
|
__ Bind(&both_loaded_as_doubles);
|
|
// The arguments have been converted to doubles and stored in rhs_d and
|
|
// lhs_d.
|
|
Label nan;
|
|
__ Fcmp(lhs_d, rhs_d);
|
|
__ B(vs, &nan); // Overflow flag set if either is NaN.
|
|
STATIC_ASSERT((LESS == -1) && (EQUAL == 0) && (GREATER == 1));
|
|
__ Cset(result, gt); // gt => 1, otherwise (lt, eq) => 0 (EQUAL).
|
|
__ Csinv(result, result, xzr, ge); // lt => -1, gt => 1, eq => 0.
|
|
__ Ret();
|
|
|
|
__ Bind(&nan);
|
|
// Left and/or right is a NaN. Load the result register with whatever makes
|
|
// the comparison fail, since comparisons with NaN always fail (except ne,
|
|
// which is filtered out at a higher level.)
|
|
ASSERT(cond != ne);
|
|
if ((cond == lt) || (cond == le)) {
|
|
__ Mov(result, GREATER);
|
|
} else {
|
|
__ Mov(result, LESS);
|
|
}
|
|
__ Ret();
|
|
|
|
__ Bind(¬_smis);
|
|
// At this point we know we are dealing with two different objects, and
|
|
// neither of them is a smi. The objects are in rhs_ and lhs_.
|
|
|
|
// Load the maps and types of the objects.
|
|
Register rhs_map = x10;
|
|
Register rhs_type = x11;
|
|
Register lhs_map = x12;
|
|
Register lhs_type = x13;
|
|
__ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset));
|
|
__ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset));
|
|
__ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset));
|
|
__ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset));
|
|
|
|
if (strict()) {
|
|
// This emits a non-equal return sequence for some object types, or falls
|
|
// through if it was not lucky.
|
|
EmitStrictTwoHeapObjectCompare(masm, lhs, rhs, lhs_type, rhs_type, x14);
|
|
}
|
|
|
|
Label check_for_internalized_strings;
|
|
Label flat_string_check;
|
|
// Check for heap number comparison. Branch to earlier double comparison code
|
|
// if they are heap numbers, otherwise, branch to internalized string check.
|
|
__ Cmp(rhs_type, HEAP_NUMBER_TYPE);
|
|
__ B(ne, &check_for_internalized_strings);
|
|
__ Cmp(lhs_map, rhs_map);
|
|
|
|
// If maps aren't equal, lhs_ and rhs_ are not heap numbers. Branch to flat
|
|
// string check.
|
|
__ B(ne, &flat_string_check);
|
|
|
|
// Both lhs_ and rhs_ are heap numbers. Load them and branch to the double
|
|
// comparison code.
|
|
__ Ldr(lhs_d, FieldMemOperand(lhs, HeapNumber::kValueOffset));
|
|
__ Ldr(rhs_d, FieldMemOperand(rhs, HeapNumber::kValueOffset));
|
|
__ B(&both_loaded_as_doubles);
|
|
|
|
__ Bind(&check_for_internalized_strings);
|
|
// In the strict case, the EmitStrictTwoHeapObjectCompare already took care
|
|
// of internalized strings.
|
|
if ((cond == eq) && !strict()) {
|
|
// Returns an answer for two internalized strings or two detectable objects.
|
|
// Otherwise branches to the string case or not both strings case.
|
|
EmitCheckForInternalizedStringsOrObjects(masm, lhs, rhs, lhs_map, rhs_map,
|
|
lhs_type, rhs_type,
|
|
&flat_string_check, &slow);
|
|
}
|
|
|
|
// Check for both being sequential ASCII strings, and inline if that is the
|
|
// case.
|
|
__ Bind(&flat_string_check);
|
|
__ JumpIfBothInstanceTypesAreNotSequentialAscii(lhs_type, rhs_type, x14,
|
|
x15, &slow);
|
|
|
|
__ IncrementCounter(isolate()->counters()->string_compare_native(), 1, x10,
|
|
x11);
|
|
if (cond == eq) {
|
|
StringCompareStub::GenerateFlatAsciiStringEquals(masm, lhs, rhs,
|
|
x10, x11, x12);
|
|
} else {
|
|
StringCompareStub::GenerateCompareFlatAsciiStrings(masm, lhs, rhs,
|
|
x10, x11, x12, x13);
|
|
}
|
|
|
|
// Never fall through to here.
|
|
if (FLAG_debug_code) {
|
|
__ Unreachable();
|
|
}
|
|
|
|
__ Bind(&slow);
|
|
|
|
__ Push(lhs, rhs);
|
|
// Figure out which native to call and setup the arguments.
|
|
Builtins::JavaScript native;
|
|
if (cond == eq) {
|
|
native = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
|
|
} else {
|
|
native = Builtins::COMPARE;
|
|
int ncr; // NaN compare result
|
|
if ((cond == lt) || (cond == le)) {
|
|
ncr = GREATER;
|
|
} else {
|
|
ASSERT((cond == gt) || (cond == ge)); // remaining cases
|
|
ncr = LESS;
|
|
}
|
|
__ Mov(x10, Smi::FromInt(ncr));
|
|
__ Push(x10);
|
|
}
|
|
|
|
// Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
|
|
// tagged as a small integer.
|
|
__ InvokeBuiltin(native, JUMP_FUNCTION);
|
|
|
|
__ Bind(&miss);
|
|
GenerateMiss(masm);
|
|
}
|
|
|
|
|
|
void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
|
|
CPURegList saved_regs = kCallerSaved;
|
|
CPURegList saved_fp_regs = kCallerSavedFP;
|
|
|
|
// We don't allow a GC during a store buffer overflow so there is no need to
|
|
// store the registers in any particular way, but we do have to store and
|
|
// restore them.
|
|
|
|
// We don't care if MacroAssembler scratch registers are corrupted.
|
|
saved_regs.Remove(*(masm->TmpList()));
|
|
saved_fp_regs.Remove(*(masm->FPTmpList()));
|
|
|
|
__ PushCPURegList(saved_regs);
|
|
if (save_doubles_ == kSaveFPRegs) {
|
|
__ PushCPURegList(saved_fp_regs);
|
|
}
|
|
|
|
AllowExternalCallThatCantCauseGC scope(masm);
|
|
__ Mov(x0, ExternalReference::isolate_address(isolate()));
|
|
__ CallCFunction(
|
|
ExternalReference::store_buffer_overflow_function(isolate()), 1, 0);
|
|
|
|
if (save_doubles_ == kSaveFPRegs) {
|
|
__ PopCPURegList(saved_fp_regs);
|
|
}
|
|
__ PopCPURegList(saved_regs);
|
|
__ Ret();
|
|
}
|
|
|
|
|
|
void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
|
|
Isolate* isolate) {
|
|
StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
|
|
stub1.GetCode();
|
|
StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
|
|
stub2.GetCode();
|
|
}
|
|
|
|
|
|
void StoreRegistersStateStub::Generate(MacroAssembler* masm) {
|
|
MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm);
|
|
UseScratchRegisterScope temps(masm);
|
|
Register saved_lr = temps.UnsafeAcquire(to_be_pushed_lr());
|
|
Register return_address = temps.AcquireX();
|
|
__ Mov(return_address, lr);
|
|
// Restore lr with the value it had before the call to this stub (the value
|
|
// which must be pushed).
|
|
__ Mov(lr, saved_lr);
|
|
__ PushSafepointRegisters();
|
|
__ Ret(return_address);
|
|
}
|
|
|
|
|
|
void RestoreRegistersStateStub::Generate(MacroAssembler* masm) {
|
|
MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm);
|
|
UseScratchRegisterScope temps(masm);
|
|
Register return_address = temps.AcquireX();
|
|
// Preserve the return address (lr will be clobbered by the pop).
|
|
__ Mov(return_address, lr);
|
|
__ PopSafepointRegisters();
|
|
__ Ret(return_address);
|
|
}
|
|
|
|
|
|
void MathPowStub::Generate(MacroAssembler* masm) {
|
|
// Stack on entry:
|
|
// jssp[0]: Exponent (as a tagged value).
|
|
// jssp[1]: Base (as a tagged value).
|
|
//
|
|
// The (tagged) result will be returned in x0, as a heap number.
|
|
|
|
Register result_tagged = x0;
|
|
Register base_tagged = x10;
|
|
Register exponent_tagged = x11;
|
|
Register exponent_integer = x12;
|
|
Register scratch1 = x14;
|
|
Register scratch0 = x15;
|
|
Register saved_lr = x19;
|
|
FPRegister result_double = d0;
|
|
FPRegister base_double = d0;
|
|
FPRegister exponent_double = d1;
|
|
FPRegister base_double_copy = d2;
|
|
FPRegister scratch1_double = d6;
|
|
FPRegister scratch0_double = d7;
|
|
|
|
// A fast-path for integer exponents.
|
|
Label exponent_is_smi, exponent_is_integer;
|
|
// Bail out to runtime.
|
|
Label call_runtime;
|
|
// Allocate a heap number for the result, and return it.
|
|
Label done;
|
|
|
|
// Unpack the inputs.
|
|
if (exponent_type_ == ON_STACK) {
|
|
Label base_is_smi;
|
|
Label unpack_exponent;
|
|
|
|
__ Pop(exponent_tagged, base_tagged);
|
|
|
|
__ JumpIfSmi(base_tagged, &base_is_smi);
|
|
__ JumpIfNotHeapNumber(base_tagged, &call_runtime);
|
|
// base_tagged is a heap number, so load its double value.
|
|
__ Ldr(base_double, FieldMemOperand(base_tagged, HeapNumber::kValueOffset));
|
|
__ B(&unpack_exponent);
|
|
__ Bind(&base_is_smi);
|
|
// base_tagged is a SMI, so untag it and convert it to a double.
|
|
__ SmiUntagToDouble(base_double, base_tagged);
|
|
|
|
__ Bind(&unpack_exponent);
|
|
// x10 base_tagged The tagged base (input).
|
|
// x11 exponent_tagged The tagged exponent (input).
|
|
// d1 base_double The base as a double.
|
|
__ JumpIfSmi(exponent_tagged, &exponent_is_smi);
|
|
__ JumpIfNotHeapNumber(exponent_tagged, &call_runtime);
|
|
// exponent_tagged is a heap number, so load its double value.
|
|
__ Ldr(exponent_double,
|
|
FieldMemOperand(exponent_tagged, HeapNumber::kValueOffset));
|
|
} else if (exponent_type_ == TAGGED) {
|
|
__ JumpIfSmi(exponent_tagged, &exponent_is_smi);
|
|
__ Ldr(exponent_double,
|
|
FieldMemOperand(exponent_tagged, HeapNumber::kValueOffset));
|
|
}
|
|
|
|
// Handle double (heap number) exponents.
|
|
if (exponent_type_ != INTEGER) {
|
|
// Detect integer exponents stored as doubles and handle those in the
|
|
// integer fast-path.
|
|
__ TryRepresentDoubleAsInt64(exponent_integer, exponent_double,
|
|
scratch0_double, &exponent_is_integer);
|
|
|
|
if (exponent_type_ == ON_STACK) {
|
|
FPRegister half_double = d3;
|
|
FPRegister minus_half_double = d4;
|
|
// Detect square root case. Crankshaft detects constant +/-0.5 at compile
|
|
// time and uses DoMathPowHalf instead. We then skip this check for
|
|
// non-constant cases of +/-0.5 as these hardly occur.
|
|
|
|
__ Fmov(minus_half_double, -0.5);
|
|
__ Fmov(half_double, 0.5);
|
|
__ Fcmp(minus_half_double, exponent_double);
|
|
__ Fccmp(half_double, exponent_double, NZFlag, ne);
|
|
// Condition flags at this point:
|
|
// 0.5; nZCv // Identified by eq && pl
|
|
// -0.5: NZcv // Identified by eq && mi
|
|
// other: ?z?? // Identified by ne
|
|
__ B(ne, &call_runtime);
|
|
|
|
// The exponent is 0.5 or -0.5.
|
|
|
|
// Given that exponent is known to be either 0.5 or -0.5, the following
|
|
// special cases could apply (according to ECMA-262 15.8.2.13):
|
|
//
|
|
// base.isNaN(): The result is NaN.
|
|
// (base == +INFINITY) || (base == -INFINITY)
|
|
// exponent == 0.5: The result is +INFINITY.
|
|
// exponent == -0.5: The result is +0.
|
|
// (base == +0) || (base == -0)
|
|
// exponent == 0.5: The result is +0.
|
|
// exponent == -0.5: The result is +INFINITY.
|
|
// (base < 0) && base.isFinite(): The result is NaN.
|
|
//
|
|
// Fsqrt (and Fdiv for the -0.5 case) can handle all of those except
|
|
// where base is -INFINITY or -0.
|
|
|
|
// Add +0 to base. This has no effect other than turning -0 into +0.
|
|
__ Fadd(base_double, base_double, fp_zero);
|
|
// The operation -0+0 results in +0 in all cases except where the
|
|
// FPCR rounding mode is 'round towards minus infinity' (RM). The
|
|
// ARM64 simulator does not currently simulate FPCR (where the rounding
|
|
// mode is set), so test the operation with some debug code.
|
|
if (masm->emit_debug_code()) {
|
|
UseScratchRegisterScope temps(masm);
|
|
Register temp = temps.AcquireX();
|
|
__ Fneg(scratch0_double, fp_zero);
|
|
// Verify that we correctly generated +0.0 and -0.0.
|
|
// bits(+0.0) = 0x0000000000000000
|
|
// bits(-0.0) = 0x8000000000000000
|
|
__ Fmov(temp, fp_zero);
|
|
__ CheckRegisterIsClear(temp, kCouldNotGenerateZero);
|
|
__ Fmov(temp, scratch0_double);
|
|
__ Eor(temp, temp, kDSignMask);
|
|
__ CheckRegisterIsClear(temp, kCouldNotGenerateNegativeZero);
|
|
// Check that -0.0 + 0.0 == +0.0.
|
|
__ Fadd(scratch0_double, scratch0_double, fp_zero);
|
|
__ Fmov(temp, scratch0_double);
|
|
__ CheckRegisterIsClear(temp, kExpectedPositiveZero);
|
|
}
|
|
|
|
// If base is -INFINITY, make it +INFINITY.
|
|
// * Calculate base - base: All infinities will become NaNs since both
|
|
// -INFINITY+INFINITY and +INFINITY-INFINITY are NaN in ARM64.
|
|
// * If the result is NaN, calculate abs(base).
|
|
__ Fsub(scratch0_double, base_double, base_double);
|
|
__ Fcmp(scratch0_double, 0.0);
|
|
__ Fabs(scratch1_double, base_double);
|
|
__ Fcsel(base_double, scratch1_double, base_double, vs);
|
|
|
|
// Calculate the square root of base.
|
|
__ Fsqrt(result_double, base_double);
|
|
__ Fcmp(exponent_double, 0.0);
|
|
__ B(ge, &done); // Finish now for exponents of 0.5.
|
|
// Find the inverse for exponents of -0.5.
|
|
__ Fmov(scratch0_double, 1.0);
|
|
__ Fdiv(result_double, scratch0_double, result_double);
|
|
__ B(&done);
|
|
}
|
|
|
|
{
|
|
AllowExternalCallThatCantCauseGC scope(masm);
|
|
__ Mov(saved_lr, lr);
|
|
__ CallCFunction(
|
|
ExternalReference::power_double_double_function(isolate()),
|
|
0, 2);
|
|
__ Mov(lr, saved_lr);
|
|
__ B(&done);
|
|
}
|
|
|
|
// Handle SMI exponents.
|
|
__ Bind(&exponent_is_smi);
|
|
// x10 base_tagged The tagged base (input).
|
|
// x11 exponent_tagged The tagged exponent (input).
|
|
// d1 base_double The base as a double.
|
|
__ SmiUntag(exponent_integer, exponent_tagged);
|
|
}
|
|
|
|
__ Bind(&exponent_is_integer);
|
|
// x10 base_tagged The tagged base (input).
|
|
// x11 exponent_tagged The tagged exponent (input).
|
|
// x12 exponent_integer The exponent as an integer.
|
|
// d1 base_double The base as a double.
|
|
|
|
// Find abs(exponent). For negative exponents, we can find the inverse later.
|
|
Register exponent_abs = x13;
|
|
__ Cmp(exponent_integer, 0);
|
|
__ Cneg(exponent_abs, exponent_integer, mi);
|
|
// x13 exponent_abs The value of abs(exponent_integer).
|
|
|
|
// Repeatedly multiply to calculate the power.
|
|
// result = 1.0;
|
|
// For each bit n (exponent_integer{n}) {
|
|
// if (exponent_integer{n}) {
|
|
// result *= base;
|
|
// }
|
|
// base *= base;
|
|
// if (remaining bits in exponent_integer are all zero) {
|
|
// break;
|
|
// }
|
|
// }
|
|
Label power_loop, power_loop_entry, power_loop_exit;
|
|
__ Fmov(scratch1_double, base_double);
|
|
__ Fmov(base_double_copy, base_double);
|
|
__ Fmov(result_double, 1.0);
|
|
__ B(&power_loop_entry);
|
|
|
|
__ Bind(&power_loop);
|
|
__ Fmul(scratch1_double, scratch1_double, scratch1_double);
|
|
__ Lsr(exponent_abs, exponent_abs, 1);
|
|
__ Cbz(exponent_abs, &power_loop_exit);
|
|
|
|
__ Bind(&power_loop_entry);
|
|
__ Tbz(exponent_abs, 0, &power_loop);
|
|
__ Fmul(result_double, result_double, scratch1_double);
|
|
__ B(&power_loop);
|
|
|
|
__ Bind(&power_loop_exit);
|
|
|
|
// If the exponent was positive, result_double holds the result.
|
|
__ Tbz(exponent_integer, kXSignBit, &done);
|
|
|
|
// The exponent was negative, so find the inverse.
|
|
__ Fmov(scratch0_double, 1.0);
|
|
__ Fdiv(result_double, scratch0_double, result_double);
|
|
// ECMA-262 only requires Math.pow to return an 'implementation-dependent
|
|
// approximation' of base^exponent. However, mjsunit/math-pow uses Math.pow
|
|
// to calculate the subnormal value 2^-1074. This method of calculating
|
|
// negative powers doesn't work because 2^1074 overflows to infinity. To
|
|
// catch this corner-case, we bail out if the result was 0. (This can only
|
|
// occur if the divisor is infinity or the base is zero.)
|
|
__ Fcmp(result_double, 0.0);
|
|
__ B(&done, ne);
|
|
|
|
if (exponent_type_ == ON_STACK) {
|
|
// Bail out to runtime code.
|
|
__ Bind(&call_runtime);
|
|
// Put the arguments back on the stack.
|
|
__ Push(base_tagged, exponent_tagged);
|
|
__ TailCallRuntime(Runtime::kMathPowRT, 2, 1);
|
|
|
|
// Return.
|
|
__ Bind(&done);
|
|
__ AllocateHeapNumber(result_tagged, &call_runtime, scratch0, scratch1,
|
|
result_double);
|
|
ASSERT(result_tagged.is(x0));
|
|
__ IncrementCounter(
|
|
isolate()->counters()->math_pow(), 1, scratch0, scratch1);
|
|
__ Ret();
|
|
} else {
|
|
AllowExternalCallThatCantCauseGC scope(masm);
|
|
__ Mov(saved_lr, lr);
|
|
__ Fmov(base_double, base_double_copy);
|
|
__ Scvtf(exponent_double, exponent_integer);
|
|
__ CallCFunction(
|
|
ExternalReference::power_double_double_function(isolate()),
|
|
0, 2);
|
|
__ Mov(lr, saved_lr);
|
|
__ Bind(&done);
|
|
__ IncrementCounter(
|
|
isolate()->counters()->math_pow(), 1, scratch0, scratch1);
|
|
__ Ret();
|
|
}
|
|
}
|
|
|
|
|
|
void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
|
|
// It is important that the following stubs are generated in this order
|
|
// because pregenerated stubs can only call other pregenerated stubs.
|
|
// RecordWriteStub uses StoreBufferOverflowStub, which in turn uses
|
|
// CEntryStub.
|
|
CEntryStub::GenerateAheadOfTime(isolate);
|
|
StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
|
|
StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
|
|
ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
|
|
CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
|
|
BinaryOpICStub::GenerateAheadOfTime(isolate);
|
|
StoreRegistersStateStub::GenerateAheadOfTime(isolate);
|
|
RestoreRegistersStateStub::GenerateAheadOfTime(isolate);
|
|
BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
|
|
}
|
|
|
|
|
|
void StoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
|
|
StoreRegistersStateStub stub(isolate);
|
|
stub.GetCode();
|
|
}
|
|
|
|
|
|
void RestoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
|
|
RestoreRegistersStateStub stub(isolate);
|
|
stub.GetCode();
|
|
}
|
|
|
|
|
|
void CodeStub::GenerateFPStubs(Isolate* isolate) {
|
|
// Floating-point code doesn't get special handling in ARM64, so there's
|
|
// nothing to do here.
|
|
USE(isolate);
|
|
}
|
|
|
|
|
|
bool CEntryStub::NeedsImmovableCode() {
|
|
// CEntryStub stores the return address on the stack before calling into
|
|
// C++ code. In some cases, the VM accesses this address, but it is not used
|
|
// when the C++ code returns to the stub because LR holds the return address
|
|
// in AAPCS64. If the stub is moved (perhaps during a GC), we could end up
|
|
// returning to dead code.
|
|
// TODO(jbramley): Whilst this is the only analysis that makes sense, I can't
|
|
// find any comment to confirm this, and I don't hit any crashes whatever
|
|
// this function returns. The anaylsis should be properly confirmed.
|
|
return true;
|
|
}
|
|
|
|
|
|
void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
|
|
CEntryStub stub(isolate, 1, kDontSaveFPRegs);
|
|
stub.GetCode();
|
|
CEntryStub stub_fp(isolate, 1, kSaveFPRegs);
|
|
stub_fp.GetCode();
|
|
}
|
|
|
|
|
|
void CEntryStub::Generate(MacroAssembler* masm) {
|
|
// The Abort mechanism relies on CallRuntime, which in turn relies on
|
|
// CEntryStub, so until this stub has been generated, we have to use a
|
|
// fall-back Abort mechanism.
|
|
//
|
|
// Note that this stub must be generated before any use of Abort.
|
|
MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm);
|
|
|
|
ASM_LOCATION("CEntryStub::Generate entry");
|
|
ProfileEntryHookStub::MaybeCallEntryHook(masm);
|
|
|
|
// Register parameters:
|
|
// x0: argc (including receiver, untagged)
|
|
// x1: target
|
|
//
|
|
// The stack on entry holds the arguments and the receiver, with the receiver
|
|
// at the highest address:
|
|
//
|
|
// jssp]argc-1]: receiver
|
|
// jssp[argc-2]: arg[argc-2]
|
|
// ... ...
|
|
// jssp[1]: arg[1]
|
|
// jssp[0]: arg[0]
|
|
//
|
|
// The arguments are in reverse order, so that arg[argc-2] is actually the
|
|
// first argument to the target function and arg[0] is the last.
|
|
ASSERT(jssp.Is(__ StackPointer()));
|
|
const Register& argc_input = x0;
|
|
const Register& target_input = x1;
|
|
|
|
// Calculate argv, argc and the target address, and store them in
|
|
// callee-saved registers so we can retry the call without having to reload
|
|
// these arguments.
|
|
// TODO(jbramley): If the first call attempt succeeds in the common case (as
|
|
// it should), then we might be better off putting these parameters directly
|
|
// into their argument registers, rather than using callee-saved registers and
|
|
// preserving them on the stack.
|
|
const Register& argv = x21;
|
|
const Register& argc = x22;
|
|
const Register& target = x23;
|
|
|
|
// Derive argv from the stack pointer so that it points to the first argument
|
|
// (arg[argc-2]), or just below the receiver in case there are no arguments.
|
|
// - Adjust for the arg[] array.
|
|
Register temp_argv = x11;
|
|
__ Add(temp_argv, jssp, Operand(x0, LSL, kPointerSizeLog2));
|
|
// - Adjust for the receiver.
|
|
__ Sub(temp_argv, temp_argv, 1 * kPointerSize);
|
|
|
|
// Enter the exit frame. Reserve three slots to preserve x21-x23 callee-saved
|
|
// registers.
|
|
FrameScope scope(masm, StackFrame::MANUAL);
|
|
__ EnterExitFrame(save_doubles_, x10, 3);
|
|
ASSERT(csp.Is(__ StackPointer()));
|
|
|
|
// Poke callee-saved registers into reserved space.
|
|
__ Poke(argv, 1 * kPointerSize);
|
|
__ Poke(argc, 2 * kPointerSize);
|
|
__ Poke(target, 3 * kPointerSize);
|
|
|
|
// We normally only keep tagged values in callee-saved registers, as they
|
|
// could be pushed onto the stack by called stubs and functions, and on the
|
|
// stack they can confuse the GC. However, we're only calling C functions
|
|
// which can push arbitrary data onto the stack anyway, and so the GC won't
|
|
// examine that part of the stack.
|
|
__ Mov(argc, argc_input);
|
|
__ Mov(target, target_input);
|
|
__ Mov(argv, temp_argv);
|
|
|
|
// x21 : argv
|
|
// x22 : argc
|
|
// x23 : call target
|
|
//
|
|
// The stack (on entry) holds the arguments and the receiver, with the
|
|
// receiver at the highest address:
|
|
//
|
|
// argv[8]: receiver
|
|
// argv -> argv[0]: arg[argc-2]
|
|
// ... ...
|
|
// argv[...]: arg[1]
|
|
// argv[...]: arg[0]
|
|
//
|
|
// Immediately below (after) this is the exit frame, as constructed by
|
|
// EnterExitFrame:
|
|
// fp[8]: CallerPC (lr)
|
|
// fp -> fp[0]: CallerFP (old fp)
|
|
// fp[-8]: Space reserved for SPOffset.
|
|
// fp[-16]: CodeObject()
|
|
// csp[...]: Saved doubles, if saved_doubles is true.
|
|
// csp[32]: Alignment padding, if necessary.
|
|
// csp[24]: Preserved x23 (used for target).
|
|
// csp[16]: Preserved x22 (used for argc).
|
|
// csp[8]: Preserved x21 (used for argv).
|
|
// csp -> csp[0]: Space reserved for the return address.
|
|
//
|
|
// After a successful call, the exit frame, preserved registers (x21-x23) and
|
|
// the arguments (including the receiver) are dropped or popped as
|
|
// appropriate. The stub then returns.
|
|
//
|
|
// After an unsuccessful call, the exit frame and suchlike are left
|
|
// untouched, and the stub either throws an exception by jumping to one of
|
|
// the exception_returned label.
|
|
|
|
ASSERT(csp.Is(__ StackPointer()));
|
|
|
|
// Prepare AAPCS64 arguments to pass to the builtin.
|
|
__ Mov(x0, argc);
|
|
__ Mov(x1, argv);
|
|
__ Mov(x2, ExternalReference::isolate_address(isolate()));
|
|
|
|
Label return_location;
|
|
__ Adr(x12, &return_location);
|
|
__ Poke(x12, 0);
|
|
|
|
if (__ emit_debug_code()) {
|
|
// Verify that the slot below fp[kSPOffset]-8 points to the return location
|
|
// (currently in x12).
|
|
UseScratchRegisterScope temps(masm);
|
|
Register temp = temps.AcquireX();
|
|
__ Ldr(temp, MemOperand(fp, ExitFrameConstants::kSPOffset));
|
|
__ Ldr(temp, MemOperand(temp, -static_cast<int64_t>(kXRegSize)));
|
|
__ Cmp(temp, x12);
|
|
__ Check(eq, kReturnAddressNotFoundInFrame);
|
|
}
|
|
|
|
// Call the builtin.
|
|
__ Blr(target);
|
|
__ Bind(&return_location);
|
|
|
|
// x0 result The return code from the call.
|
|
// x21 argv
|
|
// x22 argc
|
|
// x23 target
|
|
const Register& result = x0;
|
|
|
|
// Check result for exception sentinel.
|
|
Label exception_returned;
|
|
__ CompareRoot(result, Heap::kExceptionRootIndex);
|
|
__ B(eq, &exception_returned);
|
|
|
|
// The call succeeded, so unwind the stack and return.
|
|
|
|
// Restore callee-saved registers x21-x23.
|
|
__ Mov(x11, argc);
|
|
|
|
__ Peek(argv, 1 * kPointerSize);
|
|
__ Peek(argc, 2 * kPointerSize);
|
|
__ Peek(target, 3 * kPointerSize);
|
|
|
|
__ LeaveExitFrame(save_doubles_, x10, true);
|
|
ASSERT(jssp.Is(__ StackPointer()));
|
|
// Pop or drop the remaining stack slots and return from the stub.
|
|
// jssp[24]: Arguments array (of size argc), including receiver.
|
|
// jssp[16]: Preserved x23 (used for target).
|
|
// jssp[8]: Preserved x22 (used for argc).
|
|
// jssp[0]: Preserved x21 (used for argv).
|
|
__ Drop(x11);
|
|
__ AssertFPCRState();
|
|
__ Ret();
|
|
|
|
// The stack pointer is still csp if we aren't returning, and the frame
|
|
// hasn't changed (except for the return address).
|
|
__ SetStackPointer(csp);
|
|
|
|
// Handling of exception.
|
|
__ Bind(&exception_returned);
|
|
|
|
// Retrieve the pending exception.
|
|
ExternalReference pending_exception_address(
|
|
Isolate::kPendingExceptionAddress, isolate());
|
|
const Register& exception = result;
|
|
const Register& exception_address = x11;
|
|
__ Mov(exception_address, Operand(pending_exception_address));
|
|
__ Ldr(exception, MemOperand(exception_address));
|
|
|
|
// Clear the pending exception.
|
|
__ Mov(x10, Operand(isolate()->factory()->the_hole_value()));
|
|
__ Str(x10, MemOperand(exception_address));
|
|
|
|
// x0 exception The exception descriptor.
|
|
// x21 argv
|
|
// x22 argc
|
|
// x23 target
|
|
|
|
// Special handling of termination exceptions, which are uncatchable by
|
|
// JavaScript code.
|
|
Label throw_termination_exception;
|
|
__ Cmp(exception, Operand(isolate()->factory()->termination_exception()));
|
|
__ B(eq, &throw_termination_exception);
|
|
|
|
// We didn't execute a return case, so the stack frame hasn't been updated
|
|
// (except for the return address slot). However, we don't need to initialize
|
|
// jssp because the throw method will immediately overwrite it when it
|
|
// unwinds the stack.
|
|
__ SetStackPointer(jssp);
|
|
|
|
ASM_LOCATION("Throw normal");
|
|
__ Mov(argv, 0);
|
|
__ Mov(argc, 0);
|
|
__ Mov(target, 0);
|
|
__ Throw(x0, x10, x11, x12, x13);
|
|
|
|
__ Bind(&throw_termination_exception);
|
|
ASM_LOCATION("Throw termination");
|
|
__ Mov(argv, 0);
|
|
__ Mov(argc, 0);
|
|
__ Mov(target, 0);
|
|
__ ThrowUncatchable(x0, x10, x11, x12, x13);
|
|
}
|
|
|
|
|
|
// This is the entry point from C++. 5 arguments are provided in x0-x4.
|
|
// See use of the CALL_GENERATED_CODE macro for example in src/execution.cc.
|
|
// Input:
|
|
// x0: code entry.
|
|
// x1: function.
|
|
// x2: receiver.
|
|
// x3: argc.
|
|
// x4: argv.
|
|
// Output:
|
|
// x0: result.
|
|
void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
|
|
ASSERT(jssp.Is(__ StackPointer()));
|
|
Register code_entry = x0;
|
|
|
|
// Enable instruction instrumentation. This only works on the simulator, and
|
|
// will have no effect on the model or real hardware.
|
|
__ EnableInstrumentation();
|
|
|
|
Label invoke, handler_entry, exit;
|
|
|
|
// Push callee-saved registers and synchronize the system stack pointer (csp)
|
|
// and the JavaScript stack pointer (jssp).
|
|
//
|
|
// We must not write to jssp until after the PushCalleeSavedRegisters()
|
|
// call, since jssp is itself a callee-saved register.
|
|
__ SetStackPointer(csp);
|
|
__ PushCalleeSavedRegisters();
|
|
__ Mov(jssp, csp);
|
|
__ SetStackPointer(jssp);
|
|
|
|
// Configure the FPCR. We don't restore it, so this is technically not allowed
|
|
// according to AAPCS64. However, we only set default-NaN mode and this will
|
|
// be harmless for most C code. Also, it works for ARM.
|
|
__ ConfigureFPCR();
|
|
|
|
ProfileEntryHookStub::MaybeCallEntryHook(masm);
|
|
|
|
// Set up the reserved register for 0.0.
|
|
__ Fmov(fp_zero, 0.0);
|
|
|
|
// Build an entry frame (see layout below).
|
|
int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
|
|
int64_t bad_frame_pointer = -1L; // Bad frame pointer to fail if it is used.
|
|
__ Mov(x13, bad_frame_pointer);
|
|
__ Mov(x12, Smi::FromInt(marker));
|
|
__ Mov(x11, ExternalReference(Isolate::kCEntryFPAddress, isolate()));
|
|
__ Ldr(x10, MemOperand(x11));
|
|
|
|
__ Push(x13, xzr, x12, x10);
|
|
// Set up fp.
|
|
__ Sub(fp, jssp, EntryFrameConstants::kCallerFPOffset);
|
|
|
|
// Push the JS entry frame marker. Also set js_entry_sp if this is the
|
|
// outermost JS call.
|
|
Label non_outermost_js, done;
|
|
ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
|
|
__ Mov(x10, ExternalReference(js_entry_sp));
|
|
__ Ldr(x11, MemOperand(x10));
|
|
__ Cbnz(x11, &non_outermost_js);
|
|
__ Str(fp, MemOperand(x10));
|
|
__ Mov(x12, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME));
|
|
__ Push(x12);
|
|
__ B(&done);
|
|
__ Bind(&non_outermost_js);
|
|
// We spare one instruction by pushing xzr since the marker is 0.
|
|
ASSERT(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME) == NULL);
|
|
__ Push(xzr);
|
|
__ Bind(&done);
|
|
|
|
// The frame set up looks like this:
|
|
// jssp[0] : JS entry frame marker.
|
|
// jssp[1] : C entry FP.
|
|
// jssp[2] : stack frame marker.
|
|
// jssp[3] : stack frmae marker.
|
|
// jssp[4] : bad frame pointer 0xfff...ff <- fp points here.
|
|
|
|
|
|
// Jump to a faked try block that does the invoke, with a faked catch
|
|
// block that sets the pending exception.
|
|
__ B(&invoke);
|
|
|
|
// Prevent the constant pool from being emitted between the record of the
|
|
// handler_entry position and the first instruction of the sequence here.
|
|
// There is no risk because Assembler::Emit() emits the instruction before
|
|
// checking for constant pool emission, but we do not want to depend on
|
|
// that.
|
|
{
|
|
Assembler::BlockPoolsScope block_pools(masm);
|
|
__ bind(&handler_entry);
|
|
handler_offset_ = handler_entry.pos();
|
|
// Caught exception: Store result (exception) in the pending exception
|
|
// field in the JSEnv and return a failure sentinel. Coming in here the
|
|
// fp will be invalid because the PushTryHandler below sets it to 0 to
|
|
// signal the existence of the JSEntry frame.
|
|
__ Mov(x10, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
|
|
isolate())));
|
|
}
|
|
__ Str(code_entry, MemOperand(x10));
|
|
__ LoadRoot(x0, Heap::kExceptionRootIndex);
|
|
__ B(&exit);
|
|
|
|
// Invoke: Link this frame into the handler chain. There's only one
|
|
// handler block in this code object, so its index is 0.
|
|
__ Bind(&invoke);
|
|
__ PushTryHandler(StackHandler::JS_ENTRY, 0);
|
|
// If an exception not caught by another handler occurs, this handler
|
|
// returns control to the code after the B(&invoke) above, which
|
|
// restores all callee-saved registers (including cp and fp) to their
|
|
// saved values before returning a failure to C.
|
|
|
|
// Clear any pending exceptions.
|
|
__ Mov(x10, Operand(isolate()->factory()->the_hole_value()));
|
|
__ Mov(x11, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
|
|
isolate())));
|
|
__ Str(x10, MemOperand(x11));
|
|
|
|
// Invoke the function by calling through the JS entry trampoline builtin.
|
|
// Notice that we cannot store a reference to the trampoline code directly in
|
|
// this stub, because runtime stubs are not traversed when doing GC.
|
|
|
|
// Expected registers by Builtins::JSEntryTrampoline
|
|
// x0: code entry.
|
|
// x1: function.
|
|
// x2: receiver.
|
|
// x3: argc.
|
|
// x4: argv.
|
|
ExternalReference entry(is_construct ? Builtins::kJSConstructEntryTrampoline
|
|
: Builtins::kJSEntryTrampoline,
|
|
isolate());
|
|
__ Mov(x10, entry);
|
|
|
|
// Call the JSEntryTrampoline.
|
|
__ Ldr(x11, MemOperand(x10)); // Dereference the address.
|
|
__ Add(x12, x11, Code::kHeaderSize - kHeapObjectTag);
|
|
__ Blr(x12);
|
|
|
|
// Unlink this frame from the handler chain.
|
|
__ PopTryHandler();
|
|
|
|
|
|
__ Bind(&exit);
|
|
// x0 holds the result.
|
|
// The stack pointer points to the top of the entry frame pushed on entry from
|
|
// C++ (at the beginning of this stub):
|
|
// jssp[0] : JS entry frame marker.
|
|
// jssp[1] : C entry FP.
|
|
// jssp[2] : stack frame marker.
|
|
// jssp[3] : stack frmae marker.
|
|
// jssp[4] : bad frame pointer 0xfff...ff <- fp points here.
|
|
|
|
// Check if the current stack frame is marked as the outermost JS frame.
|
|
Label non_outermost_js_2;
|
|
__ Pop(x10);
|
|
__ Cmp(x10, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME));
|
|
__ B(ne, &non_outermost_js_2);
|
|
__ Mov(x11, ExternalReference(js_entry_sp));
|
|
__ Str(xzr, MemOperand(x11));
|
|
__ Bind(&non_outermost_js_2);
|
|
|
|
// Restore the top frame descriptors from the stack.
|
|
__ Pop(x10);
|
|
__ Mov(x11, ExternalReference(Isolate::kCEntryFPAddress, isolate()));
|
|
__ Str(x10, MemOperand(x11));
|
|
|
|
// Reset the stack to the callee saved registers.
|
|
__ Drop(-EntryFrameConstants::kCallerFPOffset, kByteSizeInBytes);
|
|
// Restore the callee-saved registers and return.
|
|
ASSERT(jssp.Is(__ StackPointer()));
|
|
__ Mov(csp, jssp);
|
|
__ SetStackPointer(csp);
|
|
__ PopCalleeSavedRegisters();
|
|
// After this point, we must not modify jssp because it is a callee-saved
|
|
// register which we have just restored.
|
|
__ Ret();
|
|
}
|
|
|
|
|
|
void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
|
|
Label miss;
|
|
Register receiver = LoadIC::ReceiverRegister();
|
|
Register name = LoadIC::NameRegister();
|
|
|
|
ASSERT(kind() == Code::LOAD_IC ||
|
|
kind() == Code::KEYED_LOAD_IC);
|
|
|
|
if (kind() == Code::KEYED_LOAD_IC) {
|
|
__ Cmp(name, Operand(isolate()->factory()->prototype_string()));
|
|
__ B(ne, &miss);
|
|
}
|
|
|
|
StubCompiler::GenerateLoadFunctionPrototype(masm, receiver, x10, x11, &miss);
|
|
|
|
__ Bind(&miss);
|
|
StubCompiler::TailCallBuiltin(masm,
|
|
BaseLoadStoreStubCompiler::MissBuiltin(kind()));
|
|
}
|
|
|
|
|
|
void InstanceofStub::Generate(MacroAssembler* masm) {
|
|
// Stack on entry:
|
|
// jssp[0]: function.
|
|
// jssp[8]: object.
|
|
//
|
|
// Returns result in x0. Zero indicates instanceof, smi 1 indicates not
|
|
// instanceof.
|
|
|
|
Register result = x0;
|
|
Register function = right();
|
|
Register object = left();
|
|
Register scratch1 = x6;
|
|
Register scratch2 = x7;
|
|
Register res_true = x8;
|
|
Register res_false = x9;
|
|
// Only used if there was an inline map check site. (See
|
|
// LCodeGen::DoInstanceOfKnownGlobal().)
|
|
Register map_check_site = x4;
|
|
// Delta for the instructions generated between the inline map check and the
|
|
// instruction setting the result.
|
|
const int32_t kDeltaToLoadBoolResult = 4 * kInstructionSize;
|
|
|
|
Label not_js_object, slow;
|
|
|
|
if (!HasArgsInRegisters()) {
|
|
__ Pop(function, object);
|
|
}
|
|
|
|
if (ReturnTrueFalseObject()) {
|
|
__ LoadTrueFalseRoots(res_true, res_false);
|
|
} else {
|
|
// This is counter-intuitive, but correct.
|
|
__ Mov(res_true, Smi::FromInt(0));
|
|
__ Mov(res_false, Smi::FromInt(1));
|
|
}
|
|
|
|
// Check that the left hand side is a JS object and load its map as a side
|
|
// effect.
|
|
Register map = x12;
|
|
__ JumpIfSmi(object, ¬_js_object);
|
|
__ IsObjectJSObjectType(object, map, scratch2, ¬_js_object);
|
|
|
|
// If there is a call site cache, don't look in the global cache, but do the
|
|
// real lookup and update the call site cache.
|
|
if (!HasCallSiteInlineCheck()) {
|
|
Label miss;
|
|
__ JumpIfNotRoot(function, Heap::kInstanceofCacheFunctionRootIndex, &miss);
|
|
__ JumpIfNotRoot(map, Heap::kInstanceofCacheMapRootIndex, &miss);
|
|
__ LoadRoot(result, Heap::kInstanceofCacheAnswerRootIndex);
|
|
__ Ret();
|
|
__ Bind(&miss);
|
|
}
|
|
|
|
// Get the prototype of the function.
|
|
Register prototype = x13;
|
|
__ TryGetFunctionPrototype(function, prototype, scratch2, &slow,
|
|
MacroAssembler::kMissOnBoundFunction);
|
|
|
|
// Check that the function prototype is a JS object.
|
|
__ JumpIfSmi(prototype, &slow);
|
|
__ IsObjectJSObjectType(prototype, scratch1, scratch2, &slow);
|
|
|
|
// Update the global instanceof or call site inlined cache with the current
|
|
// map and function. The cached answer will be set when it is known below.
|
|
if (HasCallSiteInlineCheck()) {
|
|
// Patch the (relocated) inlined map check.
|
|
__ GetRelocatedValueLocation(map_check_site, scratch1);
|
|
// We have a cell, so need another level of dereferencing.
|
|
__ Ldr(scratch1, MemOperand(scratch1));
|
|
__ Str(map, FieldMemOperand(scratch1, Cell::kValueOffset));
|
|
} else {
|
|
__ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
|
|
__ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex);
|
|
}
|
|
|
|
Label return_true, return_result;
|
|
{
|
|
// Loop through the prototype chain looking for the function prototype.
|
|
Register chain_map = x1;
|
|
Register chain_prototype = x14;
|
|
Register null_value = x15;
|
|
Label loop;
|
|
__ Ldr(chain_prototype, FieldMemOperand(map, Map::kPrototypeOffset));
|
|
__ LoadRoot(null_value, Heap::kNullValueRootIndex);
|
|
// Speculatively set a result.
|
|
__ Mov(result, res_false);
|
|
|
|
__ Bind(&loop);
|
|
|
|
// If the chain prototype is the object prototype, return true.
|
|
__ Cmp(chain_prototype, prototype);
|
|
__ B(eq, &return_true);
|
|
|
|
// If the chain prototype is null, we've reached the end of the chain, so
|
|
// return false.
|
|
__ Cmp(chain_prototype, null_value);
|
|
__ B(eq, &return_result);
|
|
|
|
// Otherwise, load the next prototype in the chain, and loop.
|
|
__ Ldr(chain_map, FieldMemOperand(chain_prototype, HeapObject::kMapOffset));
|
|
__ Ldr(chain_prototype, FieldMemOperand(chain_map, Map::kPrototypeOffset));
|
|
__ B(&loop);
|
|
}
|
|
|
|
// Return sequence when no arguments are on the stack.
|
|
// We cannot fall through to here.
|
|
__ Bind(&return_true);
|
|
__ Mov(result, res_true);
|
|
__ Bind(&return_result);
|
|
if (HasCallSiteInlineCheck()) {
|
|
ASSERT(ReturnTrueFalseObject());
|
|
__ Add(map_check_site, map_check_site, kDeltaToLoadBoolResult);
|
|
__ GetRelocatedValueLocation(map_check_site, scratch2);
|
|
__ Str(result, MemOperand(scratch2));
|
|
} else {
|
|
__ StoreRoot(result, Heap::kInstanceofCacheAnswerRootIndex);
|
|
}
|
|
__ Ret();
|
|
|
|
Label object_not_null, object_not_null_or_smi;
|
|
|
|
__ Bind(¬_js_object);
|
|
Register object_type = x14;
|
|
// x0 result result return register (uninit)
|
|
// x10 function pointer to function
|
|
// x11 object pointer to object
|
|
// x14 object_type type of object (uninit)
|
|
|
|
// Before null, smi and string checks, check that the rhs is a function.
|
|
// For a non-function rhs, an exception must be thrown.
|
|
__ JumpIfSmi(function, &slow);
|
|
__ JumpIfNotObjectType(
|
|
function, scratch1, object_type, JS_FUNCTION_TYPE, &slow);
|
|
|
|
__ Mov(result, res_false);
|
|
|
|
// Null is not instance of anything.
|
|
__ Cmp(object_type, Operand(isolate()->factory()->null_value()));
|
|
__ B(ne, &object_not_null);
|
|
__ Ret();
|
|
|
|
__ Bind(&object_not_null);
|
|
// Smi values are not instances of anything.
|
|
__ JumpIfNotSmi(object, &object_not_null_or_smi);
|
|
__ Ret();
|
|
|
|
__ Bind(&object_not_null_or_smi);
|
|
// String values are not instances of anything.
|
|
__ IsObjectJSStringType(object, scratch2, &slow);
|
|
__ Ret();
|
|
|
|
// Slow-case. Tail call builtin.
|
|
__ Bind(&slow);
|
|
{
|
|
FrameScope scope(masm, StackFrame::INTERNAL);
|
|
// Arguments have either been passed into registers or have been previously
|
|
// popped. We need to push them before calling builtin.
|
|
__ Push(object, function);
|
|
__ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
|
|
}
|
|
if (ReturnTrueFalseObject()) {
|
|
// Reload true/false because they were clobbered in the builtin call.
|
|
__ LoadTrueFalseRoots(res_true, res_false);
|
|
__ Cmp(result, 0);
|
|
__ Csel(result, res_true, res_false, eq);
|
|
}
|
|
__ Ret();
|
|
}
|
|
|
|
|
|
Register InstanceofStub::left() {
|
|
// Object to check (instanceof lhs).
|
|
return x11;
|
|
}
|
|
|
|
|
|
Register InstanceofStub::right() {
|
|
// Constructor function (instanceof rhs).
|
|
return x10;
|
|
}
|
|
|
|
|
|
void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
|
|
Register arg_count = x0;
|
|
Register key = x1;
|
|
|
|
// The displacement is the offset of the last parameter (if any) relative
|
|
// to the frame pointer.
|
|
static const int kDisplacement =
|
|
StandardFrameConstants::kCallerSPOffset - kPointerSize;
|
|
|
|
// Check that the key is a smi.
|
|
Label slow;
|
|
__ JumpIfNotSmi(key, &slow);
|
|
|
|
// Check if the calling frame is an arguments adaptor frame.
|
|
Register local_fp = x11;
|
|
Register caller_fp = x11;
|
|
Register caller_ctx = x12;
|
|
Label skip_adaptor;
|
|
__ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
|
|
__ Ldr(caller_ctx, MemOperand(caller_fp,
|
|
StandardFrameConstants::kContextOffset));
|
|
__ Cmp(caller_ctx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
|
|
__ Csel(local_fp, fp, caller_fp, ne);
|
|
__ B(ne, &skip_adaptor);
|
|
|
|
// Load the actual arguments limit found in the arguments adaptor frame.
|
|
__ Ldr(arg_count, MemOperand(caller_fp,
|
|
ArgumentsAdaptorFrameConstants::kLengthOffset));
|
|
__ Bind(&skip_adaptor);
|
|
|
|
// Check index against formal parameters count limit. Use unsigned comparison
|
|
// to get negative check for free: branch if key < 0 or key >= arg_count.
|
|
__ Cmp(key, arg_count);
|
|
__ B(hs, &slow);
|
|
|
|
// Read the argument from the stack and return it.
|
|
__ Sub(x10, arg_count, key);
|
|
__ Add(x10, local_fp, Operand::UntagSmiAndScale(x10, kPointerSizeLog2));
|
|
__ Ldr(x0, MemOperand(x10, kDisplacement));
|
|
__ Ret();
|
|
|
|
// Slow case: handle non-smi or out-of-bounds access to arguments by calling
|
|
// the runtime system.
|
|
__ Bind(&slow);
|
|
__ Push(key);
|
|
__ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
|
|
}
|
|
|
|
|
|
void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) {
|
|
// Stack layout on entry.
|
|
// jssp[0]: number of parameters (tagged)
|
|
// jssp[8]: address of receiver argument
|
|
// jssp[16]: function
|
|
|
|
// Check if the calling frame is an arguments adaptor frame.
|
|
Label runtime;
|
|
Register caller_fp = x10;
|
|
__ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
|
|
// Load and untag the context.
|
|
__ Ldr(w11, UntagSmiMemOperand(caller_fp,
|
|
StandardFrameConstants::kContextOffset));
|
|
__ Cmp(w11, StackFrame::ARGUMENTS_ADAPTOR);
|
|
__ B(ne, &runtime);
|
|
|
|
// Patch the arguments.length and parameters pointer in the current frame.
|
|
__ Ldr(x11, MemOperand(caller_fp,
|
|
ArgumentsAdaptorFrameConstants::kLengthOffset));
|
|
__ Poke(x11, 0 * kXRegSize);
|
|
__ Add(x10, caller_fp, Operand::UntagSmiAndScale(x11, kPointerSizeLog2));
|
|
__ Add(x10, x10, StandardFrameConstants::kCallerSPOffset);
|
|
__ Poke(x10, 1 * kXRegSize);
|
|
|
|
__ Bind(&runtime);
|
|
__ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
|
|
}
|
|
|
|
|
|
void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) {
|
|
// Stack layout on entry.
|
|
// jssp[0]: number of parameters (tagged)
|
|
// jssp[8]: address of receiver argument
|
|
// jssp[16]: function
|
|
//
|
|
// Returns pointer to result object in x0.
|
|
|
|
// Note: arg_count_smi is an alias of param_count_smi.
|
|
Register arg_count_smi = x3;
|
|
Register param_count_smi = x3;
|
|
Register param_count = x7;
|
|
Register recv_arg = x14;
|
|
Register function = x4;
|
|
__ Pop(param_count_smi, recv_arg, function);
|
|
__ SmiUntag(param_count, param_count_smi);
|
|
|
|
// Check if the calling frame is an arguments adaptor frame.
|
|
Register caller_fp = x11;
|
|
Register caller_ctx = x12;
|
|
Label runtime;
|
|
Label adaptor_frame, try_allocate;
|
|
__ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
|
|
__ Ldr(caller_ctx, MemOperand(caller_fp,
|
|
StandardFrameConstants::kContextOffset));
|
|
__ Cmp(caller_ctx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
|
|
__ B(eq, &adaptor_frame);
|
|
|
|
// No adaptor, parameter count = argument count.
|
|
|
|
// x1 mapped_params number of mapped params, min(params, args) (uninit)
|
|
// x2 arg_count number of function arguments (uninit)
|
|
// x3 arg_count_smi number of function arguments (smi)
|
|
// x4 function function pointer
|
|
// x7 param_count number of function parameters
|
|
// x11 caller_fp caller's frame pointer
|
|
// x14 recv_arg pointer to receiver arguments
|
|
|
|
Register arg_count = x2;
|
|
__ Mov(arg_count, param_count);
|
|
__ B(&try_allocate);
|
|
|
|
// We have an adaptor frame. Patch the parameters pointer.
|
|
__ Bind(&adaptor_frame);
|
|
__ Ldr(arg_count_smi,
|
|
MemOperand(caller_fp,
|
|
ArgumentsAdaptorFrameConstants::kLengthOffset));
|
|
__ SmiUntag(arg_count, arg_count_smi);
|
|
__ Add(x10, caller_fp, Operand(arg_count, LSL, kPointerSizeLog2));
|
|
__ Add(recv_arg, x10, StandardFrameConstants::kCallerSPOffset);
|
|
|
|
// Compute the mapped parameter count = min(param_count, arg_count)
|
|
Register mapped_params = x1;
|
|
__ Cmp(param_count, arg_count);
|
|
__ Csel(mapped_params, param_count, arg_count, lt);
|
|
|
|
__ Bind(&try_allocate);
|
|
|
|
// x0 alloc_obj pointer to allocated objects: param map, backing
|
|
// store, arguments (uninit)
|
|
// x1 mapped_params number of mapped parameters, min(params, args)
|
|
// x2 arg_count number of function arguments
|
|
// x3 arg_count_smi number of function arguments (smi)
|
|
// x4 function function pointer
|
|
// x7 param_count number of function parameters
|
|
// x10 size size of objects to allocate (uninit)
|
|
// x14 recv_arg pointer to receiver arguments
|
|
|
|
// Compute the size of backing store, parameter map, and arguments object.
|
|
// 1. Parameter map, has two extra words containing context and backing
|
|
// store.
|
|
const int kParameterMapHeaderSize =
|
|
FixedArray::kHeaderSize + 2 * kPointerSize;
|
|
|
|
// Calculate the parameter map size, assuming it exists.
|
|
Register size = x10;
|
|
__ Mov(size, Operand(mapped_params, LSL, kPointerSizeLog2));
|
|
__ Add(size, size, kParameterMapHeaderSize);
|
|
|
|
// If there are no mapped parameters, set the running size total to zero.
|
|
// Otherwise, use the parameter map size calculated earlier.
|
|
__ Cmp(mapped_params, 0);
|
|
__ CzeroX(size, eq);
|
|
|
|
// 2. Add the size of the backing store and arguments object.
|
|
__ Add(size, size, Operand(arg_count, LSL, kPointerSizeLog2));
|
|
__ Add(size, size,
|
|
FixedArray::kHeaderSize + Heap::kSloppyArgumentsObjectSize);
|
|
|
|
// Do the allocation of all three objects in one go. Assign this to x0, as it
|
|
// will be returned to the caller.
|
|
Register alloc_obj = x0;
|
|
__ Allocate(size, alloc_obj, x11, x12, &runtime, TAG_OBJECT);
|
|
|
|
// Get the arguments boilerplate from the current (global) context.
|
|
|
|
// x0 alloc_obj pointer to allocated objects (param map, backing
|
|
// store, arguments)
|
|
// x1 mapped_params number of mapped parameters, min(params, args)
|
|
// x2 arg_count number of function arguments
|
|
// x3 arg_count_smi number of function arguments (smi)
|
|
// x4 function function pointer
|
|
// x7 param_count number of function parameters
|
|
// x11 sloppy_args_map offset to args (or aliased args) map (uninit)
|
|
// x14 recv_arg pointer to receiver arguments
|
|
|
|
Register global_object = x10;
|
|
Register global_ctx = x10;
|
|
Register sloppy_args_map = x11;
|
|
Register aliased_args_map = x10;
|
|
__ Ldr(global_object, GlobalObjectMemOperand());
|
|
__ Ldr(global_ctx, FieldMemOperand(global_object,
|
|
GlobalObject::kNativeContextOffset));
|
|
|
|
__ Ldr(sloppy_args_map,
|
|
ContextMemOperand(global_ctx, Context::SLOPPY_ARGUMENTS_MAP_INDEX));
|
|
__ Ldr(aliased_args_map,
|
|
ContextMemOperand(global_ctx, Context::ALIASED_ARGUMENTS_MAP_INDEX));
|
|
__ Cmp(mapped_params, 0);
|
|
__ CmovX(sloppy_args_map, aliased_args_map, ne);
|
|
|
|
// Copy the JS object part.
|
|
__ Str(sloppy_args_map, FieldMemOperand(alloc_obj, JSObject::kMapOffset));
|
|
__ LoadRoot(x10, Heap::kEmptyFixedArrayRootIndex);
|
|
__ Str(x10, FieldMemOperand(alloc_obj, JSObject::kPropertiesOffset));
|
|
__ Str(x10, FieldMemOperand(alloc_obj, JSObject::kElementsOffset));
|
|
|
|
// Set up the callee in-object property.
|
|
STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
|
|
const int kCalleeOffset = JSObject::kHeaderSize +
|
|
Heap::kArgumentsCalleeIndex * kPointerSize;
|
|
__ AssertNotSmi(function);
|
|
__ Str(function, FieldMemOperand(alloc_obj, kCalleeOffset));
|
|
|
|
// Use the length and set that as an in-object property.
|
|
STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
|
|
const int kLengthOffset = JSObject::kHeaderSize +
|
|
Heap::kArgumentsLengthIndex * kPointerSize;
|
|
__ Str(arg_count_smi, FieldMemOperand(alloc_obj, kLengthOffset));
|
|
|
|
// Set up the elements pointer in the allocated arguments object.
|
|
// If we allocated a parameter map, "elements" will point there, otherwise
|
|
// it will point to the backing store.
|
|
|
|
// x0 alloc_obj pointer to allocated objects (param map, backing
|
|
// store, arguments)
|
|
// x1 mapped_params number of mapped parameters, min(params, args)
|
|
// x2 arg_count number of function arguments
|
|
// x3 arg_count_smi number of function arguments (smi)
|
|
// x4 function function pointer
|
|
// x5 elements pointer to parameter map or backing store (uninit)
|
|
// x6 backing_store pointer to backing store (uninit)
|
|
// x7 param_count number of function parameters
|
|
// x14 recv_arg pointer to receiver arguments
|
|
|
|
Register elements = x5;
|
|
__ Add(elements, alloc_obj, Heap::kSloppyArgumentsObjectSize);
|
|
__ Str(elements, FieldMemOperand(alloc_obj, JSObject::kElementsOffset));
|
|
|
|
// Initialize parameter map. If there are no mapped arguments, we're done.
|
|
Label skip_parameter_map;
|
|
__ Cmp(mapped_params, 0);
|
|
// Set up backing store address, because it is needed later for filling in
|
|
// the unmapped arguments.
|
|
Register backing_store = x6;
|
|
__ CmovX(backing_store, elements, eq);
|
|
__ B(eq, &skip_parameter_map);
|
|
|
|
__ LoadRoot(x10, Heap::kSloppyArgumentsElementsMapRootIndex);
|
|
__ Str(x10, FieldMemOperand(elements, FixedArray::kMapOffset));
|
|
__ Add(x10, mapped_params, 2);
|
|
__ SmiTag(x10);
|
|
__ Str(x10, FieldMemOperand(elements, FixedArray::kLengthOffset));
|
|
__ Str(cp, FieldMemOperand(elements,
|
|
FixedArray::kHeaderSize + 0 * kPointerSize));
|
|
__ Add(x10, elements, Operand(mapped_params, LSL, kPointerSizeLog2));
|
|
__ Add(x10, x10, kParameterMapHeaderSize);
|
|
__ Str(x10, FieldMemOperand(elements,
|
|
FixedArray::kHeaderSize + 1 * kPointerSize));
|
|
|
|
// Copy the parameter slots and the holes in the arguments.
|
|
// We need to fill in mapped_parameter_count slots. Then index the context,
|
|
// where parameters are stored in reverse order, at:
|
|
//
|
|
// MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS + parameter_count - 1
|
|
//
|
|
// The mapped parameter thus needs to get indices:
|
|
//
|
|
// MIN_CONTEXT_SLOTS + parameter_count - 1 ..
|
|
// MIN_CONTEXT_SLOTS + parameter_count - mapped_parameter_count
|
|
//
|
|
// We loop from right to left.
|
|
|
|
// x0 alloc_obj pointer to allocated objects (param map, backing
|
|
// store, arguments)
|
|
// x1 mapped_params number of mapped parameters, min(params, args)
|
|
// x2 arg_count number of function arguments
|
|
// x3 arg_count_smi number of function arguments (smi)
|
|
// x4 function function pointer
|
|
// x5 elements pointer to parameter map or backing store (uninit)
|
|
// x6 backing_store pointer to backing store (uninit)
|
|
// x7 param_count number of function parameters
|
|
// x11 loop_count parameter loop counter (uninit)
|
|
// x12 index parameter index (smi, uninit)
|
|
// x13 the_hole hole value (uninit)
|
|
// x14 recv_arg pointer to receiver arguments
|
|
|
|
Register loop_count = x11;
|
|
Register index = x12;
|
|
Register the_hole = x13;
|
|
Label parameters_loop, parameters_test;
|
|
__ Mov(loop_count, mapped_params);
|
|
__ Add(index, param_count, static_cast<int>(Context::MIN_CONTEXT_SLOTS));
|
|
__ Sub(index, index, mapped_params);
|
|
__ SmiTag(index);
|
|
__ LoadRoot(the_hole, Heap::kTheHoleValueRootIndex);
|
|
__ Add(backing_store, elements, Operand(loop_count, LSL, kPointerSizeLog2));
|
|
__ Add(backing_store, backing_store, kParameterMapHeaderSize);
|
|
|
|
__ B(¶meters_test);
|
|
|
|
__ Bind(¶meters_loop);
|
|
__ Sub(loop_count, loop_count, 1);
|
|
__ Mov(x10, Operand(loop_count, LSL, kPointerSizeLog2));
|
|
__ Add(x10, x10, kParameterMapHeaderSize - kHeapObjectTag);
|
|
__ Str(index, MemOperand(elements, x10));
|
|
__ Sub(x10, x10, kParameterMapHeaderSize - FixedArray::kHeaderSize);
|
|
__ Str(the_hole, MemOperand(backing_store, x10));
|
|
__ Add(index, index, Smi::FromInt(1));
|
|
__ Bind(¶meters_test);
|
|
__ Cbnz(loop_count, ¶meters_loop);
|
|
|
|
__ Bind(&skip_parameter_map);
|
|
// Copy arguments header and remaining slots (if there are any.)
|
|
__ LoadRoot(x10, Heap::kFixedArrayMapRootIndex);
|
|
__ Str(x10, FieldMemOperand(backing_store, FixedArray::kMapOffset));
|
|
__ Str(arg_count_smi, FieldMemOperand(backing_store,
|
|
FixedArray::kLengthOffset));
|
|
|
|
// x0 alloc_obj pointer to allocated objects (param map, backing
|
|
// store, arguments)
|
|
// x1 mapped_params number of mapped parameters, min(params, args)
|
|
// x2 arg_count number of function arguments
|
|
// x4 function function pointer
|
|
// x3 arg_count_smi number of function arguments (smi)
|
|
// x6 backing_store pointer to backing store (uninit)
|
|
// x14 recv_arg pointer to receiver arguments
|
|
|
|
Label arguments_loop, arguments_test;
|
|
__ Mov(x10, mapped_params);
|
|
__ Sub(recv_arg, recv_arg, Operand(x10, LSL, kPointerSizeLog2));
|
|
__ B(&arguments_test);
|
|
|
|
__ Bind(&arguments_loop);
|
|
__ Sub(recv_arg, recv_arg, kPointerSize);
|
|
__ Ldr(x11, MemOperand(recv_arg));
|
|
__ Add(x12, backing_store, Operand(x10, LSL, kPointerSizeLog2));
|
|
__ Str(x11, FieldMemOperand(x12, FixedArray::kHeaderSize));
|
|
__ Add(x10, x10, 1);
|
|
|
|
__ Bind(&arguments_test);
|
|
__ Cmp(x10, arg_count);
|
|
__ B(lt, &arguments_loop);
|
|
|
|
__ Ret();
|
|
|
|
// Do the runtime call to allocate the arguments object.
|
|
__ Bind(&runtime);
|
|
__ Push(function, recv_arg, arg_count_smi);
|
|
__ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
|
|
}
|
|
|
|
|
|
void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
|
|
// Stack layout on entry.
|
|
// jssp[0]: number of parameters (tagged)
|
|
// jssp[8]: address of receiver argument
|
|
// jssp[16]: function
|
|
//
|
|
// Returns pointer to result object in x0.
|
|
|
|
// Get the stub arguments from the frame, and make an untagged copy of the
|
|
// parameter count.
|
|
Register param_count_smi = x1;
|
|
Register params = x2;
|
|
Register function = x3;
|
|
Register param_count = x13;
|
|
__ Pop(param_count_smi, params, function);
|
|
__ SmiUntag(param_count, param_count_smi);
|
|
|
|
// Test if arguments adaptor needed.
|
|
Register caller_fp = x11;
|
|
Register caller_ctx = x12;
|
|
Label try_allocate, runtime;
|
|
__ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
|
|
__ Ldr(caller_ctx, MemOperand(caller_fp,
|
|
StandardFrameConstants::kContextOffset));
|
|
__ Cmp(caller_ctx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
|
|
__ B(ne, &try_allocate);
|
|
|
|
// x1 param_count_smi number of parameters passed to function (smi)
|
|
// x2 params pointer to parameters
|
|
// x3 function function pointer
|
|
// x11 caller_fp caller's frame pointer
|
|
// x13 param_count number of parameters passed to function
|
|
|
|
// Patch the argument length and parameters pointer.
|
|
__ Ldr(param_count_smi,
|
|
MemOperand(caller_fp,
|
|
ArgumentsAdaptorFrameConstants::kLengthOffset));
|
|
__ SmiUntag(param_count, param_count_smi);
|
|
__ Add(x10, caller_fp, Operand(param_count, LSL, kPointerSizeLog2));
|
|
__ Add(params, x10, StandardFrameConstants::kCallerSPOffset);
|
|
|
|
// Try the new space allocation. Start out with computing the size of the
|
|
// arguments object and the elements array in words.
|
|
Register size = x10;
|
|
__ Bind(&try_allocate);
|
|
__ Add(size, param_count, FixedArray::kHeaderSize / kPointerSize);
|
|
__ Cmp(param_count, 0);
|
|
__ CzeroX(size, eq);
|
|
__ Add(size, size, Heap::kStrictArgumentsObjectSize / kPointerSize);
|
|
|
|
// Do the allocation of both objects in one go. Assign this to x0, as it will
|
|
// be returned to the caller.
|
|
Register alloc_obj = x0;
|
|
__ Allocate(size, alloc_obj, x11, x12, &runtime,
|
|
static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
|
|
|
|
// Get the arguments boilerplate from the current (native) context.
|
|
Register global_object = x10;
|
|
Register global_ctx = x10;
|
|
Register strict_args_map = x4;
|
|
__ Ldr(global_object, GlobalObjectMemOperand());
|
|
__ Ldr(global_ctx, FieldMemOperand(global_object,
|
|
GlobalObject::kNativeContextOffset));
|
|
__ Ldr(strict_args_map,
|
|
ContextMemOperand(global_ctx, Context::STRICT_ARGUMENTS_MAP_INDEX));
|
|
|
|
// x0 alloc_obj pointer to allocated objects: parameter array and
|
|
// arguments object
|
|
// x1 param_count_smi number of parameters passed to function (smi)
|
|
// x2 params pointer to parameters
|
|
// x3 function function pointer
|
|
// x4 strict_args_map offset to arguments map
|
|
// x13 param_count number of parameters passed to function
|
|
__ Str(strict_args_map, FieldMemOperand(alloc_obj, JSObject::kMapOffset));
|
|
__ LoadRoot(x5, Heap::kEmptyFixedArrayRootIndex);
|
|
__ Str(x5, FieldMemOperand(alloc_obj, JSObject::kPropertiesOffset));
|
|
__ Str(x5, FieldMemOperand(alloc_obj, JSObject::kElementsOffset));
|
|
|
|
// Set the smi-tagged length as an in-object property.
|
|
STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
|
|
const int kLengthOffset = JSObject::kHeaderSize +
|
|
Heap::kArgumentsLengthIndex * kPointerSize;
|
|
__ Str(param_count_smi, FieldMemOperand(alloc_obj, kLengthOffset));
|
|
|
|
// If there are no actual arguments, we're done.
|
|
Label done;
|
|
__ Cbz(param_count, &done);
|
|
|
|
// Set up the elements pointer in the allocated arguments object and
|
|
// initialize the header in the elements fixed array.
|
|
Register elements = x5;
|
|
__ Add(elements, alloc_obj, Heap::kStrictArgumentsObjectSize);
|
|
__ Str(elements, FieldMemOperand(alloc_obj, JSObject::kElementsOffset));
|
|
__ LoadRoot(x10, Heap::kFixedArrayMapRootIndex);
|
|
__ Str(x10, FieldMemOperand(elements, FixedArray::kMapOffset));
|
|
__ Str(param_count_smi, FieldMemOperand(elements, FixedArray::kLengthOffset));
|
|
|
|
// x0 alloc_obj pointer to allocated objects: parameter array and
|
|
// arguments object
|
|
// x1 param_count_smi number of parameters passed to function (smi)
|
|
// x2 params pointer to parameters
|
|
// x3 function function pointer
|
|
// x4 array pointer to array slot (uninit)
|
|
// x5 elements pointer to elements array of alloc_obj
|
|
// x13 param_count number of parameters passed to function
|
|
|
|
// Copy the fixed array slots.
|
|
Label loop;
|
|
Register array = x4;
|
|
// Set up pointer to first array slot.
|
|
__ Add(array, elements, FixedArray::kHeaderSize - kHeapObjectTag);
|
|
|
|
__ Bind(&loop);
|
|
// Pre-decrement the parameters pointer by kPointerSize on each iteration.
|
|
// Pre-decrement in order to skip receiver.
|
|
__ Ldr(x10, MemOperand(params, -kPointerSize, PreIndex));
|
|
// Post-increment elements by kPointerSize on each iteration.
|
|
__ Str(x10, MemOperand(array, kPointerSize, PostIndex));
|
|
__ Sub(param_count, param_count, 1);
|
|
__ Cbnz(param_count, &loop);
|
|
|
|
// Return from stub.
|
|
__ Bind(&done);
|
|
__ Ret();
|
|
|
|
// Do the runtime call to allocate the arguments object.
|
|
__ Bind(&runtime);
|
|
__ Push(function, params, param_count_smi);
|
|
__ TailCallRuntime(Runtime::kNewStrictArguments, 3, 1);
|
|
}
|
|
|
|
|
|
void RegExpExecStub::Generate(MacroAssembler* masm) {
|
|
#ifdef V8_INTERPRETED_REGEXP
|
|
__ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
|
|
#else // V8_INTERPRETED_REGEXP
|
|
|
|
// Stack frame on entry.
|
|
// jssp[0]: last_match_info (expected JSArray)
|
|
// jssp[8]: previous index
|
|
// jssp[16]: subject string
|
|
// jssp[24]: JSRegExp object
|
|
Label runtime;
|
|
|
|
// Use of registers for this function.
|
|
|
|
// Variable registers:
|
|
// x10-x13 used as scratch registers
|
|
// w0 string_type type of subject string
|
|
// x2 jsstring_length subject string length
|
|
// x3 jsregexp_object JSRegExp object
|
|
// w4 string_encoding ASCII or UC16
|
|
// w5 sliced_string_offset if the string is a SlicedString
|
|
// offset to the underlying string
|
|
// w6 string_representation groups attributes of the string:
|
|
// - is a string
|
|
// - type of the string
|
|
// - is a short external string
|
|
Register string_type = w0;
|
|
Register jsstring_length = x2;
|
|
Register jsregexp_object = x3;
|
|
Register string_encoding = w4;
|
|
Register sliced_string_offset = w5;
|
|
Register string_representation = w6;
|
|
|
|
// These are in callee save registers and will be preserved by the call
|
|
// to the native RegExp code, as this code is called using the normal
|
|
// C calling convention. When calling directly from generated code the
|
|
// native RegExp code will not do a GC and therefore the content of
|
|
// these registers are safe to use after the call.
|
|
|
|
// x19 subject subject string
|
|
// x20 regexp_data RegExp data (FixedArray)
|
|
// x21 last_match_info_elements info relative to the last match
|
|
// (FixedArray)
|
|
// x22 code_object generated regexp code
|
|
Register subject = x19;
|
|
Register regexp_data = x20;
|
|
Register last_match_info_elements = x21;
|
|
Register code_object = x22;
|
|
|
|
// TODO(jbramley): Is it necessary to preserve these? I don't think ARM does.
|
|
CPURegList used_callee_saved_registers(subject,
|
|
regexp_data,
|
|
last_match_info_elements,
|
|
code_object);
|
|
__ PushCPURegList(used_callee_saved_registers);
|
|
|
|
// Stack frame.
|
|
// jssp[0] : x19
|
|
// jssp[8] : x20
|
|
// jssp[16]: x21
|
|
// jssp[24]: x22
|
|
// jssp[32]: last_match_info (JSArray)
|
|
// jssp[40]: previous index
|
|
// jssp[48]: subject string
|
|
// jssp[56]: JSRegExp object
|
|
|
|
const int kLastMatchInfoOffset = 4 * kPointerSize;
|
|
const int kPreviousIndexOffset = 5 * kPointerSize;
|
|
const int kSubjectOffset = 6 * kPointerSize;
|
|
const int kJSRegExpOffset = 7 * kPointerSize;
|
|
|
|
// Ensure that a RegExp stack is allocated.
|
|
ExternalReference address_of_regexp_stack_memory_address =
|
|
ExternalReference::address_of_regexp_stack_memory_address(isolate());
|
|
ExternalReference address_of_regexp_stack_memory_size =
|
|
ExternalReference::address_of_regexp_stack_memory_size(isolate());
|
|
__ Mov(x10, address_of_regexp_stack_memory_size);
|
|
__ Ldr(x10, MemOperand(x10));
|
|
__ Cbz(x10, &runtime);
|
|
|
|
// Check that the first argument is a JSRegExp object.
|
|
ASSERT(jssp.Is(__ StackPointer()));
|
|
__ Peek(jsregexp_object, kJSRegExpOffset);
|
|
__ JumpIfSmi(jsregexp_object, &runtime);
|
|
__ JumpIfNotObjectType(jsregexp_object, x10, x10, JS_REGEXP_TYPE, &runtime);
|
|
|
|
// Check that the RegExp has been compiled (data contains a fixed array).
|
|
__ Ldr(regexp_data, FieldMemOperand(jsregexp_object, JSRegExp::kDataOffset));
|
|
if (FLAG_debug_code) {
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
__ Tst(regexp_data, kSmiTagMask);
|
|
__ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected);
|
|
__ CompareObjectType(regexp_data, x10, x10, FIXED_ARRAY_TYPE);
|
|
__ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected);
|
|
}
|
|
|
|
// Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
|
|
__ Ldr(x10, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
|
|
__ Cmp(x10, Smi::FromInt(JSRegExp::IRREGEXP));
|
|
__ B(ne, &runtime);
|
|
|
|
// Check that the number of captures fit in the static offsets vector buffer.
|
|
// We have always at least one capture for the whole match, plus additional
|
|
// ones due to capturing parentheses. A capture takes 2 registers.
|
|
// The number of capture registers then is (number_of_captures + 1) * 2.
|
|
__ Ldrsw(x10,
|
|
UntagSmiFieldMemOperand(regexp_data,
|
|
JSRegExp::kIrregexpCaptureCountOffset));
|
|
// Check (number_of_captures + 1) * 2 <= offsets vector size
|
|
// number_of_captures * 2 <= offsets vector size - 2
|
|
STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
|
|
__ Add(x10, x10, x10);
|
|
__ Cmp(x10, Isolate::kJSRegexpStaticOffsetsVectorSize - 2);
|
|
__ B(hi, &runtime);
|
|
|
|
// Initialize offset for possibly sliced string.
|
|
__ Mov(sliced_string_offset, 0);
|
|
|
|
ASSERT(jssp.Is(__ StackPointer()));
|
|
__ Peek(subject, kSubjectOffset);
|
|
__ JumpIfSmi(subject, &runtime);
|
|
|
|
__ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset));
|
|
__ Ldrb(string_type, FieldMemOperand(x10, Map::kInstanceTypeOffset));
|
|
|
|
__ Ldr(jsstring_length, FieldMemOperand(subject, String::kLengthOffset));
|
|
|
|
// Handle subject string according to its encoding and representation:
|
|
// (1) Sequential string? If yes, go to (5).
|
|
// (2) Anything but sequential or cons? If yes, go to (6).
|
|
// (3) Cons string. If the string is flat, replace subject with first string.
|
|
// Otherwise bailout.
|
|
// (4) Is subject external? If yes, go to (7).
|
|
// (5) Sequential string. Load regexp code according to encoding.
|
|
// (E) Carry on.
|
|
/// [...]
|
|
|
|
// Deferred code at the end of the stub:
|
|
// (6) Not a long external string? If yes, go to (8).
|
|
// (7) External string. Make it, offset-wise, look like a sequential string.
|
|
// Go to (5).
|
|
// (8) Short external string or not a string? If yes, bail out to runtime.
|
|
// (9) Sliced string. Replace subject with parent. Go to (4).
|
|
|
|
Label check_underlying; // (4)
|
|
Label seq_string; // (5)
|
|
Label not_seq_nor_cons; // (6)
|
|
Label external_string; // (7)
|
|
Label not_long_external; // (8)
|
|
|
|
// (1) Sequential string? If yes, go to (5).
|
|
__ And(string_representation,
|
|
string_type,
|
|
kIsNotStringMask |
|
|
kStringRepresentationMask |
|
|
kShortExternalStringMask);
|
|
// We depend on the fact that Strings of type
|
|
// SeqString and not ShortExternalString are defined
|
|
// by the following pattern:
|
|
// string_type: 0XX0 XX00
|
|
// ^ ^ ^^
|
|
// | | ||
|
|
// | | is a SeqString
|
|
// | is not a short external String
|
|
// is a String
|
|
STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
|
|
STATIC_ASSERT(kShortExternalStringTag != 0);
|
|
__ Cbz(string_representation, &seq_string); // Go to (5).
|
|
|
|
// (2) Anything but sequential or cons? If yes, go to (6).
|
|
STATIC_ASSERT(kConsStringTag < kExternalStringTag);
|
|
STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
|
|
STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
|
|
STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
|
|
__ Cmp(string_representation, kExternalStringTag);
|
|
__ B(ge, ¬_seq_nor_cons); // Go to (6).
|
|
|
|
// (3) Cons string. Check that it's flat.
|
|
__ Ldr(x10, FieldMemOperand(subject, ConsString::kSecondOffset));
|
|
__ JumpIfNotRoot(x10, Heap::kempty_stringRootIndex, &runtime);
|
|
// Replace subject with first string.
|
|
__ Ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
|
|
|
|
// (4) Is subject external? If yes, go to (7).
|
|
__ Bind(&check_underlying);
|
|
// Reload the string type.
|
|
__ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset));
|
|
__ Ldrb(string_type, FieldMemOperand(x10, Map::kInstanceTypeOffset));
|
|
STATIC_ASSERT(kSeqStringTag == 0);
|
|
// The underlying external string is never a short external string.
|
|
STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength);
|
|
STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength);
|
|
__ TestAndBranchIfAnySet(string_type.X(),
|
|
kStringRepresentationMask,
|
|
&external_string); // Go to (7).
|
|
|
|
// (5) Sequential string. Load regexp code according to encoding.
|
|
__ Bind(&seq_string);
|
|
|
|
// Check that the third argument is a positive smi less than the subject
|
|
// string length. A negative value will be greater (unsigned comparison).
|
|
ASSERT(jssp.Is(__ StackPointer()));
|
|
__ Peek(x10, kPreviousIndexOffset);
|
|
__ JumpIfNotSmi(x10, &runtime);
|
|
__ Cmp(jsstring_length, x10);
|
|
__ B(ls, &runtime);
|
|
|
|
// Argument 2 (x1): We need to load argument 2 (the previous index) into x1
|
|
// before entering the exit frame.
|
|
__ SmiUntag(x1, x10);
|
|
|
|
// The third bit determines the string encoding in string_type.
|
|
STATIC_ASSERT(kOneByteStringTag == 0x04);
|
|
STATIC_ASSERT(kTwoByteStringTag == 0x00);
|
|
STATIC_ASSERT(kStringEncodingMask == 0x04);
|
|
|
|
// Find the code object based on the assumptions above.
|
|
// kDataAsciiCodeOffset and kDataUC16CodeOffset are adjacent, adds an offset
|
|
// of kPointerSize to reach the latter.
|
|
ASSERT_EQ(JSRegExp::kDataAsciiCodeOffset + kPointerSize,
|
|
JSRegExp::kDataUC16CodeOffset);
|
|
__ Mov(x10, kPointerSize);
|
|
// We will need the encoding later: ASCII = 0x04
|
|
// UC16 = 0x00
|
|
__ Ands(string_encoding, string_type, kStringEncodingMask);
|
|
__ CzeroX(x10, ne);
|
|
__ Add(x10, regexp_data, x10);
|
|
__ Ldr(code_object, FieldMemOperand(x10, JSRegExp::kDataAsciiCodeOffset));
|
|
|
|
// (E) Carry on. String handling is done.
|
|
|
|
// Check that the irregexp code has been generated for the actual string
|
|
// encoding. If it has, the field contains a code object otherwise it contains
|
|
// a smi (code flushing support).
|
|
__ JumpIfSmi(code_object, &runtime);
|
|
|
|
// All checks done. Now push arguments for native regexp code.
|
|
__ IncrementCounter(isolate()->counters()->regexp_entry_native(), 1,
|
|
x10,
|
|
x11);
|
|
|
|
// Isolates: note we add an additional parameter here (isolate pointer).
|
|
__ EnterExitFrame(false, x10, 1);
|
|
ASSERT(csp.Is(__ StackPointer()));
|
|
|
|
// We have 9 arguments to pass to the regexp code, therefore we have to pass
|
|
// one on the stack and the rest as registers.
|
|
|
|
// Note that the placement of the argument on the stack isn't standard
|
|
// AAPCS64:
|
|
// csp[0]: Space for the return address placed by DirectCEntryStub.
|
|
// csp[8]: Argument 9, the current isolate address.
|
|
|
|
__ Mov(x10, ExternalReference::isolate_address(isolate()));
|
|
__ Poke(x10, kPointerSize);
|
|
|
|
Register length = w11;
|
|
Register previous_index_in_bytes = w12;
|
|
Register start = x13;
|
|
|
|
// Load start of the subject string.
|
|
__ Add(start, subject, SeqString::kHeaderSize - kHeapObjectTag);
|
|
// Load the length from the original subject string from the previous stack
|
|
// frame. Therefore we have to use fp, which points exactly to two pointer
|
|
// sizes below the previous sp. (Because creating a new stack frame pushes
|
|
// the previous fp onto the stack and decrements sp by 2 * kPointerSize.)
|
|
__ Ldr(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
|
|
__ Ldr(length, UntagSmiFieldMemOperand(subject, String::kLengthOffset));
|
|
|
|
// Handle UC16 encoding, two bytes make one character.
|
|
// string_encoding: if ASCII: 0x04
|
|
// if UC16: 0x00
|
|
STATIC_ASSERT(kStringEncodingMask == 0x04);
|
|
__ Ubfx(string_encoding, string_encoding, 2, 1);
|
|
__ Eor(string_encoding, string_encoding, 1);
|
|
// string_encoding: if ASCII: 0
|
|
// if UC16: 1
|
|
|
|
// Convert string positions from characters to bytes.
|
|
// Previous index is in x1.
|
|
__ Lsl(previous_index_in_bytes, w1, string_encoding);
|
|
__ Lsl(length, length, string_encoding);
|
|
__ Lsl(sliced_string_offset, sliced_string_offset, string_encoding);
|
|
|
|
// Argument 1 (x0): Subject string.
|
|
__ Mov(x0, subject);
|
|
|
|
// Argument 2 (x1): Previous index, already there.
|
|
|
|
// Argument 3 (x2): Get the start of input.
|
|
// Start of input = start of string + previous index + substring offset
|
|
// (0 if the string
|
|
// is not sliced).
|
|
__ Add(w10, previous_index_in_bytes, sliced_string_offset);
|
|
__ Add(x2, start, Operand(w10, UXTW));
|
|
|
|
// Argument 4 (x3):
|
|
// End of input = start of input + (length of input - previous index)
|
|
__ Sub(w10, length, previous_index_in_bytes);
|
|
__ Add(x3, x2, Operand(w10, UXTW));
|
|
|
|
// Argument 5 (x4): static offsets vector buffer.
|
|
__ Mov(x4, ExternalReference::address_of_static_offsets_vector(isolate()));
|
|
|
|
// Argument 6 (x5): Set the number of capture registers to zero to force
|
|
// global regexps to behave as non-global. This stub is not used for global
|
|
// regexps.
|
|
__ Mov(x5, 0);
|
|
|
|
// Argument 7 (x6): Start (high end) of backtracking stack memory area.
|
|
__ Mov(x10, address_of_regexp_stack_memory_address);
|
|
__ Ldr(x10, MemOperand(x10));
|
|
__ Mov(x11, address_of_regexp_stack_memory_size);
|
|
__ Ldr(x11, MemOperand(x11));
|
|
__ Add(x6, x10, x11);
|
|
|
|
// Argument 8 (x7): Indicate that this is a direct call from JavaScript.
|
|
__ Mov(x7, 1);
|
|
|
|
// Locate the code entry and call it.
|
|
__ Add(code_object, code_object, Code::kHeaderSize - kHeapObjectTag);
|
|
DirectCEntryStub stub(isolate());
|
|
stub.GenerateCall(masm, code_object);
|
|
|
|
__ LeaveExitFrame(false, x10, true);
|
|
|
|
// The generated regexp code returns an int32 in w0.
|
|
Label failure, exception;
|
|
__ CompareAndBranch(w0, NativeRegExpMacroAssembler::FAILURE, eq, &failure);
|
|
__ CompareAndBranch(w0,
|
|
NativeRegExpMacroAssembler::EXCEPTION,
|
|
eq,
|
|
&exception);
|
|
__ CompareAndBranch(w0, NativeRegExpMacroAssembler::RETRY, eq, &runtime);
|
|
|
|
// Success: process the result from the native regexp code.
|
|
Register number_of_capture_registers = x12;
|
|
|
|
// Calculate number of capture registers (number_of_captures + 1) * 2
|
|
// and store it in the last match info.
|
|
__ Ldrsw(x10,
|
|
UntagSmiFieldMemOperand(regexp_data,
|
|
JSRegExp::kIrregexpCaptureCountOffset));
|
|
__ Add(x10, x10, x10);
|
|
__ Add(number_of_capture_registers, x10, 2);
|
|
|
|
// Check that the fourth object is a JSArray object.
|
|
ASSERT(jssp.Is(__ StackPointer()));
|
|
__ Peek(x10, kLastMatchInfoOffset);
|
|
__ JumpIfSmi(x10, &runtime);
|
|
__ JumpIfNotObjectType(x10, x11, x11, JS_ARRAY_TYPE, &runtime);
|
|
|
|
// Check that the JSArray is the fast case.
|
|
__ Ldr(last_match_info_elements,
|
|
FieldMemOperand(x10, JSArray::kElementsOffset));
|
|
__ Ldr(x10,
|
|
FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
|
|
__ JumpIfNotRoot(x10, Heap::kFixedArrayMapRootIndex, &runtime);
|
|
|
|
// Check that the last match info has space for the capture registers and the
|
|
// additional information (overhead).
|
|
// (number_of_captures + 1) * 2 + overhead <= last match info size
|
|
// (number_of_captures * 2) + 2 + overhead <= last match info size
|
|
// number_of_capture_registers + overhead <= last match info size
|
|
__ Ldrsw(x10,
|
|
UntagSmiFieldMemOperand(last_match_info_elements,
|
|
FixedArray::kLengthOffset));
|
|
__ Add(x11, number_of_capture_registers, RegExpImpl::kLastMatchOverhead);
|
|
__ Cmp(x11, x10);
|
|
__ B(gt, &runtime);
|
|
|
|
// Store the capture count.
|
|
__ SmiTag(x10, number_of_capture_registers);
|
|
__ Str(x10,
|
|
FieldMemOperand(last_match_info_elements,
|
|
RegExpImpl::kLastCaptureCountOffset));
|
|
// Store last subject and last input.
|
|
__ Str(subject,
|
|
FieldMemOperand(last_match_info_elements,
|
|
RegExpImpl::kLastSubjectOffset));
|
|
// Use x10 as the subject string in order to only need
|
|
// one RecordWriteStub.
|
|
__ Mov(x10, subject);
|
|
__ RecordWriteField(last_match_info_elements,
|
|
RegExpImpl::kLastSubjectOffset,
|
|
x10,
|
|
x11,
|
|
kLRHasNotBeenSaved,
|
|
kDontSaveFPRegs);
|
|
__ Str(subject,
|
|
FieldMemOperand(last_match_info_elements,
|
|
RegExpImpl::kLastInputOffset));
|
|
__ Mov(x10, subject);
|
|
__ RecordWriteField(last_match_info_elements,
|
|
RegExpImpl::kLastInputOffset,
|
|
x10,
|
|
x11,
|
|
kLRHasNotBeenSaved,
|
|
kDontSaveFPRegs);
|
|
|
|
Register last_match_offsets = x13;
|
|
Register offsets_vector_index = x14;
|
|
Register current_offset = x15;
|
|
|
|
// Get the static offsets vector filled by the native regexp code
|
|
// and fill the last match info.
|
|
ExternalReference address_of_static_offsets_vector =
|
|
ExternalReference::address_of_static_offsets_vector(isolate());
|
|
__ Mov(offsets_vector_index, address_of_static_offsets_vector);
|
|
|
|
Label next_capture, done;
|
|
// Capture register counter starts from number of capture registers and
|
|
// iterates down to zero (inclusive).
|
|
__ Add(last_match_offsets,
|
|
last_match_info_elements,
|
|
RegExpImpl::kFirstCaptureOffset - kHeapObjectTag);
|
|
__ Bind(&next_capture);
|
|
__ Subs(number_of_capture_registers, number_of_capture_registers, 2);
|
|
__ B(mi, &done);
|
|
// Read two 32 bit values from the static offsets vector buffer into
|
|
// an X register
|
|
__ Ldr(current_offset,
|
|
MemOperand(offsets_vector_index, kWRegSize * 2, PostIndex));
|
|
// Store the smi values in the last match info.
|
|
__ SmiTag(x10, current_offset);
|
|
// Clearing the 32 bottom bits gives us a Smi.
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
__ Bic(x11, current_offset, kSmiShiftMask);
|
|
__ Stp(x10,
|
|
x11,
|
|
MemOperand(last_match_offsets, kXRegSize * 2, PostIndex));
|
|
__ B(&next_capture);
|
|
__ Bind(&done);
|
|
|
|
// Return last match info.
|
|
__ Peek(x0, kLastMatchInfoOffset);
|
|
__ PopCPURegList(used_callee_saved_registers);
|
|
// Drop the 4 arguments of the stub from the stack.
|
|
__ Drop(4);
|
|
__ Ret();
|
|
|
|
__ Bind(&exception);
|
|
Register exception_value = x0;
|
|
// A stack overflow (on the backtrack stack) may have occured
|
|
// in the RegExp code but no exception has been created yet.
|
|
// If there is no pending exception, handle that in the runtime system.
|
|
__ Mov(x10, Operand(isolate()->factory()->the_hole_value()));
|
|
__ Mov(x11,
|
|
Operand(ExternalReference(Isolate::kPendingExceptionAddress,
|
|
isolate())));
|
|
__ Ldr(exception_value, MemOperand(x11));
|
|
__ Cmp(x10, exception_value);
|
|
__ B(eq, &runtime);
|
|
|
|
__ Str(x10, MemOperand(x11)); // Clear pending exception.
|
|
|
|
// Check if the exception is a termination. If so, throw as uncatchable.
|
|
Label termination_exception;
|
|
__ JumpIfRoot(exception_value,
|
|
Heap::kTerminationExceptionRootIndex,
|
|
&termination_exception);
|
|
|
|
__ Throw(exception_value, x10, x11, x12, x13);
|
|
|
|
__ Bind(&termination_exception);
|
|
__ ThrowUncatchable(exception_value, x10, x11, x12, x13);
|
|
|
|
__ Bind(&failure);
|
|
__ Mov(x0, Operand(isolate()->factory()->null_value()));
|
|
__ PopCPURegList(used_callee_saved_registers);
|
|
// Drop the 4 arguments of the stub from the stack.
|
|
__ Drop(4);
|
|
__ Ret();
|
|
|
|
__ Bind(&runtime);
|
|
__ PopCPURegList(used_callee_saved_registers);
|
|
__ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
|
|
|
|
// Deferred code for string handling.
|
|
// (6) Not a long external string? If yes, go to (8).
|
|
__ Bind(¬_seq_nor_cons);
|
|
// Compare flags are still set.
|
|
__ B(ne, ¬_long_external); // Go to (8).
|
|
|
|
// (7) External string. Make it, offset-wise, look like a sequential string.
|
|
__ Bind(&external_string);
|
|
if (masm->emit_debug_code()) {
|
|
// Assert that we do not have a cons or slice (indirect strings) here.
|
|
// Sequential strings have already been ruled out.
|
|
__ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset));
|
|
__ Ldrb(x10, FieldMemOperand(x10, Map::kInstanceTypeOffset));
|
|
__ Tst(x10, kIsIndirectStringMask);
|
|
__ Check(eq, kExternalStringExpectedButNotFound);
|
|
__ And(x10, x10, kStringRepresentationMask);
|
|
__ Cmp(x10, 0);
|
|
__ Check(ne, kExternalStringExpectedButNotFound);
|
|
}
|
|
__ Ldr(subject,
|
|
FieldMemOperand(subject, ExternalString::kResourceDataOffset));
|
|
// Move the pointer so that offset-wise, it looks like a sequential string.
|
|
STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
|
|
__ Sub(subject, subject, SeqTwoByteString::kHeaderSize - kHeapObjectTag);
|
|
__ B(&seq_string); // Go to (5).
|
|
|
|
// (8) If this is a short external string or not a string, bail out to
|
|
// runtime.
|
|
__ Bind(¬_long_external);
|
|
STATIC_ASSERT(kShortExternalStringTag != 0);
|
|
__ TestAndBranchIfAnySet(string_representation,
|
|
kShortExternalStringMask | kIsNotStringMask,
|
|
&runtime);
|
|
|
|
// (9) Sliced string. Replace subject with parent.
|
|
__ Ldr(sliced_string_offset,
|
|
UntagSmiFieldMemOperand(subject, SlicedString::kOffsetOffset));
|
|
__ Ldr(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
|
|
__ B(&check_underlying); // Go to (4).
|
|
#endif
|
|
}
|
|
|
|
|
|
static void GenerateRecordCallTarget(MacroAssembler* masm,
|
|
Register argc,
|
|
Register function,
|
|
Register feedback_vector,
|
|
Register index,
|
|
Register scratch1,
|
|
Register scratch2) {
|
|
ASM_LOCATION("GenerateRecordCallTarget");
|
|
ASSERT(!AreAliased(scratch1, scratch2,
|
|
argc, function, feedback_vector, index));
|
|
// Cache the called function in a feedback vector slot. Cache states are
|
|
// uninitialized, monomorphic (indicated by a JSFunction), and megamorphic.
|
|
// argc : number of arguments to the construct function
|
|
// function : the function to call
|
|
// feedback_vector : the feedback vector
|
|
// index : slot in feedback vector (smi)
|
|
Label initialize, done, miss, megamorphic, not_array_function;
|
|
|
|
ASSERT_EQ(*TypeFeedbackInfo::MegamorphicSentinel(masm->isolate()),
|
|
masm->isolate()->heap()->megamorphic_symbol());
|
|
ASSERT_EQ(*TypeFeedbackInfo::UninitializedSentinel(masm->isolate()),
|
|
masm->isolate()->heap()->uninitialized_symbol());
|
|
|
|
// Load the cache state.
|
|
__ Add(scratch1, feedback_vector,
|
|
Operand::UntagSmiAndScale(index, kPointerSizeLog2));
|
|
__ Ldr(scratch1, FieldMemOperand(scratch1, FixedArray::kHeaderSize));
|
|
|
|
// A monomorphic cache hit or an already megamorphic state: invoke the
|
|
// function without changing the state.
|
|
__ Cmp(scratch1, function);
|
|
__ B(eq, &done);
|
|
|
|
if (!FLAG_pretenuring_call_new) {
|
|
// If we came here, we need to see if we are the array function.
|
|
// If we didn't have a matching function, and we didn't find the megamorph
|
|
// sentinel, then we have in the slot either some other function or an
|
|
// AllocationSite. Do a map check on the object in scratch1 register.
|
|
__ Ldr(scratch2, FieldMemOperand(scratch1, AllocationSite::kMapOffset));
|
|
__ JumpIfNotRoot(scratch2, Heap::kAllocationSiteMapRootIndex, &miss);
|
|
|
|
// Make sure the function is the Array() function
|
|
__ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, scratch1);
|
|
__ Cmp(function, scratch1);
|
|
__ B(ne, &megamorphic);
|
|
__ B(&done);
|
|
}
|
|
|
|
__ Bind(&miss);
|
|
|
|
// A monomorphic miss (i.e, here the cache is not uninitialized) goes
|
|
// megamorphic.
|
|
__ JumpIfRoot(scratch1, Heap::kUninitializedSymbolRootIndex, &initialize);
|
|
// MegamorphicSentinel is an immortal immovable object (undefined) so no
|
|
// write-barrier is needed.
|
|
__ Bind(&megamorphic);
|
|
__ Add(scratch1, feedback_vector,
|
|
Operand::UntagSmiAndScale(index, kPointerSizeLog2));
|
|
__ LoadRoot(scratch2, Heap::kMegamorphicSymbolRootIndex);
|
|
__ Str(scratch2, FieldMemOperand(scratch1, FixedArray::kHeaderSize));
|
|
__ B(&done);
|
|
|
|
// An uninitialized cache is patched with the function or sentinel to
|
|
// indicate the ElementsKind if function is the Array constructor.
|
|
__ Bind(&initialize);
|
|
|
|
if (!FLAG_pretenuring_call_new) {
|
|
// Make sure the function is the Array() function
|
|
__ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, scratch1);
|
|
__ Cmp(function, scratch1);
|
|
__ B(ne, ¬_array_function);
|
|
|
|
// The target function is the Array constructor,
|
|
// Create an AllocationSite if we don't already have it, store it in the
|
|
// slot.
|
|
{
|
|
FrameScope scope(masm, StackFrame::INTERNAL);
|
|
CreateAllocationSiteStub create_stub(masm->isolate());
|
|
|
|
// Arguments register must be smi-tagged to call out.
|
|
__ SmiTag(argc);
|
|
__ Push(argc, function, feedback_vector, index);
|
|
|
|
// CreateAllocationSiteStub expect the feedback vector in x2 and the slot
|
|
// index in x3.
|
|
ASSERT(feedback_vector.Is(x2) && index.Is(x3));
|
|
__ CallStub(&create_stub);
|
|
|
|
__ Pop(index, feedback_vector, function, argc);
|
|
__ SmiUntag(argc);
|
|
}
|
|
__ B(&done);
|
|
|
|
__ Bind(¬_array_function);
|
|
}
|
|
|
|
// An uninitialized cache is patched with the function.
|
|
|
|
__ Add(scratch1, feedback_vector,
|
|
Operand::UntagSmiAndScale(index, kPointerSizeLog2));
|
|
__ Add(scratch1, scratch1, FixedArray::kHeaderSize - kHeapObjectTag);
|
|
__ Str(function, MemOperand(scratch1, 0));
|
|
|
|
__ Push(function);
|
|
__ RecordWrite(feedback_vector, scratch1, function, kLRHasNotBeenSaved,
|
|
kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
|
|
__ Pop(function);
|
|
|
|
__ Bind(&done);
|
|
}
|
|
|
|
|
|
static void EmitContinueIfStrictOrNative(MacroAssembler* masm, Label* cont) {
|
|
// Do not transform the receiver for strict mode functions.
|
|
__ Ldr(x3, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));
|
|
__ Ldr(w4, FieldMemOperand(x3, SharedFunctionInfo::kCompilerHintsOffset));
|
|
__ Tbnz(w4, SharedFunctionInfo::kStrictModeFunction, cont);
|
|
|
|
// Do not transform the receiver for native (Compilerhints already in x3).
|
|
__ Tbnz(w4, SharedFunctionInfo::kNative, cont);
|
|
}
|
|
|
|
|
|
static void EmitSlowCase(MacroAssembler* masm,
|
|
int argc,
|
|
Register function,
|
|
Register type,
|
|
Label* non_function) {
|
|
// Check for function proxy.
|
|
// x10 : function type.
|
|
__ CompareAndBranch(type, JS_FUNCTION_PROXY_TYPE, ne, non_function);
|
|
__ Push(function); // put proxy as additional argument
|
|
__ Mov(x0, argc + 1);
|
|
__ Mov(x2, 0);
|
|
__ GetBuiltinFunction(x1, Builtins::CALL_FUNCTION_PROXY);
|
|
{
|
|
Handle<Code> adaptor =
|
|
masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
|
|
__ Jump(adaptor, RelocInfo::CODE_TARGET);
|
|
}
|
|
|
|
// CALL_NON_FUNCTION expects the non-function callee as receiver (instead
|
|
// of the original receiver from the call site).
|
|
__ Bind(non_function);
|
|
__ Poke(function, argc * kXRegSize);
|
|
__ Mov(x0, argc); // Set up the number of arguments.
|
|
__ Mov(x2, 0);
|
|
__ GetBuiltinFunction(function, Builtins::CALL_NON_FUNCTION);
|
|
__ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
|
|
RelocInfo::CODE_TARGET);
|
|
}
|
|
|
|
|
|
static void EmitWrapCase(MacroAssembler* masm, int argc, Label* cont) {
|
|
// Wrap the receiver and patch it back onto the stack.
|
|
{ FrameScope frame_scope(masm, StackFrame::INTERNAL);
|
|
__ Push(x1, x3);
|
|
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
|
|
__ Pop(x1);
|
|
}
|
|
__ Poke(x0, argc * kPointerSize);
|
|
__ B(cont);
|
|
}
|
|
|
|
|
|
static void CallFunctionNoFeedback(MacroAssembler* masm,
|
|
int argc, bool needs_checks,
|
|
bool call_as_method) {
|
|
// x1 function the function to call
|
|
Register function = x1;
|
|
Register type = x4;
|
|
Label slow, non_function, wrap, cont;
|
|
|
|
// TODO(jbramley): This function has a lot of unnamed registers. Name them,
|
|
// and tidy things up a bit.
|
|
|
|
if (needs_checks) {
|
|
// Check that the function is really a JavaScript function.
|
|
__ JumpIfSmi(function, &non_function);
|
|
|
|
// Goto slow case if we do not have a function.
|
|
__ JumpIfNotObjectType(function, x10, type, JS_FUNCTION_TYPE, &slow);
|
|
}
|
|
|
|
// Fast-case: Invoke the function now.
|
|
// x1 function pushed function
|
|
ParameterCount actual(argc);
|
|
|
|
if (call_as_method) {
|
|
if (needs_checks) {
|
|
EmitContinueIfStrictOrNative(masm, &cont);
|
|
}
|
|
|
|
// Compute the receiver in sloppy mode.
|
|
__ Peek(x3, argc * kPointerSize);
|
|
|
|
if (needs_checks) {
|
|
__ JumpIfSmi(x3, &wrap);
|
|
__ JumpIfObjectType(x3, x10, type, FIRST_SPEC_OBJECT_TYPE, &wrap, lt);
|
|
} else {
|
|
__ B(&wrap);
|
|
}
|
|
|
|
__ Bind(&cont);
|
|
}
|
|
|
|
__ InvokeFunction(function,
|
|
actual,
|
|
JUMP_FUNCTION,
|
|
NullCallWrapper());
|
|
if (needs_checks) {
|
|
// Slow-case: Non-function called.
|
|
__ Bind(&slow);
|
|
EmitSlowCase(masm, argc, function, type, &non_function);
|
|
}
|
|
|
|
if (call_as_method) {
|
|
__ Bind(&wrap);
|
|
EmitWrapCase(masm, argc, &cont);
|
|
}
|
|
}
|
|
|
|
|
|
void CallFunctionStub::Generate(MacroAssembler* masm) {
|
|
ASM_LOCATION("CallFunctionStub::Generate");
|
|
CallFunctionNoFeedback(masm, argc_, NeedsChecks(), CallAsMethod());
|
|
}
|
|
|
|
|
|
void CallConstructStub::Generate(MacroAssembler* masm) {
|
|
ASM_LOCATION("CallConstructStub::Generate");
|
|
// x0 : number of arguments
|
|
// x1 : the function to call
|
|
// x2 : feedback vector
|
|
// x3 : slot in feedback vector (smi) (if r2 is not the megamorphic symbol)
|
|
Register function = x1;
|
|
Label slow, non_function_call;
|
|
|
|
// Check that the function is not a smi.
|
|
__ JumpIfSmi(function, &non_function_call);
|
|
// Check that the function is a JSFunction.
|
|
Register object_type = x10;
|
|
__ JumpIfNotObjectType(function, object_type, object_type, JS_FUNCTION_TYPE,
|
|
&slow);
|
|
|
|
if (RecordCallTarget()) {
|
|
GenerateRecordCallTarget(masm, x0, function, x2, x3, x4, x5);
|
|
|
|
__ Add(x5, x2, Operand::UntagSmiAndScale(x3, kPointerSizeLog2));
|
|
if (FLAG_pretenuring_call_new) {
|
|
// Put the AllocationSite from the feedback vector into x2.
|
|
// By adding kPointerSize we encode that we know the AllocationSite
|
|
// entry is at the feedback vector slot given by x3 + 1.
|
|
__ Ldr(x2, FieldMemOperand(x5, FixedArray::kHeaderSize + kPointerSize));
|
|
} else {
|
|
Label feedback_register_initialized;
|
|
// Put the AllocationSite from the feedback vector into x2, or undefined.
|
|
__ Ldr(x2, FieldMemOperand(x5, FixedArray::kHeaderSize));
|
|
__ Ldr(x5, FieldMemOperand(x2, AllocationSite::kMapOffset));
|
|
__ JumpIfRoot(x5, Heap::kAllocationSiteMapRootIndex,
|
|
&feedback_register_initialized);
|
|
__ LoadRoot(x2, Heap::kUndefinedValueRootIndex);
|
|
__ bind(&feedback_register_initialized);
|
|
}
|
|
|
|
__ AssertUndefinedOrAllocationSite(x2, x5);
|
|
}
|
|
|
|
// Jump to the function-specific construct stub.
|
|
Register jump_reg = x4;
|
|
Register shared_func_info = jump_reg;
|
|
Register cons_stub = jump_reg;
|
|
Register cons_stub_code = jump_reg;
|
|
__ Ldr(shared_func_info,
|
|
FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
|
|
__ Ldr(cons_stub,
|
|
FieldMemOperand(shared_func_info,
|
|
SharedFunctionInfo::kConstructStubOffset));
|
|
__ Add(cons_stub_code, cons_stub, Code::kHeaderSize - kHeapObjectTag);
|
|
__ Br(cons_stub_code);
|
|
|
|
Label do_call;
|
|
__ Bind(&slow);
|
|
__ Cmp(object_type, JS_FUNCTION_PROXY_TYPE);
|
|
__ B(ne, &non_function_call);
|
|
__ GetBuiltinFunction(x1, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
|
|
__ B(&do_call);
|
|
|
|
__ Bind(&non_function_call);
|
|
__ GetBuiltinFunction(x1, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
|
|
|
|
__ Bind(&do_call);
|
|
// Set expected number of arguments to zero (not changing x0).
|
|
__ Mov(x2, 0);
|
|
__ Jump(isolate()->builtins()->ArgumentsAdaptorTrampoline(),
|
|
RelocInfo::CODE_TARGET);
|
|
}
|
|
|
|
|
|
static void EmitLoadTypeFeedbackVector(MacroAssembler* masm, Register vector) {
|
|
__ Ldr(vector, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
|
|
__ Ldr(vector, FieldMemOperand(vector,
|
|
JSFunction::kSharedFunctionInfoOffset));
|
|
__ Ldr(vector, FieldMemOperand(vector,
|
|
SharedFunctionInfo::kFeedbackVectorOffset));
|
|
}
|
|
|
|
|
|
void CallIC_ArrayStub::Generate(MacroAssembler* masm) {
|
|
// x1 - function
|
|
// x3 - slot id
|
|
Label miss;
|
|
Register function = x1;
|
|
Register feedback_vector = x2;
|
|
Register index = x3;
|
|
Register scratch = x4;
|
|
|
|
EmitLoadTypeFeedbackVector(masm, feedback_vector);
|
|
|
|
__ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, scratch);
|
|
__ Cmp(function, scratch);
|
|
__ B(ne, &miss);
|
|
|
|
Register allocation_site = feedback_vector;
|
|
__ Mov(x0, Operand(arg_count()));
|
|
|
|
__ Add(scratch, feedback_vector,
|
|
Operand::UntagSmiAndScale(index, kPointerSizeLog2));
|
|
__ Ldr(allocation_site, FieldMemOperand(scratch, FixedArray::kHeaderSize));
|
|
|
|
// Verify that x2 contains an AllocationSite
|
|
__ AssertUndefinedOrAllocationSite(allocation_site, scratch);
|
|
ArrayConstructorStub stub(masm->isolate(), arg_count());
|
|
__ TailCallStub(&stub);
|
|
|
|
__ bind(&miss);
|
|
GenerateMiss(masm, IC::kCallIC_Customization_Miss);
|
|
|
|
// The slow case, we need this no matter what to complete a call after a miss.
|
|
CallFunctionNoFeedback(masm,
|
|
arg_count(),
|
|
true,
|
|
CallAsMethod());
|
|
|
|
__ Unreachable();
|
|
}
|
|
|
|
|
|
void CallICStub::Generate(MacroAssembler* masm) {
|
|
ASM_LOCATION("CallICStub");
|
|
|
|
// x1 - function
|
|
// x3 - slot id (Smi)
|
|
Label extra_checks_or_miss, slow_start;
|
|
Label slow, non_function, wrap, cont;
|
|
Label have_js_function;
|
|
int argc = state_.arg_count();
|
|
ParameterCount actual(argc);
|
|
|
|
Register function = x1;
|
|
Register feedback_vector = x2;
|
|
Register index = x3;
|
|
Register type = x4;
|
|
|
|
EmitLoadTypeFeedbackVector(masm, feedback_vector);
|
|
|
|
// The checks. First, does x1 match the recorded monomorphic target?
|
|
__ Add(x4, feedback_vector,
|
|
Operand::UntagSmiAndScale(index, kPointerSizeLog2));
|
|
__ Ldr(x4, FieldMemOperand(x4, FixedArray::kHeaderSize));
|
|
|
|
__ Cmp(x4, function);
|
|
__ B(ne, &extra_checks_or_miss);
|
|
|
|
__ bind(&have_js_function);
|
|
if (state_.CallAsMethod()) {
|
|
EmitContinueIfStrictOrNative(masm, &cont);
|
|
|
|
// Compute the receiver in sloppy mode.
|
|
__ Peek(x3, argc * kPointerSize);
|
|
|
|
__ JumpIfSmi(x3, &wrap);
|
|
__ JumpIfObjectType(x3, x10, type, FIRST_SPEC_OBJECT_TYPE, &wrap, lt);
|
|
|
|
__ Bind(&cont);
|
|
}
|
|
|
|
__ InvokeFunction(function,
|
|
actual,
|
|
JUMP_FUNCTION,
|
|
NullCallWrapper());
|
|
|
|
__ bind(&slow);
|
|
EmitSlowCase(masm, argc, function, type, &non_function);
|
|
|
|
if (state_.CallAsMethod()) {
|
|
__ bind(&wrap);
|
|
EmitWrapCase(masm, argc, &cont);
|
|
}
|
|
|
|
__ bind(&extra_checks_or_miss);
|
|
Label miss;
|
|
|
|
__ JumpIfRoot(x4, Heap::kMegamorphicSymbolRootIndex, &slow_start);
|
|
__ JumpIfRoot(x4, Heap::kUninitializedSymbolRootIndex, &miss);
|
|
|
|
if (!FLAG_trace_ic) {
|
|
// We are going megamorphic, and we don't want to visit the runtime.
|
|
__ Add(x4, feedback_vector,
|
|
Operand::UntagSmiAndScale(index, kPointerSizeLog2));
|
|
__ LoadRoot(x5, Heap::kMegamorphicSymbolRootIndex);
|
|
__ Str(x5, FieldMemOperand(x4, FixedArray::kHeaderSize));
|
|
__ B(&slow_start);
|
|
}
|
|
|
|
// We are here because tracing is on or we are going monomorphic.
|
|
__ bind(&miss);
|
|
GenerateMiss(masm, IC::kCallIC_Miss);
|
|
|
|
// the slow case
|
|
__ bind(&slow_start);
|
|
|
|
// Check that the function is really a JavaScript function.
|
|
__ JumpIfSmi(function, &non_function);
|
|
|
|
// Goto slow case if we do not have a function.
|
|
__ JumpIfNotObjectType(function, x10, type, JS_FUNCTION_TYPE, &slow);
|
|
__ B(&have_js_function);
|
|
}
|
|
|
|
|
|
void CallICStub::GenerateMiss(MacroAssembler* masm, IC::UtilityId id) {
|
|
ASM_LOCATION("CallICStub[Miss]");
|
|
|
|
// Get the receiver of the function from the stack; 1 ~ return address.
|
|
__ Peek(x4, (state_.arg_count() + 1) * kPointerSize);
|
|
|
|
{
|
|
FrameScope scope(masm, StackFrame::INTERNAL);
|
|
|
|
// Push the receiver and the function and feedback info.
|
|
__ Push(x4, x1, x2, x3);
|
|
|
|
// Call the entry.
|
|
ExternalReference miss = ExternalReference(IC_Utility(id),
|
|
masm->isolate());
|
|
__ CallExternalReference(miss, 4);
|
|
|
|
// Move result to edi and exit the internal frame.
|
|
__ Mov(x1, x0);
|
|
}
|
|
}
|
|
|
|
|
|
void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
|
|
// If the receiver is a smi trigger the non-string case.
|
|
__ JumpIfSmi(object_, receiver_not_string_);
|
|
|
|
// Fetch the instance type of the receiver into result register.
|
|
__ Ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
|
|
__ Ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
|
|
|
|
// If the receiver is not a string trigger the non-string case.
|
|
__ TestAndBranchIfAnySet(result_, kIsNotStringMask, receiver_not_string_);
|
|
|
|
// If the index is non-smi trigger the non-smi case.
|
|
__ JumpIfNotSmi(index_, &index_not_smi_);
|
|
|
|
__ Bind(&got_smi_index_);
|
|
// Check for index out of range.
|
|
__ Ldrsw(result_, UntagSmiFieldMemOperand(object_, String::kLengthOffset));
|
|
__ Cmp(result_, Operand::UntagSmi(index_));
|
|
__ B(ls, index_out_of_range_);
|
|
|
|
__ SmiUntag(index_);
|
|
|
|
StringCharLoadGenerator::Generate(masm,
|
|
object_,
|
|
index_.W(),
|
|
result_,
|
|
&call_runtime_);
|
|
__ SmiTag(result_);
|
|
__ Bind(&exit_);
|
|
}
|
|
|
|
|
|
void StringCharCodeAtGenerator::GenerateSlow(
|
|
MacroAssembler* masm,
|
|
const RuntimeCallHelper& call_helper) {
|
|
__ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
|
|
|
|
__ Bind(&index_not_smi_);
|
|
// If index is a heap number, try converting it to an integer.
|
|
__ CheckMap(index_,
|
|
result_,
|
|
Heap::kHeapNumberMapRootIndex,
|
|
index_not_number_,
|
|
DONT_DO_SMI_CHECK);
|
|
call_helper.BeforeCall(masm);
|
|
// Save object_ on the stack and pass index_ as argument for runtime call.
|
|
__ Push(object_, index_);
|
|
if (index_flags_ == STRING_INDEX_IS_NUMBER) {
|
|
__ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
|
|
} else {
|
|
ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
|
|
// NumberToSmi discards numbers that are not exact integers.
|
|
__ CallRuntime(Runtime::kNumberToSmi, 1);
|
|
}
|
|
// Save the conversion result before the pop instructions below
|
|
// have a chance to overwrite it.
|
|
__ Mov(index_, x0);
|
|
__ Pop(object_);
|
|
// Reload the instance type.
|
|
__ Ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
|
|
__ Ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
|
|
call_helper.AfterCall(masm);
|
|
|
|
// If index is still not a smi, it must be out of range.
|
|
__ JumpIfNotSmi(index_, index_out_of_range_);
|
|
// Otherwise, return to the fast path.
|
|
__ B(&got_smi_index_);
|
|
|
|
// Call runtime. We get here when the receiver is a string and the
|
|
// index is a number, but the code of getting the actual character
|
|
// is too complex (e.g., when the string needs to be flattened).
|
|
__ Bind(&call_runtime_);
|
|
call_helper.BeforeCall(masm);
|
|
__ SmiTag(index_);
|
|
__ Push(object_, index_);
|
|
__ CallRuntime(Runtime::kStringCharCodeAtRT, 2);
|
|
__ Mov(result_, x0);
|
|
call_helper.AfterCall(masm);
|
|
__ B(&exit_);
|
|
|
|
__ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
|
|
}
|
|
|
|
|
|
void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
|
|
__ JumpIfNotSmi(code_, &slow_case_);
|
|
__ Cmp(code_, Smi::FromInt(String::kMaxOneByteCharCode));
|
|
__ B(hi, &slow_case_);
|
|
|
|
__ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
|
|
// At this point code register contains smi tagged ASCII char code.
|
|
__ Add(result_, result_, Operand::UntagSmiAndScale(code_, kPointerSizeLog2));
|
|
__ Ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
|
|
__ JumpIfRoot(result_, Heap::kUndefinedValueRootIndex, &slow_case_);
|
|
__ Bind(&exit_);
|
|
}
|
|
|
|
|
|
void StringCharFromCodeGenerator::GenerateSlow(
|
|
MacroAssembler* masm,
|
|
const RuntimeCallHelper& call_helper) {
|
|
__ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
|
|
|
|
__ Bind(&slow_case_);
|
|
call_helper.BeforeCall(masm);
|
|
__ Push(code_);
|
|
__ CallRuntime(Runtime::kCharFromCode, 1);
|
|
__ Mov(result_, x0);
|
|
call_helper.AfterCall(masm);
|
|
__ B(&exit_);
|
|
|
|
__ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
|
|
}
|
|
|
|
|
|
void ICCompareStub::GenerateSmis(MacroAssembler* masm) {
|
|
// Inputs are in x0 (lhs) and x1 (rhs).
|
|
ASSERT(state_ == CompareIC::SMI);
|
|
ASM_LOCATION("ICCompareStub[Smis]");
|
|
Label miss;
|
|
// Bail out (to 'miss') unless both x0 and x1 are smis.
|
|
__ JumpIfEitherNotSmi(x0, x1, &miss);
|
|
|
|
if (GetCondition() == eq) {
|
|
// For equality we do not care about the sign of the result.
|
|
__ Sub(x0, x0, x1);
|
|
} else {
|
|
// Untag before subtracting to avoid handling overflow.
|
|
__ SmiUntag(x1);
|
|
__ Sub(x0, x1, Operand::UntagSmi(x0));
|
|
}
|
|
__ Ret();
|
|
|
|
__ Bind(&miss);
|
|
GenerateMiss(masm);
|
|
}
|
|
|
|
|
|
void ICCompareStub::GenerateNumbers(MacroAssembler* masm) {
|
|
ASSERT(state_ == CompareIC::NUMBER);
|
|
ASM_LOCATION("ICCompareStub[HeapNumbers]");
|
|
|
|
Label unordered, maybe_undefined1, maybe_undefined2;
|
|
Label miss, handle_lhs, values_in_d_regs;
|
|
Label untag_rhs, untag_lhs;
|
|
|
|
Register result = x0;
|
|
Register rhs = x0;
|
|
Register lhs = x1;
|
|
FPRegister rhs_d = d0;
|
|
FPRegister lhs_d = d1;
|
|
|
|
if (left_ == CompareIC::SMI) {
|
|
__ JumpIfNotSmi(lhs, &miss);
|
|
}
|
|
if (right_ == CompareIC::SMI) {
|
|
__ JumpIfNotSmi(rhs, &miss);
|
|
}
|
|
|
|
__ SmiUntagToDouble(rhs_d, rhs, kSpeculativeUntag);
|
|
__ SmiUntagToDouble(lhs_d, lhs, kSpeculativeUntag);
|
|
|
|
// Load rhs if it's a heap number.
|
|
__ JumpIfSmi(rhs, &handle_lhs);
|
|
__ CheckMap(rhs, x10, Heap::kHeapNumberMapRootIndex, &maybe_undefined1,
|
|
DONT_DO_SMI_CHECK);
|
|
__ Ldr(rhs_d, FieldMemOperand(rhs, HeapNumber::kValueOffset));
|
|
|
|
// Load lhs if it's a heap number.
|
|
__ Bind(&handle_lhs);
|
|
__ JumpIfSmi(lhs, &values_in_d_regs);
|
|
__ CheckMap(lhs, x10, Heap::kHeapNumberMapRootIndex, &maybe_undefined2,
|
|
DONT_DO_SMI_CHECK);
|
|
__ Ldr(lhs_d, FieldMemOperand(lhs, HeapNumber::kValueOffset));
|
|
|
|
__ Bind(&values_in_d_regs);
|
|
__ Fcmp(lhs_d, rhs_d);
|
|
__ B(vs, &unordered); // Overflow flag set if either is NaN.
|
|
STATIC_ASSERT((LESS == -1) && (EQUAL == 0) && (GREATER == 1));
|
|
__ Cset(result, gt); // gt => 1, otherwise (lt, eq) => 0 (EQUAL).
|
|
__ Csinv(result, result, xzr, ge); // lt => -1, gt => 1, eq => 0.
|
|
__ Ret();
|
|
|
|
__ Bind(&unordered);
|
|
ICCompareStub stub(isolate(), op_, CompareIC::GENERIC, CompareIC::GENERIC,
|
|
CompareIC::GENERIC);
|
|
__ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
|
|
|
|
__ Bind(&maybe_undefined1);
|
|
if (Token::IsOrderedRelationalCompareOp(op_)) {
|
|
__ JumpIfNotRoot(rhs, Heap::kUndefinedValueRootIndex, &miss);
|
|
__ JumpIfSmi(lhs, &unordered);
|
|
__ JumpIfNotObjectType(lhs, x10, x10, HEAP_NUMBER_TYPE, &maybe_undefined2);
|
|
__ B(&unordered);
|
|
}
|
|
|
|
__ Bind(&maybe_undefined2);
|
|
if (Token::IsOrderedRelationalCompareOp(op_)) {
|
|
__ JumpIfRoot(lhs, Heap::kUndefinedValueRootIndex, &unordered);
|
|
}
|
|
|
|
__ Bind(&miss);
|
|
GenerateMiss(masm);
|
|
}
|
|
|
|
|
|
void ICCompareStub::GenerateInternalizedStrings(MacroAssembler* masm) {
|
|
ASSERT(state_ == CompareIC::INTERNALIZED_STRING);
|
|
ASM_LOCATION("ICCompareStub[InternalizedStrings]");
|
|
Label miss;
|
|
|
|
Register result = x0;
|
|
Register rhs = x0;
|
|
Register lhs = x1;
|
|
|
|
// Check that both operands are heap objects.
|
|
__ JumpIfEitherSmi(lhs, rhs, &miss);
|
|
|
|
// Check that both operands are internalized strings.
|
|
Register rhs_map = x10;
|
|
Register lhs_map = x11;
|
|
Register rhs_type = x10;
|
|
Register lhs_type = x11;
|
|
__ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset));
|
|
__ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset));
|
|
__ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset));
|
|
__ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset));
|
|
|
|
STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0));
|
|
__ Orr(x12, lhs_type, rhs_type);
|
|
__ TestAndBranchIfAnySet(
|
|
x12, kIsNotStringMask | kIsNotInternalizedMask, &miss);
|
|
|
|
// Internalized strings are compared by identity.
|
|
STATIC_ASSERT(EQUAL == 0);
|
|
__ Cmp(lhs, rhs);
|
|
__ Cset(result, ne);
|
|
__ Ret();
|
|
|
|
__ Bind(&miss);
|
|
GenerateMiss(masm);
|
|
}
|
|
|
|
|
|
void ICCompareStub::GenerateUniqueNames(MacroAssembler* masm) {
|
|
ASSERT(state_ == CompareIC::UNIQUE_NAME);
|
|
ASM_LOCATION("ICCompareStub[UniqueNames]");
|
|
ASSERT(GetCondition() == eq);
|
|
Label miss;
|
|
|
|
Register result = x0;
|
|
Register rhs = x0;
|
|
Register lhs = x1;
|
|
|
|
Register lhs_instance_type = w2;
|
|
Register rhs_instance_type = w3;
|
|
|
|
// Check that both operands are heap objects.
|
|
__ JumpIfEitherSmi(lhs, rhs, &miss);
|
|
|
|
// Check that both operands are unique names. This leaves the instance
|
|
// types loaded in tmp1 and tmp2.
|
|
__ Ldr(x10, FieldMemOperand(lhs, HeapObject::kMapOffset));
|
|
__ Ldr(x11, FieldMemOperand(rhs, HeapObject::kMapOffset));
|
|
__ Ldrb(lhs_instance_type, FieldMemOperand(x10, Map::kInstanceTypeOffset));
|
|
__ Ldrb(rhs_instance_type, FieldMemOperand(x11, Map::kInstanceTypeOffset));
|
|
|
|
// To avoid a miss, each instance type should be either SYMBOL_TYPE or it
|
|
// should have kInternalizedTag set.
|
|
__ JumpIfNotUniqueName(lhs_instance_type, &miss);
|
|
__ JumpIfNotUniqueName(rhs_instance_type, &miss);
|
|
|
|
// Unique names are compared by identity.
|
|
STATIC_ASSERT(EQUAL == 0);
|
|
__ Cmp(lhs, rhs);
|
|
__ Cset(result, ne);
|
|
__ Ret();
|
|
|
|
__ Bind(&miss);
|
|
GenerateMiss(masm);
|
|
}
|
|
|
|
|
|
void ICCompareStub::GenerateStrings(MacroAssembler* masm) {
|
|
ASSERT(state_ == CompareIC::STRING);
|
|
ASM_LOCATION("ICCompareStub[Strings]");
|
|
|
|
Label miss;
|
|
|
|
bool equality = Token::IsEqualityOp(op_);
|
|
|
|
Register result = x0;
|
|
Register rhs = x0;
|
|
Register lhs = x1;
|
|
|
|
// Check that both operands are heap objects.
|
|
__ JumpIfEitherSmi(rhs, lhs, &miss);
|
|
|
|
// Check that both operands are strings.
|
|
Register rhs_map = x10;
|
|
Register lhs_map = x11;
|
|
Register rhs_type = x10;
|
|
Register lhs_type = x11;
|
|
__ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset));
|
|
__ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset));
|
|
__ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset));
|
|
__ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset));
|
|
STATIC_ASSERT(kNotStringTag != 0);
|
|
__ Orr(x12, lhs_type, rhs_type);
|
|
__ Tbnz(x12, MaskToBit(kIsNotStringMask), &miss);
|
|
|
|
// Fast check for identical strings.
|
|
Label not_equal;
|
|
__ Cmp(lhs, rhs);
|
|
__ B(ne, ¬_equal);
|
|
__ Mov(result, EQUAL);
|
|
__ Ret();
|
|
|
|
__ Bind(¬_equal);
|
|
// Handle not identical strings
|
|
|
|
// Check that both strings are internalized strings. If they are, we're done
|
|
// because we already know they are not identical. We know they are both
|
|
// strings.
|
|
if (equality) {
|
|
ASSERT(GetCondition() == eq);
|
|
STATIC_ASSERT(kInternalizedTag == 0);
|
|
Label not_internalized_strings;
|
|
__ Orr(x12, lhs_type, rhs_type);
|
|
__ TestAndBranchIfAnySet(
|
|
x12, kIsNotInternalizedMask, ¬_internalized_strings);
|
|
// Result is in rhs (x0), and not EQUAL, as rhs is not a smi.
|
|
__ Ret();
|
|
__ Bind(¬_internalized_strings);
|
|
}
|
|
|
|
// Check that both strings are sequential ASCII.
|
|
Label runtime;
|
|
__ JumpIfBothInstanceTypesAreNotSequentialAscii(
|
|
lhs_type, rhs_type, x12, x13, &runtime);
|
|
|
|
// Compare flat ASCII strings. Returns when done.
|
|
if (equality) {
|
|
StringCompareStub::GenerateFlatAsciiStringEquals(
|
|
masm, lhs, rhs, x10, x11, x12);
|
|
} else {
|
|
StringCompareStub::GenerateCompareFlatAsciiStrings(
|
|
masm, lhs, rhs, x10, x11, x12, x13);
|
|
}
|
|
|
|
// Handle more complex cases in runtime.
|
|
__ Bind(&runtime);
|
|
__ Push(lhs, rhs);
|
|
if (equality) {
|
|
__ TailCallRuntime(Runtime::kStringEquals, 2, 1);
|
|
} else {
|
|
__ TailCallRuntime(Runtime::kStringCompare, 2, 1);
|
|
}
|
|
|
|
__ Bind(&miss);
|
|
GenerateMiss(masm);
|
|
}
|
|
|
|
|
|
void ICCompareStub::GenerateObjects(MacroAssembler* masm) {
|
|
ASSERT(state_ == CompareIC::OBJECT);
|
|
ASM_LOCATION("ICCompareStub[Objects]");
|
|
|
|
Label miss;
|
|
|
|
Register result = x0;
|
|
Register rhs = x0;
|
|
Register lhs = x1;
|
|
|
|
__ JumpIfEitherSmi(rhs, lhs, &miss);
|
|
|
|
__ JumpIfNotObjectType(rhs, x10, x10, JS_OBJECT_TYPE, &miss);
|
|
__ JumpIfNotObjectType(lhs, x10, x10, JS_OBJECT_TYPE, &miss);
|
|
|
|
ASSERT(GetCondition() == eq);
|
|
__ Sub(result, rhs, lhs);
|
|
__ Ret();
|
|
|
|
__ Bind(&miss);
|
|
GenerateMiss(masm);
|
|
}
|
|
|
|
|
|
void ICCompareStub::GenerateKnownObjects(MacroAssembler* masm) {
|
|
ASM_LOCATION("ICCompareStub[KnownObjects]");
|
|
|
|
Label miss;
|
|
|
|
Register result = x0;
|
|
Register rhs = x0;
|
|
Register lhs = x1;
|
|
|
|
__ JumpIfEitherSmi(rhs, lhs, &miss);
|
|
|
|
Register rhs_map = x10;
|
|
Register lhs_map = x11;
|
|
__ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset));
|
|
__ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset));
|
|
__ Cmp(rhs_map, Operand(known_map_));
|
|
__ B(ne, &miss);
|
|
__ Cmp(lhs_map, Operand(known_map_));
|
|
__ B(ne, &miss);
|
|
|
|
__ Sub(result, rhs, lhs);
|
|
__ Ret();
|
|
|
|
__ Bind(&miss);
|
|
GenerateMiss(masm);
|
|
}
|
|
|
|
|
|
// This method handles the case where a compare stub had the wrong
|
|
// implementation. It calls a miss handler, which re-writes the stub. All other
|
|
// ICCompareStub::Generate* methods should fall back into this one if their
|
|
// operands were not the expected types.
|
|
void ICCompareStub::GenerateMiss(MacroAssembler* masm) {
|
|
ASM_LOCATION("ICCompareStub[Miss]");
|
|
|
|
Register stub_entry = x11;
|
|
{
|
|
ExternalReference miss =
|
|
ExternalReference(IC_Utility(IC::kCompareIC_Miss), isolate());
|
|
|
|
FrameScope scope(masm, StackFrame::INTERNAL);
|
|
Register op = x10;
|
|
Register left = x1;
|
|
Register right = x0;
|
|
// Preserve some caller-saved registers.
|
|
__ Push(x1, x0, lr);
|
|
// Push the arguments.
|
|
__ Mov(op, Smi::FromInt(op_));
|
|
__ Push(left, right, op);
|
|
|
|
// Call the miss handler. This also pops the arguments.
|
|
__ CallExternalReference(miss, 3);
|
|
|
|
// Compute the entry point of the rewritten stub.
|
|
__ Add(stub_entry, x0, Code::kHeaderSize - kHeapObjectTag);
|
|
// Restore caller-saved registers.
|
|
__ Pop(lr, x0, x1);
|
|
}
|
|
|
|
// Tail-call to the new stub.
|
|
__ Jump(stub_entry);
|
|
}
|
|
|
|
|
|
void StringHelper::GenerateHashInit(MacroAssembler* masm,
|
|
Register hash,
|
|
Register character) {
|
|
ASSERT(!AreAliased(hash, character));
|
|
|
|
// hash = character + (character << 10);
|
|
__ LoadRoot(hash, Heap::kHashSeedRootIndex);
|
|
// Untag smi seed and add the character.
|
|
__ Add(hash, character, Operand::UntagSmi(hash));
|
|
|
|
// Compute hashes modulo 2^32 using a 32-bit W register.
|
|
Register hash_w = hash.W();
|
|
|
|
// hash += hash << 10;
|
|
__ Add(hash_w, hash_w, Operand(hash_w, LSL, 10));
|
|
// hash ^= hash >> 6;
|
|
__ Eor(hash_w, hash_w, Operand(hash_w, LSR, 6));
|
|
}
|
|
|
|
|
|
void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm,
|
|
Register hash,
|
|
Register character) {
|
|
ASSERT(!AreAliased(hash, character));
|
|
|
|
// hash += character;
|
|
__ Add(hash, hash, character);
|
|
|
|
// Compute hashes modulo 2^32 using a 32-bit W register.
|
|
Register hash_w = hash.W();
|
|
|
|
// hash += hash << 10;
|
|
__ Add(hash_w, hash_w, Operand(hash_w, LSL, 10));
|
|
// hash ^= hash >> 6;
|
|
__ Eor(hash_w, hash_w, Operand(hash_w, LSR, 6));
|
|
}
|
|
|
|
|
|
void StringHelper::GenerateHashGetHash(MacroAssembler* masm,
|
|
Register hash,
|
|
Register scratch) {
|
|
// Compute hashes modulo 2^32 using a 32-bit W register.
|
|
Register hash_w = hash.W();
|
|
Register scratch_w = scratch.W();
|
|
ASSERT(!AreAliased(hash_w, scratch_w));
|
|
|
|
// hash += hash << 3;
|
|
__ Add(hash_w, hash_w, Operand(hash_w, LSL, 3));
|
|
// hash ^= hash >> 11;
|
|
__ Eor(hash_w, hash_w, Operand(hash_w, LSR, 11));
|
|
// hash += hash << 15;
|
|
__ Add(hash_w, hash_w, Operand(hash_w, LSL, 15));
|
|
|
|
__ Ands(hash_w, hash_w, String::kHashBitMask);
|
|
|
|
// if (hash == 0) hash = 27;
|
|
__ Mov(scratch_w, StringHasher::kZeroHash);
|
|
__ Csel(hash_w, scratch_w, hash_w, eq);
|
|
}
|
|
|
|
|
|
void SubStringStub::Generate(MacroAssembler* masm) {
|
|
ASM_LOCATION("SubStringStub::Generate");
|
|
Label runtime;
|
|
|
|
// Stack frame on entry.
|
|
// lr: return address
|
|
// jssp[0]: substring "to" offset
|
|
// jssp[8]: substring "from" offset
|
|
// jssp[16]: pointer to string object
|
|
|
|
// This stub is called from the native-call %_SubString(...), so
|
|
// nothing can be assumed about the arguments. It is tested that:
|
|
// "string" is a sequential string,
|
|
// both "from" and "to" are smis, and
|
|
// 0 <= from <= to <= string.length (in debug mode.)
|
|
// If any of these assumptions fail, we call the runtime system.
|
|
|
|
static const int kToOffset = 0 * kPointerSize;
|
|
static const int kFromOffset = 1 * kPointerSize;
|
|
static const int kStringOffset = 2 * kPointerSize;
|
|
|
|
Register to = x0;
|
|
Register from = x15;
|
|
Register input_string = x10;
|
|
Register input_length = x11;
|
|
Register input_type = x12;
|
|
Register result_string = x0;
|
|
Register result_length = x1;
|
|
Register temp = x3;
|
|
|
|
__ Peek(to, kToOffset);
|
|
__ Peek(from, kFromOffset);
|
|
|
|
// Check that both from and to are smis. If not, jump to runtime.
|
|
__ JumpIfEitherNotSmi(from, to, &runtime);
|
|
__ SmiUntag(from);
|
|
__ SmiUntag(to);
|
|
|
|
// Calculate difference between from and to. If to < from, branch to runtime.
|
|
__ Subs(result_length, to, from);
|
|
__ B(mi, &runtime);
|
|
|
|
// Check from is positive.
|
|
__ Tbnz(from, kWSignBit, &runtime);
|
|
|
|
// Make sure first argument is a string.
|
|
__ Peek(input_string, kStringOffset);
|
|
__ JumpIfSmi(input_string, &runtime);
|
|
__ IsObjectJSStringType(input_string, input_type, &runtime);
|
|
|
|
Label single_char;
|
|
__ Cmp(result_length, 1);
|
|
__ B(eq, &single_char);
|
|
|
|
// Short-cut for the case of trivial substring.
|
|
Label return_x0;
|
|
__ Ldrsw(input_length,
|
|
UntagSmiFieldMemOperand(input_string, String::kLengthOffset));
|
|
|
|
__ Cmp(result_length, input_length);
|
|
__ CmovX(x0, input_string, eq);
|
|
// Return original string.
|
|
__ B(eq, &return_x0);
|
|
|
|
// Longer than original string's length or negative: unsafe arguments.
|
|
__ B(hi, &runtime);
|
|
|
|
// Shorter than original string's length: an actual substring.
|
|
|
|
// x0 to substring end character offset
|
|
// x1 result_length length of substring result
|
|
// x10 input_string pointer to input string object
|
|
// x10 unpacked_string pointer to unpacked string object
|
|
// x11 input_length length of input string
|
|
// x12 input_type instance type of input string
|
|
// x15 from substring start character offset
|
|
|
|
// Deal with different string types: update the index if necessary and put
|
|
// the underlying string into register unpacked_string.
|
|
Label underlying_unpacked, sliced_string, seq_or_external_string;
|
|
Label update_instance_type;
|
|
// If the string is not indirect, it can only be sequential or external.
|
|
STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
|
|
STATIC_ASSERT(kIsIndirectStringMask != 0);
|
|
|
|
// Test for string types, and branch/fall through to appropriate unpacking
|
|
// code.
|
|
__ Tst(input_type, kIsIndirectStringMask);
|
|
__ B(eq, &seq_or_external_string);
|
|
__ Tst(input_type, kSlicedNotConsMask);
|
|
__ B(ne, &sliced_string);
|
|
|
|
Register unpacked_string = input_string;
|
|
|
|
// Cons string. Check whether it is flat, then fetch first part.
|
|
__ Ldr(temp, FieldMemOperand(input_string, ConsString::kSecondOffset));
|
|
__ JumpIfNotRoot(temp, Heap::kempty_stringRootIndex, &runtime);
|
|
__ Ldr(unpacked_string,
|
|
FieldMemOperand(input_string, ConsString::kFirstOffset));
|
|
__ B(&update_instance_type);
|
|
|
|
__ Bind(&sliced_string);
|
|
// Sliced string. Fetch parent and correct start index by offset.
|
|
__ Ldrsw(temp,
|
|
UntagSmiFieldMemOperand(input_string, SlicedString::kOffsetOffset));
|
|
__ Add(from, from, temp);
|
|
__ Ldr(unpacked_string,
|
|
FieldMemOperand(input_string, SlicedString::kParentOffset));
|
|
|
|
__ Bind(&update_instance_type);
|
|
__ Ldr(temp, FieldMemOperand(unpacked_string, HeapObject::kMapOffset));
|
|
__ Ldrb(input_type, FieldMemOperand(temp, Map::kInstanceTypeOffset));
|
|
// Now control must go to &underlying_unpacked. Since the no code is generated
|
|
// before then we fall through instead of generating a useless branch.
|
|
|
|
__ Bind(&seq_or_external_string);
|
|
// Sequential or external string. Registers unpacked_string and input_string
|
|
// alias, so there's nothing to do here.
|
|
// Note that if code is added here, the above code must be updated.
|
|
|
|
// x0 result_string pointer to result string object (uninit)
|
|
// x1 result_length length of substring result
|
|
// x10 unpacked_string pointer to unpacked string object
|
|
// x11 input_length length of input string
|
|
// x12 input_type instance type of input string
|
|
// x15 from substring start character offset
|
|
__ Bind(&underlying_unpacked);
|
|
|
|
if (FLAG_string_slices) {
|
|
Label copy_routine;
|
|
__ Cmp(result_length, SlicedString::kMinLength);
|
|
// Short slice. Copy instead of slicing.
|
|
__ B(lt, ©_routine);
|
|
// Allocate new sliced string. At this point we do not reload the instance
|
|
// type including the string encoding because we simply rely on the info
|
|
// provided by the original string. It does not matter if the original
|
|
// string's encoding is wrong because we always have to recheck encoding of
|
|
// the newly created string's parent anyway due to externalized strings.
|
|
Label two_byte_slice, set_slice_header;
|
|
STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
|
|
STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
|
|
__ Tbz(input_type, MaskToBit(kStringEncodingMask), &two_byte_slice);
|
|
__ AllocateAsciiSlicedString(result_string, result_length, x3, x4,
|
|
&runtime);
|
|
__ B(&set_slice_header);
|
|
|
|
__ Bind(&two_byte_slice);
|
|
__ AllocateTwoByteSlicedString(result_string, result_length, x3, x4,
|
|
&runtime);
|
|
|
|
__ Bind(&set_slice_header);
|
|
__ SmiTag(from);
|
|
__ Str(from, FieldMemOperand(result_string, SlicedString::kOffsetOffset));
|
|
__ Str(unpacked_string,
|
|
FieldMemOperand(result_string, SlicedString::kParentOffset));
|
|
__ B(&return_x0);
|
|
|
|
__ Bind(©_routine);
|
|
}
|
|
|
|
// x0 result_string pointer to result string object (uninit)
|
|
// x1 result_length length of substring result
|
|
// x10 unpacked_string pointer to unpacked string object
|
|
// x11 input_length length of input string
|
|
// x12 input_type instance type of input string
|
|
// x13 unpacked_char0 pointer to first char of unpacked string (uninit)
|
|
// x13 substring_char0 pointer to first char of substring (uninit)
|
|
// x14 result_char0 pointer to first char of result (uninit)
|
|
// x15 from substring start character offset
|
|
Register unpacked_char0 = x13;
|
|
Register substring_char0 = x13;
|
|
Register result_char0 = x14;
|
|
Label two_byte_sequential, sequential_string, allocate_result;
|
|
STATIC_ASSERT(kExternalStringTag != 0);
|
|
STATIC_ASSERT(kSeqStringTag == 0);
|
|
|
|
__ Tst(input_type, kExternalStringTag);
|
|
__ B(eq, &sequential_string);
|
|
|
|
__ Tst(input_type, kShortExternalStringTag);
|
|
__ B(ne, &runtime);
|
|
__ Ldr(unpacked_char0,
|
|
FieldMemOperand(unpacked_string, ExternalString::kResourceDataOffset));
|
|
// unpacked_char0 points to the first character of the underlying string.
|
|
__ B(&allocate_result);
|
|
|
|
__ Bind(&sequential_string);
|
|
// Locate first character of underlying subject string.
|
|
STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
|
|
__ Add(unpacked_char0, unpacked_string,
|
|
SeqOneByteString::kHeaderSize - kHeapObjectTag);
|
|
|
|
__ Bind(&allocate_result);
|
|
// Sequential ASCII string. Allocate the result.
|
|
STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
|
|
__ Tbz(input_type, MaskToBit(kStringEncodingMask), &two_byte_sequential);
|
|
|
|
// Allocate and copy the resulting ASCII string.
|
|
__ AllocateAsciiString(result_string, result_length, x3, x4, x5, &runtime);
|
|
|
|
// Locate first character of substring to copy.
|
|
__ Add(substring_char0, unpacked_char0, from);
|
|
|
|
// Locate first character of result.
|
|
__ Add(result_char0, result_string,
|
|
SeqOneByteString::kHeaderSize - kHeapObjectTag);
|
|
|
|
STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
|
|
__ CopyBytes(result_char0, substring_char0, result_length, x3, kCopyLong);
|
|
__ B(&return_x0);
|
|
|
|
// Allocate and copy the resulting two-byte string.
|
|
__ Bind(&two_byte_sequential);
|
|
__ AllocateTwoByteString(result_string, result_length, x3, x4, x5, &runtime);
|
|
|
|
// Locate first character of substring to copy.
|
|
__ Add(substring_char0, unpacked_char0, Operand(from, LSL, 1));
|
|
|
|
// Locate first character of result.
|
|
__ Add(result_char0, result_string,
|
|
SeqTwoByteString::kHeaderSize - kHeapObjectTag);
|
|
|
|
STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
|
|
__ Add(result_length, result_length, result_length);
|
|
__ CopyBytes(result_char0, substring_char0, result_length, x3, kCopyLong);
|
|
|
|
__ Bind(&return_x0);
|
|
Counters* counters = isolate()->counters();
|
|
__ IncrementCounter(counters->sub_string_native(), 1, x3, x4);
|
|
__ Drop(3);
|
|
__ Ret();
|
|
|
|
__ Bind(&runtime);
|
|
__ TailCallRuntime(Runtime::kSubString, 3, 1);
|
|
|
|
__ bind(&single_char);
|
|
// x1: result_length
|
|
// x10: input_string
|
|
// x12: input_type
|
|
// x15: from (untagged)
|
|
__ SmiTag(from);
|
|
StringCharAtGenerator generator(
|
|
input_string, from, result_length, x0,
|
|
&runtime, &runtime, &runtime, STRING_INDEX_IS_NUMBER);
|
|
generator.GenerateFast(masm);
|
|
__ Drop(3);
|
|
__ Ret();
|
|
generator.SkipSlow(masm, &runtime);
|
|
}
|
|
|
|
|
|
void StringCompareStub::GenerateFlatAsciiStringEquals(MacroAssembler* masm,
|
|
Register left,
|
|
Register right,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Register scratch3) {
|
|
ASSERT(!AreAliased(left, right, scratch1, scratch2, scratch3));
|
|
Register result = x0;
|
|
Register left_length = scratch1;
|
|
Register right_length = scratch2;
|
|
|
|
// Compare lengths. If lengths differ, strings can't be equal. Lengths are
|
|
// smis, and don't need to be untagged.
|
|
Label strings_not_equal, check_zero_length;
|
|
__ Ldr(left_length, FieldMemOperand(left, String::kLengthOffset));
|
|
__ Ldr(right_length, FieldMemOperand(right, String::kLengthOffset));
|
|
__ Cmp(left_length, right_length);
|
|
__ B(eq, &check_zero_length);
|
|
|
|
__ Bind(&strings_not_equal);
|
|
__ Mov(result, Smi::FromInt(NOT_EQUAL));
|
|
__ Ret();
|
|
|
|
// Check if the length is zero. If so, the strings must be equal (and empty.)
|
|
Label compare_chars;
|
|
__ Bind(&check_zero_length);
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
__ Cbnz(left_length, &compare_chars);
|
|
__ Mov(result, Smi::FromInt(EQUAL));
|
|
__ Ret();
|
|
|
|
// Compare characters. Falls through if all characters are equal.
|
|
__ Bind(&compare_chars);
|
|
GenerateAsciiCharsCompareLoop(masm, left, right, left_length, scratch2,
|
|
scratch3, &strings_not_equal);
|
|
|
|
// Characters in strings are equal.
|
|
__ Mov(result, Smi::FromInt(EQUAL));
|
|
__ Ret();
|
|
}
|
|
|
|
|
|
void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
|
|
Register left,
|
|
Register right,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Register scratch3,
|
|
Register scratch4) {
|
|
ASSERT(!AreAliased(left, right, scratch1, scratch2, scratch3, scratch4));
|
|
Label result_not_equal, compare_lengths;
|
|
|
|
// Find minimum length and length difference.
|
|
Register length_delta = scratch3;
|
|
__ Ldr(scratch1, FieldMemOperand(left, String::kLengthOffset));
|
|
__ Ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
|
|
__ Subs(length_delta, scratch1, scratch2);
|
|
|
|
Register min_length = scratch1;
|
|
__ Csel(min_length, scratch2, scratch1, gt);
|
|
__ Cbz(min_length, &compare_lengths);
|
|
|
|
// Compare loop.
|
|
GenerateAsciiCharsCompareLoop(masm,
|
|
left, right, min_length, scratch2, scratch4,
|
|
&result_not_equal);
|
|
|
|
// Compare lengths - strings up to min-length are equal.
|
|
__ Bind(&compare_lengths);
|
|
|
|
ASSERT(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
|
|
|
|
// Use length_delta as result if it's zero.
|
|
Register result = x0;
|
|
__ Subs(result, length_delta, 0);
|
|
|
|
__ Bind(&result_not_equal);
|
|
Register greater = x10;
|
|
Register less = x11;
|
|
__ Mov(greater, Smi::FromInt(GREATER));
|
|
__ Mov(less, Smi::FromInt(LESS));
|
|
__ CmovX(result, greater, gt);
|
|
__ CmovX(result, less, lt);
|
|
__ Ret();
|
|
}
|
|
|
|
|
|
void StringCompareStub::GenerateAsciiCharsCompareLoop(
|
|
MacroAssembler* masm,
|
|
Register left,
|
|
Register right,
|
|
Register length,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Label* chars_not_equal) {
|
|
ASSERT(!AreAliased(left, right, length, scratch1, scratch2));
|
|
|
|
// Change index to run from -length to -1 by adding length to string
|
|
// start. This means that loop ends when index reaches zero, which
|
|
// doesn't need an additional compare.
|
|
__ SmiUntag(length);
|
|
__ Add(scratch1, length, SeqOneByteString::kHeaderSize - kHeapObjectTag);
|
|
__ Add(left, left, scratch1);
|
|
__ Add(right, right, scratch1);
|
|
|
|
Register index = length;
|
|
__ Neg(index, length); // index = -length;
|
|
|
|
// Compare loop
|
|
Label loop;
|
|
__ Bind(&loop);
|
|
__ Ldrb(scratch1, MemOperand(left, index));
|
|
__ Ldrb(scratch2, MemOperand(right, index));
|
|
__ Cmp(scratch1, scratch2);
|
|
__ B(ne, chars_not_equal);
|
|
__ Add(index, index, 1);
|
|
__ Cbnz(index, &loop);
|
|
}
|
|
|
|
|
|
void StringCompareStub::Generate(MacroAssembler* masm) {
|
|
Label runtime;
|
|
|
|
Counters* counters = isolate()->counters();
|
|
|
|
// Stack frame on entry.
|
|
// sp[0]: right string
|
|
// sp[8]: left string
|
|
Register right = x10;
|
|
Register left = x11;
|
|
Register result = x0;
|
|
__ Pop(right, left);
|
|
|
|
Label not_same;
|
|
__ Subs(result, right, left);
|
|
__ B(ne, ¬_same);
|
|
STATIC_ASSERT(EQUAL == 0);
|
|
__ IncrementCounter(counters->string_compare_native(), 1, x3, x4);
|
|
__ Ret();
|
|
|
|
__ Bind(¬_same);
|
|
|
|
// Check that both objects are sequential ASCII strings.
|
|
__ JumpIfEitherIsNotSequentialAsciiStrings(left, right, x12, x13, &runtime);
|
|
|
|
// Compare flat ASCII strings natively. Remove arguments from stack first,
|
|
// as this function will generate a return.
|
|
__ IncrementCounter(counters->string_compare_native(), 1, x3, x4);
|
|
GenerateCompareFlatAsciiStrings(masm, left, right, x12, x13, x14, x15);
|
|
|
|
__ Bind(&runtime);
|
|
|
|
// Push arguments back on to the stack.
|
|
// sp[0] = right string
|
|
// sp[8] = left string.
|
|
__ Push(left, right);
|
|
|
|
// Call the runtime.
|
|
// Returns -1 (less), 0 (equal), or 1 (greater) tagged as a small integer.
|
|
__ TailCallRuntime(Runtime::kStringCompare, 2, 1);
|
|
}
|
|
|
|
|
|
void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
|
|
// ----------- S t a t e -------------
|
|
// -- x1 : left
|
|
// -- x0 : right
|
|
// -- lr : return address
|
|
// -----------------------------------
|
|
|
|
// Load x2 with the allocation site. We stick an undefined dummy value here
|
|
// and replace it with the real allocation site later when we instantiate this
|
|
// stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
|
|
__ LoadObject(x2, handle(isolate()->heap()->undefined_value()));
|
|
|
|
// Make sure that we actually patched the allocation site.
|
|
if (FLAG_debug_code) {
|
|
__ AssertNotSmi(x2, kExpectedAllocationSite);
|
|
__ Ldr(x10, FieldMemOperand(x2, HeapObject::kMapOffset));
|
|
__ AssertRegisterIsRoot(x10, Heap::kAllocationSiteMapRootIndex,
|
|
kExpectedAllocationSite);
|
|
}
|
|
|
|
// Tail call into the stub that handles binary operations with allocation
|
|
// sites.
|
|
BinaryOpWithAllocationSiteStub stub(isolate(), state_);
|
|
__ TailCallStub(&stub);
|
|
}
|
|
|
|
|
|
void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
|
|
// We need some extra registers for this stub, they have been allocated
|
|
// but we need to save them before using them.
|
|
regs_.Save(masm);
|
|
|
|
if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
|
|
Label dont_need_remembered_set;
|
|
|
|
Register value = regs_.scratch0();
|
|
__ Ldr(value, MemOperand(regs_.address()));
|
|
__ JumpIfNotInNewSpace(value, &dont_need_remembered_set);
|
|
|
|
__ CheckPageFlagSet(regs_.object(),
|
|
value,
|
|
1 << MemoryChunk::SCAN_ON_SCAVENGE,
|
|
&dont_need_remembered_set);
|
|
|
|
// First notify the incremental marker if necessary, then update the
|
|
// remembered set.
|
|
CheckNeedsToInformIncrementalMarker(
|
|
masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
|
|
InformIncrementalMarker(masm);
|
|
regs_.Restore(masm); // Restore the extra scratch registers we used.
|
|
|
|
__ RememberedSetHelper(object_,
|
|
address_,
|
|
value_, // scratch1
|
|
save_fp_regs_mode_,
|
|
MacroAssembler::kReturnAtEnd);
|
|
|
|
__ Bind(&dont_need_remembered_set);
|
|
}
|
|
|
|
CheckNeedsToInformIncrementalMarker(
|
|
masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
|
|
InformIncrementalMarker(masm);
|
|
regs_.Restore(masm); // Restore the extra scratch registers we used.
|
|
__ Ret();
|
|
}
|
|
|
|
|
|
void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
|
|
regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode_);
|
|
Register address =
|
|
x0.Is(regs_.address()) ? regs_.scratch0() : regs_.address();
|
|
ASSERT(!address.Is(regs_.object()));
|
|
ASSERT(!address.Is(x0));
|
|
__ Mov(address, regs_.address());
|
|
__ Mov(x0, regs_.object());
|
|
__ Mov(x1, address);
|
|
__ Mov(x2, ExternalReference::isolate_address(isolate()));
|
|
|
|
AllowExternalCallThatCantCauseGC scope(masm);
|
|
ExternalReference function =
|
|
ExternalReference::incremental_marking_record_write_function(
|
|
isolate());
|
|
__ CallCFunction(function, 3, 0);
|
|
|
|
regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode_);
|
|
}
|
|
|
|
|
|
void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
|
|
MacroAssembler* masm,
|
|
OnNoNeedToInformIncrementalMarker on_no_need,
|
|
Mode mode) {
|
|
Label on_black;
|
|
Label need_incremental;
|
|
Label need_incremental_pop_scratch;
|
|
|
|
Register mem_chunk = regs_.scratch0();
|
|
Register counter = regs_.scratch1();
|
|
__ Bic(mem_chunk, regs_.object(), Page::kPageAlignmentMask);
|
|
__ Ldr(counter,
|
|
MemOperand(mem_chunk, MemoryChunk::kWriteBarrierCounterOffset));
|
|
__ Subs(counter, counter, 1);
|
|
__ Str(counter,
|
|
MemOperand(mem_chunk, MemoryChunk::kWriteBarrierCounterOffset));
|
|
__ B(mi, &need_incremental);
|
|
|
|
// If the object is not black we don't have to inform the incremental marker.
|
|
__ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
|
|
|
|
regs_.Restore(masm); // Restore the extra scratch registers we used.
|
|
if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
|
|
__ RememberedSetHelper(object_,
|
|
address_,
|
|
value_, // scratch1
|
|
save_fp_regs_mode_,
|
|
MacroAssembler::kReturnAtEnd);
|
|
} else {
|
|
__ Ret();
|
|
}
|
|
|
|
__ Bind(&on_black);
|
|
// Get the value from the slot.
|
|
Register value = regs_.scratch0();
|
|
__ Ldr(value, MemOperand(regs_.address()));
|
|
|
|
if (mode == INCREMENTAL_COMPACTION) {
|
|
Label ensure_not_white;
|
|
|
|
__ CheckPageFlagClear(value,
|
|
regs_.scratch1(),
|
|
MemoryChunk::kEvacuationCandidateMask,
|
|
&ensure_not_white);
|
|
|
|
__ CheckPageFlagClear(regs_.object(),
|
|
regs_.scratch1(),
|
|
MemoryChunk::kSkipEvacuationSlotsRecordingMask,
|
|
&need_incremental);
|
|
|
|
__ Bind(&ensure_not_white);
|
|
}
|
|
|
|
// We need extra registers for this, so we push the object and the address
|
|
// register temporarily.
|
|
__ Push(regs_.address(), regs_.object());
|
|
__ EnsureNotWhite(value,
|
|
regs_.scratch1(), // Scratch.
|
|
regs_.object(), // Scratch.
|
|
regs_.address(), // Scratch.
|
|
regs_.scratch2(), // Scratch.
|
|
&need_incremental_pop_scratch);
|
|
__ Pop(regs_.object(), regs_.address());
|
|
|
|
regs_.Restore(masm); // Restore the extra scratch registers we used.
|
|
if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
|
|
__ RememberedSetHelper(object_,
|
|
address_,
|
|
value_, // scratch1
|
|
save_fp_regs_mode_,
|
|
MacroAssembler::kReturnAtEnd);
|
|
} else {
|
|
__ Ret();
|
|
}
|
|
|
|
__ Bind(&need_incremental_pop_scratch);
|
|
__ Pop(regs_.object(), regs_.address());
|
|
|
|
__ Bind(&need_incremental);
|
|
// Fall through when we need to inform the incremental marker.
|
|
}
|
|
|
|
|
|
void RecordWriteStub::Generate(MacroAssembler* masm) {
|
|
Label skip_to_incremental_noncompacting;
|
|
Label skip_to_incremental_compacting;
|
|
|
|
// We patch these two first instructions back and forth between a nop and
|
|
// real branch when we start and stop incremental heap marking.
|
|
// Initially the stub is expected to be in STORE_BUFFER_ONLY mode, so 2 nops
|
|
// are generated.
|
|
// See RecordWriteStub::Patch for details.
|
|
{
|
|
InstructionAccurateScope scope(masm, 2);
|
|
__ adr(xzr, &skip_to_incremental_noncompacting);
|
|
__ adr(xzr, &skip_to_incremental_compacting);
|
|
}
|
|
|
|
if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
|
|
__ RememberedSetHelper(object_,
|
|
address_,
|
|
value_, // scratch1
|
|
save_fp_regs_mode_,
|
|
MacroAssembler::kReturnAtEnd);
|
|
}
|
|
__ Ret();
|
|
|
|
__ Bind(&skip_to_incremental_noncompacting);
|
|
GenerateIncremental(masm, INCREMENTAL);
|
|
|
|
__ Bind(&skip_to_incremental_compacting);
|
|
GenerateIncremental(masm, INCREMENTAL_COMPACTION);
|
|
}
|
|
|
|
|
|
void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
|
|
// x0 value element value to store
|
|
// x3 index_smi element index as smi
|
|
// sp[0] array_index_smi array literal index in function as smi
|
|
// sp[1] array array literal
|
|
|
|
Register value = x0;
|
|
Register index_smi = x3;
|
|
|
|
Register array = x1;
|
|
Register array_map = x2;
|
|
Register array_index_smi = x4;
|
|
__ PeekPair(array_index_smi, array, 0);
|
|
__ Ldr(array_map, FieldMemOperand(array, JSObject::kMapOffset));
|
|
|
|
Label double_elements, smi_element, fast_elements, slow_elements;
|
|
Register bitfield2 = x10;
|
|
__ Ldrb(bitfield2, FieldMemOperand(array_map, Map::kBitField2Offset));
|
|
|
|
// Jump if array's ElementsKind is not FAST*_SMI_ELEMENTS, FAST_ELEMENTS or
|
|
// FAST_HOLEY_ELEMENTS.
|
|
STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
|
|
STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
|
|
STATIC_ASSERT(FAST_ELEMENTS == 2);
|
|
STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
|
|
__ Cmp(bitfield2, Map::kMaximumBitField2FastHoleyElementValue);
|
|
__ B(hi, &double_elements);
|
|
|
|
__ JumpIfSmi(value, &smi_element);
|
|
|
|
// Jump if array's ElementsKind is not FAST_ELEMENTS or FAST_HOLEY_ELEMENTS.
|
|
__ Tbnz(bitfield2, MaskToBit(FAST_ELEMENTS << Map::ElementsKindBits::kShift),
|
|
&fast_elements);
|
|
|
|
// Store into the array literal requires an elements transition. Call into
|
|
// the runtime.
|
|
__ Bind(&slow_elements);
|
|
__ Push(array, index_smi, value);
|
|
__ Ldr(x10, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
|
|
__ Ldr(x11, FieldMemOperand(x10, JSFunction::kLiteralsOffset));
|
|
__ Push(x11, array_index_smi);
|
|
__ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
|
|
|
|
// Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object.
|
|
__ Bind(&fast_elements);
|
|
__ Ldr(x10, FieldMemOperand(array, JSObject::kElementsOffset));
|
|
__ Add(x11, x10, Operand::UntagSmiAndScale(index_smi, kPointerSizeLog2));
|
|
__ Add(x11, x11, FixedArray::kHeaderSize - kHeapObjectTag);
|
|
__ Str(value, MemOperand(x11));
|
|
// Update the write barrier for the array store.
|
|
__ RecordWrite(x10, x11, value, kLRHasNotBeenSaved, kDontSaveFPRegs,
|
|
EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
|
|
__ Ret();
|
|
|
|
// Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS,
|
|
// and value is Smi.
|
|
__ Bind(&smi_element);
|
|
__ Ldr(x10, FieldMemOperand(array, JSObject::kElementsOffset));
|
|
__ Add(x11, x10, Operand::UntagSmiAndScale(index_smi, kPointerSizeLog2));
|
|
__ Str(value, FieldMemOperand(x11, FixedArray::kHeaderSize));
|
|
__ Ret();
|
|
|
|
__ Bind(&double_elements);
|
|
__ Ldr(x10, FieldMemOperand(array, JSObject::kElementsOffset));
|
|
__ StoreNumberToDoubleElements(value, index_smi, x10, x11, d0,
|
|
&slow_elements);
|
|
__ Ret();
|
|
}
|
|
|
|
|
|
void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
|
|
CEntryStub ces(isolate(), 1, kSaveFPRegs);
|
|
__ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
|
|
int parameter_count_offset =
|
|
StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
|
|
__ Ldr(x1, MemOperand(fp, parameter_count_offset));
|
|
if (function_mode_ == JS_FUNCTION_STUB_MODE) {
|
|
__ Add(x1, x1, 1);
|
|
}
|
|
masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
|
|
__ Drop(x1);
|
|
// Return to IC Miss stub, continuation still on stack.
|
|
__ Ret();
|
|
}
|
|
|
|
|
|
static unsigned int GetProfileEntryHookCallSize(MacroAssembler* masm) {
|
|
// The entry hook is a "BumpSystemStackPointer" instruction (sub),
|
|
// followed by a "Push lr" instruction, followed by a call.
|
|
unsigned int size =
|
|
Assembler::kCallSizeWithRelocation + (2 * kInstructionSize);
|
|
if (CpuFeatures::IsSupported(ALWAYS_ALIGN_CSP)) {
|
|
// If ALWAYS_ALIGN_CSP then there will be an extra bic instruction in
|
|
// "BumpSystemStackPointer".
|
|
size += kInstructionSize;
|
|
}
|
|
return size;
|
|
}
|
|
|
|
|
|
void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
|
|
if (masm->isolate()->function_entry_hook() != NULL) {
|
|
ProfileEntryHookStub stub(masm->isolate());
|
|
Assembler::BlockConstPoolScope no_const_pools(masm);
|
|
DontEmitDebugCodeScope no_debug_code(masm);
|
|
Label entry_hook_call_start;
|
|
__ Bind(&entry_hook_call_start);
|
|
__ Push(lr);
|
|
__ CallStub(&stub);
|
|
ASSERT(masm->SizeOfCodeGeneratedSince(&entry_hook_call_start) ==
|
|
GetProfileEntryHookCallSize(masm));
|
|
|
|
__ Pop(lr);
|
|
}
|
|
}
|
|
|
|
|
|
void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
|
|
MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm);
|
|
|
|
// Save all kCallerSaved registers (including lr), since this can be called
|
|
// from anywhere.
|
|
// TODO(jbramley): What about FP registers?
|
|
__ PushCPURegList(kCallerSaved);
|
|
ASSERT(kCallerSaved.IncludesAliasOf(lr));
|
|
const int kNumSavedRegs = kCallerSaved.Count();
|
|
|
|
// Compute the function's address as the first argument.
|
|
__ Sub(x0, lr, GetProfileEntryHookCallSize(masm));
|
|
|
|
#if V8_HOST_ARCH_ARM64
|
|
uintptr_t entry_hook =
|
|
reinterpret_cast<uintptr_t>(isolate()->function_entry_hook());
|
|
__ Mov(x10, entry_hook);
|
|
#else
|
|
// Under the simulator we need to indirect the entry hook through a trampoline
|
|
// function at a known address.
|
|
ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
|
|
__ Mov(x10, Operand(ExternalReference(&dispatcher,
|
|
ExternalReference::BUILTIN_CALL,
|
|
isolate())));
|
|
// It additionally takes an isolate as a third parameter
|
|
__ Mov(x2, ExternalReference::isolate_address(isolate()));
|
|
#endif
|
|
|
|
// The caller's return address is above the saved temporaries.
|
|
// Grab its location for the second argument to the hook.
|
|
__ Add(x1, __ StackPointer(), kNumSavedRegs * kPointerSize);
|
|
|
|
{
|
|
// Create a dummy frame, as CallCFunction requires this.
|
|
FrameScope frame(masm, StackFrame::MANUAL);
|
|
__ CallCFunction(x10, 2, 0);
|
|
}
|
|
|
|
__ PopCPURegList(kCallerSaved);
|
|
__ Ret();
|
|
}
|
|
|
|
|
|
void DirectCEntryStub::Generate(MacroAssembler* masm) {
|
|
// When calling into C++ code the stack pointer must be csp.
|
|
// Therefore this code must use csp for peek/poke operations when the
|
|
// stub is generated. When the stub is called
|
|
// (via DirectCEntryStub::GenerateCall), the caller must setup an ExitFrame
|
|
// and configure the stack pointer *before* doing the call.
|
|
const Register old_stack_pointer = __ StackPointer();
|
|
__ SetStackPointer(csp);
|
|
|
|
// Put return address on the stack (accessible to GC through exit frame pc).
|
|
__ Poke(lr, 0);
|
|
// Call the C++ function.
|
|
__ Blr(x10);
|
|
// Return to calling code.
|
|
__ Peek(lr, 0);
|
|
__ AssertFPCRState();
|
|
__ Ret();
|
|
|
|
__ SetStackPointer(old_stack_pointer);
|
|
}
|
|
|
|
void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
|
|
Register target) {
|
|
// Make sure the caller configured the stack pointer (see comment in
|
|
// DirectCEntryStub::Generate).
|
|
ASSERT(csp.Is(__ StackPointer()));
|
|
|
|
intptr_t code =
|
|
reinterpret_cast<intptr_t>(GetCode().location());
|
|
__ Mov(lr, Operand(code, RelocInfo::CODE_TARGET));
|
|
__ Mov(x10, target);
|
|
// Branch to the stub.
|
|
__ Blr(lr);
|
|
}
|
|
|
|
|
|
// Probe the name dictionary in the 'elements' register.
|
|
// Jump to the 'done' label if a property with the given name is found.
|
|
// Jump to the 'miss' label otherwise.
|
|
//
|
|
// If lookup was successful 'scratch2' will be equal to elements + 4 * index.
|
|
// 'elements' and 'name' registers are preserved on miss.
|
|
void NameDictionaryLookupStub::GeneratePositiveLookup(
|
|
MacroAssembler* masm,
|
|
Label* miss,
|
|
Label* done,
|
|
Register elements,
|
|
Register name,
|
|
Register scratch1,
|
|
Register scratch2) {
|
|
ASSERT(!AreAliased(elements, name, scratch1, scratch2));
|
|
|
|
// Assert that name contains a string.
|
|
__ AssertName(name);
|
|
|
|
// Compute the capacity mask.
|
|
__ Ldrsw(scratch1, UntagSmiFieldMemOperand(elements, kCapacityOffset));
|
|
__ Sub(scratch1, scratch1, 1);
|
|
|
|
// Generate an unrolled loop that performs a few probes before giving up.
|
|
for (int i = 0; i < kInlinedProbes; i++) {
|
|
// Compute the masked index: (hash + i + i * i) & mask.
|
|
__ Ldr(scratch2, FieldMemOperand(name, Name::kHashFieldOffset));
|
|
if (i > 0) {
|
|
// Add the probe offset (i + i * i) left shifted to avoid right shifting
|
|
// the hash in a separate instruction. The value hash + i + i * i is right
|
|
// shifted in the following and instruction.
|
|
ASSERT(NameDictionary::GetProbeOffset(i) <
|
|
1 << (32 - Name::kHashFieldOffset));
|
|
__ Add(scratch2, scratch2, Operand(
|
|
NameDictionary::GetProbeOffset(i) << Name::kHashShift));
|
|
}
|
|
__ And(scratch2, scratch1, Operand(scratch2, LSR, Name::kHashShift));
|
|
|
|
// Scale the index by multiplying by the element size.
|
|
ASSERT(NameDictionary::kEntrySize == 3);
|
|
__ Add(scratch2, scratch2, Operand(scratch2, LSL, 1));
|
|
|
|
// Check if the key is identical to the name.
|
|
UseScratchRegisterScope temps(masm);
|
|
Register scratch3 = temps.AcquireX();
|
|
__ Add(scratch2, elements, Operand(scratch2, LSL, kPointerSizeLog2));
|
|
__ Ldr(scratch3, FieldMemOperand(scratch2, kElementsStartOffset));
|
|
__ Cmp(name, scratch3);
|
|
__ B(eq, done);
|
|
}
|
|
|
|
// The inlined probes didn't find the entry.
|
|
// Call the complete stub to scan the whole dictionary.
|
|
|
|
CPURegList spill_list(CPURegister::kRegister, kXRegSizeInBits, 0, 6);
|
|
spill_list.Combine(lr);
|
|
spill_list.Remove(scratch1);
|
|
spill_list.Remove(scratch2);
|
|
|
|
__ PushCPURegList(spill_list);
|
|
|
|
if (name.is(x0)) {
|
|
ASSERT(!elements.is(x1));
|
|
__ Mov(x1, name);
|
|
__ Mov(x0, elements);
|
|
} else {
|
|
__ Mov(x0, elements);
|
|
__ Mov(x1, name);
|
|
}
|
|
|
|
Label not_found;
|
|
NameDictionaryLookupStub stub(masm->isolate(), POSITIVE_LOOKUP);
|
|
__ CallStub(&stub);
|
|
__ Cbz(x0, ¬_found);
|
|
__ Mov(scratch2, x2); // Move entry index into scratch2.
|
|
__ PopCPURegList(spill_list);
|
|
__ B(done);
|
|
|
|
__ Bind(¬_found);
|
|
__ PopCPURegList(spill_list);
|
|
__ B(miss);
|
|
}
|
|
|
|
|
|
void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
|
|
Label* miss,
|
|
Label* done,
|
|
Register receiver,
|
|
Register properties,
|
|
Handle<Name> name,
|
|
Register scratch0) {
|
|
ASSERT(!AreAliased(receiver, properties, scratch0));
|
|
ASSERT(name->IsUniqueName());
|
|
// If names of slots in range from 1 to kProbes - 1 for the hash value are
|
|
// not equal to the name and kProbes-th slot is not used (its name is the
|
|
// undefined value), it guarantees the hash table doesn't contain the
|
|
// property. It's true even if some slots represent deleted properties
|
|
// (their names are the hole value).
|
|
for (int i = 0; i < kInlinedProbes; i++) {
|
|
// scratch0 points to properties hash.
|
|
// Compute the masked index: (hash + i + i * i) & mask.
|
|
Register index = scratch0;
|
|
// Capacity is smi 2^n.
|
|
__ Ldrsw(index, UntagSmiFieldMemOperand(properties, kCapacityOffset));
|
|
__ Sub(index, index, 1);
|
|
__ And(index, index, name->Hash() + NameDictionary::GetProbeOffset(i));
|
|
|
|
// Scale the index by multiplying by the entry size.
|
|
ASSERT(NameDictionary::kEntrySize == 3);
|
|
__ Add(index, index, Operand(index, LSL, 1)); // index *= 3.
|
|
|
|
Register entity_name = scratch0;
|
|
// Having undefined at this place means the name is not contained.
|
|
Register tmp = index;
|
|
__ Add(tmp, properties, Operand(index, LSL, kPointerSizeLog2));
|
|
__ Ldr(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
|
|
|
|
__ JumpIfRoot(entity_name, Heap::kUndefinedValueRootIndex, done);
|
|
|
|
// Stop if found the property.
|
|
__ Cmp(entity_name, Operand(name));
|
|
__ B(eq, miss);
|
|
|
|
Label good;
|
|
__ JumpIfRoot(entity_name, Heap::kTheHoleValueRootIndex, &good);
|
|
|
|
// Check if the entry name is not a unique name.
|
|
__ Ldr(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
|
|
__ Ldrb(entity_name,
|
|
FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
|
|
__ JumpIfNotUniqueName(entity_name, miss);
|
|
__ Bind(&good);
|
|
}
|
|
|
|
CPURegList spill_list(CPURegister::kRegister, kXRegSizeInBits, 0, 6);
|
|
spill_list.Combine(lr);
|
|
spill_list.Remove(scratch0); // Scratch registers don't need to be preserved.
|
|
|
|
__ PushCPURegList(spill_list);
|
|
|
|
__ Ldr(x0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
|
|
__ Mov(x1, Operand(name));
|
|
NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP);
|
|
__ CallStub(&stub);
|
|
// Move stub return value to scratch0. Note that scratch0 is not included in
|
|
// spill_list and won't be clobbered by PopCPURegList.
|
|
__ Mov(scratch0, x0);
|
|
__ PopCPURegList(spill_list);
|
|
|
|
__ Cbz(scratch0, done);
|
|
__ B(miss);
|
|
}
|
|
|
|
|
|
void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
|
|
// This stub overrides SometimesSetsUpAFrame() to return false. That means
|
|
// we cannot call anything that could cause a GC from this stub.
|
|
//
|
|
// Arguments are in x0 and x1:
|
|
// x0: property dictionary.
|
|
// x1: the name of the property we are looking for.
|
|
//
|
|
// Return value is in x0 and is zero if lookup failed, non zero otherwise.
|
|
// If the lookup is successful, x2 will contains the index of the entry.
|
|
|
|
Register result = x0;
|
|
Register dictionary = x0;
|
|
Register key = x1;
|
|
Register index = x2;
|
|
Register mask = x3;
|
|
Register hash = x4;
|
|
Register undefined = x5;
|
|
Register entry_key = x6;
|
|
|
|
Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
|
|
|
|
__ Ldrsw(mask, UntagSmiFieldMemOperand(dictionary, kCapacityOffset));
|
|
__ Sub(mask, mask, 1);
|
|
|
|
__ Ldr(hash, FieldMemOperand(key, Name::kHashFieldOffset));
|
|
__ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
|
|
|
|
for (int i = kInlinedProbes; i < kTotalProbes; i++) {
|
|
// Compute the masked index: (hash + i + i * i) & mask.
|
|
// Capacity is smi 2^n.
|
|
if (i > 0) {
|
|
// Add the probe offset (i + i * i) left shifted to avoid right shifting
|
|
// the hash in a separate instruction. The value hash + i + i * i is right
|
|
// shifted in the following and instruction.
|
|
ASSERT(NameDictionary::GetProbeOffset(i) <
|
|
1 << (32 - Name::kHashFieldOffset));
|
|
__ Add(index, hash,
|
|
NameDictionary::GetProbeOffset(i) << Name::kHashShift);
|
|
} else {
|
|
__ Mov(index, hash);
|
|
}
|
|
__ And(index, mask, Operand(index, LSR, Name::kHashShift));
|
|
|
|
// Scale the index by multiplying by the entry size.
|
|
ASSERT(NameDictionary::kEntrySize == 3);
|
|
__ Add(index, index, Operand(index, LSL, 1)); // index *= 3.
|
|
|
|
__ Add(index, dictionary, Operand(index, LSL, kPointerSizeLog2));
|
|
__ Ldr(entry_key, FieldMemOperand(index, kElementsStartOffset));
|
|
|
|
// Having undefined at this place means the name is not contained.
|
|
__ Cmp(entry_key, undefined);
|
|
__ B(eq, ¬_in_dictionary);
|
|
|
|
// Stop if found the property.
|
|
__ Cmp(entry_key, key);
|
|
__ B(eq, &in_dictionary);
|
|
|
|
if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) {
|
|
// Check if the entry name is not a unique name.
|
|
__ Ldr(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
|
|
__ Ldrb(entry_key, FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
|
|
__ JumpIfNotUniqueName(entry_key, &maybe_in_dictionary);
|
|
}
|
|
}
|
|
|
|
__ Bind(&maybe_in_dictionary);
|
|
// If we are doing negative lookup then probing failure should be
|
|
// treated as a lookup success. For positive lookup, probing failure
|
|
// should be treated as lookup failure.
|
|
if (mode_ == POSITIVE_LOOKUP) {
|
|
__ Mov(result, 0);
|
|
__ Ret();
|
|
}
|
|
|
|
__ Bind(&in_dictionary);
|
|
__ Mov(result, 1);
|
|
__ Ret();
|
|
|
|
__ Bind(¬_in_dictionary);
|
|
__ Mov(result, 0);
|
|
__ Ret();
|
|
}
|
|
|
|
|
|
template<class T>
|
|
static void CreateArrayDispatch(MacroAssembler* masm,
|
|
AllocationSiteOverrideMode mode) {
|
|
ASM_LOCATION("CreateArrayDispatch");
|
|
if (mode == DISABLE_ALLOCATION_SITES) {
|
|
T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
|
|
__ TailCallStub(&stub);
|
|
|
|
} else if (mode == DONT_OVERRIDE) {
|
|
Register kind = x3;
|
|
int last_index =
|
|
GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
|
|
for (int i = 0; i <= last_index; ++i) {
|
|
Label next;
|
|
ElementsKind candidate_kind = GetFastElementsKindFromSequenceIndex(i);
|
|
// TODO(jbramley): Is this the best way to handle this? Can we make the
|
|
// tail calls conditional, rather than hopping over each one?
|
|
__ CompareAndBranch(kind, candidate_kind, ne, &next);
|
|
T stub(masm->isolate(), candidate_kind);
|
|
__ TailCallStub(&stub);
|
|
__ Bind(&next);
|
|
}
|
|
|
|
// If we reached this point there is a problem.
|
|
__ Abort(kUnexpectedElementsKindInArrayConstructor);
|
|
|
|
} else {
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
|
|
// TODO(jbramley): If this needs to be a special case, make it a proper template
|
|
// specialization, and not a separate function.
|
|
static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
|
|
AllocationSiteOverrideMode mode) {
|
|
ASM_LOCATION("CreateArrayDispatchOneArgument");
|
|
// x0 - argc
|
|
// x1 - constructor?
|
|
// x2 - allocation site (if mode != DISABLE_ALLOCATION_SITES)
|
|
// x3 - kind (if mode != DISABLE_ALLOCATION_SITES)
|
|
// sp[0] - last argument
|
|
|
|
Register allocation_site = x2;
|
|
Register kind = x3;
|
|
|
|
Label normal_sequence;
|
|
if (mode == DONT_OVERRIDE) {
|
|
STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
|
|
STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
|
|
STATIC_ASSERT(FAST_ELEMENTS == 2);
|
|
STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
|
|
STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4);
|
|
STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
|
|
|
|
// Is the low bit set? If so, the array is holey.
|
|
__ Tbnz(kind, 0, &normal_sequence);
|
|
}
|
|
|
|
// Look at the last argument.
|
|
// TODO(jbramley): What does a 0 argument represent?
|
|
__ Peek(x10, 0);
|
|
__ Cbz(x10, &normal_sequence);
|
|
|
|
if (mode == DISABLE_ALLOCATION_SITES) {
|
|
ElementsKind initial = GetInitialFastElementsKind();
|
|
ElementsKind holey_initial = GetHoleyElementsKind(initial);
|
|
|
|
ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
|
|
holey_initial,
|
|
DISABLE_ALLOCATION_SITES);
|
|
__ TailCallStub(&stub_holey);
|
|
|
|
__ Bind(&normal_sequence);
|
|
ArraySingleArgumentConstructorStub stub(masm->isolate(),
|
|
initial,
|
|
DISABLE_ALLOCATION_SITES);
|
|
__ TailCallStub(&stub);
|
|
} else if (mode == DONT_OVERRIDE) {
|
|
// We are going to create a holey array, but our kind is non-holey.
|
|
// Fix kind and retry (only if we have an allocation site in the slot).
|
|
__ Orr(kind, kind, 1);
|
|
|
|
if (FLAG_debug_code) {
|
|
__ Ldr(x10, FieldMemOperand(allocation_site, 0));
|
|
__ JumpIfNotRoot(x10, Heap::kAllocationSiteMapRootIndex,
|
|
&normal_sequence);
|
|
__ Assert(eq, kExpectedAllocationSite);
|
|
}
|
|
|
|
// Save the resulting elements kind in type info. We can't just store 'kind'
|
|
// in the AllocationSite::transition_info field because elements kind is
|
|
// restricted to a portion of the field; upper bits need to be left alone.
|
|
STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
|
|
__ Ldr(x11, FieldMemOperand(allocation_site,
|
|
AllocationSite::kTransitionInfoOffset));
|
|
__ Add(x11, x11, Smi::FromInt(kFastElementsKindPackedToHoley));
|
|
__ Str(x11, FieldMemOperand(allocation_site,
|
|
AllocationSite::kTransitionInfoOffset));
|
|
|
|
__ Bind(&normal_sequence);
|
|
int last_index =
|
|
GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
|
|
for (int i = 0; i <= last_index; ++i) {
|
|
Label next;
|
|
ElementsKind candidate_kind = GetFastElementsKindFromSequenceIndex(i);
|
|
__ CompareAndBranch(kind, candidate_kind, ne, &next);
|
|
ArraySingleArgumentConstructorStub stub(masm->isolate(), candidate_kind);
|
|
__ TailCallStub(&stub);
|
|
__ Bind(&next);
|
|
}
|
|
|
|
// If we reached this point there is a problem.
|
|
__ Abort(kUnexpectedElementsKindInArrayConstructor);
|
|
} else {
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
|
|
template<class T>
|
|
static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
|
|
int to_index = GetSequenceIndexFromFastElementsKind(
|
|
TERMINAL_FAST_ELEMENTS_KIND);
|
|
for (int i = 0; i <= to_index; ++i) {
|
|
ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
|
|
T stub(isolate, kind);
|
|
stub.GetCode();
|
|
if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
|
|
T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
|
|
stub1.GetCode();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
|
|
ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
|
|
isolate);
|
|
ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
|
|
isolate);
|
|
ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
|
|
isolate);
|
|
}
|
|
|
|
|
|
void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
|
|
Isolate* isolate) {
|
|
ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
|
|
for (int i = 0; i < 2; i++) {
|
|
// For internal arrays we only need a few things
|
|
InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
|
|
stubh1.GetCode();
|
|
InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
|
|
stubh2.GetCode();
|
|
InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]);
|
|
stubh3.GetCode();
|
|
}
|
|
}
|
|
|
|
|
|
void ArrayConstructorStub::GenerateDispatchToArrayStub(
|
|
MacroAssembler* masm,
|
|
AllocationSiteOverrideMode mode) {
|
|
Register argc = x0;
|
|
if (argument_count_ == ANY) {
|
|
Label zero_case, n_case;
|
|
__ Cbz(argc, &zero_case);
|
|
__ Cmp(argc, 1);
|
|
__ B(ne, &n_case);
|
|
|
|
// One argument.
|
|
CreateArrayDispatchOneArgument(masm, mode);
|
|
|
|
__ Bind(&zero_case);
|
|
// No arguments.
|
|
CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
|
|
|
|
__ Bind(&n_case);
|
|
// N arguments.
|
|
CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
|
|
|
|
} else if (argument_count_ == NONE) {
|
|
CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
|
|
} else if (argument_count_ == ONE) {
|
|
CreateArrayDispatchOneArgument(masm, mode);
|
|
} else if (argument_count_ == MORE_THAN_ONE) {
|
|
CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
|
|
} else {
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
|
|
void ArrayConstructorStub::Generate(MacroAssembler* masm) {
|
|
ASM_LOCATION("ArrayConstructorStub::Generate");
|
|
// ----------- S t a t e -------------
|
|
// -- x0 : argc (only if argument_count_ == ANY)
|
|
// -- x1 : constructor
|
|
// -- x2 : AllocationSite or undefined
|
|
// -- sp[0] : return address
|
|
// -- sp[4] : last argument
|
|
// -----------------------------------
|
|
Register constructor = x1;
|
|
Register allocation_site = x2;
|
|
|
|
if (FLAG_debug_code) {
|
|
// The array construct code is only set for the global and natives
|
|
// builtin Array functions which always have maps.
|
|
|
|
Label unexpected_map, map_ok;
|
|
// Initial map for the builtin Array function should be a map.
|
|
__ Ldr(x10, FieldMemOperand(constructor,
|
|
JSFunction::kPrototypeOrInitialMapOffset));
|
|
// Will both indicate a NULL and a Smi.
|
|
__ JumpIfSmi(x10, &unexpected_map);
|
|
__ JumpIfObjectType(x10, x10, x11, MAP_TYPE, &map_ok);
|
|
__ Bind(&unexpected_map);
|
|
__ Abort(kUnexpectedInitialMapForArrayFunction);
|
|
__ Bind(&map_ok);
|
|
|
|
// We should either have undefined in the allocation_site register or a
|
|
// valid AllocationSite.
|
|
__ AssertUndefinedOrAllocationSite(allocation_site, x10);
|
|
}
|
|
|
|
Register kind = x3;
|
|
Label no_info;
|
|
// Get the elements kind and case on that.
|
|
__ JumpIfRoot(allocation_site, Heap::kUndefinedValueRootIndex, &no_info);
|
|
|
|
__ Ldrsw(kind,
|
|
UntagSmiFieldMemOperand(allocation_site,
|
|
AllocationSite::kTransitionInfoOffset));
|
|
__ And(kind, kind, AllocationSite::ElementsKindBits::kMask);
|
|
GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
|
|
|
|
__ Bind(&no_info);
|
|
GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
|
|
}
|
|
|
|
|
|
void InternalArrayConstructorStub::GenerateCase(
|
|
MacroAssembler* masm, ElementsKind kind) {
|
|
Label zero_case, n_case;
|
|
Register argc = x0;
|
|
|
|
__ Cbz(argc, &zero_case);
|
|
__ CompareAndBranch(argc, 1, ne, &n_case);
|
|
|
|
// One argument.
|
|
if (IsFastPackedElementsKind(kind)) {
|
|
Label packed_case;
|
|
|
|
// We might need to create a holey array; look at the first argument.
|
|
__ Peek(x10, 0);
|
|
__ Cbz(x10, &packed_case);
|
|
|
|
InternalArraySingleArgumentConstructorStub
|
|
stub1_holey(isolate(), GetHoleyElementsKind(kind));
|
|
__ TailCallStub(&stub1_holey);
|
|
|
|
__ Bind(&packed_case);
|
|
}
|
|
InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
|
|
__ TailCallStub(&stub1);
|
|
|
|
__ Bind(&zero_case);
|
|
// No arguments.
|
|
InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
|
|
__ TailCallStub(&stub0);
|
|
|
|
__ Bind(&n_case);
|
|
// N arguments.
|
|
InternalArrayNArgumentsConstructorStub stubN(isolate(), kind);
|
|
__ TailCallStub(&stubN);
|
|
}
|
|
|
|
|
|
void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
|
|
// ----------- S t a t e -------------
|
|
// -- x0 : argc
|
|
// -- x1 : constructor
|
|
// -- sp[0] : return address
|
|
// -- sp[4] : last argument
|
|
// -----------------------------------
|
|
|
|
Register constructor = x1;
|
|
|
|
if (FLAG_debug_code) {
|
|
// The array construct code is only set for the global and natives
|
|
// builtin Array functions which always have maps.
|
|
|
|
Label unexpected_map, map_ok;
|
|
// Initial map for the builtin Array function should be a map.
|
|
__ Ldr(x10, FieldMemOperand(constructor,
|
|
JSFunction::kPrototypeOrInitialMapOffset));
|
|
// Will both indicate a NULL and a Smi.
|
|
__ JumpIfSmi(x10, &unexpected_map);
|
|
__ JumpIfObjectType(x10, x10, x11, MAP_TYPE, &map_ok);
|
|
__ Bind(&unexpected_map);
|
|
__ Abort(kUnexpectedInitialMapForArrayFunction);
|
|
__ Bind(&map_ok);
|
|
}
|
|
|
|
Register kind = w3;
|
|
// Figure out the right elements kind
|
|
__ Ldr(x10, FieldMemOperand(constructor,
|
|
JSFunction::kPrototypeOrInitialMapOffset));
|
|
|
|
// Retrieve elements_kind from map.
|
|
__ LoadElementsKindFromMap(kind, x10);
|
|
|
|
if (FLAG_debug_code) {
|
|
Label done;
|
|
__ Cmp(x3, FAST_ELEMENTS);
|
|
__ Ccmp(x3, FAST_HOLEY_ELEMENTS, ZFlag, ne);
|
|
__ Assert(eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray);
|
|
}
|
|
|
|
Label fast_elements_case;
|
|
__ CompareAndBranch(kind, FAST_ELEMENTS, eq, &fast_elements_case);
|
|
GenerateCase(masm, FAST_HOLEY_ELEMENTS);
|
|
|
|
__ Bind(&fast_elements_case);
|
|
GenerateCase(masm, FAST_ELEMENTS);
|
|
}
|
|
|
|
|
|
void CallApiFunctionStub::Generate(MacroAssembler* masm) {
|
|
// ----------- S t a t e -------------
|
|
// -- x0 : callee
|
|
// -- x4 : call_data
|
|
// -- x2 : holder
|
|
// -- x1 : api_function_address
|
|
// -- cp : context
|
|
// --
|
|
// -- sp[0] : last argument
|
|
// -- ...
|
|
// -- sp[(argc - 1) * 8] : first argument
|
|
// -- sp[argc * 8] : receiver
|
|
// -----------------------------------
|
|
|
|
Register callee = x0;
|
|
Register call_data = x4;
|
|
Register holder = x2;
|
|
Register api_function_address = x1;
|
|
Register context = cp;
|
|
|
|
int argc = ArgumentBits::decode(bit_field_);
|
|
bool is_store = IsStoreBits::decode(bit_field_);
|
|
bool call_data_undefined = CallDataUndefinedBits::decode(bit_field_);
|
|
|
|
typedef FunctionCallbackArguments FCA;
|
|
|
|
STATIC_ASSERT(FCA::kContextSaveIndex == 6);
|
|
STATIC_ASSERT(FCA::kCalleeIndex == 5);
|
|
STATIC_ASSERT(FCA::kDataIndex == 4);
|
|
STATIC_ASSERT(FCA::kReturnValueOffset == 3);
|
|
STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
|
|
STATIC_ASSERT(FCA::kIsolateIndex == 1);
|
|
STATIC_ASSERT(FCA::kHolderIndex == 0);
|
|
STATIC_ASSERT(FCA::kArgsLength == 7);
|
|
|
|
// FunctionCallbackArguments: context, callee and call data.
|
|
__ Push(context, callee, call_data);
|
|
|
|
// Load context from callee
|
|
__ Ldr(context, FieldMemOperand(callee, JSFunction::kContextOffset));
|
|
|
|
if (!call_data_undefined) {
|
|
__ LoadRoot(call_data, Heap::kUndefinedValueRootIndex);
|
|
}
|
|
Register isolate_reg = x5;
|
|
__ Mov(isolate_reg, ExternalReference::isolate_address(isolate()));
|
|
|
|
// FunctionCallbackArguments:
|
|
// return value, return value default, isolate, holder.
|
|
__ Push(call_data, call_data, isolate_reg, holder);
|
|
|
|
// Prepare arguments.
|
|
Register args = x6;
|
|
__ Mov(args, masm->StackPointer());
|
|
|
|
// Allocate the v8::Arguments structure in the arguments' space, since it's
|
|
// not controlled by GC.
|
|
const int kApiStackSpace = 4;
|
|
|
|
// Allocate space for CallApiFunctionAndReturn can store some scratch
|
|
// registeres on the stack.
|
|
const int kCallApiFunctionSpillSpace = 4;
|
|
|
|
FrameScope frame_scope(masm, StackFrame::MANUAL);
|
|
__ EnterExitFrame(false, x10, kApiStackSpace + kCallApiFunctionSpillSpace);
|
|
|
|
ASSERT(!AreAliased(x0, api_function_address));
|
|
// x0 = FunctionCallbackInfo&
|
|
// Arguments is after the return address.
|
|
__ Add(x0, masm->StackPointer(), 1 * kPointerSize);
|
|
// FunctionCallbackInfo::implicit_args_ and FunctionCallbackInfo::values_
|
|
__ Add(x10, args, Operand((FCA::kArgsLength - 1 + argc) * kPointerSize));
|
|
__ Stp(args, x10, MemOperand(x0, 0 * kPointerSize));
|
|
// FunctionCallbackInfo::length_ = argc and
|
|
// FunctionCallbackInfo::is_construct_call = 0
|
|
__ Mov(x10, argc);
|
|
__ Stp(x10, xzr, MemOperand(x0, 2 * kPointerSize));
|
|
|
|
const int kStackUnwindSpace = argc + FCA::kArgsLength + 1;
|
|
ExternalReference thunk_ref =
|
|
ExternalReference::invoke_function_callback(isolate());
|
|
|
|
AllowExternalCallThatCantCauseGC scope(masm);
|
|
MemOperand context_restore_operand(
|
|
fp, (2 + FCA::kContextSaveIndex) * kPointerSize);
|
|
// Stores return the first js argument
|
|
int return_value_offset = 0;
|
|
if (is_store) {
|
|
return_value_offset = 2 + FCA::kArgsLength;
|
|
} else {
|
|
return_value_offset = 2 + FCA::kReturnValueOffset;
|
|
}
|
|
MemOperand return_value_operand(fp, return_value_offset * kPointerSize);
|
|
|
|
const int spill_offset = 1 + kApiStackSpace;
|
|
__ CallApiFunctionAndReturn(api_function_address,
|
|
thunk_ref,
|
|
kStackUnwindSpace,
|
|
spill_offset,
|
|
return_value_operand,
|
|
&context_restore_operand);
|
|
}
|
|
|
|
|
|
void CallApiGetterStub::Generate(MacroAssembler* masm) {
|
|
// ----------- S t a t e -------------
|
|
// -- sp[0] : name
|
|
// -- sp[8 - kArgsLength*8] : PropertyCallbackArguments object
|
|
// -- ...
|
|
// -- x2 : api_function_address
|
|
// -----------------------------------
|
|
|
|
Register api_function_address = x2;
|
|
|
|
__ Mov(x0, masm->StackPointer()); // x0 = Handle<Name>
|
|
__ Add(x1, x0, 1 * kPointerSize); // x1 = PCA
|
|
|
|
const int kApiStackSpace = 1;
|
|
|
|
// Allocate space for CallApiFunctionAndReturn can store some scratch
|
|
// registeres on the stack.
|
|
const int kCallApiFunctionSpillSpace = 4;
|
|
|
|
FrameScope frame_scope(masm, StackFrame::MANUAL);
|
|
__ EnterExitFrame(false, x10, kApiStackSpace + kCallApiFunctionSpillSpace);
|
|
|
|
// Create PropertyAccessorInfo instance on the stack above the exit frame with
|
|
// x1 (internal::Object** args_) as the data.
|
|
__ Poke(x1, 1 * kPointerSize);
|
|
__ Add(x1, masm->StackPointer(), 1 * kPointerSize); // x1 = AccessorInfo&
|
|
|
|
const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
|
|
|
|
ExternalReference thunk_ref =
|
|
ExternalReference::invoke_accessor_getter_callback(isolate());
|
|
|
|
const int spill_offset = 1 + kApiStackSpace;
|
|
__ CallApiFunctionAndReturn(api_function_address,
|
|
thunk_ref,
|
|
kStackUnwindSpace,
|
|
spill_offset,
|
|
MemOperand(fp, 6 * kPointerSize),
|
|
NULL);
|
|
}
|
|
|
|
|
|
#undef __
|
|
|
|
} } // namespace v8::internal
|
|
|
|
#endif // V8_TARGET_ARCH_ARM64
|